# Singular

#### D.2.5.5 show

Procedure from library inout.lib (see inout_lib).

Usage:
show(id); id any object of basering or of type ring/qring
show(R,s); R=ring, s=string (s = name of an object belonging to R)

Display:
display id/s in a compact format together with some information

Return:
no return value

Note:
objects of type string, int, intvec, intmat belong to any ring. id may be a ring or a qring. In this case the minimal polynomial is displayed, and, for a qring, also the defining ideal.
id may be of type list but the list must not contain a ring.
show(R,s) does not work inside a procedure!

Example:
 LIB "inout.lib"; ring r; show(r); ==> // ring: (ZZ/32003),(x,y,z),(dp(3),C); ==> // minpoly = 0 ==> // objects belonging to this ring: ideal i=x^3+y^5-6*z^3,xy,x3-y2; show(i,3); // introduce 3 space tabs before information ==> // ideal, 3 generator(s) ==> y5+x3-6z3, ==> xy, ==> x3-y2 vector v=x*gen(1)+y*gen(3); module m=v,2*v+gen(4); list L = i,v,m; show(L); ==> // list, 3 element(s): ==> [1]: ==> // ideal, 3 generator(s) ==> y5+x3-6z3, ==> xy, ==> x3-y2 ==> [2]: ==> // vector ==> [x,0,y] ==> [3]: ==> // module, 2 generator(s) ==> [x,0,y] ==> [2x,0,2y,1] ring S=(0,T),(a,b,c,d),ws(1,2,3,4); minpoly = T^2+1; ideal i=a2+b,c2+T^2*d2; i=std(i); qring Q=i; show(Q); ==> // ring: (0,T),(a,b,c,d),(ws(1,2,3,4),C); ==> // minpoly = (T2+1) ==> // quotient ring from ideal: ==> _[1]=a2+b ==> _[2]=c2-d2 ==> // objects belonging to this ring: map F=r,a2,b^2,3*c3; show(F); ==> // i-th variable of preimage ring is mapped to @map[i] ==> // @map map from r ==> @map[1]=a2 ==> @map[2]=b2 ==> @map[3]=3*c3 // Apply 'show' to i (which does not belong to the basering) by typing // ring r; ideal i=xy,x3-y2; ring Q; show(r,"i");