1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: bfun.lib,v 1.9 2009-04-15 11:09:27 seelisch Exp $"; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: bfun.lib Algorithms for b-functions and Bernstein-Sato polynomial |
---|
6 | AUTHORS: Daniel Andres, daniel.andres@math.rwth-aachen.de |
---|
7 | @* Viktor Levandovskyy, levandov@math.rwth-aachen.de |
---|
8 | |
---|
9 | THEORY: Given a polynomial ring R = K[x_1,...,x_n] and a polynomial F in R, |
---|
10 | @* one is interested in the global b-function (also known as Bernstein-Sato |
---|
11 | @* polynomial) b(s) in K[s], defined to be the non-zero monic polynomial of minimal |
---|
12 | @* degree, satisfying a functional identity L * F^{s+1} = b(s) F^s, |
---|
13 | @* for some operator L in D[s] (* stands for the action of differential operator) |
---|
14 | @* By D one denotes the n-th Weyl algebra |
---|
15 | @* K<x_1,...,x_n,d_1,...,d_n | d_j x_j = x_j d_j +1>. |
---|
16 | @* One is interested in the following data: |
---|
17 | @* - Bernstein-Sato polynomial b(s) in K[s], |
---|
18 | @* - the list of its roots, which are known to be rational |
---|
19 | @* - the multiplicities of the roots. |
---|
20 | @* |
---|
21 | @* There is a constructive definition of a b-function of a holonomic ideal I in D |
---|
22 | @* (that is, an ideal I in a Weyl algebra D, such that D/I is holonomic module) |
---|
23 | @* with respect to the given weight vector w: For a polynomial p in D, its initial |
---|
24 | @* form w.r.t. (-w,w) is defined as the sum of all terms of p which have |
---|
25 | @* maximal weighted total degree where the weight of x_i is -w_i and the weight |
---|
26 | @* of d_i is w_i. Let J be the initial ideal of I w.r.t. (-w,w), i.e. the |
---|
27 | @* K-vector space generated by all initial forms w.r.t (-w,w) of elements of I. |
---|
28 | @* Put s = w_1 x_1 d_1 + ... + w_n x_n d_n. Then the monic generator b_w(s) of |
---|
29 | @* the intersection of J with the PID K[s] is called the b-function of I w.r.t. w. |
---|
30 | @* Unlike Bernstein-Sato polynomial, general b-function with respect to |
---|
31 | @* arbitrary weights need not have rational roots at all. However, b-function |
---|
32 | @* of a holonomic ideal is known to be non-zero as well. |
---|
33 | @* |
---|
34 | @* References: [SST] Saito, Sturmfels, Takayama: Groebner Deformations of |
---|
35 | @* Hypergeometric Differential Equations (2000), |
---|
36 | @* Noro: An Efficient Modular Algorithm for Computing the Global b-function, |
---|
37 | @* (2002). |
---|
38 | |
---|
39 | |
---|
40 | MAIN PROCEDURES: |
---|
41 | |
---|
42 | bfct(f[,s,t,v]); compute the BS polynomial of f with linear reductions |
---|
43 | bfctSyz(f[,r,s,t,u,v]); compute the BS polynomial of f with syzygy-solver |
---|
44 | bfctAnn(f[,s]); compute the BS polynomial of f via Ann f^s + f |
---|
45 | bfctOneGB(f[,s,t]); compute the BS polynomial of f by just one GB computation |
---|
46 | bfctIdeal(I,w[,s,t]); compute the b-function of ideal w.r.t. weight |
---|
47 | pIntersect(f,I[,s]); intersection of ideal with subalgebra K[f] for a polynomial f |
---|
48 | pIntersectSyz(f,I[,p,s,t]); intersection of ideal with subalgebra K[f] with syz-solver |
---|
49 | linReduce(f,I[,s]); reduce a polynomial by linear reductions w.r.t. ideal |
---|
50 | linReduceIdeal(I,[s,t]); interreduce generators of ideal by linear reductions |
---|
51 | linSyzSolve(I[,s]); compute a linear dependency of elements of ideal I |
---|
52 | |
---|
53 | AUXILIARY PROCEDURES: |
---|
54 | |
---|
55 | allPositive(v); checks whether all entries of an intvec are positive |
---|
56 | scalarProd(v,w); computes the standard scalar product of two intvecs |
---|
57 | vec2poly(v[,i]); constructs an univariate polynomial with given coefficients |
---|
58 | |
---|
59 | SEE ALSO: dmod_lib, dmodapp_lib, gmssing_lib |
---|
