# Singular          ##### 7.7.7.0. ivSickleHil
Procedure from library `fpadim.lib` (see fpadim_lib).

Usage:
ivSickleHil(L,n[,degbound]); L a list of intmats, n an integer,
degbound an optional integer

Return:
list

Purpose:
Computing the mistletoes and the Hilbert series

Assume:
- basering is a Letterplace ring.
- all rows of each intmat correspond to a Letterplace monomial
- if you specify a different degree bound degbound,
degbound <= attrib(basering,uptodeg) holds.

Note:
- If L is the list returned, then L is an intvec, L is a list,
containing the mistletoes as intvecs.
- If degbound is set, a degree bound will be added. By default there
is no degree bound.
- n is the number of variables.
- If I = L is the intvec returned, then I[k] is the (k-1)-th
coefficient of the Hilbert series.
- If the K-dimension is known to be infinite, a degree bound is needed

Example:
 ```LIB "fpadim.lib"; ring r = 0,(x,y),dp; def R = makeLetterplaceRing(5); // constructs a Letterplace ring setring R; // sets basering to Letterplace ring //some intmats, which contain monomials in intvec representation as rows intmat I1 = 1,1,2,2; intmat I2 = 1,2,1; intmat J1 = 1,1; intmat J2 = 2,1,2,1,2,1; print(I1); ==> 1 1 ==> 2 2 print(I2); ==> 1 2 1 print(J1); ==> 1 1 print(J2); ==> 2 1 2 ==> 1 2 1 list G = I1,I2;// ideal, which is already a Groebner basis list I = J1,J2; // ideal, which is already a Groebner basis ivSickleHil(G,2); // invokes the procedure without any degree bound ==> : ==> 1,2,2,1 ==> : ==> : ==> 1,2 ==> : ==> 2,1,2 ivSickleHil(I,2,5); // invokes the procedure with degree bound 5 ==> : ==> 1,2,3,3,4,4 ==> : ==> : ==> 1,2,2,1 ==> : ==> 1,2,2,2,1 ==> : ==> 1,2,2,2,2 ==> : ==> 2,1 ==> : ==> 2,2,1 ==> : ==> 2,2,2,1 ==> : ==> 2,2,2,2,1 ==> : ==> 2,2,2,2,2 ```

### Misc 