# Singular

#### D.13.2.16 ehrhartPolynomialCoeff

Procedure from library `polymake.lib` (see polymake_lib).

Usage:
ehrhartPolynomialCoeff(p); p polytope

Assume:
isBounded(p)==1

Return:
intvec, all lattice points on the relative boundary of p

Example:
 ```LIB "polymake.lib"; ==> Welcome to polymake version ==> Copyright (c) 1997-2015 ==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt) ==> http://www.polymake.org intmat M[6][4]= 1,1,1,2, 1,-1,-1,-2, 1,1,0,0, 1,-1,0,0, 1,0,1,0, 1,0,-1,0; polytope p = polytopeViaPoints(M); ehrhartPolynomialCoeff(p); ==> polymake: WARNING: rule latte.ehrhartpoly: LATTICE, EHRHART_POLYNOMIAL_C\ OEFF : CONE_AMBIENT_DIM, FACETS | INEQUALITIES failed: could not parse ou\ tput from latte at /usr/share/polymake/apps/polytope/rules/latte.rules li\ ne 231. ==> polymake: used package ppl ==> The Parma Polyhedra Library (PPL): A C++ library for convex polyhedra ==> and other numerical abstractions. ==> http://www.cs.unipr.it/ppl/ ==> ==> polymake: used package libnormaliz ==> Normaliz is a tool for computations in affine monoids, vector configura\ tions, lattice polytopes, and rational cones. ==> Copyright by Winfried Bruns, Bogdan Ichim, Christof Soeger. ==> http://www.math.uos.de/normaliz/ ==> ==> 1,1,2,2 ```