1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="version assprimeszerodim.lib 4.0.0.0 Jun_2013 "; // $Id$ |
---|
3 | category = "Commutative Algebra"; |
---|
4 | info=" |
---|
5 | LIBRARY: assprimeszerodim.lib associated primes of a zero-dimensional ideal |
---|
6 | |
---|
7 | AUTHORS: N. Idrees nazeranjawwad@gmail.com |
---|
8 | @* G. Pfister pfister@mathematik.uni-kl.de |
---|
9 | @* S. Steidel steidel@mathematik.uni-kl.de |
---|
10 | |
---|
11 | OVERVIEW: |
---|
12 | |
---|
13 | A library for computing the associated primes and the radical of a |
---|
14 | zero-dimensional ideal in the polynomial ring over the rational numbers, |
---|
15 | Q[x_1,...,x_n], using modular computations. |
---|
16 | |
---|
17 | SEE ALSO: primdec_lib |
---|
18 | |
---|
19 | PROCEDURES: |
---|
20 | zeroRadical(I); computes the radical of I |
---|
21 | assPrimes(I); computes the associated primes of I |
---|
22 | "; |
---|
23 | |
---|
24 | LIB "primdec.lib"; |
---|
25 | LIB "modstd.lib"; |
---|
26 | |
---|
27 | //////////////////////////////////////////////////////////////////////////////// |
---|
28 | |
---|
29 | proc zeroRadical(ideal I, list #) |
---|
30 | "USAGE: zeroRadical(I,[n]); I ideal, optional: n number of processors (for |
---|
31 | parallel computing) |
---|
32 | ASSUME: I is zero-dimensional in Q[variables] |
---|
33 | RETURN: the radical of I |
---|
34 | EXAMPLE: example zeroRadical; shows an example |
---|
35 | " |
---|
36 | { |
---|
37 | return(zeroR(modStd(I,#),#)); |
---|
38 | } |
---|
39 | example |
---|
40 | { "EXAMPLE:"; echo = 2; |
---|
41 | ring R = 0, (x,y), dp; |
---|
42 | ideal I = xy4-2xy2+x, x2-x, y4-2y2+1; |
---|
43 | zeroRadical(I); |
---|
44 | } |
---|
45 | |
---|
46 | //////////////////////////////////////////////////////////////////////////////// |
---|
47 | |
---|
48 | static proc zeroR(ideal I, list #) |
---|
49 | // compute the radical of I provided that I is zero-dimensional in Q[variables] |
---|
50 | // and a standard basis |
---|
51 | { |
---|
52 | attrib(I,"isSB",1); |
---|
53 | int i, k; |
---|
54 | int j = 1; |
---|
55 | int index = 1; |
---|
56 | int crit; |
---|
57 | |
---|
58 | list CO1, CO2, P; |
---|
59 | ideal G, F; |
---|
60 | bigint N; |
---|
61 | poly f; |
---|
62 | |
---|
63 | //--------------------- Initialize optional parameter ------------------------ |
---|
64 | if(size(#) > 0) |
---|
65 | { |
---|
66 | int n1 = #[1]; |
---|
67 | if(n1 >= 10) |
---|
68 | { |
---|
69 | int n2 = n1 + 1; |
---|
70 | int n3 = n1; |
---|
71 | } |
---|
72 | else |
---|
73 | { |
---|
74 | int n2 = 10; |
---|
75 | int n3 = 10; |
---|
76 | } |
---|
77 | } |
---|
78 | else |
---|
79 | { |
---|
80 | int n1 = 1; |
---|
81 | int n2 = 10; |
---|
82 | int n3 = 10; |
---|
83 | } |
---|
84 | |
---|
85 | //-------------------- Initialize the list of primes ------------------------- |
---|
86 | intvec L = primeList(I,n2); |
---|
87 | L[5] = prime(random(100000000,536870912)); |
---|
88 | |
---|
89 | if(n1 > 1) |
---|
90 | { |
---|
91 | |
---|
92 | //----- Create n links l(1),...,l(n1), open all of them and compute ---------- |
---|
93 | //----- polynomial F for the primes L[2],...,L[n1 + 1]. ---------- |
---|
94 | |
---|
95 | for(i = 1; i <= n1; i++) |
---|
96 | { |
---|
97 | //link l(i) = "MPtcp:fork"; |
---|
98 | link l(i) = "ssi:fork"; |
---|
99 | open(l(i)); |
---|
100 | write(l(i), quote(zeroRadP(eval(I), eval(L[i + 1])))); |
---|
101 | } |
---|
102 | |
---|
103 | int t = timer; |
---|
104 | P = zeroRadP(I, L[1]); |
---|
105 | t = timer - t; |
---|
106 | if(t > 60) { t = 60; } |
---|
107 | int i_sleep = system("sh", "sleep "+string(t)); |
---|
108 | CO1[index] = P[1]; |
---|
109 | CO2[index] = bigint(P[2]); |
---|
110 | index++; |
---|
111 | |
---|
112 | j = j + n1 + 1; |
---|
113 | } |
---|
114 | |
---|
115 | //--------- Main computations in positive characteristic start here ---------- |
---|
116 | |
---|
117 | while(!crit) |
---|
118 | { |
---|
119 | if(n1 > 1) |
---|
120 | { |
---|
121 | while(j <= size(L) + 1) |
---|
122 | { |
---|
123 | for(i = 1; i <= n1; i++) |
---|
124 | { |
---|
125 | if(status(l(i), "read", "ready")) |
---|
126 | { |
---|
127 | //--- read the result from l(i) --- |
---|
128 | P = read(l(i)); |
---|
129 | CO1[index] = P[1]; |
---|
130 | CO2[index] = bigint(P[2]); |
---|
131 | index++; |
---|
132 | |
---|
133 | if(j <= size(L)) |
---|
134 | { |
---|
135 | write(l(i), quote(zeroRadP(eval(I), eval(L[j])))); |
---|
136 | j++; |
---|
137 | } |
---|
138 | else |
---|
139 | { |
---|
140 | k++; |
---|
141 | close(l(i)); |
---|
142 | } |
---|
143 | } |
---|
144 | } |
---|
145 | //--- k describes the number of closed links --- |
