1 | // |
---|
2 | version="$Id$"; |
---|
3 | category="Factorization"; |
---|
4 | info=" |
---|
5 | LIBRARY: absfact.lib Absolute factorization for characteristic 0 |
---|
6 | AUTHORS: Wolfram Decker, decker at math.uni-sb.de |
---|
7 | Gregoire Lecerf, lecerf at math.uvsq.fr |
---|
8 | Gerhard Pfister, pfister at mathematik.uni-kl.de |
---|
9 | |
---|
10 | OVERVIEW: |
---|
11 | A library for computing the absolute factorization of multivariate |
---|
12 | polynomials f with coefficients in a field K of characteristic zero. |
---|
13 | Using Trager's idea, the implemented algorithm computes an absolutely |
---|
14 | irreducible factor by factorizing over some finite extension field L |
---|
15 | (which is chosen such that V(f) has a smooth point with coordinates in L). |
---|
16 | Then a minimal extension field is determined making use of the |
---|
17 | Rothstein-Trager partial fraction decomposition algorithm. |
---|
18 | |
---|
19 | REFERENCES: |
---|
20 | G. Cheze, G. Lecerf: Lifting and recombination techniques for absolute |
---|
21 | factorization. Journal of Complexity, 23(3):380-420, 2007. |
---|
22 | |
---|
23 | KEYWORDS: factorization; absolute factorization. |
---|
24 | SEE ALSO: factorize |
---|
25 | |
---|
26 | PROCEDURES: |
---|
27 | absFactorize(); absolute factorization of poly |
---|
28 | absBiFactorize(); absolute factorization of bivariate poly |
---|
29 | "; |
---|
30 | |
---|
31 | //////////////////////////////////////////////////////////////////// |
---|
32 | static proc partialDegree(poly p, int i) |
---|
33 | "USAGE: partialDegree(p,i); p poly, i int |
---|
34 | RETURN: int, the degree of p in the i-th variable |
---|
35 | " |
---|
36 | { |
---|
37 | int n = nvars(basering); |
---|
38 | intvec tmp; |
---|
39 | tmp[n] = 0; |
---|
40 | tmp[i] = 1; |
---|
41 | return(deg(p,tmp)); |
---|
42 | } |
---|
43 | //////////////////////////////////////////////////////////////////// |
---|
44 | static proc belongTo(string s, list l) |
---|
45 | "USAGE: belongTo(s,l); s string, l list |
---|
46 | RETURN: 1 if s belongs to l, 0 otherwise |
---|
47 | " |
---|
48 | { |
---|
49 | string tmp; |
---|
50 | for(int i = 1; i <= size(l); i++) { |
---|
51 | tmp = l[i]; |
---|
52 | if (tmp == s) { |
---|
53 | return(1); |
---|
54 | } |
---|
55 | } |
---|
56 | return(0); |
---|
57 | } |
---|
58 | //////////////////////////////////////////////////////////////////// |
---|
59 | static proc variableWithSmallestPositiveDegree(poly p) |
---|
60 | "USAGE: variableWithSmallestPositiveDegree(p); p poly |
---|
61 | RETURN: int; 0 if p is constant. Otherwise, the index of the |
---|
62 | variable which has the smallest positive degree in p. |
---|
63 | " |
---|
64 | { |
---|
65 | int n = nvars(basering); |
---|
66 | int v = 0; |
---|
67 | int d = deg(p); |
---|
68 | int d_loc; |
---|
69 | for(int i = 1; i <= n; i++) { |
---|
70 | d_loc = partialDegree(p, i); |
---|
71 | if (d_loc >= 1 and d_loc <= d) { |
---|
72 | v = i; |
---|
73 | d = d_loc; |
---|
74 | } |
---|
75 | } |
---|
76 | return(v); |
---|
77 | } |
---|
78 | //////////////////////////////////////////////////////////////////// |
---|
79 | static proc smallestProperSimpleFactor(poly p) |
---|
80 | "USAGE: smallestProperSimpleFactor(p); p poly |
---|
81 | RETURN: poly: a proper irreducible simple factor of p of smallest |
---|
82 | degree. If no such factor exists, 0 is returned. |
---|
83 | " |
---|
84 | { |
---|
85 | list p_facts = factorize(p); |
---|
86 | int s = size(p_facts[1]); |
---|
87 | int d = deg(p)+1; |
---|
88 | poly q = 0; |
---|
89 | poly f; |
---|
90 | int e; |
---|
91 | for(int i = 1; i <= s; i++) |
---|
92 | { |
---|
93 | f = p_facts[1][i]; |
---|
94 | e = deg(f); |
---|
95 | if (e >= 1 and e < d and p_facts[2][i] == 1) |
---|
96 | { |
---|
97 | q = f / leadcoef(f); |
---|
98 | d = e; |
---|
99 | } |
---|
100 | } |
---|
101 | return(q); |
---|
102 | } |
---|
103 | //////////////////////////////////////////////////////////////////// |
---|
104 | static proc smallestProperFactor(poly p) |
---|
105 | "USAGE: smallestProperFactor(p); p poly |
---|
106 | RETURN: poly: a proper irreducible factor of p of smallest degree. |
---|
107 | If p is constant, 0 is returned. |
---|
108 | " |
---|
109 | { |
---|
110 | list p_facts = factorize(p); |
