 LIB "paraplanecurves.lib";
ring R = 0,(x,y,z),dp;
poly f = y^8x^3*(z+x)^5;
ideal adj = adjointIdeal(f);
def Rn = mapToRatNormCurve(f,adj);
==> //'mapToRatNorm' created a ring together with an ideal RNC.
==> // Supposing you typed, say, def RPn = mapToRatNorm(f,AI);
==> // you may access the ideal by typing
==> // setring RPn; RNC;
setring(Rn);
RNC;
==> RNC[1]=y(5)*y(6)y(4)*y(7)
==> RNC[2]=y(4)*y(6)y(3)*y(7)
==> RNC[3]=y(2)*y(6)y(1)*y(7)
==> RNC[4]=y(4)*y(5)y(2)*y(7)
==> RNC[5]=y(3)*y(5)y(1)*y(7)
==> RNC[6]=y(1)*y(5)y(7)^2
==> RNC[7]=y(4)^2y(1)*y(7)
==> RNC[8]=y(3)*y(4)y(1)*y(6)
==> RNC[9]=y(2)*y(4)y(1)*y(5)
==> RNC[10]=y(1)*y(4)y(6)*y(7)
==> RNC[11]=y(2)*y(3)y(6)*y(7)
==> RNC[12]=y(1)*y(3)y(6)^2
==> RNC[13]=y(2)^2y(5)*y(7)
==> RNC[14]=y(1)*y(2)y(4)*y(7)
==> RNC[15]=y(1)^2y(3)*y(7)
==> RNC[16]=y(1)*y(6)^2y(3)^2*y(7)
==> RNC[17]=y(6)^4y(3)^3*y(7)
rncAntiCanonicalMap(RNC);
==> _[1]=y(1)
==> _[2]=y(2)
==> _[3]=y(5)
==> _[4]=y(4)
==> _[5]=y(7)
