
UNIVERSITÄT KAISERSLAUTERN
Zentrum für Computeralgebra

REPORTS ON COMPUTER ALGEBRA
NO. 36

Plural, a Noncommutative Extension of

Singular: Past, Present and Future

by

V.Levandovskyy

June, 2006



The Zentrum für Computeralgebra (Centre for Computer Algebra) at the Uni-
versity of Kaiserslautern was founded in June 1993 by the Ministerium für Wis-
senschaft und Weiterbildung in Rheinland-Pfalz (Ministry of Science and Edu-
cation of the state of Rheinland-Pfalz). The centre is a scientific institution of
the departments of Mathematics, Computer Science, and Electrical En-

gineering at the University of Kaiserslautern.
The goals of the centre are to advance and to support the use of Computer

Algebra in industry, research, and teaching. More concrete goals of the centre
include

• the development, integration, and use of software for Computer Algebra

• the development of curricula in Computer Algebra under special consider-
ation of interdisciplinary aspects

• the realisation of seminars about Computer Algebra

• the cooperation with other centres and institutions which have similar goals

The present coordinator of the Reports on Computer Algebra is:
Christoph Lossen (email: lossen@mathematik.uni-kl.de)

Zentrum für Computeralgebra
c/o Prof. Dr. G.-M. Greuel, FB Mathematik
Erwin-Schrödinger-Strasse
D-67663 Kaiserslautern; Germany

Phone: 49 - 631/205-2850 Fax: 49 - 631/205-5052
email: greuel@mathematik.uni-kl.de



Plural, a Non–commutative Extension of

Singular: Past, Present and Future

Viktor Levandovskyy

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University

Altenbergerstrasse 69, 4040 Linz, Austria
levandov@risc.uni-linz.ac.at

Abstract. We describe the non–commutative extension of the computer
algebra system Singular, called Plural. In the system, we provide
rich functionality for symbolic computation within a wide class of non–
commutative algebras. We discuss the computational objects of Plural,
the implementation of main algorithms, various aspects of software en-
gineering and numerous applications.

Singular:Plural or, shortly, Plural [1] is a subsystem of a computer
algebra system Singular [2]. It provides the framework for symbolic computa-
tions with one– and two–sided ideals and modules over non–commutative GR–
algebras (Def. 2). Most of Gröbner basics (Sect. 2.5) are available in the kernel
of the implementation, ranging from the elimination of variables to free resolu-
tions. Additional functions and libraries provide many useful tools and advanced
algorithms for non–commutative algebra. The powerful implementation and rich
functionality make Plural a very helpful system for supporting the research in
many fields on mathematics and its applications.

1 Past

In 1997, Gert–Martin Greuel and Yuriy Drozd proposed to modify the experi-
mental branch of Singular, called SingularD, which contained implementa-
tions of Gröbner bases and syzygies for modules over Weyl and exterior algebras.
The list of work to be accomplished included the extension of the class of avail-
able algebras (having in mind universal enveloping algebras of finite dimensional
Lie algebras), thorough implementation of Gröbner bases and of related algo-
rithms for these algebras.

In the year 2000, the author defended his Master Thesis in Kaiserslautern,
which was entitled ”Gröbner bases of a class of non–commutative algebras” and
presented the first version of Plural. The class of implemented algebras was
bigger, than it was originally planned. Indeed, it constituted the class, studied
by J. Apel under the name of G–algebras [3], and by A. Kandri–Rody and
V. Weispfennig under the name algebras of solvable type [4]. T. Mora investigated
these algebras among other in his works [5, 6] without giving them a special name.
It is important, that many quantum groups and different flavors of quantizations,



2 Viktor Levandovskyy

applied to various algebras [7–9], are G–algebras (Def. 1) or their factor algebras,
GR–algebras (Def. 2).

As a name, Plural originates from a wordplay. In the funny informal discus-
sion on the 1st of April 1999 (the fool’s day), among other jokes around maths,
it appeared suddenly as the contrary to the word ”Singular” in the meaning of a
grammar category. Therefore, the question ”how to call the new–born Singular
extension” has got a quick answer, which was accepted then by all the authors
and principal developers of Singular.

Until the 2005, Plural was still separated from Singular de jure, but de
facto Plural was included in the development structure of Singular, although
it was built in a different way, it kept its own separate documentation and so on.
During 2001–2005 a standalone Plural was released several times, and became
available for the free download. Many new algorithms were developed and im-
plemented. A Gröbner basis algorithm was radically enhanced and profited from
all the novelties in the kernel of Singular like different kinds of geobuckets,
fast internal maps et cetera. The development of the kernel of Plural was done
by the author together with Hans Schönemann, and we have reported on some
aspects of our work in [10].

Finally, in mid 2005 Singular version 3-0-0 was released, with Plural as
an integral part of it. Almost at the same time the Ph.D. Thesis [8] was defended
by the author, where most of the theoretical and algorithmic research, connected
to Plural, was described in detail.

2 Present

Plural operates with ideals and submodules of free modules of finite rank over
non–commutative GR–algebras.

2.1 GR–algebras and their properties

Let K be a field, and T = Tn = K〈x1, . . . , xn〉 a free associative K–algebra,
generated by {x1, . . . , xn} over K. Among the monomials xi1xi2 . . . xis

, 1 ≤
i1, i2, . . . , is ≤ n, spanning T as vector space over K, we distinguish the stan-

dard monomials xα1

i1
xα2

i2
. . . xαm

im

, where 1 ≤ i1 < i2 < . . . < im ≤ n and
αk ∈ N. Via the correspondence xα := xα1

1 xα2

2 . . . xαn

n 7→ (α1, α2, . . . , αn) =: α
the set of standard monomials is in bijection with N

n.
Recall, that any finitely generated associative K–algebra is isomorphic to

Tn/I , for some n and some proper two–sided ideal I ⊂ Tn. If the set of standard
monomials forms a K–basis of an algebra A = T/I , we say that A has a Poincaré–
Birkhoff–Witt (shortly, PBW) basis in the variables x1, . . . , xn. We say that an
abstract associative algebra A has a PBW basis, if there exists an isomorphism
of K–algebras A ∼= T/I , such that T/I has a PBW basis.