---|
111 | int s = size(p_facts[1]); |
---|
112 | int d = deg(p)+1; |
---|
113 | poly q = 0; |
---|
114 | poly f; |
---|
115 | int e; |
---|
116 | for(int i = 1; i <= s; i++) |
---|
117 | { |
---|
118 | f = p_facts[1][i]; |
---|
119 | e = deg(f); |
---|
120 | if (e >= 1 and e < d) |
---|
121 | { |
---|
122 | q = f / leadcoef(f); |
---|
123 | d = e; |
---|
124 | } |
---|
125 | } |
---|
126 | return(q); |
---|
127 | } |
---|
128 | //////////////////////////////////////////////////////////////////// |
---|
129 | static proc extensionContainingSmoothPoint(poly p, int m) |
---|
130 | "USAGE: extensionContainingSmoothPoint(p,m); p poly, m int |
---|
131 | RETURN: poly: an irreducible univariate polynomial that defines an |
---|
132 | algebraic extension of the current ground field that contains |
---|
133 | a smooth point of the hypersurface defined by p=0. |
---|
134 | " |
---|
135 | { |
---|
136 | int n = nvars(basering) - 1; |
---|
137 | poly q = 0; |
---|
138 | int i; |
---|
139 | list a; |
---|
140 | for(i=1;i<=n+1;i++){a[i] = 0;} |
---|
141 | a[m] = var(n+1); |
---|
142 | // The list a is to be taken with random entries in [-e, e]. |
---|
143 | // Every 10 * n trial, e is incremented by 1. |
---|
144 | int e = 1; |
---|
145 | int nbtrial = 0; |
---|
146 | map h; |
---|
147 | while (q == 0) |
---|
148 | { |
---|
149 | h = basering, a[1..n+1]; |
---|
150 | q = smallestProperSimpleFactor(h(p)); |
---|
151 | for(i = 1; i <= n ; i = i + 1) |
---|
152 | { |
---|
153 | if (i != m) |
---|
154 | { |
---|
155 | a[i] = random(-e, e); |
---|
156 | } |
---|
157 | } |
---|
158 | nbtrial++; |
---|
159 | if (nbtrial >= 10 * n) |
---|
160 | { |
---|
161 | e = e + 1; |
---|
162 | nbtrial = 0; |
---|
163 | } |
---|
164 | } |
---|
165 | return(q); |
---|
166 | } |
---|
167 | //////////////////////////////////////////////////////////////////// |
---|
168 | static proc RothsteinTragerResultant(poly g, poly f, int m) |
---|
169 | "USAGE: RothsteinTragerResultant(g,f,m); g,f poly, m int |
---|
170 | RETURN: poly |
---|
171 | NOTE: To be called by the RothsteinTrager procedure only. |
---|
172 | " |
---|
173 | { |
---|
174 | def MPz = basering; |
---|
175 | int n = nvars(MPz) - 1; |
---|
176 | int d = partialDegree(f, m); |
---|
177 | poly df = diff(f, var(m)); |
---|
178 | list a; |
---|
179 | int i; |
---|
180 | for(i=1;i<=n+1;i++){ a[i] = 0; } |
---|
181 | a[m] = var(m); |
---|
182 | poly q = 0; |
---|
183 | int e = 1; |
---|
184 | int nbtrial = 0; |
---|
185 | map h; |
---|
186 | while (q == 0) |
---|
187 | { |
---|
188 | h = MPz, a[1..n+1]; |
---|
189 | q = resultant(h(f), h(df) * var(n+1) - h(g), var(m)); |
---|
190 | if (deg(q) == d) |
---|
191 | { |
---|
192 | return(q/leadcoef(q)); |
---|
193 | } |
---|
194 | q = 0; |
---|
195 | for(i = 1; i <= n ; i++) |
---|
196 | { |
---|
197 | if (i != m) |
---|
198 | { |
---|
199 | a[i] = random(-e, e); |
---|
200 | } |
---|
201 | } |
---|
202 | nbtrial++; |
---|
203 | if (nbtrial >= 10 * n) |
---|
204 | { |
---|
205 | e++; |
---|
206 | nbtrial = 0; |
---|
207 | } |
---|
208 | } |
---|
209 | } |
---|
210 | //////////////////////////////////////////////////////////////////// |
---|
211 | static proc RothsteinTrager(list g, poly p, int m, int expectedDegQ) |
---|
212 | "USAGE: RothsteinTrager(g,p,m,d); g list, p poly, m,d int |
---|
213 | RETURN: list L consisting of two entries of type poly |
---|
214 | NOTE: the return value is the Rothstein-Trager partial fraction |
---|
215 | decomposition of the quotient s/p, where s is a generic linear |
---|
216 | combination of the elements of g. The genericity via d |
---|
217 | (the expected degree of L[1]). |
---|
218 | " |
---|
219 | { |
---|
220 | def MPz = basering; |
---|
221 | int n = nvars(MPz) - 1; |
---|
222 | poly dp = diff(p, var(m)); |
---|
223 | int r = size(g); |
---|
224 | list a; |
---|
225 | int i; |
---|
226 | for(i=1;i<=r;i++){a[i] = 0;} |
---|
227 | a[r] = 1; |
---|
228 | int nbtrial = 0; |
---|
229 | int e = 1; |
---|
230 | poly s; |
---|
231 | poly q; |
---|
232 | while (1) |
---|
233 | { |
---|
234 | s = 0; |
---|
235 | for(i = 1; i <= r; i++){s = s + a[i] * g[i];} |
---|
236 | q = RothsteinTragerResultant(s, p, m); |
---|
237 | q = smallestProperFactor(q); |
---|
238 | if (deg(q) == expectedDegQ) |
