1 | ///////////////////////////////////////////////////////////////////////////// |
---|
2 | version="version singularityDBM.lib 4.1.0.0 Sep_2017 "; // $Id$ |
---|
3 | category="Singularities"; |
---|
4 | info=" |
---|
5 | LIBRARY: singularityDBM.lib Data Base of Singularities for the Arnold-Classifier |
---|
6 | AUTHOR: Eva Maria Hemmerling, ehemmerl@rhrk.uni-kl.de |
---|
7 | |
---|
8 | PROCEDURES: |
---|
9 | makedbm_init(); |
---|
10 | dbm_read(l); read all entries from a DBM-databaes pointed by l |
---|
11 | dbm_getnext(l); read next entry from a DBM-databaes pointed by l |
---|
12 | create_singularity_dbm(); |
---|
13 | read_singularity_db(); |
---|
14 | "; |
---|
15 | |
---|
16 | //============================================================================= |
---|
17 | |
---|
18 | static proc makedbm_init() |
---|
19 | { |
---|
20 | //* Generates file containing a data base for singularities up to corank 2 |
---|
21 | //* listed by Arnol'd. This file is needed for arnoldclassify.lib. |
---|
22 | |
---|
23 | string s; |
---|
24 | link l="DBM:r Singularitylist"; |
---|
25 | s = read(l,"VERSION"); |
---|
26 | if (s == "" ) { |
---|
27 | "Need to create database..."; |
---|
28 | create_singularity_dbm(); |
---|
29 | } |
---|
30 | close(l); |
---|
31 | l="DBM:r Singularitylist"; |
---|
32 | s = read(l,"VERSION"); |
---|
33 | "Creation done. Current version:", s; |
---|
34 | } |
---|
35 | //============================================================================= |
---|
36 | |
---|
37 | static proc dbm_read (link l) |
---|
38 | { |
---|
39 | string s=""; |
---|
40 | s=read(l); |
---|
41 | while( s != "" ) |
---|
42 | { |
---|
43 | s,"=",read(l,s); |
---|
44 | s=read(l); |
---|
45 | } |
---|
46 | } |
---|
47 | |
---|
48 | //============================================================================= |
---|
49 | static proc dbm_getnext (link l) |
---|
50 | { |
---|
51 | string s=""; |
---|
52 | s=read(l); |
---|
53 | if( s != "" ) { s,"=",read(l,s); } |
---|
54 | } |
---|
55 | |
---|
56 | //============================================================================= |
---|
57 | proc create_singularity_dbm |
---|
58 | "USAGE: create_singularity_dbm(); |
---|
59 | COMPUTE: Generates two files, Singularitylist.dir and Singularitylist.pag |
---|
60 | containing a data base for singularities up to corank 2 listed |
---|
61 | by Arnol'd. |
---|
62 | RETURN: Nothing |
---|
63 | " |
---|
64 | { |
---|
65 | link l="DBM:rw Singularitylist"; |
---|
66 | |
---|
67 | //*Data typ singseries; |
---|
68 | string s; |
---|
69 | |
---|