As one can immediately see, the commutative polynomial ring K[x1, . . . , xn]
does have a PBW basis, while the free associative algebra K〈x1, . . . , xn〉 does not.
The existence of a PBW basis is an important property for a non–commutative
algebra. However, we need more assumptions on the particular basis and the



Plural: Past, Present and Future 3

relations of an algebra in order to guarantee nice properties. In particular, the
algebra K〈x, y〉/〈yx〉 has a PBW basis, but it is not an integral domain.

A total ordering ≺ on N
n is called a monomial ordering on the algebra A

with the PBW basis {xα | α ∈ N
n}, if ∀ α, β, γ ∈ N

n, α ≺ β ⇒ xα ≺ xβ ⇒
xα+γ ≺ xβ+γ . For f ∈ T , we denote by lm(f) the leading monomial of f with
respect to ≺.

Definition 1. Let K be a field, T = K〈x1, . . . , xn〉 and I be a two–sided ideal of
T , generated by the set of elements

xjxi − cij · xixj − dij , 1 ≤ i < j ≤ n,

where cij ∈ K \ {0} and every dij ∈ T is a polynomial, involving only standard1

monomials of T . A K–algebra A = T/I is called a G–algebra, if the following
conditions hold:

– Ordering condition: there exists a monomial well–ordering ≺ on N
n, such

that ∀ 1 ≤ i < j ≤ n lm(dij) ≺ xixj .

– Non–degeneracy condition: ∀ 1 ≤ i < j < k ≤ n , to the sets {cij} and
{dij} we associate a polynomial NDCijk = cikcjk ·dijxk−xkdij +cjk ·xjdik−
cij · dikxj + djkxi − cijcik · xidjk. A condition is satisfied, if each NDCijk

reduces to zero with respect to the generators of I.

The PBW Theorem (from e.g. [11]) generalizes the classical Poincaré–Birkhoff–
Witt Theorem from the case of universal enveloping algebras of finite dimensional
Lie algebras to the case of general G–algebras. Hence, a G–algebra in variables
x1, . . . , xn has a canonical PBW basis {xα1

1 xα2

2 . . . xαn

n | αk ∈ N}.

Definition 2. Let B be a G–algebra and I ⊂ B be a proper nonzero two–sided
ideal. Then, a factor algebra B/I is called a GR–algebra.

Remark 1 (Setup for G–algebras). There are several ways to input a G–algebra
in Plural. We extended the Singular type ring to the non–commutative situ-
ation. A generic way for setting up a G–algebra follows the definition above: one
has to define a commutative ring K[x1, . . . , xn] and equip it with the monomial
ordering. Then, one defines two n × n matrices C = (cij) and D = (dij), and
types ncalgebra(C,D). The command ncalgebra accepts shortcuts for C or D,
that is if one passes an argument of types number or poly, they are interpreted
by ncalgebra as matrices, where all the entries of the upper triangle are equal
to the given argument.

Many commonly used families of algebras are predefined in Plural libraries.
The number of available predefined algebras increases constantly, one can found
them in the libraries ncalg.lib, nctools.lib, and qmatrix.lib.

We also provide the possibility to build tensor products of two GR–algebras
over the ground field and the construction of the opposite and the enveloping
algebra from the given GR–algebra. We discuss the latter algebras below.

1 we assume this only for simplicity of presentation



4 Viktor Levandovskyy

Remark 2 (Setup for GR–algebras).

As soon as the G–algebra is given, one can define a factor algebra modulo a
two–sided ideal, that is a GR–algebra, which will be of the type qring, modified
for the non–commutative situation. The only requirement is that a two–sided
ideal must be given in its two–sided Gröbner basis. With the help of the command
twostd one computes such a Gröbner basis and the simplest syntax for defining
a GR–algebra reads as qring Q = twostd(I);.

Theorem 1. Let A be a G–algebra in n variables. Then

1) A is left and right Noetherian,

2) A is an integral domain,

3) A is Auslander–regular and Cohen–Macaulay,

4) the Gel’fand–Kirillov dimension GKdim(A) = n + GKdim(K),

5) the global homological dimension gl. dim(A) ≤ n,

6) the Krull dimension Kr.dim(A) ≤ n.

We refer to [12], [8], [13] for corresponding definitions and proofs. There are
examples, where the inequalities 5) and 6) are strict. In particular, 1) and 2)
imply that every G–algebra satisfies a left and a right Ore conditions, hence
there exist a total Ore localization, producing a left and a right quotient ring.
It is known since [3], that one can use Gröbner bases on a G–algebra A for the
arithmetic operations with fractions of its left or right quotient ring.

Remark 3. As for computation of dimensions, one can count only on the algo-
rithm for the calculation of Gel’fand–Kirillov dimension gkdim.lib [7], which
is implemented for Plural by F. J. Lobillo et. al. The generalized Krull di-
mension is known for its difficulty and, to the best of our knowledge, there is
no algorithmic procedure for computing it for a general GR–algebra. We have
proved in [8], that the global homological dimension gl. dim(A) = n provided
there exist finite dimensional representations of A over the ground field K. It
is still an open question, whether the opposite direction is true. Another open
problem is the exact computation of gl. dim of a given algebra in the case, when
gl. dim(A) < n. The phenomenon, demonstrated by n–th Weyl algebras Wn over
a field of characteristic 0, is quite interesting. In this case gl. dim(Wn) = n, while
Wn is generated by 2n variables and is of Gel’fand–Kirillov dimension 2n. This
behavior is extremal in the sense that the global dimension of a G–algebra in 2n
variables seems to be at least n.

