1 | //////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="version algemodstd.lib 4.0.1.0 Sep_2014 "; // $Id$ |
---|
3 | category="Commutative Algebra"; |
---|
4 | info=" |
---|
5 | |
---|
6 | LIBRARY: algemodstd.lib Groebner bases of ideals in polynomial rings |
---|
7 | over algebraic number fields |
---|
8 | AUTHORS: D.K. Boku boku@mathematik.uni-kl.de |
---|
9 | @* W. Decker decker@mathematik.uni-kl.de |
---|
10 | @* C. Fieker fieker@mathematik.uni-kl.de |
---|
11 | |
---|
12 | OVERVIEW: |
---|
13 | A library for computing the Groebner basis of an ideal in the polynomial |
---|
14 | ring over an algebraic number field Q(t) using the modular methods, where t is |
---|
15 | algebraic over the field of rational numbers Q. For the case Q(t) = Q, the procedure |
---|
16 | is inspired by Arnold [1]. This idea is then extended |
---|
17 | to the case t not in Q using factorization as follows: |
---|
18 | Let f be the minimal polynomial of t. |
---|
19 | For I, I' ideals in Q(t)[X], Q[X,t]/<f> respectively, we map I to I' via the map sending |
---|
20 | t to t + <f>. |
---|
21 | We first choose a prime p such that f has at least two factors in characteristic p and |
---|
22 | add each factor f_i to I' to obtain the ideal J'_i = I' + <f_i>. |
---|
23 | We then compute a standard basis G'_i of J'_i for each i and combine the G'_i to G_p |
---|
24 | (a standard basis of I'_p) using chinese remaindering for polynomials. The procedure is |
---|
25 | repeated for many primes p, where we compute the G_p in parallel until the |
---|
26 | number of primes is sufficiently large to recover the correct standard basis G' of I'. |
---|
27 | Finally, by mapping G' back to Q(t)[X], a standard basis G of I is obtained. |
---|
28 | |
---|
29 | REFERENCES: |
---|
30 | [1] E. A. Arnold: Modular algorithms for computing Groebner bases. |
---|
31 | J. Symb. Comp. 35, 403-419 (2003). |
---|
32 | |
---|
33 | PROCEDURES: |
---|
34 | chinrempoly(l,m); chinese remaindering for polynomials |
---|
35 | algemodStd(I); standard basis of I over algebraic number field using modular methods |
---|
36 | "; |
---|
37 | |
---|
38 | LIB "modstd.lib"; |
---|
39 | |
---|
40 | //////////////////////////////////////////////////////////////////////////////// |
---|
41 | |
---|
42 | static proc testPrime(int p, ideal I) |
---|
43 | { |
---|
44 | /* |
---|
45 | * test whether a prime p divides the denominator(s) |
---|
46 | * and leading coefficients of generating set of ideal |
---|
47 | */ |
---|
48 | int i,j; |
---|
49 | poly f; |
---|
50 | number num; |
---|
51 | bigint d1,d2,d3; |
---|
52 | for(i = 1; i <= size(I); i++) |
---|
53 | { |
---|
54 | f = cleardenom(I[i]); |
---|
55 | if(f == 0) |
---|
56 | { |
---|
57 | return(0); |
---|
58 | } |
---|
59 | num = leadcoef(I[i])/leadcoef(f); |
---|
60 | d1 = bigint(numerator(num)); |
---|
61 | d2 = bigint(denominator(num)); |
---|
62 | if( (d1 mod p) == 0) |
---|
63 | { |
---|
64 | return(0); |
---|
65 | } |
---|
66 | if((d2 mod p) == 0) |
---|
67 | { |
---|
68 | return(0); |
---|
69 | } |
---|
70 | for(j = size(f); j > 0; j--) |
---|
71 | { |
---|
72 | d3 = bigint(leadcoef(f[j])); |
---|
73 | if( (d3 mod p) == 0) |
---|
74 | { |
---|
75 | return(0); |
---|
76 | } |
---|
77 | } |
---|
78 | } |
---|
79 | return(1); |
---|
80 | } |
---|
81 | |
---|
82 | //////////////////////////////////////////////////////////////////////////////// |