70 | //* A[k] |
---|
71 | s = "singseries f; |
---|
72 | f.Series = \"A[k]\"; |
---|
73 | f.Modality = \"0\"; |
---|
74 | f.Corank = \"1\"; |
---|
75 | f.MilnorNumber = \"k\"; |
---|
76 | f.MilnorCode = \"k\"; |
---|
77 | f.NormalForm = \"x^(k+1)\"; |
---|
78 | f.SpecialForm = \"x^(k+1)\"; |
---|
79 | f.Restrictions = \"(k>1)\";"; |
---|
80 | write(l, "A[k]", s); |
---|
81 | |
---|
82 | //* D[k] |
---|
83 | s = "singseries f; |
---|
84 | f.Series = \"D[k]\"; |
---|
85 | f.Modality = \"0\"; |
---|
86 | f.Corank = \"2\"; |
---|
87 | f.MilnorNumber = \"k\"; |
---|
88 | f.MilnorCode = \"1,1,k-3\"; |
---|
89 | f.NormalForm = \"x^2*y+y^(k-1)\"; |
---|
90 | f.SpecialForm = \"x^2*y+y^(k-1)\"; |
---|
91 | f.Restrictions = \"(k>=4)\";"; |
---|
92 | write(l, "D[k]", s); |
---|
93 | |
---|
94 | //* J[k,0] |
---|
95 | s = "singseries f; |
---|
96 | f.Series = \"J[k,0]\"; |
---|
97 | f.Modality = \"0\"; |
---|
98 | f.Corank = \"2\"; |
---|
99 | f.MilnorNumber = \"6*k-2\"; |
---|
100 | f.MilnorCode = \"1,2*k+j,2*k-2*j-3\"; |
---|
101 | f.NormalForm = \"x^3 + b(y)*x^2*y^k+c(y)*x*y^(2*k+1)+y^(3*k)\"; |
---|
102 | f.SpecialForm = \"x^3 + x^2*y^k+y^(3*k)\"; |
---|
103 | f.Restrictions = \"(k>1)&& (4*b^3 + 27 != 0)&& |
---|
104 | (deg(b)==0)&&(deg(c)<=(k-3))&&(k>2||c==0)\";"; |
---|
105 | write(l, "J[k,0]", s); |
---|
106 | |
---|
107 | //* J[k,r] |
---|
108 | s = "singseries f; |
---|
109 | f.Series = \"J[k,r]\"; |
---|
110 | f.Modality = \"0\"; |
---|
111 | f.Corank = \"2\"; |
---|
112 | f.MilnorNumber = \"6*k-2+r\"; |
---|
113 | f.MilnorCode = \"1,2*k-1,2*k+r-1\"; |
---|
114 | f.NormalForm = \"x^3 + x^2*y^k+a(y)*y^(3*k+r)\"; |
---|
115 | f.SpecialForm = \"x^3 + x^2*y^k+y^(3*k+r)\"; |
---|
116 | f.Restrictions = \"(k>1)&&(r>0)&&(jet(a,0)!= 0)&&(deg(a)<=(k-2)) \";"; |
---|
117 | write(l, "J[k,r]", s); |
---|
118 | |
---|
119 | //* E[6k] |
---|
120 | s = "singseries f; |
---|
121 | f.Series = \"E[6k]\"; |
---|
122 | f.Modality = \"0\"; |
---|
123 | f.Corank = \"2\"; |
---|
124 | f.MilnorNumber = \"6*k\"; |
---|
125 | f.MilnorCode = \"1,2*k+j,2*k-2j-1\"; |
---|
126 | f.NormalForm = \"x^3 + a(y)*x*y^(2*k+1)+y^(3*k+1)\"; |
---|
127 | f.SpecialForm = \"x^3+y^(3*k+1)\"; |
---|
128 | f.Restrictions = \"(k>=1)&&(k>1||a==0)&&(deg(a)<=(k-2))\";"; |
---|
129 | write(l, "E[6k]", s); |
---|
130 | |
---|
131 | //* E[6k+1] |
---|
132 | s = "singseries f; |
---|
133 | f.Series = \"E[6k+1]\"; |
---|
134 | f.Modality = \"0\"; |
---|
135 | f.Corank = \"2\"; |
---|
136 | f.MilnorNumber = \"6*k+1\"; |
---|
137 | f.MilnorCode = \"1,2*k,2*k\"; |
---|
