# Singular

#### D.15.8.18 evaluatePDivisor

Procedure from library `divisors.lib` (see divisors_lib).

Usage:
evaluatePDivisor(D,v); D = pdivisor, v = intvec.

Assume:
D is a polyhedral divisor on X and v is a point in the dual of the tailcone of the coefficients.

Return:
a formal divisor on X

Theory:
Will evaluate the polyhedral sum to an integer formal sum.

Example:
 ```LIB "divisors.lib"; LIB("polymake.so"); ==> Welcome to polymake version ==> Copyright (c) 1997-2015 ==> Ewgenij Gawrilow, Michael Joswig (TU Darmstadt) ==> http://www.polymake.org ring r=31991,(x,y,z),dp; ideal I = y^2*z - x*(x-z)*(x+3*z); qring Q = std(I); divisor A = makeDivisor(ideal(x,z),ideal(1)); divisor B = makeDivisor(ideal(x,y),ideal(1)); intmat M[4][4]= 1,4,0,0, 1,0,3,0, 0,0,0,2, 1,1,1,1; polytope PP = polytopeViaPoints(M); pdivisor pD = makePDivisor(list(list(PP,A),list(PP,B))); intvec v=1,1,1; evaluatePDivisor(pD,v); ==> polymake: used package cdd ==> cddlib ==> Implementation of the double description method of Motzkin et al. ==> Copyright by Komei Fukuda. ==> http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html ==> ==> polymake: used package ppl ==> The Parma Polyhedra Library (PPL): A C++ library for convex polyhedra ==> and other numerical abstractions. ==> http://www.cs.unipr.it/ppl/ ==> ==> 3*( (z,x) - (1) ) ==> +3*( (y,x) - (1) ) ==> ```