---|
83 | /* return 1 if the number of factors are in the required bound , 0 else */ |
---|
84 | |
---|
85 | static proc minpolyTask(poly f,int p) |
---|
86 | { |
---|
87 | /* |
---|
88 | * bound for irreducible factor(s) of (f mod p) |
---|
89 | * see testfact() |
---|
90 | */ |
---|
91 | int nr,k,ur; |
---|
92 | ur=deg(f); |
---|
93 | list L=factmodp(f,p); |
---|
94 | if(degtest(L[2])==1) |
---|
95 | { |
---|
96 | // now each factor is squarefree |
---|
97 | if(ur<=3) |
---|
98 | { |
---|
99 | return(1); |
---|
100 | } |
---|
101 | else |
---|
102 | { |
---|
103 | nr = testfact(ur); |
---|
104 | k=ncols(L[1]); |
---|
105 | if(nr < k && k < (ur-nr))// set bound for k |
---|
106 | { |
---|
107 | return(1); |
---|
108 | } |
---|
109 | } |
---|
110 | } |
---|
111 | return(0); |
---|
112 | } |
---|
113 | |
---|
114 | //////////////////////////////////////////////////////////////////////////////// |
---|
115 | /* return 1 if both testPrime(p,J) and minpolyTask(f,p) is true, 0 else */ |
---|
116 | |
---|
117 | static proc PrimeTestTask(int p, list L) |
---|
118 | { |
---|
119 | /* L=list(I), I=J,f; J ideal , f minpoly */ |
---|
120 | int sz,nr,dg; |
---|
121 | ideal J=L[1]; |
---|
122 | sz=ncols(J); |
---|
123 | poly f=J[sz]; |
---|
124 | dg=deg(f); |
---|
125 | if(!testPrime(p,J) or !minpolyTask(f,p)) |
---|
126 | { |
---|
127 | return(0); |
---|
128 | } |
---|
129 | return(1); |
---|
130 | } |
---|
131 | |
---|
132 | //////////////////////////////////////////////////////////////////////////////// |
---|
133 | /* compute factors of f mod p with multiplicity */ |
---|
134 | |
---|
135 | static proc factmodp(poly f, int p) |
---|
136 | { |
---|
137 | def R=basering; |
---|
138 | list l=ringlist(R); |
---|
139 | l[1]=p; |
---|
140 | def S=ring(l); |
---|
141 | setring S; |
---|
142 | list L=factorize(imap(R,f),2); |
---|
143 | ideal J=L[1]; |
---|
144 | intvec v=L[2]; |
---|
145 | list scx=J,v; |
---|
146 | setring R; |
---|
147 | return(imap(S,scx)); |
---|
148 | kill S; |
---|
149 | } |
---|
150 | |
---|
151 | //////////////////////////////////////////////////////////////////////////////// |
---|
152 | /* set a bound for number of factors w.r.t degree nr*/ |
---|
153 | |
---|
154 | static proc testfact(int nr) |
---|
155 | { |
---|
156 | // nr must be greater than 3 |
---|
157 | int i; |
---|
158 | if(nr>3 and nr<=5) |
---|
159 | { |
---|
160 | i=1; |
---|
161 | } |
---|
162 | if(nr>5 and nr<=10) |
---|
163 | { |
---|
164 | i=2; |
---|
165 | } |
---|
166 | if(nr>10 and nr<=15) |
---|
167 | { |
---|
168 | i=3; |
---|
169 | } |
---|
170 | if(nr>15 and nr<=20) |
---|
171 | { |
---|
172 | i=4; |
---|
173 | } |
---|
174 | if(nr>20 and nr<=25) |
---|
175 | { |
---|
176 | i=5; |
---|
177 | } |
---|
178 | if(nr>25 and nr<=30) |
---|
179 | { |
---|
180 | i=6; |
---|
181 | } |
---|
182 | if(nr>30) |
---|
183 | { |
---|
184 | i=10; |
---|
185 | } |
---|
186 | return(i); |
---|
187 | } |
---|
188 | |
---|
189 | /////////////////////////////////////////////////////////////////////////////// |
---|
190 | // return 1 if v[i]>1 , 0 else |
---|
191 | |
---|
192 | static proc degtest(intvec v) |
---|
193 | { |
---|
194 | for(int j=1;j<=nrows(v);j++) |
---|
195 | { |
---|
196 | if(v[j]>1) |
---|
197 | { |
---|
198 | return(0); |
---|
199 | } |
---|
200 | } |
---|
201 | return(1); |
---|
202 | } |
