Singular

D.5.2.1 BINresol

Procedure from library `resbinomial.lib` (see resbinomial_lib).

Usage:
BINresol(J); J ideal

Return:
E-resolution of singularities of a binomial ideal J in terms of the affine charts, see example

Example:
 ```LIB "resbinomial.lib"; ring r = 0,(x(1..2)),dp; ideal J=x(1)^2-x(2)^3; list B=BINresol(J); B[1]; // list of final charts ==> [1]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names y(1) y(2) ==> // block 2 : ordering C ==> [2]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names y(1) y(2) ==> // block 2 : ordering C ==> [3]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names y(1) x(2) ==> // block 2 : ordering C ==> [4]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names x(1) y(2) ==> // block 2 : ordering C B[2]; // list of all charts ==> [1]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names x(1) x(2) ==> // block 2 : ordering C ==> [2]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names y(1) y(2) ==> // block 2 : ordering C ==> [3]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names x(1) x(2) ==> // block 2 : ordering C ==> [4]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names y(1) y(2) ==> // block 2 : ordering C ==> [5]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names x(1) x(2) ==> // block 2 : ordering C ==> [6]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names y(1) x(2) ==> // block 2 : ordering C ==> [7]: ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names x(1) y(2) ==> // block 2 : ordering C ring r = 2,(x(1..3)),dp; ==> // ** redefining r ** ideal J=x(1)^2-x(2)^2*x(3)^2; list B=BINresol(J); ==> // ** redefining B ** B[2]; // list of all charts ==> [1]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) x(2) x(3) ==> // block 2 : ordering C ==> [2]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names y(1) y(2) y(3) ==> // block 2 : ordering C ==> [3]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) x(2) x(3) ==> // block 2 : ordering C ==> [4]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) x(2) x(3) ==> // block 2 : ordering C ==> [5]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) y(2) y(3) ==> // block 2 : ordering C ==> [6]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) x(2) x(3) ==> // block 2 : ordering C ==> [7]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) y(2) y(3) ==> // block 2 : ordering C ==> [8]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) x(2) x(3) ==> // block 2 : ordering C ==> [9]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) y(2) x(3) ==> // block 2 : ordering C ==> [10]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names y(1) x(2) x(3) ==> // block 2 : ordering C ==> [11]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) x(2) y(3) ==> // block 2 : ordering C ==> [12]: ==> // characteristic : 2 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names y(1) x(2) x(3) ==> // block 2 : ordering C ```