---|
146 | if(k == n1) |
---|
147 | { |
---|
148 | j++; |
---|
149 | } |
---|
150 | //--- sleep for t seconds --- |
---|
151 | i_sleep = system("sh", "sleep "+string(t)); |
---|
152 | } |
---|
153 | } |
---|
154 | else |
---|
155 | { |
---|
156 | while(j <= size(L)) |
---|
157 | { |
---|
158 | P = zeroRadP(I, L[j]); |
---|
159 | CO1[index] = P[1]; |
---|
160 | CO2[index] = bigint(P[2]); |
---|
161 | index++; |
---|
162 | j++; |
---|
163 | } |
---|
164 | } |
---|
165 | |
---|
166 | // insert deleteUnluckyPrimes |
---|
167 | G = chinrem(CO1,CO2); |
---|
168 | N = CO2[1]; |
---|
169 | for(i = 2; i <= size(CO2); i++){ N = N*CO2[i]; } |
---|
170 | F = farey(G,N); |
---|
171 | |
---|
172 | crit = 1; |
---|
173 | for(i = 1; i <= nvars(basering); i++) |
---|
174 | { |
---|
175 | if(reduce(F[i],I) != 0) { crit = 0; break; } |
---|
176 | } |
---|
177 | |
---|
178 | if(!crit) |
---|
179 | { |
---|
180 | CO1 = G; |
---|
181 | CO2 = N; |
---|
182 | index = 2; |
---|
183 | |
---|
184 | j = size(L) + 1; |
---|
185 | L = primeList(I,n3,L); |
---|
186 | |
---|
187 | if(n1 > 1) |
---|
188 | { |
---|
189 | for(i = 1; i <= n1; i++) |
---|
190 | { |
---|
191 | open(l(i)); |
---|
192 | write(l(i), quote(zeroRadP(eval(I), eval(L[j+i-1])))); |
---|
193 | } |
---|
194 | j = j + n1; |
---|
195 | k = 0; |
---|
196 | } |
---|
197 | } |
---|
198 | } |
---|
199 | |
---|
200 | k = 0; |
---|
201 | for(i = 1; i <= nvars(basering); i++) |
---|
202 | { |
---|
203 | f = gcd(F[i],diff(F[i],var(i))); |
---|
204 | k = k + deg(f); |
---|
205 | F[i] = F[i]/f; |
---|
206 | } |
---|
207 | |
---|
208 | if(k == 0) { return(I); } |
---|
209 | else { return(modStd(I + F, n1)); } |
---|
210 | } |
---|
211 | |
---|
212 | //////////////////////////////////////////////////////////////////////////////// |
---|
213 | |
---|
214 | proc assPrimes(list #) |
---|
215 | "USAGE: assPrimes(I,[n],[a]); I ideal or module, |
---|
216 | optional: int n: number of processors (for parallel computing), int a: |
---|
217 | - a = 1: method of Eisenbud/Hunecke/Vasconcelos |
---|
218 | - a = 2: method of Gianni/Trager/Zacharias |
---|
219 | - a = 3: method of Monico |
---|
220 | assPrimes(I) chooses n = a = 1 |
---|
221 | ASSUME: I is zero-dimensional over Q[variables] |
---|
222 | RETURN: a list Re of associated primes of I: |
---|
223 | EXAMPLE: example assPrimes; shows an example |
---|
224 | " |
---|
225 | { |
---|
226 | ideal I; |
---|
227 | if(typeof(#[1]) == "ideal") |
---|
228 | { |
---|
229 | I = #[1]; |
---|
230 | } |
---|
231 | else |
---|
232 | { |
---|
233 | module M = #[1]; |
---|
234 | I = Ann(M); |
---|
235 | } |
---|
236 | |
---|
237 | //--------------------- Initialize optional parameter ------------------------ |
---|
238 | if(size(#) > 1) |
---|
239 | { |
---|
240 | if(size(#) == 2) |
---|
241 | { |
---|
242 | int n1 = #[2]; |
---|
243 | int alg = 1; |
---|
244 | if(n1 >= 10) |
---|
245 | { |
---|
246 | int n2 = n1 + 1; |
---|
247 | int n3 = n1; |
---|
248 | } |
---|
249 | else |
---|
250 | { |
---|
251 | int n2 = 10; |
---|
252 | int n3 = 10; |
---|
253 | } |
---|
254 | } |
---|
255 | if(size(#) == 3) |
---|
256 | { |
---|
257 | int n1 = #[2]; |
---|
258 | int alg = #[3]; |
---|
259 | if(n1 >= 10) |
---|
260 | { |
---|
261 | int n2 = n1 + 1; |
---|
262 | int n3 = n1; |
---|
263 | } |
---|
264 | else |
---|
265 | { |
---|
266 | int n2 = 10; |
---|
267 | int n3 = 10; |
---|
268 | } |
---|
269 | } |
---|
270 | } |
---|
271 | else |
---|
272 | { |
---|
273 | int n1 = 1; |
---|
274 | int alg = 1; |
---|
275 | int n2 = 10; |
---|
276 | int n3 = 10; |
---|
277 | } |
---|
278 | |
---|
279 | if(printlevel >= 10) |
---|
280 | { |
---|
281 | "n1 = "+string(n1)+", n2 = "+string(n2)+", n3 = "+string(n3); |
---|
282 | } |
---|
283 | |
---|
284 | int T = timer; |
---|
285 | int RT = rtimer; |
---|
286 | int TT; |
---|
287 | int t_sleep; |
---|
288 | |
---|
289 | def SPR = basering; |
---|
290 | map phi; |
---|
291 | list H = ideal(0); |
---|
292 | ideal F; |
---|
293 | poly F1; |
---|
294 | |
---|
295 | if(printlevel >= 10) { "========== Start modStd =========="; } |
---|
296 | I = modStd(I); |
---|
297 | if(printlevel >= 10) { "=========== End modStd ==========="; } |
---|
298 | if(printlevel >= 9) { "modStd takes "+string(rtimer-RT)+" seconds."; } |
---|
299 | int d = vdim(I); |
---|
300 | if(d == -1) { ERROR("Ideal is not zero-dimensional."); } |
---|
301 | if(homog(I) == 1) { return(list(maxideal(1))); } |
---|
302 | poly f = findGen(I); |
---|
303 | if(printlevel >= 9) { "Coordinate change: "+string(f); } |
---|
304 | |
---|
305 | if(size(f) == nvars(SPR)) |
---|
306 | { |