138 | f.NormalForm = \"x^3 + x*y^(2*k+1)+a(y)*y^(3*k+2)\"; |
---|
139 | f.SpecialForm = \"x^3 + x*y^(2*k+1)\"; |
---|
140 | f.Restrictions = \"(k>=1)&&(k>1||a==0)&&(deg(a)<=(k-2))\";"; |
---|
141 | write(l, "E[6k+1]", s); |
---|
142 | |
---|
143 | //* E[6k+2] |
---|
144 | s = "singseries f; |
---|
145 | f.Series = \"E[6k+2]\"; |
---|
146 | f.Modality = \"0\"; |
---|
147 | f.Corank = \"2\"; |
---|
148 | f.MilnorNumber = \"6*k+2\"; |
---|
149 | f.MilnorCode = \"1,2*k+j+1,2*k-2j-1\"; |
---|
150 | f.NormalForm = \"x^3 + a(y)*x*y^(2*k+2)+y^(3*k+2)\"; |
---|
151 | f.SpecialForm = \"x^3 +y^(3*k+2)\"; |
---|
152 | f.Restrictions = \"(k>=1)&&(k>1||a==0)&&(deg(a)<=(k-2))\";"; |
---|
153 | write(l, "E[6k+2]", s); |
---|
154 | |
---|
155 | //* X[k,0] |
---|
156 | s = "singseries f; |
---|
157 | f.Series = \"X[k,0]\"; |
---|
158 | f.Modality = \"3*k-2\"; |
---|
159 | f.Corank = \"2\"; |
---|
160 | f.MilnorNumber = \"12*k-3\"; |
---|
161 | f.MilnorCode = \"1,1,2*k-1+j,2k-1-2*j+t,2*k-1+j-2t\"; |
---|
162 | f.NormalForm = \"x^4 + b(y)*x^3*y^k + a(y)*x^2*y^(2*k) + x*y^(3*k)\"; |
---|
163 | f.SpecialForm = \"x^4 + x^3*y^k + x*y^(3*k)\"; |
---|
164 | f.Restrictions = \"(jet(a,0)*jet(b,0)!=9)&&(k>1)&&(4*(jet(a,0)^3+jet(b,0)^3) |
---|
165 | - jet(a,0)^2*jet(b,0)^2-18* jet(a,0)*jet(b,0) + 27 !=0)&&(deg(a)<=(k-2)) |
---|
166 | &&(deg(b)<=(2*k-2))\";"; |
---|
167 | write(l, "X[k,0]", s); |
---|
168 | |
---|
169 | //* X[1,0] |
---|
170 | s = "singseries f; |
---|
171 | f.Series = \"X[1,0]\"; |
---|
172 | f.Modality = \"1\"; |
---|
173 | f.Corank = \"2\"; |
---|
174 | f.MilnorNumber = \"9\"; |
---|
175 | f.MilnorCode = \"1,1,1+j,1-2*j+t,1+j-2t\"; |
---|
176 | f.NormalForm = \"x^4 + a(y)*x^2*y^2 + y^4\"; |
---|
177 | f.SpecialForm = \"x^4 + x^2*y^2 + y^4\"; |
---|
178 | f.Restrictions = \"(deg(a)==0)&&(jet(a,0)^2!=4)\";"; |
---|
179 | write(l, "X[1,0]", s); |
---|
180 | |
---|
181 | //* X[k,r] |
---|
182 | s = "singseries f; |
---|
183 | f.Series = \"X[k,r]\"; |
---|
184 | f.Modality = \"3*k-2\"; |
---|
185 | f.Corank = \"2\"; |
---|
186 | f.MilnorNumber = \"12*k-3+r\"; |
---|
187 | f.MilnorCode = \"1,1,2*k-1+j,2k-1-2*j,2*k-1+j+r\"; |
---|
188 | f.NormalForm = \"x4+a(y)*x3*y^(k)+x^2*y^(2*k)+b(y)*y^(4*k+r)\"; |
---|
189 | f.SpecialForm = \"x4+x3*y^(k)+x^2*y^(2*k)+y^(4*k+r)\"; |
---|
190 | f.Restrictions = \"(k>1)&&(r>0)&&(deg(a)<=(k-2))&&(jet(a,0)^2!=4)&& |
---|
191 | (jet(b,0)!=0)&&(deg(b)<=(2*k-2))\";"; |
---|
192 | write(l, "X[k,r]", s); |
---|
193 | |
---|
194 | //* X[1,r] |
---|
195 | s = "singseries f; |
---|
196 | f.Series = \"X[1,r]\"; |
---|
197 | f.Modality = \"1\"; |