---|
239 | { |
---|
240 | // Go into the quotient by q(z)=0 |
---|
241 | ring MP_z = (0,var(n+1)), (x(1..n)), dp; |
---|
242 | list lMP_z = ringlist(MP_z); |
---|
243 | lMP_z[1][4] = ideal(imap(MPz,q)); |
---|
244 | list tmp = ringlist(MPz)[2]; |
---|
245 | lMP_z[2] = list(tmp[1..n]); |
---|
246 | def MPq = ring(lMP_z); |
---|
247 | setring(MPq); |
---|
248 | poly f = gcd(imap(MPz, p), par(1) * imap(MPz, dp) - imap(MPz, s)); |
---|
249 | f = f / leadcoef(f); |
---|
250 | setring(MPz); |
---|
251 | return(list(q, imap(MPq, f))); |
---|
252 | } |
---|
253 | for(i = 1; i <= r ; i++) |
---|
254 | { |
---|
255 | a[i] = random(-e, e); |
---|
256 | } |
---|
257 | nbtrial++; |
---|
258 | if (nbtrial >= 10 * r) |
---|
259 | { |
---|
260 | e++; |
---|
261 | nbtrial = 0; |
---|
262 | } |
---|
263 | } |
---|
264 | } |
---|
265 | //////////////////////////////////////////////////////////////////// |
---|
266 | static proc absFactorizeIrreducible(poly p) |
---|
267 | "USAGE: absFactorizeIrreducible(p); p poly |
---|
268 | ASSUME: p is an irreducible polynomial that does not depend on the last |
---|
269 | variable @z of the basering. |
---|
270 | RETURN: list L of two polynomials: q=L[1] is an irreducible polynomial of |
---|
271 | minimal degree in @z such that p has an absolute factor |
---|
272 | over K[@z]/<q>, and f represents such an absolute factor. |
---|
273 | " |
---|
274 | { |
---|
275 | int dblevel = printlevel - voice + 2; |
---|
276 | dbprint(dblevel,"Entering absfact.lib::absFactorizeIrreducible with ",p); |
---|
277 | def MPz = basering; |
---|
278 | int d = deg(p); |
---|
279 | int n = nvars(MPz) - 1; |
---|
280 | |
---|
281 | if (d < 1) |
---|
282 | { |
---|
283 | return(list(var(n+1), p)); |
---|
284 | } |
---|
285 | int m = variableWithSmallestPositiveDegree(p); |
---|
286 | // var(m) is now considered as the main variable. |
---|
287 | |
---|
288 | poly q = extensionContainingSmoothPoint(p, m); |
---|
289 | int r = deg(q); |
---|
290 | if (r == 1) |
---|
291 | { |
---|
292 | return(list(var(n+1), p)); |
---|
293 | } |
---|
294 | |
---|
295 | list tmp = ringlist(MPz)[2]; |
---|
296 | // Go into the quotient by q(z)=0 |
---|
297 | ring MP_z = (0,var(n+1)), (x(1..n)), dp; |
---|
298 | list lMP_z = ringlist(MP_z); |
---|
299 | lMP_z[1][4] = ideal(imap(MPz,q)); |
---|
300 | lMP_z[2] = list(tmp[1..n]); |
---|
301 | def MPq = ring(lMP_z); |
---|
302 | setring(MPq); |
---|
303 | dbprint(dblevel-1,"Factoring in algebraic extension"); |
---|
304 | // "Factoring p in the algebraic extension..."; |
---|
305 | poly p_loc = imap(MPz, p); |
---|
306 | poly f = smallestProperSimpleFactor(p_loc); |
---|
307 | int degf = deg(f); |
---|
308 | |
---|
309 | if (degf == d) |
---|
310 | { |
---|
311 | setring(MPz); |
---|
312 | return(list(var(n+1), p)); |
---|
313 | } |
---|
314 | |
---|
315 | if (degf * r == d) |
---|
316 | { |
---|
317 | setring(MPz); |
---|
318 | return(list(q, imap(MPq, f))); |
---|
319 | } |
---|
320 | dbprint(dblevel-1,"Absolutely irreducible factor found"); |
---|
321 | dbprint(dblevel,"Minimizing field extension"); |
---|
322 | // "Need to find a minimal extension"; |
---|
323 | poly co_f = p_loc / f; |
---|
324 | poly e = diff(f, var(m)) * co_f; |
---|
325 | setring(MPz); |
---|
326 | poly e = imap(MPq, e); |
---|
327 | list g; |
---|
328 | int i; |
---|
329 | for(i = 1; i <= r; i++) |
---|
330 | { |
---|
331 | g[i] = subst(e, var(n+1), 0); |
---|
332 | e = diff(e, var(n+1)); |
---|
333 | } |
---|
334 | return(RothsteinTrager(g, p, m, d div degf)); |
---|
335 | } |
---|
336 | |
---|
337 | //////////////////////////////////////////////////////////////////// |
---|
338 | proc absFactorize(poly p, list #) |
---|
339 | "USAGE: absFactorize(p [,s]); p poly, s string |
---|
340 | ASSUME: coefficient field is the field of rational numbers or a |
---|
341 | transcendental extension thereof |
---|
342 | RETURN: ring @code{R} which is obtained from the current basering |
---|
343 | by adding a new parameter (if a string @code{s} is given as a |
---|
344 | second input, the new parameter gets this string as name). The ring |
---|
345 | @code{R} comes with a list @code{absolute_factors} with the |
---|
346 | following entries: |
---|
347 | @format |
---|
348 | absolute_factors[1]: ideal (the absolute factors) |