---|
307 | TT = timer; |
---|
308 | int spT = pTestRad(d,f,I); |
---|
309 | if(printlevel >= 9) |
---|
310 | { |
---|
311 | "pTestRad(d,f,I) = "+string(spT)+" and takes " |
---|
312 | +string(timer-TT)+" seconds."; |
---|
313 | } |
---|
314 | if(!spT) |
---|
315 | { |
---|
316 | if(typeof(attrib(#[1],"isRad")) == "int") |
---|
317 | { |
---|
318 | if(attrib(#[1],"isRad") == 0) |
---|
319 | { |
---|
320 | TT = timer; |
---|
321 | I = zeroR(I,n1); |
---|
322 | if(printlevel >= 9) |
---|
323 | { |
---|
324 | "zeroR(I,n1) takes "+string(timer-TT)+" seconds."; |
---|
325 | } |
---|
326 | TT = timer; |
---|
327 | I = modStd(I); |
---|
328 | if(printlevel >= 9) |
---|
329 | { |
---|
330 | "modStd(I) takes "+string(timer-TT)+" seconds."; |
---|
331 | } |
---|
332 | d = vdim(I); |
---|
333 | f = findGen(I); |
---|
334 | } |
---|
335 | } |
---|
336 | else |
---|
337 | { |
---|
338 | TT = timer; |
---|
339 | I = zeroR(I,n1); |
---|
340 | if(printlevel >= 9) |
---|
341 | { |
---|
342 | "zeroR(I,n1) takes "+string(timer-TT)+" seconds."; |
---|
343 | } |
---|
344 | TT = timer; |
---|
345 | I = modStd(I); |
---|
346 | if(printlevel >= 9) |
---|
347 | { |
---|
348 | "modStd(I) takes "+string(timer-TT)+" seconds."; |
---|
349 | } |
---|
350 | d = vdim(I); |
---|
351 | f = findGen(I); |
---|
352 | } |
---|
353 | } |
---|
354 | } |
---|
355 | if(printlevel >= 9) |
---|
356 | { |
---|
357 | "Real-time for radical-check is "+string(rtimer - RT)+" seconds."; |
---|
358 | "CPU-time for radical-check is "+string(timer - T)+" seconds."; |
---|
359 | } |
---|
360 | |
---|
361 | export(SPR); |
---|
362 | poly f_for_fork = f; |
---|
363 | export(f_for_fork); // f available for each link |
---|
364 | ideal I_for_fork = I; |
---|
365 | export(I_for_fork); // I available for each link |
---|
366 | |
---|
367 | //-------------------- Initialize the list of primes ------------------------- |
---|
368 | intvec L = primeList(I,n2); |
---|
369 | L[5] = prime(random(1000000000,2134567879)); |
---|
370 | |
---|
371 | list Re; |
---|
372 | |
---|
373 | ring rHelp = 0,T,dp; |
---|
374 | list CO1,CO2,P,H; |
---|
375 | ideal F,G,testF; |
---|
376 | bigint N; |
---|
377 | |
---|
378 | list ringL = ringlist(SPR); |
---|
379 | int i,k,e,int_break,s; |
---|
380 | int j = 1; |
---|
381 | int index = 1; |
---|
382 | |
---|
383 | //----- If there is more than one processor available, we parallelize the ---- |
---|
384 | //----- main standard basis computations in positive characteristic ---- |
---|
385 | |
---|
386 | if(n1 > 1) |
---|
387 | { |
---|
388 | |
---|
389 | //----- Create n1 links l(1),...,l(n1), open all of them and compute --------- |
---|
390 | //----- standard basis for the primes L[2],...,L[n1 + 1]. --------- |
---|
391 | |
---|
392 | for(i = 1; i <= n1; i++) |
---|
393 | { |
---|
394 | //link l(i) = "MPtcp:fork"; |
---|
395 | link l(i) = "ssi:fork"; |
---|
396 | open(l(i)); |
---|
397 | write(l(i), quote(modpSpecialAlgDep(eval(ringL), eval(L[i + 1]), |
---|
398 | eval(alg)))); |
---|
399 | } |
---|
400 | |
---|
401 | int t = timer; |
---|
402 | P = modpSpecialAlgDep(ringL, L[1], alg); |
---|
403 | t = timer - t; |
---|
404 | if(t > 60) { t = 60; } |
---|
405 | int i_sleep = system("sh", "sleep "+string(t)); |
---|
406 | CO1[index] = P[1]; |
---|
407 | CO2[index] = bigint(P[2]); |
---|
408 | index++; |
---|
409 | |
---|
410 | j = j + n1 + 1; |
---|
411 | } |
---|
412 | |
---|
413 | //--------- Main computations in positive characteristic start here ---------- |
---|
414 | |
---|
415 | int tt = timer; |
---|
416 | int rt = rtimer; |
---|
417 | |
---|
418 | while(1) |
---|
419 | { |
---|
420 | tt = timer; |
---|
421 | rt = rtimer; |
---|
422 | |
---|
423 | if(printlevel >= 9) { "size(L) = "+string(size(L)); } |
---|
424 | |
---|
425 | if(n1 > 1) |
---|
426 | { |
---|
427 | while(j <= size(L) + 1) |
---|
428 | { |
---|
429 | for(i = 1; i <= n1; i++) |
---|
430 | { |
---|
431 | //--- ask if link l(i) is ready otherwise sleep for t seconds --- |
---|
432 | if(status(l(i), "read", "ready")) |
---|
433 | { |
---|
434 | //--- read the result from l(i) --- |
---|
435 | P = read(l(i)); |
---|
436 | CO1[index] = P[1]; |
---|
437 | CO2[index] = bigint(P[2]); |
---|
438 | index++; |
---|
439 | |
---|
440 | if(j <= size(L)) |
---|
441 | { |
---|
442 | write(l(i), quote(modpSpecialAlgDep(eval(ringL), |
---|
443 | eval(L[j]), |
---|
444 | eval(alg)))); |
---|
445 | j++; |
---|
446 | } |
---|
447 | else |
---|
448 | { |
---|
449 | k++; |
---|
450 | close(l(i)); |
---|
451 | } |
---|
452 | } |
---|
453 | } |
---|
454 | //--- k describes the number of closed links --- |
---|