The class of G–algebras unifies many very important and quite different
algebras under one roof, among them quasi–commutative polynomial rings (for
example, the quantum plane yx = q · xy and multiparameter quantum affine
spaces), universal enveloping algebras of finite dimensional Lie algebras, some
iterated Ore extensions, many quantum groups, some nonstandard quantum
deformations, many algebras associated to the classical operators.

One of the reasons for such unification lies in the common structural prop-
erties of these algebras. And the second reason is the Gröbner bases theory.



Plural: Past, Present and Future 5

2.2 Gröbner bases in GR–algebras

We stress the similarities between G–algebras and commutative polynomial rings
and use the similarities, when possible. We follow the approach to Gröbner bases,
presented in [14]. Let A be a G–algebra in n variables. We say that a monomial

of a free module Ar (involving component i) is an element of the form xαei, where
α ∈ N

n and ei is the canonical i–th basis vector.

We say, that m1 = xαej divides m2 = xβek and denote it by m1|m2, if
j = k and αi ≤ βi ∀i = 1 . . . n. Note, that it is rather a pseudo–division on A,
since if m1|m2, then there exist c ∈ K \ {0}, a monomial p ∈ A and q ∈ Ar such
that lm(q) ≺ m1 and m2 = c · p · m1 + q, where q 6= 0 in general.

From the properties of G–algebras it follows, that any f ∈ Ar
r {0} can be

written uniquely as f = cαxαei + g, with cα ∈ K
∗, and xβej ≺ xαei for any

nonzero term cβxβej of g. Then we define in the usual fashion

lm(f) = xαei, the leading monomial of f ,
lc(f) = cα, the leading coefficient of f .

Note, that ∀ α, β ∈ N
n, lm(xαxβ) = lm(xα+β) = lm(xβxα).

Definition 3. Let ≺ be a monomial ordering on the free module Ar, I ⊂ Ar a
left submodule, and G ⊂ I a finite subset. G is called a left Gröbner basis of
I if and only if for any f ∈ I r{0} there exists g ∈ G, satisfying lm(g) | lm(f).

In order to come up with the more constructive definition, one has to use the
notion of a monoideal of leading exponents [7] or a span of leading monomials [8]
instead of the leading ideal. The latter works well in the commutative and even
in the free associative algebras, but fails in general G–algebras for the reasons,
which we discussed in detail in [8].

The normal form, the s–polynomial and the Buchberger’s algorithm can be
generalized for the left or right ideals in almost the same form they appear in
the literature for the commutative case. However, the proofs of main theorems in
the Gröbner bases theory are different in spite of similarity. One has to develop
a specific intuition, while working with non–commutative algebras, which are in
many senses close to commutative algebras.

As the simplest indication of the intrinsic difference we can take the Prod-
uct Criterion, which is a standard tool in the commutative case. If the lead-
ing monomials of two polynomials f and g do not divide each other, we have
spoly(f, g) →{f,g} 0. Hence, this is the easiest situation in the set of pairs, built
in the Buchberger’s algorithm: discard the pair (f, g) if the condition holds.

In the non–commutative case, we can show under some assumptions on the
algebra [10], that spoly(f, g) →{f,g} g · f − f · g =: [g, f ]. Of course, it allows to
discard the pair (f, g) from the pair set if f commutes with g, which happens
rather rarely in general. If it is not the case, the number of multiplications and
reductions shows that we are perhaps in the worst situation, which might occur
in the set of pairs.

On the contrary, the Chain Criterion and its variations generalize to G–
algebras in its full generality [7, 15, 8, 9]. The Chain Criterion is actually the
most important criterion, used in Plural.



6 Viktor Levandovskyy

2.3 Left, right and two–sided structures

The three kinds of ideals and modules (left, right and two–sided) might make the
life of a developer quite complicated. The two–sided ideals and, more generally,
bimodules are very special structures, having no analogue in the commutative
case. The notion of a two–sided Gröbner basis is different from the one of a one–
sided Gröbner basis [3, 4, 10]. The two–sided Gröbner basis is computed with a
special algorithm and is in general harder to compute, then the one–sided. A
recent algorithm [16] shows superior performance, compared to the variations of
the classical approach and will be used in the future. This algorithm utilizes the
opposite algebras.

Let A be an associative algebra over K. The opposite algebra Aopp is de-
fined by taking the same vector space as of A, and by introducing a new ”op-
posite” multiplication ∗ on it, defined by f ∗ g := g · f . Then, Aopp is
an associative K–algebra, and (Aopp)opp = A holds. One calls A ⊗K Aopp an
enveloping algebra of A.

Lemma 1. Let B = A/I be a GR–algebra. Then Bopp is a GR–algebra, and
Bopp = Aopp/Iopp.

The particular importance of opposite algebras lies in the fact, that for right–
sided computations with a right module like a Gröbner basis, a syzygy module
et cetera, it suffices to implement a left–sided functionality together with pro-
cedures for the effective treatment of opposite algebras and transfer of objects
between an algebra and its opposite. The implementation in Singular:Plural
is done along these lines; we provide the commands opposite and envelope

for constructing the algebras and oppose for transferring the objects from an
algebra to its opposite.

There are several methods for representing an opposite algebra of a given
algebra constructively, see [8] for their description.

2.4 Gröbner trinity and Gröbner engine

We can compute Gröbner basis of an ideal, Gröbner basis of its first syzygy
module, and the transformation matrix between the original set of generators
and the Gröbner basis (sometimes called a lifting matrix ) basically with the
same algorithm. We call these three powerful algorithms a Gröbner trinity.
The same applies for one–sided Gröbner trinity for ideals over GR–algebras
and is inherited by Plural from Singular. The Gröbner trinity is extremely
important for further applications of Gröbner bases: e.g. a free resolution can be
computed as the sequence of syzygies, while a lifting matrix allows to control the
critical constellations of parameters, or, in other words, to observe the genericity
of Gröbner basis computation [17].

