Home Online Manual
Back: jungresolve
Forward: jungfib
FastBack: resgraph_lib
FastForward: resolve_lib
Up: resjung_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.5.4.2 jungnormal

Procedure from library resjung.lib (see resjung_lib).

jungnormal(ideal J[,is_noeth]);
J = ideal
i = int

J = two dimensional ideal

a list l of rings
l[i] is a ring containing two Ideals: QIdeal and BMap. BMap defines a birational morphism from V(QIdeal)-->V(J), such that V(QIdeal) has only singularities of Hizebuch-Jung type. If is_noeth=1 the algorithm assumes J is in noether position with respect to the last two variables. As a default or if is_noeth = 0 the algorithm computes a coordinate change such that J is in noether position. NOTE: since the noether position algorithm is randomized the performance can vary significantly.

LIB "resjung.lib";
//Computing a resolution of singularities of the variety z2-x3-y3
ring r = 0,(x,y,z),dp;
ideal I = z2-x3-y3;
//The ideal is in noether position
list l = jungnormal(I,1);
def R1 = l[1];
def R2 = l[2];
setring R1;
==> QIdeal[1]=T(1)*x(2)^2*y(1)-T(2)*x
==> QIdeal[2]=T(2)*x(2)^2*y(1)-x
==> QIdeal[3]=-T(1)*x+x(2)^2*y(1)^2-x(2)^2*y(1)
==> QIdeal[4]=T(1)^2-T(2)*y(1)+T(2)
==> QIdeal[5]=T(1)*T(2)-y(1)+1
==> QIdeal[6]=T(2)^2-T(1)
==> QIdeal[7]=x(2)^6*y(1)^4-x(2)^6*y(1)^3-x^3
==> BMap[1]=x
==> BMap[2]=x(2)^2*y(1)
==> BMap[3]=x(2)^3*y(1)^2
setring R2;
==> QIdeal[1]=T(2)*x(1)^2+x
==> QIdeal[2]=T(1)*x(1)^2*y(0)-T(2)*x
==> QIdeal[3]=-T(1)*x+x(1)^2*y(0)^2-x(1)^2*y(0)
==> QIdeal[4]=T(1)^2-T(2)*y(0)+T(2)
==> QIdeal[5]=T(1)*T(2)+y(0)^2-y(0)
==> QIdeal[6]=T(2)^2+T(1)*y(0)
==> QIdeal[7]=x(1)^6*y(0)^3-x(1)^6*y(0)^2+x^3
==> BMap[1]=x
==> BMap[2]=x(1)^2*y(0)
==> BMap[3]=x(1)^3*y(0)