455 | if(k == n1) |
---|
456 | { |
---|
457 | j++; |
---|
458 | } |
---|
459 | i_sleep = system("sh", "sleep "+string(t)); |
---|
460 | } |
---|
461 | } |
---|
462 | else |
---|
463 | { |
---|
464 | while(j <= size(L)) |
---|
465 | { |
---|
466 | P = modpSpecialAlgDep(ringL, L[j], alg); |
---|
467 | CO1[index] = P[1]; |
---|
468 | CO2[index] = bigint(P[2]); |
---|
469 | index++; |
---|
470 | j++; |
---|
471 | } |
---|
472 | } |
---|
473 | |
---|
474 | if(printlevel >= 9) |
---|
475 | { |
---|
476 | "Real-time for computing list in assPrimes is "+string(rtimer - rt)+ |
---|
477 | " seconds."; |
---|
478 | "CPU-time for computing list in assPrimes is "+string(timer - tt)+ |
---|
479 | " seconds."; |
---|
480 | } |
---|
481 | |
---|
482 | //------------------- Lift results to basering via farey ---------------------- |
---|
483 | |
---|
484 | tt = timer; |
---|
485 | G = chinrem(CO1,CO2); |
---|
486 | N = CO2[1]; |
---|
487 | for(j = 2; j <= size(CO2); j++){ N = N*CO2[j]; } |
---|
488 | F = farey(G,N); |
---|
489 | if(printlevel >= 10) { "Lifting-process takes "+string(timer - tt) |
---|
490 | +" seconds"; } |
---|
491 | |
---|
492 | if(pTestPoly(F[1], ringL, alg, L)) |
---|
493 | { |
---|
494 | F = cleardenom(F[1]); |
---|
495 | |
---|
496 | e = deg(F[1]); |
---|
497 | if(e == d) |
---|
498 | { |
---|
499 | H = factorize(F[1]); |
---|
500 | |
---|
501 | s = size(H[1]); |
---|
502 | for(i = 1; i <= s; i++) |
---|
503 | { |
---|
504 | if(H[2][i] != 1) |
---|
505 | { |
---|
506 | int_break = 1; |
---|
507 | } |
---|
508 | } |
---|
509 | |
---|
510 | if(int_break == 0) |
---|
511 | { |
---|
512 | setring SPR; |
---|
513 | phi = rHelp,var(nvars(SPR)); |
---|
514 | H = phi(H); |
---|
515 | |
---|
516 | if(printlevel >= 9) |
---|
517 | { |
---|
518 | "Real-time without test is "+string(rtimer - RT)+" seconds."; |
---|
519 | "CPU-time without test is "+string(timer - T)+" seconds."; |
---|
520 | } |
---|
521 | |
---|
522 | T = timer; |
---|
523 | RT = rtimer; |
---|
524 | |
---|
525 | F = phi(F); |
---|
526 | |
---|
527 | if(n1 > 1) |
---|
528 | { |
---|
529 | open(l(1)); |
---|
530 | write(l(1), quote(quickSubst(eval(F[1]), eval(f), eval(I)))); |
---|
531 | t_sleep = timer; |
---|
532 | } |
---|
533 | else |
---|
534 | { |
---|
535 | F1 = quickSubst(F[1],f,I); |
---|
536 | if(F1 != 0) { int_break = 1; } |
---|
537 | } |
---|
538 | |
---|
539 | if(int_break == 0) |
---|
540 | { |
---|
541 | for(i = 2; i <= s; i++) |
---|
542 | { |
---|
543 | H[1][i] = quickSubst(H[1][i],f,I); |
---|
544 | Re[i-1] = I + ideal(H[1][i]); |
---|
545 | } |
---|
546 | |
---|
547 | if(n1 > 1) |
---|
548 | { |
---|
549 | t_sleep = timer - t_sleep; |
---|
550 | if(t_sleep > 5) { t_sleep = 5; } |
---|
551 | |
---|
552 | while(1) |
---|
553 | { |
---|
554 | if(status(l(1), "read", "ready")) |
---|
555 | { |
---|
556 | F1 = read(l(1)); |
---|
557 | close(l(1)); |
---|
558 | break; |
---|
559 | } |
---|
560 | i_sleep = system("sh", "sleep "+string(t_sleep)); |
---|
561 | } |
---|
562 | if(F1 != 0) { int_break = 1; } |
---|
563 | } |
---|
564 | if(printlevel >= 9) |
---|
565 | { |
---|
566 | "Real-time for test is "+string(rtimer - RT)+" seconds."; |
---|
567 | "CPU-time for test is "+string(timer - T)+" seconds."; |
---|
568 | } |
---|
569 | if(int_break == 0) |
---|
570 | { |
---|
571 | kill f_for_fork; |
---|
572 | kill I_for_fork; |
---|
573 | kill SPR; |
---|
574 | return(Re); |
---|
575 | } |
---|
576 | } |
---|
577 | } |
---|
578 | } |
---|
579 | } |
---|
580 | |
---|
581 | int_break = 0; |
---|
582 | setring rHelp; |
---|
583 | testF = F; |
---|
584 | CO1 = G; |
---|
585 | CO2 = N; |
---|
586 | index = 2; |
---|
587 | |
---|
588 | j = size(L) + 1; |
---|
589 | |
---|
590 | setring SPR; |
---|
591 | L = primeList(I,n3,L); |
---|
592 | setring rHelp; |
---|
593 | |
---|
594 | if(n1 > 1) |
---|
595 | { |
---|
596 | for(i = 1; i <= n1; i++) |
---|
597 | { |
---|
598 | open(l(i)); |
---|
599 | write(l(i), quote(modpSpecialAlgDep(eval(ringL), eval(L[j+i-1]), |
---|
600 | eval(alg)))); |
---|
601 | } |
---|
602 | j = j + n1; |
---|
603 | k = 0; |
---|
604 | } |
---|
605 | } |
---|
606 | } |
---|
607 | example |
---|
608 | { "EXAMPLE:"; echo = 2; |
---|
609 | ring R = 0,(a,b,c,d,e,f),dp; |
---|
610 | ideal I = |
---|
611 | 2fb+2ec+d2+a2+a, |
---|
612 | 2fc+2ed+2ba+b, |
---|
613 | 2fd+e2+2ca+c+b2, |
---|
614 | 2fe+2da+d+2cb, |
---|
615 | f2+2ea+e+2db+c2, |
---|
616 | 2fa+f+2eb+2dc; |
---|
617 | assPrimes(I); |
---|
618 | } |
---|
619 | |
---|
620 | //////////////////////////////////////////////////////////////////////////////// |
---|
621 | |
---|
622 | static proc specialAlgDepEHV(poly p, ideal I) |