The algorithm, which is able to compute all of the Gröbner trinity, is es-
sentially the general version of Buchberger’s Gröbner basis algorithm. It must
be able to compute with free modules, hence it must accept monomial module
orderings as input. Moreover, it is important to have the switch for dividing the
set of module components into two disjoint groups. Having such a switch, one



Plural: Past, Present and Future 7

can, depending on the situation, compute Gröbner basis only of those vectors,
which lie inside of one group and do not compute it for the other group, since
the latter will be ignored at the end. Among other cases, this idea is used for
computing both the syzygy module and the lifting matrix more easily. The same
algorithm must be able to perform computations in a factor algebra, to use extra
weights for the ordering or for the generators of a module, to interpret and to
use on demand the supplemented information on Hilbert polynomial et cetera.

We call an implementation of the algorithm, which computes a (left) Gröbner
basis and which complies with the requirements above, a Gröbner engine.

The examples of Gröbner engines in Singular are: Gröbner bases (non–
negatively graded orderings), standard bases (local and mixed orderings), and
Plural (left Gröbner bases for non–negatively graded orderings over G–algebras).
All of these are called with the same command, namely std. Yet more meth-
ods for computing Gröbner bases are on their way to become someday Gröbner
engines.

If the internal implementation of a variant of Gröbner basis algorithm is done
in the form of Gröbner engine, one gets all the Gröbner basics (see below) avail-
able in a much shorter time, compared with the adjustment of every application
from Gröbner basics family to the new Gröbner basis routine. Moreover, if in-
ternal structure of the implementation of e.g. Gröbner basics is tuned for the
use of generic Gröbner engine, one can switch between engines and measure the
engine’s performance on the suite of applications.

The importance of having not only a fast Gröbner basis algorithm, but also
fast Gröbner basics (for working with practice–relevant applications) is clear.
However, the development of a fast Gröbner basis algorithm is complicated and
requires several years of intensive work. Unfortunately, during this time the
initial plans concerning applications often got changed, by shifting the focus
to the better Gröbner basis algorithm. In such a situation, the development
of Gröbner basics and further applications is often postponed. The concept of
Gröbner engine has been used implicitly in Singular. Now it is being formalized
and developed further by the author and Hans Schönemann. It provides an
interface between Gröbner bases, Gröbner trinity and Gröbner basics in order
to overcome the difficulties, described above.

The development of a novel implementation of a Gröbner basis algorithm,
which must not necessarily be the Buchberger’s Algorithm, usually starts with
ideals and aims at a couple of orderings. The evolution of each concrete project
is unique, because it depends on the aims, pursued by the developers. But at
some point one has to introduce modules, more orderings including elimination
and module ones, factor algebras et cetera. Our experience can be illustrated
with two algorithms, available in Singular, namely janet and slimgb.

janet. The possibility to compute Gröbner basis via involutive basis was pro-
posed independently by Apel and Gerdt et. al. [18], the corresponding algorithm
was thoroughly implemented in the group of V. P. Gerdt (http://invo.jinr.ru)
for ideals of commutative rings and demonstrated quite a good performance.
With the help of the principal developer of the project JB (”Janet involutive
bases”), Denis Yanovich, in 2003 we have incorporated their routines, written



8 Viktor Levandovskyy

in C, into Singular. We have learned a lot during that process; the amount
of re-engineering we needed to do, together with several other factors, led us
to the idea of Gröbner engine, because at that time we were interested in hav-
ing a fast Gröbner basis algorithm, showing especially good performance on the
elimination problems.

The Singular command janet computes a Gröbner basis of an ideal through
the computation of Janet basis and interreduction of the output. The same com-
mand, run in the G–algebra, returns a left Gröbner basis of a two–sided ideal.
The cooperation with the group of Gerdt continues, and perhaps some day janet

routines will evolve to the Gröbner engine.

slimgb. Slim Gröbner basis is the algorithm of M. Brickenstein [19, 20]. It uses
many interesting ideas and techniques, which have been proved to provide an
impressive performance, especially over transcendental field extensions and for
elimination orderings. One of particular aims was to minimize, if possible, the
intermediate coefficient swell.

The methods, used in slimgb, were general enough to be applied for the non–
commutative case. slimgb can compute a left Gröbner basis of a left module.
Its performace has been successfully tested on many problems; using slimgb we
obtained solutions for several long–standing computational challenges. Due to
very good timings on examples, where elimination orderings were used, slimgb
is the primary engine for the dmod.lib (Sect. 3.5). The development of slimgb
goes further intensively and, as it seems, will lead to the Gröbner engine in the
nearest future.

2.5 Gröbner basics

Bruno Buchberger and later Bernd Sturmfels called ”Gröbner basics” the most
important, yet basic applications of Gröbner bases. We adopt this notion to the
non–commutative GR–algebras and remove from this list ”too commutative”
applications (such as Zariski closure of the image of a map, solving polynomial
equations and radical membership). All the algorithms below have been gener-
alized to the context of GR–algebras and implemented in Plural.

• Ideal (resp. module) membership problem
• Intersection with subrings (elimination of variables)
• Intersection of ideals (resp. submodules)
• Quotient and saturation of two–sided ideals (∗)
• Kernel of a module homomorphism
• Kernel of a ring homomorphism
• Algebraic relations between pairwise commuting polynomials

The items, marked with ∗, have constructive interpretation only for two–sided
input.

Definition 4. Let A be a K–algebra and F ⊆ A a set. The subalgebra CA(F ) =
{a ∈ A | [f, a] = 0 ∀f ∈ F} is called the centralizer of F in A. Moreover,
Z(A) = CA(A) = {z ∈ A | za = az ∀a ∈ A} is called the center of A.



