#ifndef CACHE_IMPLEMENTATION_H #define CACHE_IMPLEMENTATION_H #include // for sprintf #include template Cache::Cache (const int maxEntries, const int maxWeight) { _maxEntries = maxEntries; _maxWeight = maxWeight; _rank.clear(); _key.clear(); _value.clear(); _weights.clear(); _itKey = _key.end(); /* referring to past-the-end element in the list */ _itValue = _value.end(); /* referring to past-the-end element in the list */ _weight = 0; } template int Cache::getWeight() const { return _weight; } template int Cache::getNumberOfEntries() const { return _rank.size(); } template void Cache::clear() { _rank.clear(); _key.clear(); _value.clear(); _weights.clear(); } template Cache::~Cache() { _rank.clear(); _key.clear(); _value.clear(); _weights.clear(); } template bool Cache::hasKey (const KeyClass& key) const { _itKey = _key.end(); // referring to past-the-end element in the list typename list::const_iterator itKey; _itValue = _value.begin(); /* As _key is a sorted list, the following could actually be implemented in logarithmic time, by bisection. However, for lists this does not work. But often, we can still terminate the linear loop before having visited all elements. */ for (itKey = _key.begin(); itKey != _key.end(); itKey++) { int c = key.compare(*itKey); if (c == 0) { _itKey = itKey; return true; } if (c == -1) return false; _itValue++; } return false; } template ValueClass Cache::getValue (const KeyClass& key) const { if (_itKey == _key.end()) /* _itKey refers to past-the-end element in the list; thus, getValue has been called although hasKey produced no match */ assert(false); return *_itValue; } template bool Cache::shrink(const KeyClass& key) { /* We need to return true iff the pair with given key needed to be erased during the shrinking procedure. So far, we assume no: */ bool result = false; /* Shrink until both bounds will be met again: */ while (int(_key.size()) > _maxEntries || _weight > _maxWeight) { if (deleteLast(key)) result = true; } return result; } template int Cache::getMaxNumberOfEntries() const { return _maxEntries; } template int Cache::getMaxWeight() const { return _maxWeight; } template bool Cache::deleteLast(const KeyClass& key) { if (_rank.size() == 0) { return false; /* nothing to do */ }; /* We need to perform the following (empty) loop in order to obtain a forward-iterator pointing to the last entry of _rank. Note: We cannot use rbegin() because we need the iterator for erasing the last entry which is only implemented for forward iterators by std::list. */ list::iterator itRank; for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { } itRank--; /* Now, this forward iterator points to the last list entry. */ int deleteIndex = *itRank; /* index of (_key, _value)-pair with worst, i.e., highest _rank */ bool result = false; /* now delete entries in _key and _value with index deleteIndex */ int k = 0; typename list::iterator itKey; typename list::iterator itValue = _value.begin(); typename list::iterator itWeights = _weights.begin(); for (itKey = _key.begin(); itKey != _key.end(); itKey++) { if (k == deleteIndex) { result = (key.compare(*itKey) == 0); break; } itValue++; itWeights++; k++; } _key.erase(itKey); int deleteWeight = *itWeights; _value.erase(itValue); _weights.erase(itWeights); /* adjust total weight of this cache */ _weight -= deleteWeight; /* now delete last entry of _rank and decrement all those indices // in _rank by 1 which are larger than deleteIndex */ _rank.erase(itRank); for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { if (*itRank > deleteIndex) *itRank -= 1; } return result; } template bool Cache::put (const KeyClass& key, const ValueClass& value) { bool keyWasContained = false; int oldIndexInKey = -1; int newIndexInKey = _key.size(); /* default to enter new (key, value)-pair is at the end of the two lists; only used in the case keyWasContained == false */ int k = 0; typename list::iterator itKey; // itOldValue will later only be used in the case keyWasContained == true: */ typename list::iterator itOldValue = _value.begin(); /* itOldWeights will later only be used in the case keyWasContained == true */ typename list::iterator itOldWeights = _weights.begin(); for (itKey = _key.begin(); itKey != _key.end(); itKey++) { int c = key.compare(*itKey); if (c == -1) { newIndexInKey = k; break; } if (c == 0) { keyWasContained = true; oldIndexInKey = k; break; } itOldValue++; itOldWeights++; k++; } int utility = value.getUtility(); int newWeight = value.getWeight(); k = 0; typename list::iterator itValue = _value.begin(); for (itValue = _value.begin(); itValue != _value.end(); itValue++) { if (itValue->getUtility() > utility) k++; } int newIndexInRank = k; if (keyWasContained) { /* There was already a pair of the form (key --> *). */ /*adjusting the weight of the cache */ ValueClass oldValue = *itOldValue; _weight += newWeight - *itOldWeights; /* overwriting old value by argument value */ itOldValue = _value.erase(itOldValue); itOldWeights = _weights.erase(itOldWeights); ValueClass myValueCopy = value; _value.insert(itOldValue, myValueCopy); _weights.insert(itOldWeights, newWeight); int oldIndexInRank = -1; /* oldIndexInRank is to be the position in _rank such that _rank[oldIndexInRank] == oldIndexInKey, i.e. _key[_rank[oldIndexInRank]] == key: */ list::iterator itRank; k = 0; for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { if (*itRank == oldIndexInKey) { oldIndexInRank = k; } k++; } /* Although the key stays the same, the ranking of the (key --> value) pair may be completely different from before. Thus, we need to repair the entries of _rank: */ if (oldIndexInRank < newIndexInRank) { /* first insert, then erase */ k = 0; /* insert 'oldIndexInKey' at new position 'newIndexInRank': */ for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { if (k == newIndexInRank) break; k++; } _rank.insert(itRank, oldIndexInKey); /* note that this may also insert at position itRank == _rank.end(), i.e. when above loop did not terminate because of a 'break' statement */ k = 0; /* erase 'oldIndexInKey' at old position 'oldIndexInRank': */ for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { if (k == oldIndexInRank) { _rank.erase(itRank); break; } k++; } } else { /* oldIndexInRank >= newIndexInRank */ if (oldIndexInRank > newIndexInRank) { /* first erase, then insert */ k = 0; /* erase 'oldIndexInKey' at old position 'oldIndexInRank': */ for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { if (k == oldIndexInRank) { _rank.erase(itRank); break; } k++; } k = 0; /* insert 'oldIndexInKey' at new position 'newIndexInRank': */ for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { if (k == newIndexInRank) { _rank.insert(itRank, oldIndexInKey); break; } k++; } } } } else { /* There is no pair of the form (key --> *). We are about to insert a completely new (key, value)-pair. After this "else" branch, we shall have _key[newIndexInKey] = key; _value[newIndexInKey] = value. Note that, after the above computation, newIndexInKey contains the correct target position. Let's make room for the assignment _rank[newIndexInRank] := newIndexInKey: */ list::iterator itRank; for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { if (newIndexInKey <= *itRank) { *itRank += 1; } } k = 0; for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { if (k == newIndexInRank) break; k++; } _rank.insert(itRank, newIndexInKey); /* let's insert new key and new value at index newIndexInKey: */ itValue = _value.begin(); typename list::iterator itWeights = _weights.begin(); k = 0; for (itKey = _key.begin(); itKey != _key.end(); itKey++) { if (k == newIndexInKey) break; itValue++; itWeights++; k++; } KeyClass myKeyCopy = key; ValueClass myValueCopy = value; _key.insert(itKey, myKeyCopy); _value.insert(itValue, myValueCopy); _weights.insert(itWeights, newWeight); /* adjusting the total weight of the cache: */ _weight += newWeight; }; /* We may now have to shrink the cache: */ bool result = shrink(key); /* true iff shrinking deletes the new (key, value)-pair */ assert(_rank.size() == _key.size()); assert(_rank.size() == _value.size()); return !result; /* true iff the new (key --> value) pair is actually in the cache now */ } template string Cache::toString() const { char h[10]; string s = "Cache:"; s += "\n entries: "; sprintf(h, "%d", getNumberOfEntries()); s += h; s += " of at most "; sprintf(h, "%d", getMaxNumberOfEntries()); s += h; s += "\n weight: "; sprintf(h, "%d", getWeight()); s += h; s += " of at most "; sprintf(h, "%d", getMaxWeight()); s += h; if (_key.size() == 0) { s += "\n no pairs, i.e. cache is empty"; } else { int k = 1; s += "\n (key --> value) pairs in ascending order of keys:"; typename list::const_iterator itKey; typename list::const_iterator itValue = _value.begin(); for (itKey = _key.begin(); itKey != _key.end(); itKey++) { s += "\n "; sprintf(h, "%d", k); s += h; s += ". "; s += itKey->toString(); s += " --> "; s += itValue->toString(); itValue++; k++; } s += "\n (key --> value) pairs in descending order of ranks:"; list::const_iterator itRank; int r = 1; for (itRank = _rank.begin(); itRank != _rank.end(); itRank++) { int index = *itRank; itValue = _value.begin(); k = 0; for (itKey = _key.begin(); itKey != _key.end(); itKey++) { if (k == index) break; k++; itValue++; } s += "\n "; sprintf(h, "%d", r); s += h; s += ". "; s += itKey->toString(); s += " --> "; s += itValue->toString(); r++; } } return s; } template void Cache::print() const { cout << this->toString(); } template Cache::Cache() { } template Cache::Cache(const Cache& c) { _rank = c._rank; _value = c._value; _weights = c._weights; _key = c._key; _weight = c._weight; _maxEntries = c._maxEntries; _maxWeight = c._maxWeight; } #endif /* CACHE_IMPLEMENTATION_H */