---|
623 | { |
---|
624 | //=== computes a poly F in Q[T] such that <F>=kernel(Q[T]--->basering) |
---|
625 | //=== mapping T to p |
---|
626 | def R = basering; |
---|
627 | execute("ring Rhelp="+charstr(R)+",T,dp;"); |
---|
628 | setring R; |
---|
629 | map phi = Rhelp,p; |
---|
630 | setring Rhelp; |
---|
631 | ideal F = preimage(R,phi,I); //corresponds to std(I,p-T) in dp(n),dp(1) |
---|
632 | export(F); |
---|
633 | setring R; |
---|
634 | list L = Rhelp; |
---|
635 | return(L); |
---|
636 | } |
---|
637 | |
---|
638 | //////////////////////////////////////////////////////////////////////////////// |
---|
639 | |
---|
640 | static proc specialAlgDepGTZ(poly p, ideal I) |
---|
641 | { |
---|
642 | //=== assume I is zero-dimensional |
---|
643 | //=== computes a poly F in Q[T] such that <F>=kernel(Q[T]--->basering) |
---|
644 | //=== mapping T to p |
---|
645 | def R = basering; |
---|
646 | execute("ring Rhelp = "+charstr(R)+",T,dp;"); |
---|
647 | setring R; |
---|
648 | map phi = Rhelp,p; |
---|
649 | def Rlp = changeord(list(list("dp",1:(nvars(R)-1)),list("dp",1:1))); |
---|
650 | setring Rlp; |
---|
651 | poly p = imap(R,p); |
---|
652 | ideal K = maxideal(1); |
---|
653 | K[nvars(R)] = 2*var(nvars(R))-p; |
---|
654 | map phi = R,K; |
---|
655 | ideal I = phi(I); |
---|
656 | I = std(I); |
---|
657 | poly q = subst(I[1],var(nvars(R)),var(1)); |
---|
658 | setring Rhelp; |
---|
659 | map psi=Rlp,T; |
---|
660 | ideal F=psi(q); |
---|
661 | export(F); |
---|
662 | setring R; |
---|
663 | list L=Rhelp; |
---|
664 | return(L); |
---|
665 | } |
---|
666 | |
---|
667 | //////////////////////////////////////////////////////////////////////////////// |
---|
668 | |
---|
669 | static proc specialAlgDepMonico(poly p, ideal I) |
---|
670 | { |
---|
671 | //=== assume I is zero-dimensional |
---|
672 | //=== computes a poly F in Q[T], the characteristic polynomial of the map |
---|
673 | //=== basering/I ---> baserng/I defined by the multiplication with p |
---|
674 | //=== in case I is radical it is the same poly as in specialAlgDepEHV |
---|
675 | def R = basering; |
---|
676 | execute("ring Rhelp = "+charstr(R)+",T,dp;"); |
---|
677 | setring R; |
---|
678 | map phi = Rhelp,p; |
---|
679 | poly q; |
---|
680 | int j; |
---|
681 | matrix m ; |
---|
682 | poly va = var(1); |
---|
683 | ideal J = std(I); |
---|
684 | ideal ba = kbase(J); |
---|
685 | int d = vdim(J); |
---|
686 | matrix n[d][d]; |
---|
687 | for(j = 2; j <= nvars(R); j++) |
---|
688 | { |
---|
689 | va = va*var(j); |
---|
690 | } |
---|
691 | for(j = 1; j <= d; j++) |
---|
692 | { |
---|
693 | q = reduce(p*ba[j],J); |
---|
694 | m = coeffs(q,ba,va); |
---|
695 | n[j,1..d] = m[1..d,1]; |
---|
696 | } |
---|
697 | setring Rhelp; |
---|
698 | matrix n = imap(R,n); |
---|
699 | ideal F = det(n-T*freemodule(d)); |
---|
700 | export(F); |
---|
701 | setring R; |
---|
702 | list L = Rhelp; |
---|
703 | return(L); |
---|
704 | } |
---|
705 | |
---|
706 | //////////////////////////////////////////////////////////////////////////////// |
---|
707 | |
---|
708 | static proc specialTest(int d, poly p, ideal I) |
---|
709 | { |
---|
710 | //=== computes a poly F in Q[T] such that <F>=kernel(Q[T]--->basering) |
---|
711 | //=== mapping T to p and test if d=deg(F) |
---|
712 | def R = basering; |
---|
713 | execute("ring Rhelp="+charstr(R)+",T,dp;"); |
---|
714 | setring R; |
---|
715 | map phi = Rhelp,p; |
---|
716 | setring Rhelp; |
---|
717 | ideal F = preimage(R,phi,I); |
---|
718 | int e=deg(F[1]); |
---|
719 | setring R; |
---|
720 | return((e==d)); |
---|
721 | } |
---|
722 | |
---|
723 | //////////////////////////////////////////////////////////////////////////////// |
---|
724 | |
---|
725 | static proc findGen(ideal J, list #) |
---|
726 | { |
---|
727 | //=== try to find a sparse linear form r such that |
---|
728 | //=== vector space dim(basering/J)=deg(F), |
---|
729 | //=== F a poly in Q[T] such that <F>=kernel(Q[T]--->basering) mapping T to r |
---|
730 | //=== if not found returns a generic (randomly chosen) r |
---|
731 | int d = vdim(J); |
---|
732 | def R = basering; |
---|
733 | int n = nvars(R); |
---|
734 | list rl = ringlist(R); |
---|
735 | if(size(#) > 0) { int p = #[1]; } |
---|
736 | else { int p = prime(random(1000000000,2134567879)); } |
---|
737 | rl[1] = p; |
---|
738 | def @R = ring(rl); |
---|
739 | setring @R; |
---|
740 | ideal J = imap(R,J); |
---|
741 | poly r = var(n); |
---|
742 | int i,k; |
---|
743 | k = specialTest(d,r,J); |
---|
744 | if(!k) |
---|
745 | { |
---|
746 | for(i = 1; i < n; i++) |
---|
747 | { |
---|