---|
198 | f.Corank = \"2\"; |
---|
199 | f.MilnorNumber = \"9+r\"; |
---|
200 | f.MilnorCode = \"1,1,1+j,1-2*j,1+j+r\"; |
---|
201 | f.NormalForm = \"x4+x^2*y^2+a(y)*y^(4+r)\"; |
---|
202 | f.SpecialForm = \"x4+x^2*y^2+y^(4+r)\"; |
---|
203 | f.Restrictions = \"(deg(a)==0)&&(jet(a,0)!=0)\";"; |
---|
204 | write(l, "X[1,r]", s); |
---|
205 | |
---|
206 | //* Y[k,r,s] |
---|
207 | s = "singseries f; |
---|
208 | f.Series = \"Y[k,r,s]\"; |
---|
209 | f.Modality = \"3*k-2\"; |
---|
210 | f.Corank = \"2\"; |
---|
211 | f.MilnorNumber = \"12*k-3+r+s\"; |
---|
212 | f.MilnorCode = \"1,1,2*k-1,2*k-1+j,2*k-1-2*j+r+s\"; |
---|
213 | f.NormalForm = \"((x + a(y)*y^k)^2 + b(y)*y^(2*k+s))*(x2 + y^(2*k+r))\"; |
---|
214 | f.SpecialForm = \"((x + y^k)^2 + y^(2*k+s))*(x2 + y^(2*k+r))\"; |
---|
215 | f.Restrictions = \"(jet(a,0)!=0)&&(deg(a)<=(k-2))&&(k>1)&&(jet(b,0)!=0) |
---|
216 | &&(1<=s)&&(s<=7)\";"; |
---|
217 | write(l, "Y[k,r,s]", s); |
---|
218 | |
---|
219 | //* Y[1,r,s] |
---|
220 | s = "singseries f; |
---|
221 | f.Series = \"Y[1,r,s]\"; |
---|
222 | f.Modality = \"1\"; |
---|
223 | f.Corank = \"2\"; |
---|
224 | f.MilnorNumber = \"9+r+s\"; |
---|
225 | f.MilnorCode = \"1,1,1,1+j,1-2*j+r+s\"; |
---|
226 | f.NormalForm = \" x^(4+r)+ a(y)*x2*y2 + y^(4+s)\"; |
---|
227 | f.SpecialForm = \" x^(4+r)+ x2*y2 + y^(4+s)\"; |
---|
228 | f.Restrictions = \"(deg(a)==0)&&(jet(a,0)!=0)&&(1<=s)&&(s<=7)\";"; |
---|
229 | write(l, "Y[1,r,s]", s); |
---|
230 | |
---|
231 | //* Z[k,r] |
---|
232 | s = "singseries f; |
---|
233 | f.Series = \"Z[k,r]\"; |
---|
234 | f.Modality = \"3*k+r-2\"; |
---|
235 | f.Corank = \"2\"; |
---|
236 | f.MilnorNumber = \"12*k-3+6*r\"; |
---|
237 | f.MilnorCode = \"1,1,2*k-1,2*k-1+j,2*k-1+6*r-2*j\"; |
---|
238 | f.NormalForm = \"(x + a(y)*y^k)*(x^3 + d(y)*x2*y^(k+1) + |
---|
239 | c(y)*x*y^(2*k+2*r+1) + y^(3*k+3*r))\"; |
---|
240 | f.SpecialForm = \"(x + y^k)*(x^3 + 2*y^(k+1) + x*y^(2*k+2*r+1) + |
---|
241 | y^(3*k+3*r))\"; |
---|
242 | f.Restrictions = \"(k>1)&&(r>=0)&&(4*d^3+27!=0)&&(deg(d)==0)&& |
---|
243 | (deg(c)<=(2*k+r-3))&&(deg(a)<=(k-2))\";"; |
---|
244 | write(l, "Z[k,r]", s); |
---|
245 | |
---|
246 | //* Z[1,r] |
---|
247 | s = "singseries f; |
---|
248 | f.Series = \"Z[1,r]\"; |
---|
249 | f.Modality = \"1+r\"; |
---|
250 | f.Corank = \"2\"; |
---|
251 | f.MilnorNumber = \"9+6*r\"; |
---|
252 | f.MilnorCode = \"1,1,1,1+j,1+6*r-2*j\"; |
---|
253 | f.NormalForm = \"y*(x^3 + d(y)*x^2*y^(2) + c(y)*x*y^(2+2*r+1) + |
---|
254 | y^(3+3*r))\"; |
---|
255 | f.SpecialForm = \"y*(x^3 + x^2*y^(2) + x*y^(2+2*r+1) + |