---|
203 | |
---|
204 | //////////////////////////////////////////////////////////////////////////////// |
---|
205 | |
---|
206 | static proc chinRm(list m, list ll, list lk,list l1,int uz) |
---|
207 | { |
---|
208 | poly ff,c; |
---|
209 | |
---|
210 | for(int i=1;i<=uz;i++) |
---|
211 | { |
---|
212 | c = division(l1[i]*ll[i],m[i])[2][1]; |
---|
213 | ff = ff + c*lk[i]; |
---|
214 | } |
---|
215 | return(ff); |
---|
216 | } |
---|
217 | |
---|
218 | //////////////////////////////////////////////////////////////////////////////// |
---|
219 | |
---|
220 | proc chinrempoly(list l,list m) |
---|
221 | "USAGE: chinrempoly(l, m); l list, m list |
---|
222 | RETURN: a polynomial (resp. ideal) which is congruent to l[i] modulo m[i] for all i |
---|
223 | NOTE: The procedure applies chinese remaindering to the first argument w.r.t. the |
---|
224 | moduli given in the second. The elements in the first list must be of same type |
---|
225 | which can be polynomial or ideal. The moduli must be of type polynomial. Elements |
---|
226 | in the second list must be distinct and co-prime. |
---|
227 | SEE ALSO: chinrem |
---|
228 | EXAMPLE: example chinrempoly; shows an example |
---|
229 | " |
---|
230 | { |
---|
231 | int i,j,sz,uz; |
---|
232 | uz = size(l); |
---|
233 | sz = ncols(ideal(l[1])); |
---|
234 | poly f=1; |
---|
235 | for(i=1;i<=uz;i++) |
---|
236 | { |
---|
237 | f=f*m[i]; |
---|
238 | } |
---|
239 | |
---|
240 | ideal I,J; |
---|
241 | list l1,ll,lk,l2; |
---|
242 | poly c,ff; |
---|
243 | for(j=1;j<=uz;j++) |
---|
244 | { |
---|
245 | lk[j]=f/m[j]; |
---|
246 | ll[j]=extgcd(lk[j],m[j])[2]; |
---|
247 | } |
---|
248 | |
---|
249 | for(i=1;i<=sz;i++) |
---|
250 | { |
---|
251 | for(j=1;j<=uz;j++) |
---|
252 | { |
---|
253 | I = l[j]; |
---|
254 | l1[j] = I[i]; |
---|
255 | } |
---|
256 | J[i] = chinRm(m,ll,lk,l1,uz); |
---|
257 | } |
---|
258 | return(J); |
---|
259 | } |
---|
260 | example |
---|
261 | { "EXAMPLE:"; echo = 2; |
---|
262 | ring rr=97,x,dp; |
---|
263 | poly f=x^7-7*x + 3; |
---|
264 | ideal J=factorize(f,1); |
---|
265 | J; |
---|
266 | list m=J[1..ncols(J)]; |
---|
267 | list l= x^2+2*x+3, x^2+5, x^2+7; |
---|
268 | ideal I=chinrempoly(l,m); |
---|
269 | I; |
---|
270 | ring s=0,x,dp; |
---|
271 | list m= x^2+2*x+3, x^3+5, x^4+x^3+7; |
---|
272 | list l=x^3 + 2, x^4 + 7, x^5 + 11; |
---|
273 | ideal I=chinrempoly(l,m); |
---|
274 | I; |
---|
275 | int p=prime(536546513); |
---|
276 | ring r = p, (x,y,a), (dp(2),dp(1)); |
---|
277 | poly minpolynomial = a^2+1; |
---|
278 | ideal kf=factorize(minpolynomial,1);//return factors without multiplicity |
---|
279 | kf; |
---|
280 | ideal k=(a+1)*x2+y, 3x-ay+ a+2; |
---|
281 | option(redSB); |
---|
282 | ideal k1=k,kf[1]; |
---|
283 | ideal k2 =k,kf[2]; |
---|
284 | k1=std(k1); |
---|
285 | k2=std(k2); |
---|
286 | list l=k1,k2; |
---|
287 | list m=kf[1..ncols(kf)]; |
---|
288 | ideal I=chinrempoly(l,m); |
---|
289 | I=simplify(I,2); |
---|
290 | I; |
---|
291 | } |
---|
292 | |
---|
293 | //////////////////////////////////////////////////////////////////////////////// |
---|
294 | |
---|
295 | static proc check_leadmonom_and_size(list L) |
---|
296 | { |
---|
297 | /* |
---|
298 | * compare the size of ideals in the list and |
---|
299 | * check the corresponding leading monomials |
---|
300 | * size(L)>=2 |
---|
301 | */ |
---|
