Singular

7.7.7.0. ivDimCheck
Procedure from library `fpadim.lib` (see fpadim_lib).

Usage:
ivDimCheck(L,n); L a list of intmats, n an integer

Return:
int, 0 if the dimension is finite, or 1 otherwise

Purpose:
Decides, whether the K-dimension is finite or not

Assume:
- basering is a Letterplace ring
- All rows of each intmat correspond to a Letterplace monomial
For the encoding of the variables see the overview.

Note:
- n is the number of variables

Example:
 ```LIB "fpadim.lib"; ring r = 0,(x,y),dp; def R = makeLetterplaceRing(5); // constructs a Letterplace ring R; ==> // characteristic : 0 ==> // number of vars : 10 ==> // block 1 : ordering a ==> // : names x(1) y(1) x(2) y(2) x(3) y(3) x(4) y(4) x(\ 5) y(5) ==> // : weights 1 1 1 1 1 1 1 1 \ 1 1 ==> // block 2 : ordering dp ==> // : names x(1) y(1) ==> // block 3 : ordering dp ==> // : names x(2) y(2) ==> // block 4 : ordering dp ==> // : names x(3) y(3) ==> // block 5 : ordering dp ==> // : names x(4) y(4) ==> // block 6 : ordering dp ==> // : names x(5) y(5) ==> // block 7 : ordering C setring R; // sets basering to Letterplace ring //some intmats, which contain monomials in intvec representation as rows intmat I1 [2][2] = 1,1,2,2; intmat I2 [1][3] = 1,2,1; intmat J1 [1][2] = 1,1; intmat J2 [2][3] = 2,1,2,1,2,1; print(I1); ==> 1 1 ==> 2 2 print(I2); ==> 1 2 1 print(J1); ==> 1 1 print(J2); ==> 2 1 2 ==> 1 2 1 list G = I1,I2;// ideal, which is already a Groebner basis list I = J1,J2; // ideal, which is already a Groebner basis and which ivDimCheck(G,2); // invokes the procedure, factor is of finite K-dimension ==> 0 ivDimCheck(I,2); // invokes the procedure, factor is not of finite K-dimension ==> 1 ```