Home Online Manual
Back: zeroOpt
Forward: regIdeal
FastBack: mprimdec_lib
FastForward: noether_lib
Up: Commutative algebra
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.15 mregular_lib

Castelnuovo-Mumford regularity of homogeneous ideals
I.Bermejo, ibermejo@ull.es
Ph.Gimenez, pgimenez@agt.uva.es
G.-M.Greuel, greuel@mathematik.uni-kl.de

A library for computing the Castelnuovo-Mumford regularity of a homogeneous ideal that DOES NOT require the computation of a minimal graded free resolution of the ideal.
It also determines depth(basering/ideal) and satiety(ideal). The procedures are based on 3 papers by Isabel Bermejo and Philippe Gimenez: 'On Castelnuovo-Mumford regularity of projective curves' Proc.Amer.Math.Soc. 128(5) (2000), 'Computing the Castelnuovo-Mumford regularity of some subschemes of Pn using quotients of monomial ideals', Proceedings of MEGA-2000, J. Pure Appl. Algebra 164 (2001), and 'Saturation and Castelnuovo-Mumford regularity', Preprint (2004).


D.4.15.1 regIdeal  regularity of homogeneous ideal id
D.4.15.2 depthIdeal  depth of S/id with S=basering, id homogeneous ideal
D.4.15.3 satiety  saturation index of homogeneous ideal id
D.4.15.4 regMonCurve  regularity of projective monomial curve defined by li
D.4.15.5 NoetherPosition  Noether normalization of ideal id
D.4.15.6 is_NP  checks whether variables are in Noether position
D.4.15.7 is_nested  checks whether monomial ideal id is of nested type