302 | ideal J=L[1]; |
---|
303 | int i=size(L); |
---|
304 | int sc=ncols(J); |
---|
305 | int j,k; |
---|
306 | poly g=leadmonom(J[1]); |
---|
307 | for(j=1;j<=i;j++) |
---|
308 | { |
---|
309 | if(ncols(L[j])!=sc) |
---|
310 | { |
---|
311 | return(0); |
---|
312 | } |
---|
313 | } |
---|
314 | for(k=2;k<=i;k++) |
---|
315 | { |
---|
316 | for(j=1;j<=sc;j++) |
---|
317 | { |
---|
318 | if(leadmonom(J[j])!=leadmonom(L[k][j])) |
---|
319 | { |
---|
320 | return(0); |
---|
321 | } |
---|
322 | } |
---|
323 | } |
---|
324 | return(1); |
---|
325 | } |
---|
326 | |
---|
327 | //////////////////////////////////////////////////////////////////////////////// |
---|
328 | |
---|
329 | static proc LiftPolyCRT(ideal I) |
---|
330 | { |
---|
331 | /* |
---|
332 | * compute std for each factor and combine this result |
---|
333 | * to modulo minpoly via CRT for poly over char p>0 |
---|
334 | */ |
---|
335 | int u,in,j; |
---|
336 | list LL,Lk; |
---|
337 | ideal J,K,II; |
---|
338 | poly f; |
---|
339 | u=ncols(I); |
---|
340 | J=I[1..u-1]; |
---|
341 | f=I[u]; |
---|
342 | K=factorize(f,1); |
---|
343 | in=ncols(K); |
---|
344 | for(j=1;j<=in;j++) |
---|
345 | { |
---|
346 | LL[j]=K[j]; |
---|
347 | ideal I(j)=J,K[j]; |
---|
348 | I(j)=std(I(j)); |
---|
349 | if(size(I(j))==1) |
---|
350 | { |
---|
351 | Lk[j]=I(j); |
---|
352 | } |
---|
353 | else |
---|
354 | { |
---|
355 | I(j)[1]=0; |
---|
356 | I(j)=simplify(I(j), 2); |
---|
357 | Lk[j]=I(j); |
---|
358 | } |
---|
359 | } |
---|
360 | if(check_leadmonom_and_size(Lk)) |
---|
361 | { |
---|
362 | // apply CRT for polynomials |
---|
363 | II =chinrempoly(Lk,LL),f; |
---|
364 | } |
---|
365 | else |
---|
366 | { |
---|
367 | II=0; |
---|
368 | } |
---|
369 | return(II); |
---|
370 | } |
---|
371 | |
---|
372 | //////////////////////////////////////////////////////////////////////////////// |
---|
373 | |
---|
374 | static proc PtestStd(string command, list args, ideal result, int p) |
---|
375 | { |
---|
376 | /* |
---|
377 | * let G be std of I which is not yet known whether it is the correct |
---|
378 | * standard basis or not. So this procedure does the first test |
---|
379 | */ |
---|
380 | def br = basering; |
---|
381 | list lbr = ringlist(br); |
---|
382 | if (typeof(lbr[1]) == "int") |
---|
383 | { |
---|
384 | lbr[1] = p; |
---|
385 | } |
---|
386 | else |
---|
387 | { |
---|
388 | lbr[1][1] = p; |
---|
389 | } |
---|
390 | def rp = ring(lbr); |
---|
391 | setring(rp); |
---|
392 | ideal Ip = fetch(br, args)[1]; |
---|
393 | ideal Gp = fetch(br, result); |
---|
394 | attrib(Gp, "isSB", 1); |
---|
395 | int i; |
---|
396 | for (i = ncols(Ip); i > 0; i--) |
---|
397 | { |
---|
398 | if (reduce(Ip[i], Gp, 1) != 0) |
---|
399 | { |
---|
400 | setring(br); |
---|
401 | return(0); |
---|
402 | } |
---|
403 | } |
---|
404 | Ip = LiftPolyCRT(Ip); |
---|
405 | attrib(Ip,"isSB",1); |
---|
406 | for (i = ncols(Gp); i > 0; i--) |
---|
407 | { |
---|
408 | if (reduce(Gp[i], Ip, 1) != 0) |
---|
409 | { |
---|
410 | setring(br); |
---|
411 | return(0); |
---|
412 | } |
---|
413 | } |
---|
414 | setring(br); |
---|
415 | return(1); |
---|
416 | } |
---|
417 | |
---|
418 | //////////////////////////////////////////////////////////////////////////////// |
---|
419 | |
---|
420 | static proc cleardenomIdeal(ideal I) |
---|
421 | { |
---|
422 | int t=ncols(I); |
---|
423 | if(size(I)==0) |
