Singular

D.3.1 matrix_lib

Library:
matrix.lib
Purpose:
Elementary Matrix Operations

Procedures:

 D.3.1.1 compress matrix, zero columns from A deleted D.3.1.2 concat matrix, concatenation of matrices A1,A2,... D.3.1.3 diag matrix, nxn diagonal matrix with entries poly p D.3.1.4 dsum matrix, direct sum of matrices A1,A2,... D.3.1.5 flatten ideal, generated by entries of matrix A D.3.1.6 genericmat generic nxm matrix [entries from id] D.3.1.7 is_complex 1 if list c is a complex, 0 if not D.3.1.8 outer matrix, outer product of matrices A and B D.3.1.9 power matrix/intmat, n-th power of matrix/intmat A D.3.1.10 skewmat generic skew-symmetric nxn matrix [entries from id] D.3.1.11 submat submatrix of A with rows/cols specified by intvec r/c D.3.1.12 symmat generic symmetric nxn matrix [entries from id] D.3.1.13 tensor matrix, tensor product of matrices A nd B D.3.1.14 unitmat unit square matrix of size n D.3.1.15 gauss_col transform a matrix into col-reduced Gauss normal form D.3.1.16 gauss_row transform a matrix into row-reduced Gauss normal form D.3.1.17 addcol add p*(c1-th col) to c2-th column of matrix A, p poly D.3.1.18 addrow add p*(r1-th row) to r2-th row of matrix A, p poly D.3.1.19 multcol multiply c-th column of A with poly p D.3.1.20 multrow multiply r-th row of A with poly p D.3.1.21 permcol permute i-th and j-th columns D.3.1.22 permrow permute i-th and j-th rows D.3.1.23 rowred reduction of matrix A with elementary row-operations D.3.1.24 colred reduction of matrix A with elementary col-operations D.3.1.25 linear_relations find linear relations between homogeneous vectors D.3.1.26 rm_unitrow remove unit rows and associated columns of A D.3.1.27 rm_unitcol remove unit columns and associated rows of A D.3.1.28 headStand A[n-i+1,m-j+1]:=A[i,j] D.3.1.29 symmetricBasis basis of k-th symmetric power of n-dim v.space D.3.1.30 exteriorBasis basis of k-th exterior power of n-dim v.space D.3.1.31 symmetricPower k-th symmetric power of a module/matrix A D.3.1.32 exteriorPower k-th exterior power of a module/matrix A