748 | k = specialTest(d,r+var(i),J); |
---|
749 | if(k){ r = r + var(i); break; } |
---|
750 | } |
---|
751 | } |
---|
752 | if((!k) && (n > 2)) |
---|
753 | { |
---|
754 | for(i = 1; i < n; i++) |
---|
755 | { |
---|
756 | r = r + var(i); |
---|
757 | k = specialTest(d,r,J); |
---|
758 | if(k){ break; } |
---|
759 | } |
---|
760 | } |
---|
761 | setring R; |
---|
762 | poly r = randomLast(100)[nvars(R)]; |
---|
763 | if(k){ r = imap(@R,r); } |
---|
764 | return(r); |
---|
765 | } |
---|
766 | |
---|
767 | //////////////////////////////////////////////////////////////////////////////// |
---|
768 | |
---|
769 | static proc pTestRad(int d, poly p1, ideal I) |
---|
770 | { |
---|
771 | //=== computes a poly F in Z/q1[T] such that |
---|
772 | //=== <F> = kernel(Z/q1[T]--->Z/q1[vars(basering)]) |
---|
773 | //=== mapping T to p1 and test if d=deg(squarefreepart(F)), q1 a prime randomly |
---|
774 | //=== chosen |
---|
775 | //=== If not choose randomly another prime q2 and another linear form p2 and |
---|
776 | //=== computes a poly F in Z/q2[T] such that |
---|
777 | //=== <F> = kernel(Z/q2[T]--->Z/q2[vars(basering)]) |
---|
778 | //=== mapping T to p2 and test if d=deg(squarefreepart(F)) |
---|
779 | //=== if the test is positive then I is radical |
---|
780 | def R = basering; |
---|
781 | list rl = ringlist(R); |
---|
782 | int q1 = prime(random(100000000,536870912)); |
---|
783 | rl[1] = q1; |
---|
784 | ring Shelp1 = q1,T,dp; |
---|
785 | setring R; |
---|
786 | def Rhelp1 = ring(rl); |
---|
787 | setring Rhelp1; |
---|
788 | poly p1 = imap(R,p1); |
---|
789 | ideal I = imap(R,I); |
---|
790 | map phi = Shelp1,p1; |
---|
791 | setring Shelp1; |
---|
792 | ideal F = preimage(Rhelp1,phi,I); |
---|
793 | poly f = gcd(F[1],diff(F[1],var(1))); |
---|
794 | int e = deg(F[1]/f); |
---|
795 | setring R; |
---|
796 | if(e != d) |
---|
797 | { |
---|
798 | poly p2 = findGen(I,q1); |
---|
799 | setring Rhelp1; |
---|
800 | poly p2 = imap(R,p2); |
---|
801 | phi = Shelp1,p2; |
---|
802 | setring Shelp1; |
---|
803 | F = preimage(Rhelp1,phi,I); |
---|
804 | f = gcd(F[1],diff(F[1],var(1))); |
---|
805 | e = deg(F[1]/f); |
---|
806 | setring R; |
---|
807 | if(e == d){ return(1); } |
---|
808 | if(e != d) |
---|
809 | { |
---|
810 | int q2 = prime(random(100000000,536870912)); |
---|
811 | rl[1] = q2; |
---|
812 | ring Shelp2 = q2,T,dp; |
---|
813 | setring R; |
---|
814 | def Rhelp2 = ring(rl); |
---|
815 | setring Rhelp2; |
---|
816 | poly p1 = imap(R,p1); |
---|
817 | ideal I = imap(R,I); |
---|
818 | map phi = Shelp2,p1; |
---|
819 | setring Shelp2; |
---|
820 | ideal F = preimage(Rhelp2,phi,I); |
---|
821 | poly f = gcd(F[1],diff(F[1],var(1))); |
---|
822 | e = deg(F[1]/f); |
---|
823 | setring R; |
---|
824 | if(e == d){ return(1); } |
---|
825 | } |
---|
826 | } |
---|
827 | return((e==d)); |
---|
828 | } |
---|
829 | |
---|
830 | //////////////////////////////////////////////////////////////////////////////// |
---|
831 | |
---|
832 | static proc zeroRadP(ideal I, int p) |
---|
833 | { |
---|
834 | //=== computes F=(F_1,...,F_n) such that <F_i>=IZ/p[x_1,...,x_n] intersected |
---|
835 | //=== with Z/p[x_i], F_i monic |
---|
836 | def R0 = basering; |
---|
837 | list ringL = ringlist(R0); |
---|
838 | ringL[1] = p; |
---|
839 | def @r = ring(ringL); |
---|
840 | setring @r; |
---|
841 | ideal I = fetch(R0,I); |
---|
842 | option(redSB); |
---|
843 | I = std(I); |
---|
844 | ideal F = finduni(I); //F[i] generates I intersected with K[var(i)] |
---|
845 | int i; |
---|
846 | for(i = 1; i <= size(F); i++){ F[i] = simplify(F[i],1); } |
---|
847 | setring R0; |
---|
848 | return(list(fetch(@r,F),p)); |
---|
849 | } |
---|
850 | |
---|
851 | //////////////////////////////////////////////////////////////////////////////// |
---|
852 | |
---|
853 | static proc quickSubst(poly h, poly r, ideal I) |
---|
854 | { |
---|
855 | //=== assume h is in Q[x_n], r is in Q[x_1,...,x_n], computes h(r) mod I |
---|
856 | attrib(I,"isSB",1); |
---|
857 | int n = nvars(basering); |
---|
858 | poly q = 1; |
---|
859 | int i,j,d; |
---|
860 | intvec v; |
---|
861 | list L; |
---|
862 | for(i = 1; i <= size(h); i++) |
---|
863 | { |
---|
864 | L[i] = list(leadcoef(h[i]),leadexp(h[i])[n]); |
---|
865 | } |
---|
866 | d = L[1][2]; |
---|
867 | i = 0; |
---|
868 | h = 0; |
---|
869 | |
---|
870 | while(i <= d) |
---|
871 | { |
---|
872 | if(L[size(L)-j][2] == i) |
---|
873 | { |
---|
874 | h = reduce(h+L[size(L)-j][1]*q,I); |
---|
875 | j++; |
---|
876 | } |
---|
877 | q = reduce(q*r,I); |
---|
878 | i++; |
---|
879 | } |
---|
880 | return(h); |
---|
881 | } |
---|
882 | |
---|