Plural: Past, Present and Future 9

In addition to the classical Gröbner basics, there are typically non–commutative
Gröbner basics (all of them are implemented in Plural):

• Two–sided Gröbner basis of a bimodule
• Gel’fand–Kirillov dimension of a module
• Annihilator of finite dimensional module
• Central quotient resp. saturation of ideals (if the center is non–trivial)
• Preimage of a left ideal under the morphism of algebras
• Graded Betti numbers (for graded modules over graded algebras)
• Left and right kernel of the presentation of a module
• Central Character Decomposition of the Module

It is interesting, whether it is possible to give an algorithm, which computes
N–dimensional irreducible representations of a GR–algebra for a positive N . We
have proposed an algorithm, which computes all the one–dimensional represen-
tations [21].

For a modern computer algebra system, specializing on the non–commutative
algebras, it is quite important to have also non–Gröbner functionality, like the
operations with opposite and enveloping algebras (described above), computa-
tions with centralizers and even more. Many applications (of e.g. representation
theory) require an explicit knowledge of the generators of the center of a GR–
algebra as well as the generators of centralizers of finite sets. These algorithms
have been implemented in the library center.lib by O. Motsak. The imple-
mentation demonstrated quite a good performance.

While studying algebraic dependence of pairwise commuting polynomials,
the method of Perron polynomial was widely used. It has been implemented
in the library perron.lib. With this library we have been able to compute
several hard examples, which contributed to the progress in studying algebraic
dependence in the situation, described in the Sect. 3.2.

3 Work in progress and future development

3.1 Preimage of a left ideal

ncpreimage.lib is dedicated to the computation of the preimage of a left ideal
under a morphism of GR–algebras, as it is described in [22]. The implementation
of the main algorithm of the article requires, among other, the procedure for the
computation of a tuple of strictly positive weights (w1, . . . , wm), such that the
elimination ordering with the extra weight vector (w1, . . . , wm, 0, . . . , 0) satisfies
the ordering condition of the Def. 1. If one works with a positively weighted
degree ordering, a similar computation of weights can be achieved with the help
of the method, described in e.g. [7]. It is implemented as the procedure Gweights
in the library nctools.lib.

3.2 Algebraic dependence of pairwise commuting polynomials

Consider the universal enveloping algebra A of a finite dimensional simple Lie
algebra over a field K. If charK > 0, it is known from the dimension argument



10 Viktor Levandovskyy

assures, that the generators of the center are algebraically dependent. There
are several open questions on the ideal of dependence polynomials which we
investigate by using computer algebraic methods. We were able to compute the
dependence polynomials explicitly for many prime p over the algebras U(sl2) (see
[8]) and U(so3). Up to now, the case of U(sl3) remains unsolved and constitutes
an important challenge.

There are more situations, when these methods can be applied. For instance,
the algebraic dependence of the generators of the center appears also in quantum
algebras, when one considers a quantum parameter q (usually assumed to be
transcendental over K) to be some primitive root of unity. We computed several
important dependencies in the nonstandard quantum deformation U ′

q(so3) and
reported on these results in e.g. [8].

The computation of dependencies as described above seems to be one of the
hardest tasks in the non–commutative computer algebra. To the best of our
knowledge, no computer algebra system except Singular:Plural can handle
even relatively small examples.

In many cases the obtained dependencies define singularities. There is a con-
jecture, that for some types of algebras, these singularities will always be simple.
The practical experience shows that this conjecture is true for all the computed
examples, the investigation is continued.

3.3 Homological algebra in GR–algebras

For two left A–modules M, N , Exti
A(M, N) for i ≥ 0 carries no A–module struc-

ture in general. However, it turns out [7], that in the case, when either M or N
is a centralizing bimodule, Exti

A(M, N) is an A–module and its presentation can
be computed algorithmically. In many applications, one of the modules M, N is
often appears to be a centralizing bimodule.

Together with G. Pfister we are working on the implementation of the meth-
ods above in the library nchomolog.lib. It is planned to have procedures for
the computation of Ext and Tor modules in the setup as above, accompanied by
other useful tools for homological algebra. We will use these also for the algorith-
mic computation of Hochschild cohomology of bimodules. We need to compute
left and right Gröbner bases, and two–sided bases for bimodules; the need for
them motivated, among other, the deeper study and the enhanced implementa-
tion of opposite and enveloping algebras.

With the help of the library, we are going to check the long–standing conjec-
ture, starting with algebras of rank 2 and 3:

for any simple weight module M over a complex finite–dimensional sim-
ple Lie algebra g, dimC H i(g, M) < ∞ holds for all i.

All the computations, related to this conjecture can be done in the universal
enveloping algebra U(g), which is a G–algebra. Among other, the library will be
applied to the problems, arising in the systems and control theory.



Plural: Past, Present and Future 11

3.4 Systems and control theory

The algorithmic methods of algebraic analysis can be applied to systems of equa-
tions involving linear operators like the (partial) differentiation, shift, difference
and so on [23, 24]. The algorithms for the case, when a system of equations
involves only constant coefficients (hence, the system algebra is commutative),
have been implemented in the library control.lib (Becker, L., and Yena, 2004).

When treating systems with variable polynomial coefficients, the system al-
gebra becomes a GR–algebra. Together with E. Zerz we are working on the
library ncontrol.lib. This library will provide the procedures for the algebraic
analysis of systems over not only G–algebras (like it is done in the package Ore-
Modules, [24]), but also in GR–algebras. The latter requires more efforts and
a thorough inspection of the theory and its implementation.

In order to treat systems with rational coefficients, we have to provide Gröbner
bases, Gröbner basics, and algorithmic homological algebra for modules over
Ore–localized G–algebras (see Sect. 3.7). This is planned to achieve in the near
future.

3.5 D–modules

The library dmod.lib (V. L. and J. Morales, 2006) contains procedures for com-
putations with D–modules. Let charK = 0. Given a polynomial F ∈ K[x1, . . . , xn],
one is interested in computing the D–module structure of the localization
K[x1, . . . , xn, F s] for negative integer s. That is, one looks for the left ideal I
in the Weyl algebra D := An in 2n variables {x1, . . . , xn, ∂1, . . . , ∂n}, such that
K[x1, . . . , xn, F s] ∼= A/I as D–modules. The algorithm for the computation of
such I is often called Ann F s.