---|
349 | absolute_factors[2]: intvec (the multiplicities) |
---|
350 | absolute_factors[3]: ideal (the minimal polynomials) |
---|
351 | absolute_factors[4]: int (total number of nontriv. absolute factors) |
---|
352 | @end format |
---|
353 | The entry @code{absolute_factors[1][1]} is a constant, the |
---|
354 | entry @code{absolute_factors[3][1]} is the parameter added to the |
---|
355 | current ring.@* |
---|
356 | Each of the remaining entries @code{absolute_factors[1][j]} stands for |
---|
357 | a class of conjugated absolute factors. The corresponding entry |
---|
358 | @code{absolute_factors[3][j]} is the minimal polynomial of the |
---|
359 | field extension over which the factor is minimally defined (its degree |
---|
360 | is the number of conjugates in the class). If the entry |
---|
361 | @code{absolute_factors[3][j]} coincides with @code{absolute_factors[3][1]}, |
---|
362 | no field extension was necessary for the @code{j}th (class of) |
---|
363 | absolute factor(s). |
---|
364 | NOTE: All factors are presented denominator- and content-free. The constant |
---|
365 | factor (first entry) is chosen such that the product of all (!) the |
---|
366 | (denominator- and content-free) absolute factors of @code{p} equals |
---|
367 | @code{p / absolute_factors[1][1]}. |
---|
368 | SEE ALSO: factorize, absPrimdecGTZ |
---|
369 | EXAMPLE: example absFactorize; shows an example |
---|
370 | " |
---|
371 | { |
---|
372 | int dblevel = printlevel - voice + 2; |
---|
373 | dbprint(dblevel,"Entering absfact.lib::absFactorize with ",p); |
---|
374 | def MP = basering; |
---|
375 | int i; |
---|
376 | if (char(MP) != 0) |
---|
377 | { |
---|
378 | ERROR("// absfact.lib::absFactorize is only implemented for "+ |
---|
379 | "characteristic 0"); |
---|
380 | } |
---|
381 | if(minpoly!=0) |
---|
382 | { |
---|
383 | ERROR("// absfact.lib::absFactorize is not implemented for algebraic " |
---|
384 | +"extensions"); |
---|
385 | } |
---|
386 | |
---|
387 | int n = nvars(MP); |
---|
388 | int pa=npars(MP); |
---|
389 | list lMP= ringlist(MP); |
---|
390 | list buflMP= lMP; |
---|
391 | intvec vv,vk; |
---|
392 | for(i=1;i<=n;i++){vv[i]=1;} |
---|
393 | vk=vv,1; |
---|
394 | |
---|
395 | //if the basering has parameters, add the parameters to the variables |
---|
396 | //takes care about coefficients and possible denominators |
---|
397 | if(pa>0) |
---|
398 | { |
---|
399 | poly qh=cleardenom(p); |
---|
400 | if (p==0) |
---|
401 | { |
---|
402 | number cok=0; |
---|
403 | } |
---|
404 | else |
---|
405 | { |
---|
406 | number cok=leadcoef(p)/leadcoef(qh); |
---|
407 | } |
---|
408 | p=qh; |
---|
409 | string sp; |
---|
410 | for(i=1;i<=npars(basering);i++) |
---|
411 | { |
---|
412 | sp=string(par(i)); |
---|
413 | sp=sp[2..size(sp)-1]; |
---|
414 | lMP[2][n+i]=sp; |
---|
415 | vv=vv,1; |
---|
416 | } |
---|
417 | lMP[1]=0; |
---|
418 | n=n+npars(MP); |
---|
419 | } |
---|
420 | |
---|
421 | // MPz is obtained by adding the new variable @z to MP |
---|
422 | // ordering is wp(1...1) |
---|
423 | // All the above subroutines work in MPz |
---|
424 | string newvar; |
---|
425 | if(size(#)>0) |
---|
426 | { |
---|
427 | if(typeof(#[1])=="string") |
---|
428 | { |
---|
429 | newvar=#[1]; |
---|
430 | } |
---|
431 | else |
---|
432 | { |
---|
433 | newvar = "a"; |
---|
434 | } |
---|
435 | } |
---|
436 | else |
---|
437 | { |
---|
438 | newvar = "a"; |
---|
439 | } |
---|
440 | if (newvar=="a") |
---|
441 | { |
---|
442 | if(belongTo(newvar, lMP[2])||defined(a)){newvar = "b";} |
---|
443 | if(belongTo(newvar, lMP[2])||defined(b)){newvar = "c";} |
---|
444 | if(belongTo(newvar, lMP[2])||defined(c)){newvar = "@c";} |
---|
445 | while(belongTo(newvar, lMP[2])) |
---|
446 | { |
---|
447 | newvar = "@" + newvar; |
---|
448 | } |
---|
449 | } |
---|
450 | lMP[2][n+1] = newvar; |
---|
451 | |
---|
452 | // new ordering |
---|
453 | vv=vv,1; |
---|
454 | list orst; |
---|
455 | orst[1]=list("wp",vv); |
---|
456 | orst[2]=list("C",0); |
---|
457 | lMP[3]=orst; |
---|
458 | |
---|
459 | def MPz = ring(lMP); |
---|
460 | setring(MPz); |
---|
461 | poly p=imap(MP,p); |
---|
462 | |
---|
463 | // special treatment in the homogeneous case, dropping one variable |
---|
464 | // by substituting the first variable by 1 |