60 | "; |
---|
61 | |
---|
62 | |
---|
63 | LIB "qhmoduli.lib"; // for Max |
---|
64 | LIB "dmod.lib"; // for SannfsBFCT etc |
---|
65 | LIB "dmodapp.lib"; // for initialIdealW etc |
---|
66 | LIB "nctools.lib"; // for isWeyl etc |
---|
67 | |
---|
68 | /////////////////////////////////////////////////////////////////////////////// |
---|
69 | // testing for consistency of the library: |
---|
70 | proc testbfunlib () |
---|
71 | { |
---|
72 | // tests all procs for consistency |
---|
73 | "AUXILIARY PROCEDURES:"; |
---|
74 | example allPositive; |
---|
75 | example scalarProd; |
---|
76 | example vec2poly; |
---|
77 | "MAIN PROCEDURES:"; |
---|
78 | example bfct; |
---|
79 | example bfctSyz; |
---|
80 | example bfctAnn; |
---|
81 | example bfctOneGB; |
---|
82 | example bfctIdeal; |
---|
83 | example pIntersect; |
---|
84 | example pIntersectSyz; |
---|
85 | example linReduce; |
---|
86 | example linReduceIdeal; |
---|
87 | example linSyzSolve; |
---|
88 | } |
---|
89 | |
---|
90 | //--------------- auxiliary procedures ---------------------------------------- |
---|
91 | |
---|
92 | static proc gradedWeyl (intvec u,intvec v) |
---|
93 | "USAGE: gradedWeyl(u,v); u,v intvecs |
---|
94 | RETURN: a ring, the associated graded ring of the basering w.r.t. u and v |
---|
95 | PURPOSE: compute the associated graded ring of the basering w.r.t. u and v |
---|
96 | ASSUME: basering is a Weyl algebra |
---|
97 | EXAMPLE: example gradedWeyl; shows examples |
---|
98 | NOTE: u[i] is the weight of x(i), v[i] the weight of D(i). |
---|
99 | @* u+v has to be a non-negative intvec. |
---|
100 | " |
---|
101 | { |
---|
102 | // todo check assumption |
---|
103 | int i; |
---|
104 | def save = basering; |
---|
105 | int n = nvars(save)/2; |
---|
106 | if (nrows(u)<>n || nrows(v)<>n) |
---|
107 | { |
---|
108 | ERROR("weight vectors have wrong dimension"); |
---|
109 | } |
---|
110 | intvec uv,gr; |
---|
111 | uv = u+v; |
---|
112 | for (i=1; i<=n; i++) |
---|
113 | { |
---|
114 | if (uv[i]>=0) |
---|
115 | { |
---|
116 | if (uv[i]==0) |
---|
117 | { |
---|
118 | gr[i] = 0; |
---|
119 | } |
---|
120 | else |
---|
121 | { |
---|
122 | gr[i] = 1; |
---|
123 | } |
---|
124 | } |
---|
125 | else |
---|
126 | { |
---|
127 | ERROR("the sum of the weight vectors has to be a non-negative intvec"); |
---|
128 | } |
---|
129 | } |
---|
130 | list l = ringlist(save); |
---|
131 | list l2 = l[2]; |
---|
132 | matrix l6 = l[6]; |
---|
133 | for (i=1; i<=n; i++) |
---|
134 | { |
---|
135 | if (gr[i] == 1) |
---|
136 | { |
---|
137 | l2[n+i] = "xi("+string(i)+")"; |
---|
138 | l6[i,n+i] = 0; |
---|
139 | } |
---|
140 | } |
---|
141 | l[2] = l2; |
---|
142 | l[6] = l6; |
---|
143 | def G = ring(l); |
---|
144 | return(G); |
---|
145 | } |
---|
146 | example |
---|
147 | { |
---|
148 | "EXAMPLE:"; echo = 2; |
---|
149 | ring @D = 0,(x,y,z,Dx,Dy,Dz),dp; |
---|
150 | def D = Weyl(); |
---|
151 | setring D; |
---|
152 | intvec u = -1,-1,1; intvec v = 2,1,1; |
---|
153 | def G = gradedWeyl(u,v); |
---|
154 | setring G; G; |
---|
155 | } |
---|
156 | |
---|
157 | static proc safeVarName (string s) |
---|
158 | { |
---|
159 | string S = "," + charstr(basering) + "," + varstr(basering) + ","; |
---|
160 | s = "," + s + ","; |
---|
161 | while (find(S,s) <> 0) |
---|
162 | { |
---|
163 | s[1] = "@"; |
---|
164 | s = "," + s; |
---|
165 | } |
---|
166 | s = s[2..size(s)-1]; |
---|
167 | return(s) |
---|
168 | } |
---|
169 | |
---|
170 | proc allPositive (intvec v) |
---|
171 | "USAGE: allPositive(v); v an intvec |
---|
172 | RETURN: int, 1 if all components of v are positive, or 0 otherwise |
---|
173 | PURPOSE: check whether all components of an intvec are positive |
---|
174 | EXAMPLE: example allPositive; shows an example |
---|
175 | " |
---|
176 | { |
---|
177 | int i; |
---|
178 | for (i=1; i<=size(v); i++) |