---|
256 | y^(3+3*r))\"; |
---|
257 | f.Restrictions = \"(r>=0)&&(4*d^3+27!=0)&&(deg(d)==0) |
---|
258 | &&(deg(c)<=(r-1))\";"; |
---|
259 | write(l, "Z[1,r]", s); |
---|
260 | |
---|
261 | //* Z[k,r,s] |
---|
262 | s = "singseries f; |
---|
263 | f.Series = \"Z[k,r,s]\"; |
---|
264 | f.Modality = \"3*k+r-2\"; |
---|
265 | f.Corank = \"2\"; |
---|
266 | f.MilnorNumber = \"12*k+6*r+s-3\"; |
---|
267 | f.MilnorCode = \"1,1,2*k-1,2*k-1+2*r,2*k-1+2*r-s\"; |
---|
268 | f.NormalForm = \"(x^2 + a(y)*x*y^k + b(y)*y^(2*k+r))* |
---|
269 | (x^2 + y^(2*k+2*r+s))\"; |
---|
270 | f.SpecialForm = \"(x^2 + x*y^k + y^(2*k+r))*(x^2 + y^(2*k+2*r+s))\"; |
---|
271 | f.Restrictions = \"(k>1)&&(r>=0)&&(deg(a)<=(k-2))&&(jet(a,0)!=0)&& |
---|
272 | (jet(b,0)!=0)&&(deg(b)<=(2*k+r-2))\";"; |
---|
273 | write(l, "Z[k,r,s]", s); |
---|
274 | |
---|
275 | //* Z[1,r,s] |
---|
276 | s = "singseries f; |
---|
277 | f.Series = \"Z[1,r,s]\"; |
---|
278 | f.Modality = \"1+r\"; |
---|
279 | f.Corank = \"2\"; |
---|
280 | f.MilnorNumber = \"9+6*r+s\"; |
---|
281 | f.MilnorCode = \"1,1,1,1+2*r,1+2*r-s\"; |
---|
282 | f.NormalForm = \"y*(x^3 + x^2*y^(r+1) + b(y)*y^(3*r+s+3))\"; |
---|
283 | f.SpecialForm = \"y*(x^3 + x^2*y^(r+1) + y^(3*r+s+3))\"; |
---|
284 | f.Restrictions = \"(r>=0)&&(jet(b,0)!=0)&&(deg(b)<=(2*k+r-2))\";"; |
---|
285 | write(l, "Z[1,r,s]", s); |
---|
286 | |
---|
287 | //* Z[k,12k+6r-1] |
---|
288 | s = "singseries f; |
---|
289 | f.Series = \"Z[k,12k+6r-1]\"; |
---|
290 | f.Modality = \"3*k+r-2\"; |
---|
291 | f.Corank = \"2\"; |
---|
292 | f.MilnorNumber = \"12*k+6r-1\"; |
---|
293 | f.MilnorCode = \"1,1,2k-1,2k-1+j,2k+1+6*r-2*j\"; |
---|
294 | f.NormalForm = \"(x + a(y)*y^k)*(x^3 + b(y)*x*y^(2*k+2*r+1) + |
---|
295 | y^(3*k+3*r+1))\"; |
---|
296 | f.SpecialForm = \"(x + y^k)*(x^3 + x*y^(2*k+2*r+1) + y^(3*k+3*r+1))\"; |
---|
297 | f.Restrictions = \" (k>1)&&(r>=0)&&(deg(a)<=(k-2))&&(jet(a,0)!=0)&& |
---|
298 | (jet(b,0)!=0)&&(deg(b)<=(2*k+r-2))\";"; |
---|
299 | write(l, "Z[k,12k+6r-1]", s); |
---|
300 | |
---|
301 | //* Z[1,6r+11] |
---|
302 | s = "singseries f; |
---|
303 | f.Series = \"Z[1,6r+11]\"; |
---|
304 | f.Modality = \"1+r\"; |
---|
305 | f.Corank = \"2\"; |
---|
306 | f.MilnorNumber = \"6r+11\"; |
---|
307 | f.MilnorCode = \"1,1,1,1+j,3+6*r-2*j\"; |
---|
308 | f.NormalForm = \"y*(x^3 + b(y)*x*y^(2+2*r+1) + y^(3+3*r+1))\"; |
---|
309 | f.SpecialForm = \"y*(x^3 + x*y^(2+2*r+1) + y^(3+3*r+1))\"; |
---|
310 | f.Restrictions = \"(r>=0)&&(deg(b)<=(r))\";"; |
---|
311 | write(l, "Z[1,6r+11]", s); |
---|
312 | |
---|
