# Singular

##### 7.7.15.0. appendWeight2Ord
Procedure from library `ncpreim.lib` (see ncpreim_lib).

Usage:
appendWeight2Ord(w); w an intvec

Return:
ring, the basering equipped with the ordering (a(w),<), where < is the ordering of the basering.

Example:
 ```LIB "ncpreim.lib"; ring r = 0,(a,b,x,d),Dp; intvec w = 1,2,3,4; def r2 = appendWeight2Ord(w); // for a commutative ring r2; ==> // coefficients: QQ ==> // number of vars : 4 ==> // block 1 : ordering a ==> // : names a b x d ==> // : weights 1 2 3 4 ==> // block 2 : ordering Dp ==> // : names a b x d ==> // block 3 : ordering C matrix D[4][4]; D[1,2] = 3*a; D[1,4] = 3*x^2; D[2,3] = -x; D[2,4] = d; D[3,4] = 1; def A = nc_algebra(1,D); setring A; A; ==> // coefficients: QQ ==> // number of vars : 4 ==> // block 1 : ordering Dp ==> // : names a b x d ==> // block 2 : ordering C ==> // noncommutative relations: ==> // ba=ab+3a ==> // da=ad+3x2 ==> // xb=bx-x ==> // db=bd+d ==> // dx=xd+1 w = 2,1,1,1; def B = appendWeight2Ord(w); // for a non-commutative ring setring B; B; ==> // coefficients: QQ ==> // number of vars : 4 ==> // block 1 : ordering a ==> // : names a b x d ==> // : weights 2 1 1 1 ==> // block 2 : ordering Dp ==> // : names a b x d ==> // block 3 : ordering C ==> // noncommutative relations: ==> // ba=ab+3a ==> // da=ad+3x2 ==> // xb=bx-x ==> // db=bd+d ==> // dx=xd+1 ```