# Singular

 Note: If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters.

 Smilies
 Font size: Tiny Small Normal Large Huge Font colour [quote="greuel"]Singular can solve numerically only 0-dim systems by using the library solve.lib. This is just redisigned and will work much better in near future. Symbolically, Singular can treat systems of any dimension. For that you should consult the library primdec.lib. So, for the first system you can use primdecGTZ, it gives all irreducible components ([2]:) together with the primary components ([1]:). Setting the polynomials to 0 gives the solutions (as you see, the solution set is 1-dimensional): [code]> LIB "primdec.lib"; > ring r=0,(s1,s12,s13,s123,lambda),lp; > ideal i = 1402*s13*s1+9*s1^2-20*s12*s1*s13+66*s12*s1*s13^2+66*s12*s1^2*s13 . -2822*s1^3+5608*s1^4-8430*s1^2*s13-5608*s13^2*s1+16824*s1^3*s13 . +16824*s13^2*s1^2+5608*s1*s13^3-9*s12*s1^2-11*s12*s13^2+22*s12*s1^3 . +22*s12*s13^3, . 1691*s12*s1+1691*s12*s13-300*s1+600*s1^2+600*s13*s1, . -1091*s13*s1+302*s1^2-602*s12*s1*s13+1812*s12*s1*s13^2+1812*s12*s1^2*s13 . -1208*s1^3+1208*s1^4+370*s1^2*s13+1578*s13^2*s1+3624*s1^3*s13 . +3624*s13^2*s1^2+1208*s1*s13^3-302*s12*s1^2-300*s12*s13^2+604*s12*s1^3 . +604*s12*s13^3; > primdecGTZ(i); [1]: [1]: _[1]=s13^2 _[2]=s1*s13 _[3]=1691*s1*s12-300*s1+1691*s12*s13 _[4]=s1^2 [2]: _[1]=s13 _[2]=s1 [2]: [1]: _[1]=s12 _[2]=2*s1+2*s13-1 [2]: _[1]=s12 _[2]=2*s1+2*s13-1 [3]: [1]: _[1]=s12 _[2]=s1 [2]: _[1]=s12 _[2]=s1 [4]: [1]: _[1]=4016016*s13-46961 _[2]=282961794*s12-36018575 _[3]=4016016*s1-264661 [2]: _[1]=4016016*s13-46961 _[2]=282961794*s12-36018575 _[3]=4016016*s1-264661 [/code] email: greuel@mathematik.uni-kl.de Posted in old Singular Forum on: 2002-02-03 10:03:27+01[/quote]
Options:
 BBCode is ON [img] is ON [flash] is OFF [url] is ON Smilies are ON
 Disable BBCode Disable smilies Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.

