Gröbner Bases
Syzygies
Resolutions
Quantum Alg.
Left Maximality
Max. Twosided
Resolutions
Let us compute the normal free resolution of the ideal, generated by e2, f , then minimize it and compute the minimal resolution with the particular algorithm.

ideal j=e2,f; j=std(j); j;
==> j[1]=f
j[2]=h2+h
j[3]=eh+e
j[4]=e2
Step 1 The normal resolution:

resolution Nj=nres(j,0); Nj;
==>
 1      4      4      1      0
r  <-- r  <-- r  <-- r  <-- r

0      1      2      3      4
print(matrix(Nj[1]));
==>
f,h2+h,eh+e,e2
print(matrix(Nj[2]));
==>
0,   h2+5h+6,eh+3e,e2,
0,   -f,     -1,   0,
e,   0,      -f,   -2,
-h+3,0,      0,    -f
print(matrix(Nj[3]));
==>
f2,
-e,
ef,
-fh+f
Step 2 The minimized normal resolution:

resolution MiNj=minres(Nj); MiNj;
==>
 1      4      4      1      0
r  <-- r  <-- r  <-- r  <-- r

0      1      2      3      4
print(matrix(MiNj[1]));
==>
f,e2
print(matrix(MiNj[2]));
==>
e3,      e2f2-6efh-6ef+6h2+18h+12,
-ef-2h+6,-f3
print(matrix(MiNj[3]));
==>
f2,
-e
Step 3 The minimal resolution:
resolution Mj=mres(j,0); Mj;
==>
 1      2      2      1      0
r  <-- r  <-- r  <-- r  <-- r

0      1      2      3      4
print(matrix(MiNj[1]));
==>
f,e2
print(matrix(MiNj[2]));
==>
e3,      e2f2-6efh-6ef+6h2+18h+12,
-ef-2h+6,-f3
print(matrix(MiNj[3]));
==>
f2,
-e
As we can see, the modules in results of the 2nd and 3rd steps are the same.

Back to the parent

KL, 06/03 http://www.singular.uni-kl.de