# Singular

 Page 1 of 1 [ 1 post ]
 Print view | E-mail friend Previous topic | Next topic
Author Message
 Post subject: Groebner Basis and extending partial solutionsPosted: Sat Mar 04, 2017 3:21 pm

Joined: Thu Feb 16, 2017 9:52 am
Posts: 1
Suppose that a finite set of polynomials in C[x,y,z] has a finite number of solutions (i.e. the generated ideal is 0-dimensional).
Suppose also that the Groebner basis with respect to lex order x>y>z is

[f(z), g(y,z), h(y,z), k(x,y,z)]

As well known, the system can be now easily solved: choose a root z0 of f, plug it into g and h and look for a common root (y0) etc.

The question is the following: Is it true that for EVERY root z0 of f there exist y0, z0 such that (x0,y0,z0) satisfy the system?

In all the examples I have seen this is true, but I don't know whether this is true in general or there is a counterexample.

Note that an extension from (y0,z0) to (x0,y0,z0) is not always possible (there is an "Extension theorem" which must be used).
The problem here is to extend from (z0) to (x0,y0,z0) which seems to be always possible. Is it?

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 1 post ]

 You can post new topics in this forumYou can reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

 It is currently Sun Oct 21, 2018 5:52 am