We have implemented two variants of this algorithm, namely the algorithm
of Oaku and Takayama [25, 26] in the procedure annfsOT, and the algorithm of
Briançon and Maisonobe (e.g. [25]) in the procedure annfsBM. One can use both
std and slimgb as underlying Gröbner engine for these complicated algorithms.
With the current implementation of dmod.lib and slimgb, we were recently
able to compute several hard examples, e.g. proposed by Castro and Ucha in
[25]. In particular, the cases of F being a cusp xp − yq (for coprime p, q ∈ N),
a Reiffen curve xp + yq + xyq−1, q ≥ p + 1 ≥ 5, or a hyperplane arrangement
are studied; for two latter cases we provide the auxiliary procedures for their
easy setup. We plan to extend the functionality of the library in the direction,
described in [26] and [27]. We are going to use the families of examples above as
benchmarks and compare the performance of computer algebra systems such as
kan/sm1, Macaulay2 and Singular:Plural.

3.6 Applications to algebraic geometry

W. Decker, C. Lossen and G. Pfister created the library sheafcoh.lib, de-
voted to the computation of the cohomology of coherent sheaves. The procedure
sheafCohBGG utilizes the Bernstein–Gel’fand–Gel’fand (BGG) correspondence
and the Tate resolution [28]. This algorithm, which uses computation of free
resolutions over non–commutative exterior algebra (which is a GR–algebra), is



12 Viktor Levandovskyy

sometimes much faster, than the commutative one, implemented in the proce-
dure sheafCoh, which is based on local duality, following the ideas of Eisenbud.

D. Eisenbud and F.-O. Schreyer presented an algorithm for the computation
on higher direct image complex of a coherent sheaf under a projective morphism.
The implementation of this algorithm in Singular will appear soon. Like in
the sheafcoh.lib, the BGG correspondence and hence, the computations over
exterior algebras are used.

3.7 Directions of future work

Context–based multiplication. In [10] we have described our approaches to
the multiplication in general G–algebra. The next enhancement in this field is
the implementation of formula–based multiplication for the simplest contexts.
Namely, for an affine G–algebra with the relation yx = q · xy + ax + by + r,
q, a, b, r ∈ K, q 6= 0 it is possible to derive a symbolic formula in a closed
form for the multiplication ys · xt =

∑
cijx

iyj . To the best of our knowledge,
even in this simple situation no general closed–form formula is known. Using
a formula instead of the updated tables will clearly require less memory, but
eventually will consume more time. Subalgebras of affine type as above occur
very often in big G–algebras, and the impact of the formula–based multiplication
in such subalgebras on the overall performance of Gröbner basis algorithms is
very interesting to investigate.

Combined computations. Singular is one of the few systems, being able to
perform combined computations, that is both commutative and non–commutative
computations in one system. It is important to bring this ability further by im-
plementing context–based operations, that is computations, which will derive the
subalgebra, where the concrete input resides (e.g. a commutative subalgebra of
a G–algebra), and provide the set of most optimized and relevant routines for
the concrete computation. A similar method is implemented in Singular as
so–called p-Procs for polynomial operations over different ground fields.

Ore localizations. We plan to extend Plural to a bigger class of non–
commutative algebras, connected with G–algebras by means of localization.
Since from every G–algebra we can built left and right quotient rings, one can
extend the machinery we have developed to partial localization of G–algebras.
Let B ⊂ A be two G–algebras, then we can perform the localization on B (e.g.
the total Ore localization). If B happens to be commutative, we can apply differ-
ent localization, e.g. the localization with respect to a maximal ideal. Note, that
variables, not belonging to B, remain polynomial. Such algebras are needed in
many algebraic constructions and used in various applications. Let R be a ring,
containing K[x1, . . . , xn] as a subring. Then the Weyl algebra with coefficients
in R is defined to be R〈∂1, . . . , ∂n | [∂i, xi] = 1, [∂j , xk ] = 0〉. Very important ex-
amples are rational Weyl algebras, where R = K(x1, . . . , xn) or local polynomial
Weyl algebras, with R = K[x1, . . . , xn]〈x1,...,xn〉. The standard basis algorithm
for the latter has been recently discussed in [29].



Plural: Past, Present and Future 13

PBW rings [7, 15] constitute a general framework, describing such algebras
and Gröbner bases for modules over them. Under some assumptions, which re-
flect the common setup for many applications, such an algebra is called an Ore
algebra [23], which has nice properties and is much easier to implement, than a
general PBW ring. However, Ore algebras do not cover various important cases
of algebras. Therefore, we concentrate ourself on investigating the algorithmic
aspects of computations in partial Ore localizations of G–algebras.

The computations in PBW rings are more complicated, than in G–algebras.
Even basic arithmetics with one–sided fractions requires the computation of
syzygies and hence Gröbner bases [3]. Hence, the implementation of Gröbner
bases in such algebras must be done quite carefully. On the other hand, the
powerful implementation opens new perspectives for applications of symbolic
computation in this segment of non–commutative algebra.

Non–commutative Computer Algebra Systems

We have reviewed in detail the modern Computer Algebra Systems with the
non–commutative abilities in [8]. The following systems are designed for the
computations in free associative algebras and path algebras:

◦ Bergman by J. Backelin et.al. [30] is a powerful and flexible tool to calculate
Gröbner bases, Hilbert and Poincaré–Betti series, Anick resolution, and Betti
numbers in non–commutative algebras and in modules over them,

◦ NCGB by J. W. Helton et.al. [31] is a Mathematica package, being a part
of the NCAlgebra suite,

◦ Opal by B. Keller et.al. [32] is the specialized standalone system for Gröbner
bases in free and path algebras,

◦ GBNP (Grobner) by A. Cohen and D. Gijsbers [33] is a package for Gap
4 with the implementation of non–commutative Gröbner bases for free and
path algebras, following the algorithmic approach of Mora [5, 6].

