# Singular

 Page 1 of 1 [ 2 posts ]
 Print view | E-mail friend Previous topic | Next topic
Author Message
 Post subject: parametrization with respect to given variablesPosted: Thu Aug 11, 2005 5:31 pm
I have 3 polynomials with the variables {s13, h13, h123,
h23, s12, h12, c, h1, h2, h3, s1}. Please see if you can express from
this the variables {s1,s12, s13} in terms of the others.

email: singular@mathematik.uni-kl.de
Posted in old Singular Forum on: 2002-02-03 10:08:32+01

Top

 Post subject: Re: parametrization with respect to given variablesPosted: Thu Aug 11, 2005 5:42 pm
For this example primdecGTZ is too expensive, however, minAssGTZ works
(here also triangMH or triangM seem to work too). For your purpose one has
to declare h13,h123,h23,h12,c,h1,h2,h3 as parameters and s1,s12,s13 as
variables:

option(prot);
ring r = (0,h13,h123,h23,h12,c,h1,h2,h3),(s1,s12,s13),lp;
ideal i =
12*h23*s1^2*s13^2+12*h13*s1^3*s13+2*h23*s12*s1^3-10*h23*s1^2*s13
...
+h3*s12*s13+h123*s12*s1+h123*s12*s13;

list ma = minAssGTZ(i); //the minimal associated primes
ma;
[1]:
_[1]=s13
_[2]=s1
[2]:
_[1]=(-2*c^2)*s13+(h13^2+h13*h123+2*h13*h23+h13*h1+h13*h2+h13*h3+h123*h23+h123*h1+h123*h2+h23^2+h23*h1+h23*h2+h23*h3+h1*h3+h2*h3)
_[2]=(-h13*c^2-h123*c^2-h23*c^2+c^3-c^2*h1-c^2*h2-c^2*h3)*s12+(-h13^2*h12-h13*h123*h12-2*h13*h23*h12+2*h13*h12*c-h13*h12*h1-h13*h12*h2-h13*h12*h3-h123*h23*h12
+h123*h12*c-h123*h12*h1-h123*h12*h2-h23^2*h12+2*h23*h12*c-h23*h12*h1-h23*h12*h2-h23*h12*h3-h12*c^2+h12*c*h1+h12*c*h2+h12*c*h3-h12*h1*h3-h12*h2*h3)
_[3]=(-2*c^2)*s1+(-h13^2-h13*h123-2*h13*h23+h13*c-h13*h1-h13*h2-h13*h3-h123*h23-h123*h1-h123*h2-h23^2+h23*c-h23*h1-h23*h2-h23*h3+c*h1+c*h2-h1*h3-h2*h3)
[3]:
_[1]=s12
_[2]=2*s1+2*s13-1
[4]:
_[1]=s12
_[2]=s1

//Or, if you wish to normalize the second solution, then you get the expression for
//s13,s12 and s1 directly (of course, you get the solutions by setting the
//polynomials 0):

normalize(ma[2]);
_[1]=s13+(-h13^2-h13*h123-2*h13*h23-h13*h1-h13*h2-h13*h3-h123*h23-h123*h1-h123*h2-h23^2-h23*h1-h23*h2-h23*h3-h1*h3-h2*h3)/(2*c^2)
_[2]=s12+(h13^2*h12+h13*h123*h12+2*h13*h23*h12-2*h13*h12*c+h13*h12*h1+h13*h12*h2+h13*h12*h3+h123*h23*h12-h123*h12*c+h123*h12*h1+h123*h12*h2+h23^2*h12-2*h23*h12*c
+h23*h12*h1+h23*h12*h2+h23*h12*h3+h12*c^2-h12*c*h1-h12*c*h2-h12*c*h3+h12*h1*h3+h12*h2*h3)/(h13*c^2+h123*c^2+h23*c^2-c^3+c^2*h1+c^2*h2+c^2*h3)
_[3]=s1+(h13^2+h13*h123+2*h13*h23-h13*c+h13*h1+h13*h2+h13*h3+h123*h23+h123*h1+h123*h2+h23^2-h23*c+h23*h1+h23*h2+h23*h3-c*h1-c*h2+h1*h3+h2*h3)/(2*c^2)

email: greuel@mathematik.uni-kl.de
Posted in old Singular Forum on: 2002-02-03 10:10:53+01

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 2 posts ]

 You can post new topics in this forumYou can reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

 It is currently Thu Nov 15, 2018 11:08 am