Singular

Procedure from library `reszeta.lib` (see reszeta_lib).

Assume:
L is the output of resolution of singularities

Compute:
local Denef-Loeser zeta function, if string s1 is present and has the value 'local'; global Denef-Loeser zeta function otherwise
if string s1 or s2 has the value "A", additionally the characteristic polynomial of the monodromy is computed

Return:
list l
if a is not present:
l[1]: string specifying the top. zeta function
l[2]: string specifying characteristic polynomial of monodromy, if "A" was specified
if a is present:
l[1]: string specifying the top. zeta function
l[2]: list ast,
ast[1]=chi(Ei^*)
ast[2]=chi(Eij^*)
ast[3]=chi(Eijk^*)
l[3]: intvec nu of multiplicites as needed in computation of zeta function
l[4]: intvec N of multiplicities as needed in compuation of zeta function
l[5]: string specifying characteristic polynomial of monodromy, if "A" was specified

Example:
 ```LIB "reszeta.lib"; ring R=0,(x,y,z),dp; ideal I=x2+y2+z3; list re=resolve(I,"K"); zetaDL(re,1); ==> [1]: ==> (s+4)/(3s2+7s+4) I=(xz+y2)*(xz+y2+x2)+z5; list L=resolve(I,"K"); zetaDL(L,1); ==> [1]: ==> (20s2+130s+87)/(160s3+396s2+323s+87) //===== expected zeta function ========= // (20s^2+130s+87)/((1+s)*(3+4s)*(29+40s)) //====================================== ```