883 | //////////////////////////////////////////////////////////////////////////////// |
---|
884 | |
---|
885 | static proc modpSpecialAlgDep(list ringL, int p, list #) |
---|
886 | { |
---|
887 | //=== prepare parallel computing |
---|
888 | //=== #=1: method of Eisenbud/Hunecke/Vasconcelos |
---|
889 | //=== #=2: method of Gianni/Trager/Zacharias |
---|
890 | //=== #=3: method of Monico |
---|
891 | |
---|
892 | def R0 = basering; |
---|
893 | |
---|
894 | ringL[1] = p; |
---|
895 | def @r = ring(ringL); |
---|
896 | setring @r; |
---|
897 | poly f = fetch(SPR,f_for_fork); |
---|
898 | ideal I = fetch(SPR,I_for_fork); |
---|
899 | if(size(#) > 0) |
---|
900 | { |
---|
901 | if(#[1] == 1) { list M = specialAlgDepEHV(f,I); } |
---|
902 | if(#[1] == 2) { list M = specialAlgDepGTZ(f,I); } |
---|
903 | if(#[1] == 3) { list M = specialAlgDepMonico(f,I); } |
---|
904 | } |
---|
905 | else |
---|
906 | { |
---|
907 | list M = specialAlgDepEHV(f,I); |
---|
908 | } |
---|
909 | def @S = M[1]; |
---|
910 | |
---|
911 | setring R0; |
---|
912 | return(list(imap(@S,F),p)); |
---|
913 | } |
---|
914 | |
---|
915 | //////////////////////////////////////////////////////////////////////////////// |
---|
916 | |
---|
917 | static proc pTestPoly(poly testF, list ringL, int alg, list L) |
---|
918 | { |
---|
919 | int i,j,p; |
---|
920 | def R0 = basering; |
---|
921 | |
---|
922 | while(!i) |
---|
923 | { |
---|
924 | i = 1; |
---|
925 | p = prime(random(1000000000,2134567879)); |
---|
926 | for(j = 1; j <= size(L); j++) |
---|
927 | { |
---|
928 | if(p == L[j]) { i = 0; break; } |
---|
929 | } |
---|
930 | } |
---|
931 | |
---|
932 | ringL[1] = p; |
---|
933 | def @R = ring(ringL); |
---|
934 | setring @R; |
---|
935 | poly f = fetch(SPR,f_for_fork); |
---|
936 | ideal I = fetch(SPR,I_for_fork); |
---|
937 | if(alg == 1) { list M = specialAlgDepEHV(f,I); } |
---|
938 | if(alg == 2) { list M = specialAlgDepGTZ(f,I); } |
---|
939 | if(alg == 3) { list M = specialAlgDepMonico(f,I); } |
---|
940 | def @S = M[1]; |
---|
941 | setring @S; |
---|
942 | poly testF = fetch(R0,testF); |
---|
943 | int k = (testF == F); |
---|
944 | |
---|
945 | setring R0; |
---|
946 | return(k); |
---|
947 | } |
---|
948 | |
---|
949 | //////////////////////////////////////////////////////////////////////////////// |
---|
950 | |
---|
951 | /* |
---|
952 | Examples: |
---|
953 | ========= |
---|
954 | |
---|
955 | //=== Test for zeroR |
---|
956 | ring R = 0,(x,y),dp; |
---|
957 | ideal I = xy4-2xy2+x, x2-x, y4-2y2+1; |
---|
958 | |
---|
959 | //=== Cyclic_6 |
---|
960 | ring R = 0,x(1..6),dp; |
---|
961 | ideal I = cyclic(6); |
---|
962 | |
---|
963 | //=== Amrhein |
---|
964 | ring R = 0,(a,b,c,d,e,f),dp; |
---|
965 | ideal I = 2fb+2ec+d2+a2+a, |
---|
966 | 2fc+2ed+2ba+b, |
---|
967 | 2fd+e2+2ca+c+b2, |
---|
968 | 2fe+2da+d+2cb, |
---|
969 | f2+2ea+e+2db+c2, |
---|
970 | 2fa+f+2eb+2dc; |
---|
971 | |
---|
972 | //=== Becker-Niermann |
---|
973 | ring R = 0,(x,y,z),dp; |
---|
974 | ideal I = x2+xy2z-2xy+y4+y2+z2, |
---|
975 | -x3y2+xy2z+xyz3-2xy+y4, |
---|
976 | -2x2y+xy4+yz4-3; |
---|
977 | |
---|
978 | //=== Roczen |
---|
979 | ring R = 0,(a,b,c,d,e,f,g,h,k,o),dp; |
---|
980 | ideal I = o+1, k4+k, hk, h4+h, gk, gh, g3+h3+k3+1, |
---|
981 | fk, f4+f, eh, ef, f3h3+e3k3+e3+f3+h3+k3+1, |
---|
982 | e3g+f3g+g, e4+e, dh3+dk3+d, dg, df, de, |
---|
983 | d3+e3+f3+1, e2g2+d2h2+c, f2g2+d2k2+b, |
---|
984 | f2h2+e2k2+a; |
---|
985 | |
---|
986 | //=== FourBodyProblem |
---|
987 | //=== 4 bodies with equal masses, before symmetrisation. |
---|
988 | //=== We are looking for the real positive solutions |
---|
989 | ring R = 0,(B,b,D,d,F,f),dp; |
---|
990 | ideal I = (b-d)*(B-D)-2*F+2, |
---|
991 | (b-d)*(B+D-2*F)+2*(B-D), |
---|
992 | (b-d)^2-2*(b+d)+f+1, |
---|
993 | B^2*b^3-1,D^2*d^3-1,F^2*f^3-1; |
---|
994 | |
---|
995 | //=== Reimer_5 |
---|
996 | ring R = 0,(x,y,z,t,u),dp; |
---|
997 | ideal I = 2x2-2y2+2z2-2t2+2u2-1, |
---|
998 | 2x3-2y3+2z3-2t3+2u3-1, |
---|
999 | 2x4-2y4+2z4-2t4+2u4-1, |
---|
1000 | 2x5-2y5+2z5-2t5+2u5-1, |
---|
1001 | 2x6-2y6+2z6-2t6+2u6-1; |
---|
1002 | |
---|
1003 | //=== ZeroDim.example_12 |
---|
1004 | ring R = 0, (x, y, z), lp; |
---|
1005 | ideal I = 7xy+x+3yz+4y+2z+10, |
---|
1006 | x3+x2y+3xyz+5xy+3x+2y3+6y2z+yz+1, |
---|
1007 | 3x4+2x2y2+3x2y+4x2z2+xyz+xz2+6y2z+5z4; |
---|
1008 | |
---|
1009 | //=== ZeroDim.example_27 |
---|
1010 | ring R = 0, (w, x, y, z), lp; |
---|
1011 | ideal I = -2w2+9wx+9wy-7wz-4w+8x2+9xy-3xz+8x+6y2-7yz+4y-6z2+8z+2, |
---|
1012 | 3w2-5wx-3wy-6wz+9w+4x2+2xy-2xz+7x+9y2+6yz+5y+7z2+7z+5, |
---|
1013 | 7w2+5wx+3wy-5wz-5w+2x2+9xy-7xz+4x-4y2-5yz+6y-4z2-9z+2, |