---|
465 | int ho=homog(p); |
---|
466 | if(ho) |
---|
467 | { |
---|
468 | int dh=deg(p); |
---|
469 | p=subst(p,var(1),1); |
---|
470 | int di=deg(p); |
---|
471 | } |
---|
472 | list rat_facts = factorize(p); |
---|
473 | int s = size(rat_facts[1]); |
---|
474 | list tmpf; // absolute factors |
---|
475 | intvec tmpm; // respective multiplicities |
---|
476 | tmpf[1] = list(var(n+1), leadcoef(imap(MP,p))); |
---|
477 | tmpm[1] = 1; |
---|
478 | poly tmp; |
---|
479 | for(i = 2; i <= s; i++) |
---|
480 | { |
---|
481 | tmp = rat_facts[1][i]; |
---|
482 | tmp = tmp / leadcoef(tmp); |
---|
483 | tmpf[i] = absFactorizeIrreducible(tmp); |
---|
484 | tmpm[i] = rat_facts[2][i]; |
---|
485 | } |
---|
486 | // the homogeneous case, homogenizing the result |
---|
487 | // the new variable has to have degree 0 |
---|
488 | // need to change the ring |
---|
489 | if(ho) |
---|
490 | { |
---|
491 | list ll=ringlist(MPz); |
---|
492 | vv[size(vv)]=0; |
---|
493 | ll[3][1][2]=vv; |
---|
494 | def MPhelp=ring(ll); |
---|
495 | setring(MPhelp); |
---|
496 | list tmpf=imap(MPz,tmpf); |
---|
497 | for(i=2;i<=size(tmpf);i++) |
---|
498 | { |
---|
499 | tmpf[i][2]=homog(tmpf[i][2],var(1)); |
---|
500 | } |
---|
501 | if(dh>di) |
---|
502 | { |
---|
503 | tmpf[size(tmpf)+1]=list(var(n+1),var(1)); |
---|
504 | tmpm[size(tmpm)+1]=dh-di; |
---|
505 | } |
---|
506 | setring(MPz); |
---|
507 | tmpf=imap(MPhelp,tmpf); |
---|
508 | } |
---|
509 | // in case of parameters we have to go back to the old ring |
---|
510 | // taking care about constant factors |
---|
511 | if(pa) |
---|
512 | { |
---|
513 | setring(MP); |
---|
514 | n=nvars(MP); |
---|
515 | list lM=ringlist(MP); |
---|
516 | orst[1]=list("wp",vk); |
---|
517 | orst[2]=list("C",0); |
---|
518 | lM[2][n+1] = newvar; |
---|
519 | lM[3]=orst; |
---|
520 | def MPout=ring(lM); |
---|
521 | setring(MPout); |
---|
522 | list tmpf=imap(MPz,tmpf); |
---|
523 | number cok=imap(MP,cok); |
---|
524 | tmpf[1][2]=cok*tmpf[1][2]; |
---|
525 | } |
---|
526 | else |
---|
527 | { |
---|
528 | def MPout=MPz; |
---|
529 | } |
---|
530 | // if we want the output as string |
---|
531 | if(size(#)>0) |
---|
532 | { |
---|
533 | if(typeof(#[1])=="int") |
---|
534 | { |
---|
535 | if(#[1]==77) |
---|
536 | { // undocumented feature for Gerhard's absPrimdecGTZ |
---|
537 | if (size(tmpf)<2){ list abs_fac = list(var(n+1),poly(1)); } |
---|
538 | else { list abs_fac=tmpf[2..size(tmpf)]; } |
---|
539 | abs_fac=abs_fac,newvar; |
---|
540 | return(string(abs_fac)); |
---|
541 | } |
---|
542 | } |
---|
543 | } |
---|
544 | // preparing the output for SINGULAR standard |
---|
545 | // a list: factors(ideal),multiplicities(intvec),minpolys(ideal), |
---|
546 | // number of factors in the absolute factorization |
---|
547 | // the output(except the coefficient) should have no denominators |
---|
548 | // and no content |
---|
549 | ideal facts,minpols; |
---|
550 | intvec mults; |
---|
551 | int nfacts; |
---|
552 | number co=1; |
---|
553 | minpols[1]=tmpf[1][1]; |
---|
554 | facts[1]=tmpf[1][2]; //the coefficient |
---|
555 | for(i=2;i<=size(tmpf);i++) |
---|
556 | { |
---|
557 | minpols[i]=cleardenom(tmpf[i][1]); |
---|
558 | facts[i]=cleardenom(tmpf[i][2]); |
---|
559 | co=co*(leadcoef(tmpf[i][2])/leadcoef(facts[i]))^(deg(minpols[i])*tmpm[i]); |
---|
560 | } |
---|
561 | facts[1]=facts[1]*co; |
---|
562 | for(i=1;i<=size(tmpm);i++) |
---|
563 | { |
---|
564 | mults[i]=tmpm[i]; |
---|
565 | } |
---|
566 | for(i=2;i<=size(mults);i++) |
---|
567 | { |
---|
568 | nfacts=nfacts+mults[i]*deg(minpols[i]); |
---|
569 | } |
---|
570 | list absolute_factors=facts,mults,minpols,nfacts; |
---|
571 | |
---|
572 | // create ring with extra parameter `newvar` for output: |
---|
573 | setring(MP); |
---|
574 | list Lout=ringlist(MP); |
---|
575 | if(!pa) |
---|
576 | { |
---|
577 | list Lpar=list(char(MP),list(newvar),list(list("lp",intvec(1))),ideal(0)); |
---|
578 | } |
---|
579 | else |
---|
580 | { |
---|
581 | list Lpar=Lout[1]; |
---|
582 | Lpar[2][size(Lpar[2])+1]=newvar; |
---|
583 | vv=Lpar[3][1][2]; |
---|
584 | vv=vv,1; |
---|
585 | Lpar[3][1][2]=vv; |
---|
586 | } |
---|
587 | Lout[1]=Lpar; |
---|
588 | def MPo=ring(Lout); |
---|
589 | setring(MPo); |
---|
