Home Online Manual
Back: sortier
Forward: HilbertSeries
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.7.3 rinvar_lib

Invariant Rings of Reductive Groups
Thomas Bayer, tbayer@in.tum.de
http://wwwmayr.informatik.tu-muenchen.de/personen/bayert/ Current Address: Institut fuer Informatik, TU Muenchen

Implementation based on Derksen's algorithm. Written in the scope of the diploma thesis (advisor: Prof. Gert-Martin Greuel) 'Computations of moduli spaces of semiquasihomogenous singularities and an implementation in Singular'


D.7.3.1 HilbertSeries  Hilbert series of the ideal I w.r.t. weight w
D.7.3.2 HilbertWeights  weighted degrees of the generators of I
D.7.3.3 ImageVariety  ideal of the image variety F(variety(I))
D.7.3.4 ImageGroup  ideal of G w.r.t. the induced representation
D.7.3.5 InvariantRing  generators of the invariant ring of G
D.7.3.6 InvariantQ  decide if f is invariant w.r.t. G
D.7.3.7 LinearizeAction  linearization of the action 'Gaction' of G
D.7.3.8 LinearActionQ  decide if action is linear in var(s..nvars)
D.7.3.9 LinearCombinationQ  decide if f is in the linear hull of 'base'
D.7.3.10 MinimalDecomposition  minimal decomposition of f (like coef)
D.7.3.11 NullCone  ideal of the nullcone of the action 'act' of G
D.7.3.12 ReynoldsImage  image of f under the Reynolds operator 'RO'
D.7.3.13 ReynoldsOperator  Reynolds operator of the group G
D.7.3.14 SimplifyIdeal  simplify the ideal I (try to reduce variables)
See also: qhmoduli_lib; zeroset_lib.