The systems below are mostly restricted to some classes of non–commutative
associative algebras, but the computations with them are usually more efficient.

◦ Felix by J. Apel and U. Klaus [34] provides generalizations of Buchberger’s
algorithm to free K–algebras, polynomial rings and G–algebras. Also, the
syzygy computations and basic ideal operations are implemented.

◦ MAS by H. Kredel and M. Pesch [35] contains a large library of Gröbner
basis algorithms for computing in non–commutative polynomial rings,

◦ Groebner by F. Chyzak [36] is a Maple package, providing Gröbner basis
algorithms (including elimination) for Ore algebras,

◦ a Maple package by R. Pearce [37] contains an implementation of Faugère’s
F4 algorithm for Ore algebras,

◦ Kan/sm1 by N. Takayama [38], distributed as a part of the system OpenXM,
provides Gröbner basis computations in polynomial rings, rings of differential
operators, rings of difference and q-difference operators.

◦ Macaulay2 by D. Grayson and M. Stillman [39] includes Gröbner basis al-
gorithms for exterior and Weyl algebras and a package for D–module theory.



14 Viktor Levandovskyy

Acknowledgments

I am grateful to Gert–Martin Greuel, Hans Schönemann and Gerhard Pfister for
long and fruitful cooperation, and for their role in the development of Plural.
I wish to thank Michael Brickenstein, Denis Yanovich, Javier Lobillo, and all
other colleagues for their cooperation and contributions to Singular:Plural.

References

1. Greuel, G.-M., Levandovskyy, V., and Schönemann H.: Plural. A Singular
3.0 Subsystem for Computations with Non–commutative Polynomial Algebras.
Centre for Computer Algebra, University of Kaiserslautern (2006) Available from
http://www.singular.uni-kl.de.

2. Greuel, G.-M., Pfister G., and Schönemann H.: Singular 3.0. A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern (2005) Available from http://www.singular.uni-kl.de.

3. Apel, J.: Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung.
Dissertation, Universität Leipzig (1988)

4. Kandri-Rody, A. and Weispfenning, V.: Non–commutative Gröbner bases in alge-
bras of solvable type. J. Symbolic Computation 9(1) (1990) 1–26

5. Mora, T.: Groebner bases in non-commutative algebras. In: Proc. of the Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC’88), LNCS
358 (1989) 150–161

6. Mora, T.: An introduction to commutative and non-commutative Groebner bases.
Theor. Comp. Sci. 134 (1994) 131–173

7. Bueso, J., Gómez–Torrecillas, J. and Verschoren, A.: Algorithmic methods in non-
commutative algebra. Applications to quantum groups. Kluwer Academic Pub-
lishers (2003)

8. Levandovskyy, V.: Non–commutative computer algebra for polynomial al-
gebras: Gröbner bases, applications and implementation. Doctoral The-
sis, Universität Kaiserslautern (2005) Available from http://kluedo.ub.uni-
kl.de/volltexte/2005/1883/.

9. Li, H.: Noncommutative Gröbner bases and filtered-graded transfer. Springer
(2002)

10. Levandovskyy, V. and Schönemann, H.: Plural — a computer algebra system for
noncommutative polynomial algebras. In: Proc. of the International Symposium
on Symbolic and Algebraic Computation (ISSAC’03), ACM Press (2003)

11. Levandovskyy, V.: PBW Bases, Non–Degeneracy Conditions and Applications.
In Buchweitz, R.-O. and Lenzing, H., ed.: Representation of algebras and related
topics. Proceedings of the ICRA X conference. Volume 45., AMS. Fields Institute
Communications (2005) 229–246

12. Gómez–Torrecillas, J. and Lobillo, F.J.: Auslander-regular and Cohen-Macaulay
quantum groups. J. Algebr. Represent. Theory 7(1) (2004) 35–42

13. McConnell, J.C. and Robson, J.C.: Noncommutative Noetherian rings. With the
cooperation of L. W. Small. Graduate Studies in Mathematics. 30. Providence,
RI: American Mathematical Society (AMS) (2001)

14. Greuel, G.-M. and Pfister, G. with contributions by Bachmann, O., Lossen, C. and
Schönemann, H.: A SINGULAR Introduction to Commutative Algebra. Springer
(2002)

15. Kredel, H.: Solvable polynomial rings. Shaker (1993)



Plural: Past, Present and Future 15

16. Garćıa Román, M. and Garćıa Román, S.: Gröbner bases and syzygies on bimod-
ules over PBW algebras. J. Symbolic Computation 40(3) (2005) 1039–1052

17. Levandovskyy, V. and Zerz, E.: Algebraic systems theory and computer algebraic
methods for some classes of linear control systems. In: Proc. of the International
Symposium on Mathematical Theory of Networks and Systems (MTNS’06). (2006)

18. Gerdt, V.P.: Involutive Algorithms for Computing Groebner Bases. In Pfister
G., Cojocaru S. and Ufnarovski, V., ed.: Computational Commutative and Non-
Commutative Algebraic Geometry, IOS Press (2005)

19. Brickenstein, M.: Neue Varianten zur Berechnung von Gröbnerbasen. Diplomar-
beit, Universität Kaiserslautern (2004)

20. Brickenstein, M.: Slimgb: Gröbner Bases with Slim Polynomials. In: Reports On
Computer Algebra No. 35. Centre for Computer Algebra, University of Kaiser-
slautern (2005) Available from http://www.mathematik.uni-kl.de/∼zca.