590 | list absolute_factors=imap(MPout,absolute_factors); |
---|
591 | export absolute_factors; |
---|
592 | setring(MP); |
---|
593 | |
---|
594 | dbprint( printlevel-voice+3," |
---|
595 | // 'absFactorize' created a ring, in which a list absolute_factors (the |
---|
596 | // absolute factors) is stored. |
---|
597 | // To access the list of absolute factors, type (if the name S was assigned |
---|
598 | // to the return value): |
---|
599 | setring(S); absolute_factors; "); |
---|
600 | return(MPo); |
---|
601 | } |
---|
602 | example |
---|
603 | { |
---|
604 | "EXAMPLE:"; echo = 2; |
---|
605 | ring R = (0), (x,y), lp; |
---|
606 | poly p = (-7*x^2 + 2*x*y^2 + 6*x + y^4 + 14*y^2 + 47)*(5x2+y2)^3*(x-y)^4; |
---|
607 | def S = absFactorize(p) ; |
---|
608 | setring(S); |
---|
609 | absolute_factors; |
---|
610 | } |
---|
611 | |
---|
612 | //////////////////////////////////////////////////////////////////////////////// |
---|
613 | proc absBiFactorize(poly p, list #) |
---|
614 | "USAGE: absBiFactorize(p [,s]); p poly, s string |
---|
615 | ASSUME: coefficient field is the field of rational numbers or a |
---|
616 | transcendental extension thereof |
---|
617 | RETURN: ring @code{R} which is obtained from the current basering |
---|
618 | by adding a new parameter (if a string @code{s} is given as a |
---|
619 | second input, the new parameter gets this string as name). The ring |
---|
620 | @code{R} comes with a list @code{absolute_factors} with the |
---|
621 | following entries: |
---|
622 | @format |
---|
623 | absolute_factors[1]: ideal (the absolute factors) |
---|
624 | absolute_factors[2]: intvec (the multiplicities) |
---|
625 | absolute_factors[3]: ideal (the minimal polynomials) |
---|
626 | absolute_factors[4]: int (total number of nontriv. absolute factors) |
---|
627 | @end format |
---|
628 | The entry @code{absolute_factors[1][1]} is a constant, the |
---|
629 | entry @code{absolute_factors[3][1]} is the parameter added to the |
---|
630 | current ring.@* |
---|
631 | Each of the remaining entries @code{absolute_factors[1][j]} stands for |
---|
632 | a class of conjugated absolute factors. The corresponding entry |
---|
633 | @code{absolute_factors[3][j]} is the minimal polynomial of the |
---|
634 | field extension over which the factor is minimally defined (its degree |
---|
635 | is the number of conjugates in the class). If the entry |
---|
636 | @code{absolute_factors[3][j]} coincides with @code{absolute_factors[3][1]}, |
---|
637 | no field extension was necessary for the @code{j}th (class of) |
---|
638 | absolute factor(s). |
---|
639 | NOTE: The input polynomial p is assumed to be bivariate or to contain one para- |
---|
640 | meter and one variable. All factors are presented denominator- and |
---|
641 | content-free. The constant factor (first entry) is chosen such that the |
---|
642 | product of all (!) the (denominator- and content-free) absolute factors |
---|
643 | of @code{p} equals @code{p / absolute_factors[1][1]}. |
---|
644 | SEE ALSO: factorize, absPrimdecGTZ, absFactorize |
---|
645 | EXAMPLE: example absBiFactorize; shows an example |
---|
646 | " |
---|
647 | { |
---|
648 | int dblevel = printlevel - voice + 2; |
---|
649 | dbprint(dblevel,"Entering absfact.lib::absBiFactorize with ",p); |
---|
650 | def MP = basering; |
---|
651 | int i; |
---|
652 | if (char(MP) != 0) |
---|
653 | { |
---|
654 | ERROR("// absfact.lib::absBiFactorize is only implemented for "+ |
---|
655 | "characteristic 0"); |
---|
656 | } |
---|
657 | if(minpoly!=0) |
---|
658 | { |
---|
659 | ERROR("// absfact.lib::absBiFactorize is not implemented for algebraic " |
---|
660 | +"extensions"); |
---|
661 | } |
---|
662 | |
---|
663 | int n = nvars(MP); |
---|
664 | int pa=npars(MP); |
---|
665 | list lMP= ringlist(MP); |
---|
666 | intvec vv,vk; |
---|
667 | for(i=1;i<=n;i++){vv[i]=1;} |
---|
668 | vk=vv,1; |
---|
669 | |
---|
670 | //if the basering has parameters, add the parameters to the variables |
---|
671 | //takes care about coefficients and possible denominators |
---|
672 | if(pa>0) |
---|
673 | { |
---|
674 | poly qh=cleardenom(p); |
---|
675 | if (p==0) |
---|
676 | { |
---|
677 | number cok=0; |
---|
678 | } |
---|
679 | else |
---|
680 | { |
---|
681 | number cok=leadcoef(p)/leadcoef(qh); |
