# Singular

 Note: If not registered, provide any username. For more comfort, register here.
Subject:
Message body:
Enter your message here, it may contain no more than 60000 characters.

 Smilies
 Font size: Tiny Small Normal Large Huge Font colour [quote="Susobhan"]Can someone help in Computing this example of a blow-up by hand? I want to see exactly how does the blow-up looks at affine chart. LIB "resolve.lib"; ring r=0,(x,y,z),dp; ideal I=z2-x^3*y^2; ideal C=z,xy; list li=blowUp2(I,C); size(li); // number of charts ==> 2 def S1=li[1]; setring S1; // chart 1 basering; ==> // characteristic : 0 ==> // number of vars : 3 ==> // block 1 : ordering dp ==> // : names x(1) x(3) y(2) ==> // block 2 : ordering C Jnew; ==> Jnew[1]=x(1)*y(2)^2-1 eD; ==> eD[1]=x(3) ==> eD[2]=x(1)*y(2)^2-1 bM; ==> bM[1]=x(1) ==> bM[2]=x(3)*y(2)^3 ==> bM[3]=x(3) def S2=li[2]; setring S2; // chart 2 basering; ==> // characteristic : 0 ==> // number of vars : 2 ==> // block 1 : ordering dp ==> // : names x(2) y(1) ==> // block 2 : ordering C Jnew; ==> Jnew[1]=0 eD; ==> eD[1]=x(2)*y(1)^2 bM; ==> bM[1]=y(1)^2 ==> bM[2]=x(2) ==> bM[3]=x(2)*y(1)^3[/quote]
Options:
 BBCode is ON [img] is ON [flash] is OFF [url] is ON Smilies are ON
 Disable BBCode Disable smilies Do not automatically parse URLs
Confirmation of post
To prevent automated posts the board requires you to enter a confirmation code. The code is displayed in the image you should see below. If you are visually impaired or cannot otherwise read this code please contact the %sBoard Administrator%s.
Confirmation code:
Enter the code exactly as it appears. All letters are case insensitive, there is no zero.

Topic review - blowUp2
Author Message
 Susobhan
 Post subject: blowUp2
 Can someone help in Computing this example of a blow-up by hand? I want to see exactly how does the blow-up looks at affine chart. LIB "resolve.lib";ring r=0,(x,y,z),dp;ideal I=z2-x^3*y^2;ideal C=z,xy;list li=blowUp2(I,C);size(li); // number of charts==> 2def S1=li[1];setring S1; // chart 1basering;==> // characteristic : 0==> // number of vars : 3==> // block 1 : ordering dp==> // : names x(1) x(3) y(2)==> // block 2 : ordering CJnew;==> Jnew[1]=x(1)*y(2)^2-1eD;==> eD[1]=x(3)==> eD[2]=x(1)*y(2)^2-1bM;==> bM[1]=x(1)==> bM[2]=x(3)*y(2)^3==> bM[3]=x(3)def S2=li[2];setring S2; // chart 2basering;==> // characteristic : 0==> // number of vars : 2==> // block 1 : ordering dp==> // : names x(2) y(1)==> // block 2 : ordering CJnew;==> Jnew[1]=0eD;==> eD[1]=x(2)*y(1)^2bM;==> bM[1]=y(1)^2==> bM[2]=x(2)==> bM[3]=x(2)*y(1)^3 Can someone help in Computing this example of a blow-up by hand? I want to see exactly how does the blow-up looks at affine chart. LIB "resolve.lib";ring r=0,(x,y,z),dp;ideal I=z2-x^3*y^2;ideal C=z,xy;list li=blowUp2(I,C);size(li); // number of charts==> 2def S1=li[1];setring S1; // chart 1basering;==> // characteristic : 0==> // number of vars : 3==> // block 1 : ordering dp==> // : names x(1) x(3) y(2)==> // block 2 : ordering CJnew;==> Jnew[1]=x(1)*y(2)^2-1eD;==> eD[1]=x(3)==> eD[2]=x(1)*y(2)^2-1bM;==> bM[1]=x(1)==> bM[2]=x(3)*y(2)^3==> bM[3]=x(3)def S2=li[2];setring S2; // chart 2basering;==> // characteristic : 0==> // number of vars : 2==> // block 1 : ordering dp==> // : names x(2) y(1)==> // block 2 : ordering CJnew;==> Jnew[1]=0eD;==> eD[1]=x(2)*y(1)^2bM;==> bM[1]=y(1)^2==> bM[2]=x(2)==> bM[3]=x(2)*y(1)^3
 Posted: Tue Mar 10, 2015 3:05 pm

 It is currently Fri Sep 21, 2018 11:58 am