Topic review - polynomial solving with Singular or Maple
Author Message
 greuel
 Post subject:
 Singular can solve numerically only 0-dim systems by using the library solve.lib. This is just redisigned and will work much better in near future.Symbolically, Singular can treat systems of any dimension. For that you should consult the library primdec.lib.So, for the first system you can use primdecGTZ, it gives all irreducible components ([2]:) together with the primary components ([1]:). Setting the polynomials to 0 gives the solutions (as you see, the solution set is 1-dimensional):Code:> LIB "primdec.lib";> ring r=0,(s1,s12,s13,s123,lambda),lp;> ideal i = 1402*s13*s1+9*s1^2-20*s12*s1*s13+66*s12*s1*s13^2+66*s12*s1^2*s13.         -2822*s1^3+5608*s1^4-8430*s1^2*s13-5608*s13^2*s1+16824*s1^3*s13.         +16824*s13^2*s1^2+5608*s1*s13^3-9*s12*s1^2-11*s12*s13^2+22*s12*s1^3.         +22*s12*s13^3,.         1691*s12*s1+1691*s12*s13-300*s1+600*s1^2+600*s13*s1,.         -1091*s13*s1+302*s1^2-602*s12*s1*s13+1812*s12*s1*s13^2+1812*s12*s1^2*s13.         -1208*s1^3+1208*s1^4+370*s1^2*s13+1578*s13^2*s1+3624*s1^3*s13.         +3624*s13^2*s1^2+1208*s1*s13^3-302*s12*s1^2-300*s12*s13^2+604*s12*s1^3.         +604*s12*s13^3;> primdecGTZ(i);[1]:   [1]:      _[1]=s13^2      _[2]=s1*s13      _[3]=1691*s1*s12-300*s1+1691*s12*s13      _[4]=s1^2  [2]:      _[1]=s13      _[2]=s1[2]:  [1]:      _[1]=s12      _[2]=2*s1+2*s13-1  [2]:      _[1]=s12      _[2]=2*s1+2*s13-1[3]:  [1]:      _[1]=s12      _[2]=s1  [2]:      _[1]=s12      _[2]=s1[4]:  [1]:      _[1]=4016016*s13-46961      _[2]=282961794*s12-36018575      _[3]=4016016*s1-264661  [2]:      _[1]=4016016*s13-46961      _[2]=282961794*s12-36018575      _[3]=4016016*s1-264661email: greuel@mathematik.uni-kl.dePosted in old Singular Forum on: 2002-02-03 10:03:27+01 Singular can solve numerically only 0-dim systems by using the library solve.lib. This is just redisigned and will work much better in near future.Symbolically, Singular can treat systems of any dimension. For that you should consult the library primdec.lib.So, for the first system you can use primdecGTZ, it gives all irreducible components ([2]:) together with the primary components ([1]:). Setting the polynomials to 0 gives the solutions (as you see, the solution set is 1-dimensional):[code]> LIB "primdec.lib";> ring r=0,(s1,s12,s13,s123,lambda),lp;> ideal i = 1402*s13*s1+9*s1^2-20*s12*s1*s13+66*s12*s1*s13^2+66*s12*s1^2*s13. -2822*s1^3+5608*s1^4-8430*s1^2*s13-5608*s13^2*s1+16824*s1^3*s13. +16824*s13^2*s1^2+5608*s1*s13^3-9*s12*s1^2-11*s12*s13^2+22*s12*s1^3. +22*s12*s13^3,. 1691*s12*s1+1691*s12*s13-300*s1+600*s1^2+600*s13*s1,. -1091*s13*s1+302*s1^2-602*s12*s1*s13+1812*s12*s1*s13^2+1812*s12*s1^2*s13. -1208*s1^3+1208*s1^4+370*s1^2*s13+1578*s13^2*s1+3624*s1^3*s13. +3624*s13^2*s1^2+1208*s1*s13^3-302*s12*s1^2-300*s12*s13^2+604*s12*s1^3. +604*s12*s13^3;> primdecGTZ(i);[1]: [1]: _[1]=s13^2 _[2]=s1*s13 _[3]=1691*s1*s12-300*s1+1691*s12*s13 _[4]=s1^2 [2]: _[1]=s13 _[2]=s1[2]: [1]: _[1]=s12 _[2]=2*s1+2*s13-1 [2]: _[1]=s12 _[2]=2*s1+2*s13-1[3]: [1]: _[1]=s12 _[2]=s1 [2]: _[1]=s12 _[2]=s1[4]: [1]: _[1]=4016016*s13-46961 _[2]=282961794*s12-36018575 _[3]=4016016*s1-264661 [2]: _[1]=4016016*s13-46961 _[2]=282961794*s12-36018575 _[3]=4016016*s1-264661[/code]email: greuel@mathematik.uni-kl.dePosted in old Singular Forum on: 2002-02-03 10:03:27+01
 Posted: Thu Sep 08, 2005 11:41 am
 Guest
 Post subject: polynomial solving with Singular or Maple
 I have a system of polynomial equations, when I let Singular solve it it produces the message "Ideal i has to be 0-dimentional". Somehow, Singular does not allow to solve it, while Maple does allow. Do you know why?email: singular@mathematik.uni-kl.dePosted in old Singular Forum on: 2002-02-03 10:01:23+01 I have a system of polynomial equations, when I let Singular solve it it produces the message "Ideal i has to be 0-dimentional". Somehow, Singular does not allow to solve it, while Maple does allow. Do you know why?email: singular@mathematik.uni-kl.dePosted in old Singular Forum on: 2002-02-03 10:01:23+01
 Posted: Thu Aug 11, 2005 5:31 pm

 It is currently Wed Jan 23, 2019 5:44 pm