Home Online Manual
Back: parallelTestOR
Forward: cyclic
Up: Singular Manual
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.2.8 poly_lib

Procedures for Manipulating Polys, Ideals, Modules
O. Bachmann, G.-M. Greuel, A. Fruehbis


D.2.8.1 cyclic  ideal of cyclic n-roots
D.2.8.2 elemSymmId  ideal of elementary symmetric polynomials
D.2.8.3 katsura  katsura [i] ideal
D.2.8.4 freerank  rank of coker(input) if coker is free else -1
D.2.8.5 is_zero  int, =1 resp. =0 if coker(input) is 0 resp. not
D.2.8.6 lcm  lcm of given generators of ideal
D.2.8.7 maxcoef  maximal length of coefficient occurring in poly/...
D.2.8.8 maxdeg  int/intmat = degree/s of terms of maximal order
D.2.8.9 maxdeg1  int = [weighted] maximal degree of input
D.2.8.10 mindeg  int/intmat = degree/s of terms of minimal order
D.2.8.11 mindeg1  int = [weighted] minimal degree of input
D.2.8.12 normalize  normalize poly/... such that leading coefficient is 1
D.2.8.13 rad_con  check radical containment of polynomial p in ideal I
D.2.8.14 content  content of polynomial/vector f
D.2.8.15 mod2id  conversion of a module M to an ideal
D.2.8.16 id2mod  conversion inverse to mod2id
D.2.8.17 substitute  substitute in I variables by polynomials
D.2.8.18 subrInterred  interred w.r.t. a subset of variables
D.2.8.19 newtonDiag  Newton diagram of a polynomial
D.2.8.20 hilbPoly  Hilbert polynomial of basering/I