---|
682 | } |
---|
683 | p=qh; |
---|
684 | string sp; |
---|
685 | for(i=1;i<=npars(basering);i++) |
---|
686 | { |
---|
687 | sp=string(par(i)); |
---|
688 | sp=sp[2..size(sp)-1]; |
---|
689 | lMP[2][n+i]=sp; |
---|
690 | vv=vv,1; |
---|
691 | } |
---|
692 | lMP[1]=0; |
---|
693 | n=n+npars(MP); |
---|
694 | } |
---|
695 | |
---|
696 | // MPz is obtained by adding the new variable @z to MP |
---|
697 | // ordering is wp(1...1) |
---|
698 | // All the above subroutines work in MPz |
---|
699 | string newvar; |
---|
700 | if(size(#)>0) |
---|
701 | { |
---|
702 | if(typeof(#[1])=="string") |
---|
703 | { |
---|
704 | newvar=#[1]; |
---|
705 | } |
---|
706 | else |
---|
707 | { |
---|
708 | newvar = "a"; |
---|
709 | } |
---|
710 | } |
---|
711 | else |
---|
712 | { |
---|
713 | newvar = "a"; |
---|
714 | } |
---|
715 | if (newvar=="a") |
---|
716 | { |
---|
717 | if(belongTo(newvar, lMP[2])||defined(a)){newvar = "b";} |
---|
718 | if(belongTo(newvar, lMP[2])||defined(b)){newvar = "c";} |
---|
719 | if(belongTo(newvar, lMP[2])||defined(c)){newvar = "@c";} |
---|
720 | while(belongTo(newvar, lMP[2])) |
---|
721 | { |
---|
722 | newvar = "@" + newvar; |
---|
723 | } |
---|
724 | } |
---|
725 | |
---|
726 | // create ring with extra parameter `newvar` for output: |
---|
727 | setring(MP); |
---|
728 | list Lout=ringlist(MP); |
---|
729 | if(!pa) |
---|
730 | { |
---|
731 | list Lpar=list(char(MP),list(newvar),list(list("lp",intvec(1))),ideal(0)); |
---|
732 | } |
---|
733 | else |
---|
734 | { |
---|
735 | list Lpar=Lout[1]; |
---|
736 | Lpar[2][size(Lpar[2])+1]=newvar; |
---|
737 | vv=Lpar[3][1][2]; |
---|
738 | vv=vv,1; |
---|
739 | Lpar[3][1][2]=vv; |
---|
740 | } |
---|
741 | Lout[1]=Lpar; |
---|
742 | def MPo=ring(Lout); |
---|
743 | setring(MPo); |
---|
744 | |
---|
745 | poly p=imap(MP,p); |
---|
746 | |
---|
747 | if (size (variables (p)) > 2) |
---|
748 | { |
---|
749 | ERROR("// absfact.lib::absBiFactorize is not implemented for polynomials " |
---|
750 | +"with more than 2 variables"); |
---|
751 | } |
---|
752 | |
---|
753 | // special treatment in the homogeneous case, dropping one variable |
---|
754 | // by substituting the first variable by 1 |
---|
755 | int ho=homog(p); |
---|
756 | if(ho) |
---|
757 | { |
---|
758 | int dh=deg(p); |
---|
759 | p=subst(p,var(1),1); |
---|
760 | int di=deg(p); |
---|
761 | } |
---|
762 | |
---|
763 | list tmpf=system ("absBiFact", p); |
---|
764 | |
---|
765 | // the homogeneous case, homogenizing the result |
---|
766 | // the new variable has to have degree 0 |
---|
767 | // need to change the ring |
---|
768 | if(ho) |
---|
769 | { |
---|
770 | list ll=ringlist(MPo); |
---|
771 | vv[size(vv)]=0; |
---|
772 | ll[3][1][2]=vv; |
---|
773 | def MPhelp=ring(ll); |
---|
774 | setring(MPhelp); |
---|
775 | list tmpf=imap(MPo,tmpf); |
---|
776 | for(i=2;i<=size(tmpf[1]);i++) |
---|
777 | { |
---|
778 | tmpf[1][i]=homog(tmpf[1][i],var(1)); |
---|
779 | } |
---|
780 | if(dh>di) |
---|
781 | { |
---|
782 | tmpf[1][size(tmpf[1])+1]=var(1); |
---|
783 | tmpf[2][size(tmpf[2])+1]=dh-di; |
---|
784 | tmpf[3][size(tmpf[3])+1]=par(npars(MPo)); |
---|
785 | tmpf[4]= tmpf[4]+dh-di; |
---|
786 | } |
---|
787 | setring(MPo); |
---|
788 | tmpf=imap(MPhelp,tmpf); |
---|
789 | } |
---|
790 | |
---|
791 | if (pa) |
---|
792 | { |
---|
793 | number cok=imap(MP,cok); |
---|
794 | tmpf[1][1]=cok*tmpf[1][1]; |
---|
795 | } |
---|
796 | |
---|
797 | // if we want the output as string |
---|
798 | if(size(#)>0) |
---|
799 | { |
---|
800 | if(typeof(#[1])=="int") |
---|
801 | { |
---|
802 | if(#[1]==77) |
---|
803 | { // undocumented feature for Gerhard's absPrimdecGTZ |
---|
804 | if (size(tmpf[1])<2){ list abs_fac = list(var(n+1),poly(1)); } |
---|
805 | else |
---|
806 | { |
---|
807 | list abs_fac= tmpf[3][2]; |
---|
808 | abs_fac= abs_fac, tmpf[1][2]; |
---|
809 | for (i= 3; i <= size(tmpf[1]); i++) |
---|
810 | { |
---|
811 | abs_fac=abs_fac,tmpf[3][i]; |
---|
812 | abs_fac=abs_fac,tmpf[1][i]; |
---|
813 | } |
---|
814 | } |
---|
815 | abs_fac=abs_fac,newvar; |
---|
816 | return(string(abs_fac)); |
---|
817 | } |
---|
818 | } |
---|
819 | } |
---|
820 | |
---|
821 | list absolute_factors= tmpf; |
---|
822 | export absolute_factors; |
---|
823 | setring(MP); |