313 | //* Z[k,12k+6r+1] |
---|
314 | s = "singseries f; |
---|
315 | f.Series = \"Z[k,12k+6r+1]\"; |
---|
316 | f.Modality = \"3*k+r-2\"; |
---|
317 | f.Corank = \"2\"; |
---|
318 | f.MilnorNumber = \"12*k+6r+1\"; |
---|
319 | f.MilnorCode = \"1,1,2k-1,2k-1+j,2k+3+6*r-2*j\"; |
---|
320 | f.NormalForm = \"(x + a(y)*y^k)*(x^3 + b(y)*x*y^(2*k+2*r+2) + |
---|
321 | y^(3*k+3*r+2))\"; |
---|
322 | f.SpecialForm = \"(x + y^k)*(x^3 + x*y^(2*k+2*r+2) + y^(3*k+3*r+2))\"; |
---|
323 | f.Restrictions = \" (k>1)&&(r>=0)&&(deg(a)<=(k-2))&&(jet(a,0)!=0)&& |
---|
324 | (jet(b,0)!=0)&&(deg(b)<=(2*k+r-2))\";"; |
---|
325 | write(l, "Z[k,12k+6r+1]", s); |
---|
326 | |
---|
327 | //* Z[1,6r+13] |
---|
328 | s = "singseries f; |
---|
329 | f.Series = \"Z[1,6r+13]\"; |
---|
330 | f.Modality = \"1+r\"; |
---|
331 | f.Corank = \"2\"; |
---|
332 | f.MilnorNumber = \"6r+13\"; |
---|
333 | f.MilnorCode = \"1,1,1,1+j,5+6*r-2*j\"; |
---|
334 | f.NormalForm = \"y*(x^3 + b(y)*x*y^(2*r+4) + y^(3*r+5))\"; |
---|
335 | f.SpecialForm = \"y*(x^3 + x*y^(2*r+4) + y^(3*r+5))\"; |
---|
336 | f.Restrictions = \" (r>=0)&&(deg(b)<=(r))\";"; |
---|
337 | write(l, "Z[1,6r+13]", s); |
---|
338 | |
---|
339 | //* Z[k,12k+6r] |
---|
340 | s = "singseries f; |
---|
341 | f.Series = \"Z[k,12k+6r]\"; |
---|
342 | f.Modality = \"3*k+r-2\"; |
---|
343 | f.Corank = \"2\"; |
---|
344 | f.MilnorNumber = \"12*k+6r\"; |
---|
345 | f.MilnorCode = \"1,1,2k-1,2k-1+2*r,2k+2*r\"; |
---|
346 | f.NormalForm = \"(x + a(y)*y^k)*(x^3 + x*y^(2*k+2*r+1) + |
---|
347 | b(y)* y^(3*k+3*r+2))\"; |
---|
348 | f.SpecialForm = \"(x + y^k)*(x^3 + x*y^(2*k+2*r+1) +y^(3*k+3*r+2))\"; |
---|
349 | f.Restrictions = \" (k>1)&&(r>=0)&&(deg(a)<=(k-2))&&(jet(a,0)!=0)&& |
---|
350 | (jet(b,0)!=0)&&(deg(b)<=(2*k+r-2))\";"; |
---|
351 | write(l, "Z[k,12k+6r]", s); |
---|
352 | |
---|
353 | |
---|
354 | //* Z[1,6r+12] |
---|
355 | s = "singseries f; |
---|
356 | f.Series = \"Z[1,6r+12]\"; |
---|
357 | f.Modality = \"1+r\"; |
---|
358 | f.Corank = \"2\"; |
---|
359 | f.MilnorNumber = \"6*r+12\"; |
---|
360 | f.MilnorCode = \"1,1,1,1+2*r,2+2*r\"; |
---|
361 | f.NormalForm = \"y*(x^3 + x*y^(2*r+3) +b(y)* y^(3*r+5))\"; |
---|
362 | f.SpecialForm = \"y*(x^3 + x*y^(2*r+3) +y^(3*r+5))\"; |
---|
363 | f.Restrictions = \"(r>=0)&&(deg(b)<=(r))\";"; |
---|
364 | write(l, "Z[1,6r+12]", s); |
---|
365 | |
---|
366 | |
---|
367 | //* W[k,r] |
---|
368 | s = "singseries f; |
---|
369 | f.Series = \"W[k,r]\"; |
---|
370 | f.Modality = \"3*k-1\"; |
---|
371 | f.Corank = \"2\"; |
---|
372 | f.MilnorNumber = \"12*k+3+r\"; |
---|
