# Singular

 Page 1 of 1 [ 1 post ]
 Print view | E-mail friend Previous topic | Next topic
Author Message
 Post subject: primary and secondary invariantsPosted: Thu Sep 26, 2013 8:00 am
Hi, all:

I am new to Singular, and what I want to do is to generate all primary and secondary invariants of a polynomial within some total degree, which is symmetrized under a known group. For instance, v=f(r12,r13,r23), and the group is s3, whose elements are just the same as in the permutation group of S3. My script is following as:

ring R=0,(x,y,z),dp;
> matrix A1[3][3]=1,0,0,0,1,0,0,0,1;
> matrix A2[3][3]=1,0,0,0,0,1,0,1,0;
> matrix A3[3][3]=0,0,1, 0,1,0, 1,0,0;
> matrix A4[3][3]=0,1,0, 1,0,0, 0,0,1;
> matrix A5[3][3]=0,0,1, 1,0,0, 0,1,0;
> matrix A6[3][3]=0,1,0, 0,0,1, 1,0,0;

Then I do not know how to make S=(A1, A2, A3, A4, A5, A6). After this, I think I can get the invariants using
B(1..3)=invariant_ring(S);

Am I right? Thanks in advance.

Best

John

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 1 post ]

 You can post new topics in this forumYou can reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

 It is currently Wed Jan 23, 2019 10:10 pm