---|
824 | |
---|
825 | dbprint( printlevel-voice+3," |
---|
826 | // 'absBiFactorize' created a ring, in which a list absolute_factors (the |
---|
827 | // absolute factors) is stored. |
---|
828 | // To access the list of absolute factors, type (if the name S was assigned |
---|
829 | // to the return value): |
---|
830 | setring(S); absolute_factors; "); |
---|
831 | return(MPo); |
---|
832 | } |
---|
833 | example |
---|
834 | { |
---|
835 | "EXAMPLE:"; echo = 2; |
---|
836 | ring R = (0), (x,y), lp; |
---|
837 | poly p = (-7*x^2 + 2*x*y^2 + 6*x + y^4 + 14*y^2 + 47)*(5x2+y2)^3*(x-y)^4; |
---|
838 | def S = absBiFactorize(p) ; |
---|
839 | setring(S); |
---|
840 | absolute_factors; |
---|
841 | } |
---|
842 | |
---|
843 | |
---|
844 | /* |
---|
845 | ring r=0,(x,t),dp; |
---|
846 | poly p=x^4+(t^3-2t^2-2t)*x^3-(t^5-2t^4-t^2-2t-1)*x^2 |
---|
847 | -(t^6-4t^5+t^4+6t^3+2t^2)*x+(t^6-4t^5+2t^4+4t^3+t^2); |
---|
848 | def S = absFactorize(p,"s"); |
---|
849 | setring(S); |
---|
850 | absolute_factors; |
---|
851 | |
---|
852 | ring r1=(0,a,b),(x,y),dp; |
---|
853 | poly p=(a3-a2b+27ab3-27b4)/(a+b5)*x2+(a2+27b3)*y; |
---|
854 | def S = absFactorize(p); |
---|
855 | setring(S); |
---|
856 | absolute_factors; |
---|
857 | |
---|
858 | ring r2=0,(x,y,z,w),dp; |
---|
859 | poly f=(x2+y2+z2)^2+w4; |
---|
860 | def S =absFactorize(f); |
---|
861 | setring(S); |
---|
862 | absolute_factors; |
---|
863 | |
---|
864 | ring r=0,(x),dp; |
---|
865 | poly p=0; |
---|
866 | def S = absFactorize(p); |
---|
867 | setring(S); |
---|
868 | absolute_factors; |
---|
869 | |
---|
870 | ring r=0,(x),dp; |
---|
871 | poly p=7/11; |
---|
872 | def S = absFactorize(p); |
---|
873 | setring(S); |
---|
874 | absolute_factors; |
---|
875 | |
---|
876 | ring r=(0,a,b),(x,y),dp; |
---|
877 | poly p=0; |
---|
878 | def S = absFactorize(p); |
---|
879 | setring(S); |
---|
880 | absolute_factors; |
---|
881 | |
---|
882 | ring r=(0,a,b),(x,y),dp; |
---|
883 | poly p=(a+1)/b; |
---|
884 | def S = absFactorize(p); |
---|
885 | setring(S); |
---|
886 | absolute_factors; |
---|
887 | |
---|
888 | ring r=(0,a,b),(x,y),dp; |
---|
889 | poly p=(a+1)/b*x; |
---|
890 | def S = absFactorize(p,"s"); |
---|
891 | setring(S); |
---|
892 | absolute_factors; |
---|
893 | |
---|
894 | ring r=(0,a,b),(x,y),dp; |
---|
895 | poly p=(a+1)/b*x + 1; |
---|
896 | def S = absFactorize(p,"s"); |
---|
897 | setring(S); |
---|
898 | absolute_factors; |
---|
899 | |
---|
900 | ring r=(0,a,b),(x,y),dp; |
---|
901 | poly p=(a+1)/b*x + y; |
---|
902 | def S = absFactorize(p,"s"); |
---|
903 | setring(S); |
---|
904 | absolute_factors; |
---|
905 | |
---|
906 | ring r=0,(x,t),dp; |
---|
907 | poly p=x^4+(t^3-2t^2-2t)*x^3-(t^5-2t^4-t^2-2t-1)*x^2 |
---|
908 | -(t^6-4t^5+t^4+6t^3+2t^2)*x+(t^6-4t^5+2t^4+4t^3+t^2); |
---|
909 | def S = absFactorize(p,"s"); |
---|
910 | setring(S); |
---|
911 | absolute_factors; |
---|
912 | |
---|
913 | ring r1=(0,a,b),(x,y),dp; |
---|
914 | poly p=(a3-a2b+27ab3-27b4)/(a+b5)*x2+(a2+27b3)*y; |
---|
915 | def S = absFactorize(p); |
---|
916 | setring(S); |
---|
917 | absolute_factors; |
---|
918 | |
---|
919 | ring r2=0,(x,y,z,w),dp; |
---|
920 | poly f=(x2+y2+z2)^2+w4; |
---|
921 | def S =absFactorize(f); |
---|
922 | setring(S); |
---|
923 | absolute_factors; |
---|
924 | |
---|
925 | ring r3=0,(x,y,z,w),dp; |
---|
926 | poly f=(x2+y2+z2)^4+w8; |
---|
927 | def S =absFactorize(f); |
---|
928 | setring(S); |
---|
929 | absolute_factors; |
---|
930 | |
---|
931 | ring r4=0,(x,y),dp; |
---|
932 | poly f=y6-(2x2-2x-14)*y4-(4x3+35x2-6x-47)*y2+14x4-12x3-94x2; |
---|
933 | def S=absFactorize(f); |
---|
934 | setring(S); |
---|
935 | absolute_factors; |
---|
936 | |
---|
937 | ring R1 = 0, x, dp; |
---|
938 | def S1 = absFactorize(x4-2); |
---|
939 | setring(S1); |
---|
940 | absolute_factors; |
---|
941 | |
---|
942 | ring R3 = 0, (x,y), dp; |
---|
943 | poly f = x2y4+y6+2x3y2+2xy4-7x4+7x2y2+14y4+6x3+6xy2+47x2+47y2; |
---|
944 | def S3 = absFactorize(f); |
---|
945 | setring(S3); |
---|
946 | absolute_factors; |
---|
947 | |
---|
948 | ring R4 = 0, (x,y), dp; |
---|
949 | poly f = y4+2*xy2-7*x2+14*y2+6*x+47; |
---|
950 | def S4 = absFactorize(f); |
---|
951 | setring(S4); |
---|
952 | absolute_factors; |
---|
953 | |
---|
954 | */ |
---|