373 | f.MilnorCode = \"1,1,2k,2k,2k+r\"; |
---|
374 | f.NormalForm = \"x4+a(y)*x^3*y^(k+1)+x^2*y^(2*k+1)+b(y)*y^(4*k+2+r) \"; |
---|
375 | f.SpecialForm = \"x4+x^2*y^(2*k+1)+y^(4*k+2+r) \"; |
---|
376 | f.Restrictions = \"(k>=1)&&(r>0)&&(k>1||a==0)&&(deg(a)<=(k-2))&& |
---|
377 | (jet(b,0)!=0)&&(deg(b)<=(2*k-1))\";"; |
---|
378 | write(l, "W[k,r]", s); |
---|
379 | |
---|
380 | //* W[k,0] |
---|
381 | s = "singseries f; |
---|
382 | f.Series = \"W[k,0]\"; |
---|
383 | f.Modality = \"3*k-1\"; |
---|
384 | f.Corank = \"2\"; |
---|
385 | f.MilnorNumber = \"12*k+3\"; |
---|
386 | f.MilnorCode = \"1,1,2k+j,2k-2-2*j+t,2k+6+j+2*t\"; |
---|
387 | f.NormalForm = \"x4+b(y)*x2*y^(2*k+1)+a(y)*x*y^(3*k+2)+y^(4*k+2) \"; |
---|
388 | f.SpecialForm = \"x4+x2*y^(2*k+1)+y^(4*k+2) \"; |
---|
389 | f.Restrictions = \" (k>=1)&&(k>1||a==0)&&(deg(a)<=(k-2))&& |
---|
390 | (jet(b,0)^2!=4)&&(deg(b)<=(2*k-1))\";"; |
---|
391 | write(l, "W[k,0]", s); |
---|
392 | |
---|
393 | //* W[12k] |
---|
394 | s = "singseries f; |
---|
395 | f.Series = \"W[12k]\"; |
---|
396 | f.Modality = \"3*k-2\"; |
---|
397 | f.Corank = \"2\"; |
---|
398 | f.MilnorNumber = \"12*k\"; |
---|
399 | f.MilnorCode = \"1,1,2k+j,2k-3-2*j+t,2k+3+j-2*t\"; |
---|
400 | f.NormalForm = \"x4+a(y)*x*y^(3*k+1)+c(y)*x^2*y^(2*k+1)+y^(4*k+1)\"; |
---|
401 | f.SpecialForm = \"x4+x^2*y^(2*k+1)+y^(4*k+1)\"; |
---|
402 | f.Restrictions = \"(k>=1)&&(k>1||a==0)&&(deg(a)<=(k-2))&& |
---|
403 | (deg(c)<=(2*k-2))\";"; |
---|
404 | write(l, "W[12k]", s); |
---|
405 | |
---|
406 | //* W[12k+1] |
---|
407 | s = "singseries f; |
---|
408 | f.Series = \"W[12k+1]\"; |
---|
409 | f.Modality = \"3*k-2\"; |
---|
410 | f.Corank = \"2\"; |
---|
411 | f.MilnorNumber = \"12*k+1\"; |
---|
412 | f.MilnorCode = \"1,1,2k+j,2k-1-2*j,2k+j\"; |
---|
413 | f.NormalForm = \"x4+x*y^(3*k+1)+a(y)*x^2*y^(2*k+1)+c(y)*y^(4*k+2) \"; |
---|
414 | f.SpecialForm = \"x4+x*y^(3*k+1)+y^(4*k+2) \"; |
---|
415 | f.Restrictions = \"(k>=1)&&(k>1||a==0)&&(deg(a)<=(k-2))&& |
---|
416 | (deg(c)<=(2*k-2))\";"; |
---|
417 | write(l, "W[12k+1]", s); |
---|
418 | |
---|
419 | //* W[12k+5] |
---|
420 | s = "singseries f; |
---|
421 | f.Series = \"W[12k+5]\"; |
---|
422 | f.Modality = \"3*k-1\"; |
---|
423 | f.Corank = \"2\"; |
---|
424 | f.MilnorNumber = \"12*k+5\"; |
---|
425 | f.MilnorCode = \"1,1,2k+j,2k+1-2*j,2k+j\"; |
---|
426 | f.NormalForm = \"x4+x*y^(3*k+2)+a(y)*x^2*y^(2*k+2)+b(y)*y^(4*k+3) \"; |
---|
427 | f.SpecialForm = \"x4+x*y^(3*k+2)+y^(4*k+3) \"; |
---|
428 | f.Restrictions = \"(k>=1)&&(k>1||a==0)&&(deg(a)<=(k-2))&& |
---|
429 | (deg(b)<=(2*k-1))\";"; |