21. Levandovskyy, V.: On preimages of ideals in certain non–commutative algebras.
In Pfister G., Cojocaru S. and Ufnarovski, V., ed.: Computational Commutative
and Non-Commutative Algebraic Geometry, IOS Press (2005)

22. Levandovskyy, V.: Intersection of ideals with non–commutative subalgebras. In:
Proc. of the International Symposium on Symbolic and Algebraic Computation
(ISSAC’06), ACM Press (2006, to appear)

23. Chyzak, F. and Salvy, B.: Non–commutative Elimination in Ore Algebras Proves
Multivariate Identities. J. Symbolic Computation 26(2) (1998) 187–227

24. Chyzak, F., Quadrat, A. and Robertz, D.: Linear control systems over Ore alge-
bras. Effective algorithms for the computation of parametrizations. In: Proc. of
Workshop on Time-Delay Systems (TDS03), INRIA (2003)

25. Castro-Jiménez, F.J. and Ucha, J.M.: On the computation of Bernstein–Sato ide-
als. J. Symbolic Computation 37 (2004) 629–639

26. Oaku, T. and Takayama, N.: An algorithm for de Rham cohomology groups of the
complement of an affine variety via D-module computation. Journal of Pure and
Applied Algebra 139(1–3) (1999) 201–233

27. Saito, S., Sturmfels, B. and Takayama, N.: Gröbner Deformations of Hypergeo-
metric Differential Equations. Springer (2000)

28. Eisenbud, D., Fløystad, G. and Schreyer, F.-O.: Sheaf algorithms using the exterior
algebra. Trans. Am. Math. Soc. 355(11) (2003) 4397–4426

29. Granger, M. and Oaku, T. and Takayama, N.: Tangent cone algorithm for homog-
enized differential operators. J. Symbolic Computation 39(3–4) (2005) 417–431

30. J. Backelin et. al.: The Gröbner basis calculator Bergman (2006) Available from
http://servus.math.su.se/bergman/.

31. Helton, J.W. and Stankus, M.: NCGB 3.1, a Noncommutative
Gröbner Basis Package for Mathematica (2001) Available from
http://www.math.ucsd.edu/~ncalg/.

32. Green, E., Heath, L., and Keller, B.: Opal: A System for Computing Noncommuta-
tive Gröbner Bases. In: RTA ’97: Proceedings of the 8th International Conference
on Rewriting Techniques and Applications, Springer (1997) 331–334

33. Cohen, A.M. and Gijsbers D.A.H.: GBNP, a Non–commutative
Gröbner Bases Package for GAP 4 (2003) Available from
http://www.win.tue.nl/~amc/pub/grobner/.

34. Apel, J. and Klaus, U.: FELIX, a Special Computer Algebra System for the
Computation in Commutative and Non-commutative Rings and Modules (1998)
Available from http://felix.hgb-leipzig.de/.

35. Kredel, H. and Pesch, M.: MAS, Modula-2 Algebra System (1998) Available from
http://krum.rz.uni-mannheim.de/mas.html.



16 Viktor Levandovskyy

36. Chyzak, F.: The Groebner Package for Maple (2003) Available from
http://algo.inria.fr/libraries/.

37. Pearce, R.: The F4 Algorithm for Gröbner Bases, Package for Maple (2005)
Available from http://www.cecm.sfu.ca/~rpearcea/.

38. Takayama, N.: kan/sm1, a Gröbner engine for the ring
of differential and difference operators (2003) Available from
http://www.math.kobe-u.ac.jp/KAN/index.html.

39. Grayson, D. and Stillman, M.: Macaulay 2, a Software Sys-
tem for Research in Algebraic Geometry (2005) Available from
http://www.math.uiuc.edu/Macaulay2/.



Papers published in the Reports on Computer

Algebra series

[RCA:36] V. Levandovskyy. Plural, a Noncommutative Extension of Singular: Past,
Present and Future. June 2006.

[RCA:35] M. Brickenstein. Slimgb: Grbner Bases with Slim Polynomials. September
2005.

[RCA:34] E.A. Tobis. Libraries for Counting Real Roots. July 2005.

[RCA:33] A. Frühbis-Krüger, G. Pfister. Practical Aspects of Algorithmic Resolution
of Singularities. October 2004.

[RCA:32] A. Frühbis-Krüger, K. Krüger, and H. Schönemann. Dynamic Modules in
SINGULAR. December 2003.

[RCA:31] G.-M. Greuel, C. Lossen, and M. Schulze. Three Algorithms in Algebraic
Geometry, Coding Theory, and Singularity Theory. March 2001.

[RCA:30] G.-M. Greuel. Applications of Computer Algebra to Algebraic Geometry,
Singularity Theory and Symbolic-Numerical Solving. June 2000.

[RCA:29] G.-M. Greuel. Computer Algebra and Algebraic Geometry – Achievements
and Perspectives. Feb 2000.

[RCA:28] T. Siebert. Recursive Computation of Free Resolutions and a Generalized
Koszul Complex. Jan 2000.

[RCA:27] O. Bachmann and H.-G. Gräbe. The SymbolicData Project: Towards an
Electronic Repository of Tools and Data for Benchmarks of Computer Algebra
Software. Jan 2000.

[RCA:26] B. Reinert. Solving One-Sided Equations in Integer Monoid Rings. Jan 2000.

[RCA:25] B. Reinert and D. Zeckzer. Coset Enumeration using Prefix Gröbner Bases
in Mrc – An Experimental Approach. Nov 1999.

[RCA:23] Birgit Reinert. Observations on coset enumeration. Nov 1998.

[RCA:22] K. Madlener and F. Otto. Some Applications Of Prefix-Rewriting In
Monoids, Groups, And Rings. November 1998.

[RCA:21] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular version 1.2 user
manual. June 1998.

[RCA:20] B. Reinert and D. Zeckzer. MRC – A System for Computing Gröbner Bases
in Monoid and Group Rings. July 1998.

[RCA:19] B. Reinert, K. Madlener, and T. Mora. A note on nielsen reduction and
coset enumeration. February 1998.


