# Singular

 Page 1 of 1 [ 2 posts ]
 Print view | E-mail friend Previous topic | Next topic
Author Message
 Post subject: Possible bug in Betti diagramPosted: Fri Sep 22, 2017 3:26 pm
We know that if \$I\$ is a graded ideal in a polynomial ring, then the graded Betti numbers of \$I\$ are at most the corresponding graded Betti numbers of the initial ideal of \$I\$ with respect to any monomial order (See Corollary 3.3.3 of the book by Herzog and Hibi).

The following code in Singular says differently. Where is my mistake?
Code:

>  ring r = 0, (x, y,z, u,v, w, a, b, c, d), Dp;
> ideal P = zw+u2+uv, ya+zu+uv, xb+y2+yz+zu, uvcd+wac+wb2, zvcd-uac-ub2-vac-vb2;

> P;
P[1]=zw+u2+uv
P[2]=ya+zu+uv
P[3]=xb+y2+yz+zu
P[4]=uvcd+wac+wb2
P[5]=zvcd-uac-ub2-vac-vb2
> P = std(P);
> ideal P' = lead(P);
> P';
P'[1]=zw
P'[2]=ya
P'[3]=xb
P'[4]=uvcd
P'[5]=zvcd
> resolution R = mres(P, 0);
> resolution R' = mres(P', 0);
> print(betti(R), "betti");
0     1     2     3     4
------------------------------------
0:     1     -     -     -     -
1:     -     3     -     -     -
2:     -     -     4     -     -
3:     -     2     1      3     -
4:     -     -     4      2     1
5:     -     -     -       2     1
------------------------------------
total:     1     5     9     7     2

> print(betti(R'), "betti");
0     1     2     3     4
------------------------------------
0:     1     -     -     -     -
1:     -     3     -     -     -
2:     -     -     3     -     -
3:     -     2     2     1     -
4:     -     -     4     4     -
5:     -     -     -      2     2
------------------------------------
total:     1     5     9     7     2

Top

 Post subject: Re: Possible bug in Betti diagramPosted: Sat Sep 23, 2017 1:09 pm

Joined: Wed May 25, 2005 4:16 pm
Posts: 212
Your ideal is nor homogeneous,
see
https://www.singular.uni-kl.de:8002/trac/ticket/810#comment:1

Top

 Display posts from previous: All posts1 day7 days2 weeks1 month3 months6 months1 year Sort by AuthorPost timeSubject AscendingDescending
 Page 1 of 1 [ 2 posts ]

 You can post new topics in this forumYou can reply to topics in this forumYou cannot edit your posts in this forumYou cannot delete your posts in this forumYou cannot post attachments in this forum

 It is currently Sat Dec 15, 2018 4:13 pm
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group