# Singular

##### 7.7.13.0. homogfacFirstQWeyl
Procedure from library `ncfactor.lib` (see ncfactor_lib).

Usage:
homogfacFirstQWeyl(h); h is a homogeneous polynomial in the first q-Weyl algebra with respect to the weight vector [-1,1]

Return:
list

Purpose:
Computes a factorization of a homogeneous polynomial h with respect to the weight vector [-1,1] in the first q-Weyl algebra

Theory:
This function is a wrapper for homogfacNthQWeyl. It exists to make this library downward-compatible with older versions.

Example:
 ```LIB "ncfactor.lib"; ring R = (0,q),(x,d),dp; def r = nc_algebra (q,1); setring(r); poly h = q^25*x^10*d^10+q^16*(q^4+q^3+q^2+q+1)^2*x^9*d^9+ q^9*(q^13+3*q^12+7*q^11+13*q^10+20*q^9+26*q^8+30*q^7+ 31*q^6+26*q^5+20*q^4+13*q^3+7*q^2+3*q+1)*x^8*d^8+ q^4*(q^9+2*q^8+4*q^7+6*q^6+7*q^5+8*q^4+6*q^3+ 4*q^2+2q+1)*(q^4+q^3+q^2+q+1)*(q^2+q+1)*x^7*d^7+ q*(q^2+q+1)*(q^5+2*q^4+2*q^3+3*q^2+2*q+1)*(q^4+q^3+q^2+q+1)*(q^2+1)*(q+1)*x^6*d^6+ (q^10+5*q^9+12*q^8+21*q^7+29*q^6+33*q^5+31*q^4+24*q^3+15*q^2+7*q+12)*x^5*d^5+ 6*x^3*d^3+24; homogfacFirstQWeyl(h); ==> [1]: ==> 1 ==> [2]: ==> x5d5+x3d3+4 ==> [3]: ==> x5d5+6 ```