Home Online Manual
Back: Integer programming
Forward: Non-commutative algebra
FastBack: Gauss-Manin connection
FastForward: Non-commutative algebra
Up: Toric ideals and integer programming
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

C.6.5 Relevant References

  • [Big97] Bigatti, A.M.: Computation of Hilbert-Poincare series. Journal of Pure and Applied Algebra (1997) 199, 237-253

  • [BLR98] Bigatti, A.M.; La Scala, R.; Robbiano, L.: Computing toric ideals. Journal of Symbolic Computation (1999) 27, 351-366

  • [Coh93] Cohen, H.: A Course in Computational Algebraic Number Theory. Springer (1997)

  • [CoTr91] Conti, P.; Traverso, C.: Buchberger algorithm and integer programming. Proceedings AAECC-9 (new Orleans), Springer LNCS (1991) 539, 130-139

  • [DBUr95] Di Biase, F.; Urbanke, R.: An algorithm to calculate the kernel of certain polynomial ring homomorphisms. Experimental Mathematics (1995) 4, 227-234

  • [HoSh98] Hosten, S.; Shapiro, J.: Primary decomposition of lattice basis ideals. Journal of Symbolic Computation (2000), 29, 625-639

  • [HoSt95] Hosten, S.; Sturmfels, B.: GRIN: An implementation of Groebner bases for integer programming. in Balas, E.; Clausen, J. (editors): Integer Programming and Combinatorial Optimization. Springer LNCS (1995) 920, 267-276

  • [Pot94] Pottier, L.: Groebner bases of toric ideals. Rapport de recherche 2224 (1997), INRIA Sophia Antipolis

  • [Stu96] Sturmfels, B.: Groebner Bases and Convex Polytopes. University Lecture Series, Volume 8 (1996), American Mathematical Society

  • [The99] Theis, C.: Der Buchberger-Algorithmus fuer torische Ideale und seine Anwendung in der ganzzahligen Optimierung. Diplomarbeit, Universitaet des Saarlandes (1999), Saarbruecken (Germany)