# Singular

#### D.5.5.4 Blowupcenter

Procedure from library `resbinomial.lib` (see resbinomial_lib).

Usage:
Blowupcenter(center,id,nchart,infochart,c,n,cstep);
center, infochart lists, id, nchart, n, cstep integers, c number

Compute:
The blowing up at the chart IDCHART along the given center

Return:
new affine charts and related information, see example

Example:
 ```LIB "resbinomial.lib"; ring r = 0,(x(1),y(2),x(3),y(4),x(5..7)),dp; list flag=identifyvar(); ideal J=x(1)^3-x(3)^2*y(4)^2,x(1)*x(7)*y(2)-x(6)^3*x(5)*y(4)^3,x(5)^3-x(5)^3*y(2)^2; list Lmb=2,list(0,0,0,0,0,0,0),list(0,0,0,0,0,0,0),list(0,0,0,0,0,0,0),iniD(7),iniD(7),list(0,0,0,0,0,0,0),-1; list L=data(J,3,7); list L2=determinecenter(L[1],L[2],2,7,0,0,Lmb,flag,0,-1); // Computing the center module auxpath=[0,-1]; list infochart=0,0,0,L[2],L[1],flag,0,list(0,0,0,0,0,0,0),auxpath,list(),list(); list L3=Blowupcenter(L2[1],1,1,infochart,2,7,0); L3[1]; // current chart (parent,Y,center,expJ,Coef,flag,Hhist,blwhist,path,hipercoef,hiperexp) with sons: [12],...,[16] ==> [1]: ==> [1]: ==> 0 ==> [2]: ==> 0 ==> [3]: ==> 0 ==> [4]: ==> [1]: ==> [1]: ==> [1]: ==> 0 ==> [2]: ==> 0 ==> [3]: ==> 2 ==> [4]: ==> 2 ==> [5]: ==> 0 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [2]: ==> [1]: ==> 3 ==> [2]: ==> 0 ==> [3]: ==> 0 ==> [4]: ==> 0 ==> [5]: ==> 0 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [2]: ==> [1]: ==> [1]: ==> 0 ==> [2]: ==> 0 ==> [3]: ==> 0 ==> [4]: ==> 3 ==> [5]: ==> 1 ==> [6]: ==> 3 ==> [7]: ==> 0 ==> [2]: ==> [1]: ==> 1 ==> [2]: ==> 1 ==> [3]: ==> 0 ==> [4]: ==> 0 ==> [5]: ==> 0 ==> [6]: ==> 0 ==> [7]: ==> 1 ==> [3]: ==> [1]: ==> [1]: ==> 0 ==> [2]: ==> 2 ==> [3]: ==> 0 ==> [4]: ==> 0 ==> [5]: ==> 3 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [2]: ==> [1]: ==> 0 ==> [2]: ==> 0 ==> [3]: ==> 0 ==> [4]: ==> 0 ==> [5]: ==> 3 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [5]: ==> [1]: ==> [1]: ==> -1 ==> [2]: ==> 1 ==> [2]: ==> [1]: ==> -1 ==> [2]: ==> 1 ==> [3]: ==> [1]: ==> -1 ==> [2]: ==> 1 ==> [6]: ==> [1]: ==> 0 ==> [2]: ==> 1 ==> [3]: ==> 0 ==> [4]: ==> 1 ==> [5]: ==> 0 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [7]: ==> 0 ==> [8]: ==> [1]: ==> 0 ==> [2]: ==> 0 ==> [3]: ==> 0 ==> [4]: ==> 0 ==> [5]: ==> 0 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [9]: ==> _[1]=-gen(2) ==> [10]: ==> empty list ==> [11]: ==> empty list ==> [12]: ==> 2 ==> [13]: ==> 3 ==> [14]: ==> 4 ==> [15]: ==> 5 ==> [16]: ==> 6 L3[2][1]; // information of its first son, write L3[2][2],...,L3[2][5] to see the other sons ==> [1]: ==> 1 ==> [2]: ==> 3 ==> [3]: ==> 3,1,7,5,6 ==> [4]: ==> [1]: ==> [1]: ==> [1]: ==> 0 ==> [2]: ==> 0 ==> [3]: ==> 0 ==> [4]: ==> 2 ==> [5]: ==> 0 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [2]: ==> [1]: ==> 3 ==> [2]: ==> 0 ==> [3]: ==> 1 ==> [4]: ==> 0 ==> [5]: ==> 0 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [2]: ==> [1]: ==> [1]: ==> 0 ==> [2]: ==> 0 ==> [3]: ==> 2 ==> [4]: ==> 3 ==> [5]: ==> 1 ==> [6]: ==> 3 ==> [7]: ==> 0 ==> [2]: ==> [1]: ==> 1 ==> [2]: ==> 1 ==> [3]: ==> 0 ==> [4]: ==> 0 ==> [5]: ==> 0 ==> [6]: ==> 0 ==> [7]: ==> 1 ==> [3]: ==> [1]: ==> [1]: ==> 0 ==> [2]: ==> 2 ==> [3]: ==> 1 ==> [4]: ==> 0 ==> [5]: ==> 3 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [2]: ==> [1]: ==> 0 ==> [2]: ==> 0 ==> [3]: ==> 1 ==> [4]: ==> 0 ==> [5]: ==> 3 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [5]: ==> [1]: ==> [1]: ==> -1 ==> [2]: ==> 1 ==> [2]: ==> [1]: ==> -1 ==> [2]: ==> 1 ==> [3]: ==> [1]: ==> -1 ==> [2]: ==> 1 ==> [6]: ==> [1]: ==> 0 ==> [2]: ==> 1 ==> [3]: ==> 0 ==> [4]: ==> 1 ==> [5]: ==> 0 ==> [6]: ==> 0 ==> [7]: ==> 0 ==> [7]: ==> 0,3 ==> [8]: ==> [1]: ==> 0,3 ==> [2]: ==> 0,0 ==> [3]: ==> 0,0 ==> [4]: ==> 0,0 ==> [5]: ==> 0,3 ==> [6]: ==> 0,3 ==> [7]: ==> 0,3 ==> [9]: ==> _[1]=-gen(2) ==> _[2]=gen(2)+gen(1) ==> [10]: ==> empty list ==> [11]: ==> empty list L3[3]; // current number of charts ==> 6 L3[4]; // step/level associated to each son ==> [1]: ==> 1 ==> [2]: ==> 1 ==> [3]: ==> 1 ==> [4]: ==> 1 ==> [5]: ==> 1 L3[5]; // number of variables in the center ==> 5 ```