Home Online Manual
Back: modregCM
Forward: normal
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.18 normal_lib

Normalization of Affine Rings
G.-M. Greuel, greuel@mathematik.uni-kl.de,
S. Laplagne, slaplagn@dm.uba.ar,
G. Pfister, pfister@mathematik.uni-kl.de
Peter Chini, chini@rhrk.uni-kl.de (normalConductor)


D.4.18.1 normal  normalization of an affine ring
D.4.18.2 normalP  normalization of an affine ring in positive characteristic
D.4.18.3 normalC  normalization of an affine ring through a chain of rings
D.4.18.4 HomJJ  presentation of End_R(J) as affine ring, J an ideal
D.4.18.5 genus  computes the geometric genus of a projective curve
D.4.18.6 primeClosure  integral closure of R/p, p a prime ideal
D.4.18.7 closureFrac  writes a poly in integral closure as element of Quot(R/p)
D.4.18.8 iMult  intersection multiplicity of the ideals of the list L
D.4.18.9 deltaLoc  sum of delta invariants at conjugated singular points
D.4.18.10 locAtZero  checks whether the zero set of I is located at 0
D.4.18.11 norTest  checks the output of normal, normalP, normalC
D.4.18.12 getSmallest  computes the polynomial of smallest degree of J
D.4.18.13 getOneVar  computes a polynomial of J in the variable vari
D.4.18.14 changeDenominator  computes ideal U2 such that 1/c1*U1=1/c2*U2
D.4.18.15 normalConductor  computation of the conductor as ideal in the basering
See also: locnormal_lib; modnormal_lib.