---|
430 | write(l, "W[12k+5]", s); |
---|
431 | |
---|
432 | //* W[12k+6] |
---|
433 | s = "singseries f; |
---|
434 | f.Series = \"W[12k+6]\"; |
---|
435 | f.Modality = \"3*k-1\"; |
---|
436 | f.Corank = \"2\"; |
---|
437 | f.MilnorNumber = \"12*k+6\"; |
---|
438 | f.MilnorCode = \"1,1,2k+j,2k-3-2*j+t,2k+9+j-2*t\"; |
---|
439 | f.NormalForm = \"x4+a(y)*x*y^(3*k+3)+b(y)*x^2*y^(2*k+2)+y^(4*k+3) \"; |
---|
440 | f.SpecialForm = \"x4+x^2*y^(2*k+2)+y^(4*k+3) \"; |
---|
441 | f.Restrictions = \"(k>=1)&&(k>1||a==0)&&(deg(a)<=(k-2))&& |
---|
442 | (deg(b)<=(2*k-1))\";"; |
---|
443 | write(l, "W[12k+6]", s); |
---|
444 | |
---|
445 | //* W#[k,2r] |
---|
446 | s = "singseries f; |
---|
447 | f.Series = \"W#[k,2r]\"; |
---|
448 | f.Modality = \"3*k-1\"; |
---|
449 | f.Corank = \"2\"; |
---|
450 | f.MilnorNumber = \"12*k+3+2*r\"; |
---|
451 | f.MilnorCode = \"1,1,2k,2k+r,2k\"; |
---|
452 | f.NormalForm = \"(x2+y^(2*k+1))^2+b(y)*x^2*y^(2*k+1+r)+ |
---|
453 | a(y)*x*y^(3*k+2+r) \"; |
---|
454 | f.SpecialForm = \"(x2+y^(2*k+1))^2+x^2*y^(2*k+1+r) \"; |
---|
455 | f.Restrictions = \"(k>=1)&&(r>0)&&(k>1||a==0)&&(deg(a)<=(k-2))&& |
---|
456 | (jet(b,0)!=0)&&(deg(b)<=(2*k-1))\";"; |
---|
457 | write(l, "W#[k,2r]", s); |
---|
458 | |
---|
459 | //* W#[k,2r-1] |
---|
460 | s = "singseries f; |
---|
461 | f.Series = \"W#[k,2r-1]\"; |
---|
462 | f.Modality = \"3*k-1\"; |
---|
463 | f.Corank = \"2\"; |
---|
464 | f.MilnorNumber = \"12*k+2+2*r\"; |
---|
465 | f.MilnorCode = \"1,1,2k,2k-3+j,2*k+5+2*r-2*j\"; |
---|
466 | f.NormalForm = \"(x2+y^(2*k+1))^2+b(y)*x*y^(3*k+1+r)+ |
---|
467 | a(y)*y^(4*k+2+r)\"; |
---|
468 | f.SpecialForm = \"(x2+y^(2*k+1))^2+x*y^(3*k+1+r)\"; |
---|
469 | f.Restrictions = \"(k>=1)&&(r>0)&&(k>1||a==0)&&(deg(a)<=(k-2)) |
---|
470 | &&(jet(b,0)!=0)&&(deg(b)<=(2*k-1))\";"; |
---|
471 | write(l, "W#[k,2r-1]", s); |
---|
472 | |
---|
473 | write(l,"VERSION", "1.0"); |
---|
474 | close(l); |
---|
475 | } |
---|
476 | |
---|
477 | //============================================================================= |
---|
478 | static proc read_singularity_db( string typ ) |
---|
479 | { |
---|
480 | string DBMPATH=system("getenv","DBMPATH"); |
---|
481 | string DatabasePath, Database, S, Text, Tp; |
---|
482 | |
---|
483 | if( DBMPATH != "" ) { DatabasePath = DBMPATH+"/Singularitylist"; } |
---|
484 | else { DatabasePath = "Singularitylist"; } |
---|
485 | Database="DBM: ",DatabasePath; |
---|
486 | |
---|
487 | link dbmLink=Database; |
---|
488 | Tp = read(dbmLink, typ); |
---|
489 | return(Tp); |
---|
490 | |
---|
491 | } |
---|