---|
424 | { |
---|
425 | return(I); |
---|
426 | } |
---|
427 | else |
---|
428 | { |
---|
429 | for(int i=1;i<=t;i++) |
---|
430 | { |
---|
431 | I[i]=cleardenom(I[i]); |
---|
432 | } |
---|
433 | } |
---|
434 | return(I); |
---|
435 | } |
---|
436 | |
---|
437 | //////////////////////////////////////////////////////////////////////////////// |
---|
438 | |
---|
439 | static proc modStdparallelized(ideal I) |
---|
440 | { |
---|
441 | // apply modular.lib |
---|
442 | /* save options */ |
---|
443 | intvec opt = option(get); |
---|
444 | option(redSB); |
---|
445 | I = modular("Algemodstd::LiftPolyCRT", list(I), PrimeTestTask, Modstd::deleteUnluckyPrimes_std, |
---|
446 | PtestStd, Modstd::finalTest_std,536870909); |
---|
447 | attrib(I, "isSB", 1); |
---|
448 | option(set,opt); |
---|
449 | return(I); |
---|
450 | } |
---|
451 | |
---|
452 | //////////////////////////////////////////////////////////////////////////////// |
---|
453 | /* main procedure */ |
---|
454 | proc algemodStd(ideal I, list #) |
---|
455 | "USAGE: algemodStd(I, #); I ideal, # optional parameters |
---|
456 | RETURN: standard basis of I over algebraic number field |
---|
457 | NOTE: The procedure passes to @ref{modStd} if the ground field has no |
---|
458 | parameter. In this case, the optional parameters # (if given) |
---|
459 | are directly passed to @ref{modStd}. |
---|
460 | SEE ALSO: modStd |
---|
461 | EXAMPLE: example algemodStd; shows an example |
---|
462 | " |
---|
463 | { |
---|
464 | list L=#; |
---|
465 | def Rbs=basering; |
---|
466 | poly f; |
---|
467 | ideal J; |
---|
468 | int n=nvars(Rbs); |
---|
469 | if(size(I)==0) |
---|
470 | { |
---|
471 | return(ideal(0)); |
---|
472 | } |
---|
473 | if(npars(Rbs)==0) |
---|
474 | { |
---|
475 | J=modStd(I,L);//if algebraic number is in Q |
---|
476 | if(size(#)>0) |
---|
477 | { |
---|
478 | return(cleardenomIdeal(J)); |
---|
479 | } |
---|
480 | return(J); |
---|
481 | } |
---|
482 | list rl=ringlist(Rbs); |
---|
483 | f=rl[1][4][1]; |
---|
484 | rl[2][n+1]=rl[1][2][1]; |
---|
485 | rl[1]=rl[1][1]; |
---|
486 | rl[3][size(rl[3])+1]=rl[3][size(rl[3])]; |
---|
487 | rl[3][size(rl[3])-1]=list("dp",1); |
---|
488 | def S=ring(rl); |
---|
489 | setring S; |
---|
490 | poly f=imap(Rbs,f); |
---|
491 | ideal I=imap(Rbs,I); |
---|
492 | I = simplify(I,2);// eraze the zero generatos |
---|
493 | ideal J; |
---|
494 | if(f==0) |
---|
495 | { |
---|
496 | ERROR("minpoly must be non-zero"); |
---|
497 | } |
---|
498 | I=I,f; |
---|
499 | J=modStdparallelized(I); |
---|
500 | setring Rbs; |
---|
501 | J=imap(S,J); |
---|
502 | J=simplify(J,2); |
---|
503 | if(size(#)>0) |
---|
504 | { |
---|
505 | return(cleardenomIdeal(J)); |
---|
506 | } |
---|
507 | return(J); |
---|
508 | } |
---|
509 | example |
---|
510 | { "EXAMPLE:"; echo = 2; |
---|
511 | ring r1 =(0,a),(x,y),dp; |
---|
512 | minpoly =a^2+1; |
---|
513 | ideal k=(a/2+1)*x^2+2/3y, 3*x-a*y+ a/7+2; |
---|
514 | ideal I=algemodStd(k); |
---|
515 | I; |
---|
516 | ring r2 =(0,a),(x,y,z),dp; |
---|
517 | minpoly =a^3 +2; |
---|
518 | ideal k=(a^2+a/2)*x^2+(a^2 -2/3*a)*yz, (3*a^2+1)*zx-(a+4/7)*y+ a+2/5; |
---|
519 | ideal IJ=algemodStd(k); |
---|
520 | IJ; |
---|
521 | ring r3=0,(x,y),dp;// ring without parameter |
---|
522 | ideal I = x2 + y, xy - 7y + 2x; |
---|
523 | I=algemodStd(I); |
---|
524 | I; |
---|
525 | } |
---|