 LIB "paraplanecurves.lib";
ring R = 0,(x,y,z),dp;
poly f = y^8x^3*(z+x)^5;
ideal adj = adjointIdeal(f);
def Rn = invertBirMap(adj,ideal(f));
==> // 'invertBirMap' created a ring together with two ideals J and psi.
==> // Supposing you typed, say, def RPn = invertBirMap(phi,I);
==> // you may access the ideals by typing
==> // setring RPn; J; psi;
setring(Rn);
J;
==> J[1]=y(5)*y(6)y(4)*y(7)
==> J[2]=y(4)*y(6)y(3)*y(7)
==> J[3]=y(2)*y(6)y(1)*y(7)
==> J[4]=y(4)*y(5)y(2)*y(7)
==> J[5]=y(3)*y(5)y(1)*y(7)
==> J[6]=y(1)*y(5)y(7)^2
==> J[7]=y(4)^2y(1)*y(7)
==> J[8]=y(3)*y(4)y(1)*y(6)
==> J[9]=y(2)*y(4)y(7)^2
==> J[10]=y(1)*y(4)y(6)*y(7)
==> J[11]=y(2)*y(3)y(6)*y(7)
==> J[12]=y(1)*y(3)y(6)^2
==> J[13]=y(2)^2y(5)*y(7)
==> J[14]=y(1)*y(2)y(4)*y(7)
==> J[15]=y(1)^2y(3)*y(7)
==> J[16]=y(1)*y(6)^2y(3)^2*y(7)
==> J[17]=y(6)^4y(3)^3*y(7)
psi;
==> psi[1]=y(6)^2
==> psi[2]=y(4)*y(7)
==> psi[3]=y(6)^2y(5)*y(7)