---|
1014 | 8w2+5wx-4wy+2wz+3w+5x2+2xy-7xz-7x+7y2-8yz-7y+7z2-8z+8; |
---|
1015 | |
---|
1016 | //=== Cassou_1 |
---|
1017 | ring R = 0, (b,c,d,e), dp; |
---|
1018 | ideal I = 6b4c3+21b4c2d+15b4cd2+9b4d3+36b4c2+84b4cd+30b4d2+72b4c+84b4d-8b2c2e |
---|
1019 | -28b2cde+36b2d2e+48b4-32b2ce-56b2de-144b2c-648b2d-32b2e-288b2-120, |
---|
1020 | 9b4c4+30b4c3d+39b4c2d2+18b4cd3+72b4c3+180b4c2d+156b4cd2+36b4d3+216b4c2 |
---|
1021 | +360b4cd+156b4d2-24b2c3e-16b2c2de+16b2cd2e+24b2d3e+288b4c+240b4d |
---|
1022 | -144b2c2e+32b2d2e+144b4-432b2c2-720b2cd-432b2d2-288b2ce+16c2e2-32cde2 |
---|
1023 | +16d2e2-1728b2c-1440b2d-192b2e+64ce2-64de2-1728b2+576ce-576de+64e2 |
---|
1024 | -240c+1152e+4704, |
---|
1025 | -15b2c3e+15b2c2de-90b2c2e+60b2cde-81b2c2+216b2cd-162b2d2-180b2ce |
---|
1026 | +60b2de+40c2e2-80cde2+40d2e2-324b2c+432b2d-120b2e+160ce2-160de2-324b2 |
---|
1027 | +1008ce-1008de+160e2+2016e+5184, |
---|
1028 | -4b2c2+4b2cd-3b2d2-16b2c+8b2d-16b2+22ce-22de+44e+261; |
---|
1029 | |
---|
1030 | ================================================================================ |
---|
1031 | |
---|
1032 | The following timings are conducted on an Intel Xeon X5460 with 4 CPUs, 3.16 GHz |
---|
1033 | each, 64 GB RAM under the Gentoo Linux operating system by using the 32-bit |
---|
1034 | version of Singular 3-1-1. |
---|
1035 | The results of the timinings are summarized in the following table where |
---|
1036 | assPrimes* denotes the parallelized version of the algorithm on 4 CPUs and |
---|
1037 | (1) approach of Eisenbud, Hunecke, Vasconcelos (cf. specialAlgDepEHV), |
---|
1038 | (2) approach of Gianni, Trager, Zacharias (cf. specialAlgDepGTZ), |
---|
1039 | (3) approach of Monico (cf. specialAlgDepMonico). |
---|
1040 | |
---|
1041 | Example | minAssGTZ | assPrimes assPrimes* |
---|
1042 | | | (1) (2) (3) (1) (2) (3) |
---|
1043 | -------------------------------------------------------------------- |
---|
1044 | Cyclic_6 | 5 | 5 10 7 4 7 6 |
---|
1045 | Amrhein | 1 | 3 3 5 1 2 21 |
---|
1046 | Becker-Niermann | - | 0 0 1 0 0 0 |
---|
1047 | Roczen | 0 | 3 2 0 2 4 1 |
---|
1048 | FourBodyProblem | - | 139 139 148 96 83 96 |
---|
1049 | Reimer_5 | - | 132 128 175 97 70 103 |
---|
1050 | ZeroDim.example_12 | 170 | 125 125 125 67 68 63 |
---|
1051 | ZeroDim.example_27 | 27 | 215 226 215 113 117 108 |
---|
1052 | Cassou_1 | 525 | 112 112 112 56 56 57 |
---|
1053 | |
---|
1054 | minAssGTZ (cf. primdec_lib) runs out of memory for Becker-Niermann, |
---|
1055 | FourBodyProblem and Reimer_5. |
---|
1056 | |
---|
1057 | ================================================================================ |
---|
1058 | |
---|
1059 | //=== One component at the origin |
---|
1060 | |
---|
1061 | ring R = 0, (x,y), dp; |
---|
1062 | poly f1 = (y5 + y4x7 + 2x8); |
---|
1063 | poly f2 = (y3 + 7x4); |
---|
1064 | poly f3 = (y7 + 2x12); |
---|
1065 | poly f = f1*f2*f3 + y19; |
---|
1066 | ideal I = f, diff(f, x), diff(f, y); |
---|
1067 | |
---|
1068 | ring R = 0, (x,y), dp; |
---|
1069 | poly f1 = (y5 + y4x7 + 2x8); |
---|
1070 | poly f2 = (y3 + 7x4); |
---|
1071 | poly f3 = (y7 + 2x12); |
---|
1072 | poly f4 = (y11 + 2x18); |
---|
1073 | poly f = f1*f2*f3*f4 + y30; |
---|
1074 | ideal I = f, diff(f, x), diff(f, y); |
---|
1075 | |
---|
1076 | ring R = 0, (x,y), dp; |
---|
1077 | poly f1 = (y15 + y14x7 + 2x18); |
---|
1078 | poly f2 = (y13 + 7x14); |
---|
1079 | poly f3 = (y17 + 2x22); |
---|
1080 | poly f = f1*f2*f3 + y49; |
---|
1081 | ideal I = f, diff(f, x), diff(f, y); |
---|
1082 | |
---|
1083 | ring R = 0, (x,y), dp; |
---|
1084 | poly f1 = (y15 + y14x20 + 2x38); |
---|
1085 | poly f2 = (y19 + 3y17x50 + 7x52); |
---|
1086 | poly f = f1*f2 + y36; |
---|
1087 | ideal I = f, diff(f, x), diff(f, y); |
---|
1088 | |
---|
1089 | //=== Several components |
---|
1090 | |
---|
1091 | ring R = 0, (x,y), dp; |
---|
1092 | poly f1 = (y5 + y4x7 + 2x8); |
---|
1093 | poly f2 = (y13 + 7x14); |
---|
1094 | poly f = f1*subst(f2, x, x-3, y, y+5); |
---|
1095 | ideal I = f, diff(f, x), diff(f, y); |
---|
1096 | |
---|
1097 | ring R = 0, (x,y), dp; |
---|
1098 | poly f1 = (y5 + y4x7 + 2x8); |
---|
1099 | poly f2 = (y3 + 7x4); |
---|
1100 | poly f3 = (y7 + 2x12); |
---|
1101 | poly f = f1*f2*subst(f3, y, y+5); |
---|
1102 | ideal I = f, diff(f, x), diff(f, y); |
---|
1103 | |
---|
1104 | ring R = 0, (x,y), dp; |
---|
1105 | poly f1 = (y5 + 2x8); |
---|
1106 | poly f2 = (y3 + 7x4); |
---|
1107 | poly f3 = (y7 + 2x12); |
---|
1108 | poly f = f1*subst(f2,x,x-1)*subst(f3, y, y+5); |
---|
1109 | ideal I = f, diff(f, x), diff(f, y); |
---|
1110 | */ |
---|
1111 | |
---|