Home Online Manual
Back: bernsteinLift
Forward: operatorModulo
FastBack: central_lib
FastForward: dmodapp_lib
Up: dmod_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document operatorBM
Procedure from library dmod.lib (see dmod_lib).

operatorBM(f [,eng]); f a poly, eng an optional int


compute the B-operator and other relevant data for Ann F^s,
using e.g. algorithm by Briancon and Maisonobe for Ann F^s and BS.

activate the output ring with the setring command. In the output ring D[s]
- the polynomial F is the same as the input,
- the ideal LD is the annihilator of f^s in Dn[s],
- the ideal LD0 is the needed D-mod structure, where LD0 = LD|s=s0,
- the polynomial bs is the global Bernstein polynomial of f in the variable s,
- the list BS contains all the roots with multiplicities of the global Bernstein polynomial of f,
- the polynomial PS is an operator in Dn[s] such that PS*f^(s+1) = bs*f^s.
If eng <>0, std is used for Groebner basis computations,
otherwise and by default slimgb is used.

If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.

LIB "dmod.lib";
ring r = 0,(x,y,z),Dp;
poly F = x^3+y^3+z^3;
printlevel = 0;
def A = operatorBM(F);
setring A;
F; // the original polynomial itself
==> x^3+y^3+z^3
LD; // generic annihilator
==> LD[1]=x*Dx+y*Dy+z*Dz-3*s
==> LD[2]=z^2*Dy-y^2*Dz
==> LD[3]=z^2*Dx-x^2*Dz
==> LD[4]=y^2*Dx-x^2*Dy
==> LD[5]=x^3*Dz+y^3*Dz+z^3*Dz-3*z^2*s
==> LD[6]=x^3*Dy+y^3*Dy+y^2*z*Dz-3*y^2*s
LD0; // annihilator
==> LD0[1]=x*Dx+y*Dy+z*Dz+6
==> LD0[2]=z^2*Dy-y^2*Dz
==> LD0[3]=z^2*Dx-x^2*Dz
==> LD0[4]=y^2*Dx-x^2*Dy
==> LD0[5]=x^3*Dz+y^3*Dz+z^3*Dz+6*z^2
==> LD0[6]=x^3*Dy+y^3*Dy+y^2*z*Dz+6*y^2
bs; // normalized Bernstein poly
==> s^5+7*s^4+173/9*s^3+233/9*s^2+154/9*s+40/9
BS; // roots and multiplicities of the Bernstein poly
==> [1]:
==>    _[1]=-1
==>    _[2]=-4/3
==>    _[3]=-5/3
==>    _[4]=-2
==> [2]:
==>    2,1,1,1
PS; // the operator, s.t. PS*F^{s+1} = bs*F^s mod LD
==> 2/81*y*z*Dx^3*Dy*Dz-2/81*y*z*Dy^4*Dz-4/81*y^2*Dy^2*Dz^3-2/81*y*z*Dy*Dz^4+\
reduce(PS*F-bs,LD); // check the property of PS
==> 0