---|
179 | { |
---|
180 | if (v[i]<=0) |
---|
181 | { |
---|
182 | return(0); |
---|
183 | break; |
---|
184 | } |
---|
185 | } |
---|
186 | return(1); |
---|
187 | } |
---|
188 | example |
---|
189 | { |
---|
190 | "EXAMPLE:"; echo = 2; |
---|
191 | intvec v = 1,2,3; |
---|
192 | allPositive(v); |
---|
193 | intvec w = 1,-2,3; |
---|
194 | allPositive(w); |
---|
195 | } |
---|
196 | |
---|
197 | static proc findFirst (list l, i) |
---|
198 | "USAGE: findFirst(l,i); l a list, i an argument of any type |
---|
199 | RETURN: int, the position of the first appearance of i in l, |
---|
200 | @* or 0 if i is not a member of l |
---|
201 | PURPOSE: check whether the second argument is a member of a list |
---|
202 | EXAMPLE: example findFirst; shows an example |
---|
203 | " |
---|
204 | { |
---|
205 | int j; |
---|
206 | for (j=1; j<=size(l); j++) |
---|
207 | { |
---|
208 | if (l[j]==i) |
---|
209 | { |
---|
210 | return(j); |
---|
211 | break; |
---|
212 | } |
---|
213 | } |
---|
214 | return(0); |
---|
215 | } |
---|
216 | // findFirst(list(1, 2, list(1)),2); // seems to be a bit buggy, |
---|
217 | // findFirst(list(1, 2, list(1)),3); // but works for the purposes |
---|
218 | // findFirst(list(1, 2, list(1)),list(1)); // of this library |
---|
219 | // findFirst(l,list(2)); |
---|
220 | example |
---|
221 | { |
---|
222 | "EXAMPLE:"; echo = 2; |
---|
223 | ring r = 0,x,dp; |
---|
224 | list l = 1,2,3; |
---|
225 | findFirst(l,4); |
---|
226 | findFirst(l,2); |
---|
227 | } |
---|
228 | |
---|
229 | proc scalarProd (intvec v, intvec w) |
---|
230 | "USAGE: scalarProd(v,w); v,w intvecs |
---|
231 | RETURN: int, the standard scalar product of v and w |
---|
232 | PURPOSE: computes the scalar product of two intvecs |
---|
233 | ASSUME: the arguments are of the same size |
---|
234 | EXAMPLE: example scalarProd; shows examples |
---|
235 | " |
---|
236 | { |
---|
237 | int i; int sp; |
---|
238 | if (size(v)!=size(w)) |
---|
239 | { |
---|
240 | ERROR("non-matching dimensions"); |
---|
241 | } |
---|
242 | else |
---|
243 | { |
---|
244 | for (i=1; i<=size(v);i++) |
---|
245 | { |
---|
246 | sp = sp + v[i]*w[i]; |
---|
247 | } |
---|
248 | } |
---|
249 | return(sp); |
---|
250 | } |
---|
251 | example |
---|
252 | { |
---|
253 | "EXAMPLE:"; echo = 2; |
---|
254 | intvec v = 1,2,3; |
---|
255 | intvec w = 4,5,6; |
---|
256 | scalarProd(v,w); |
---|
257 | } |
---|
258 | |
---|
259 | //-------------- main procedures ------------------------------------------------------- |
---|
260 | proc linReduceIdeal(ideal I, list #) |
---|
261 | "USAGE: linReduceIdeal(I [,s,t,u]); I an ideal, s,t,u optional ints |
---|
262 | RETURN: ideal or list, linear reductum (over field) of I by its elements |
---|
263 | PURPOSE: reduces a list of polys only by linear reductions (no monomial |
---|
264 | @* multiplications) |
---|
265 | NOTE: If s<>0, a list consisting of the reduced ideal and the coefficient |
---|
266 | @* vectors of the used reductions given as module is returned. |
---|
267 | @* Otherwise (and by default), only the reduced ideal is returned. |
---|
268 | @* If t<>0 (and by default) all monomials are reduced (if possible), |
---|
269 | @* otherwise, only leading monomials are reduced. |
---|
270 | @* If u<>0 (and by default), the ideal is first sorted in increasing order. |
---|
271 | @* If u is set to 0 and the given ideal is not sorted in the way described, |
---|
272 | @* the result might not be as expected. |
---|
273 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
274 | @* if printlevel>=2, all the debug messages will be printed. |
---|
275 | EXAMPLE: example linReduceIdeal; shows examples |
---|
276 | " |
---|
277 | { |
---|
278 | // #[1] = remembercoeffs |
---|
279 | // #[2] = redtail |
---|
280 | // #[3] = sortideal |
---|
281 | int ppl = printlevel - voice + 2; |
---|
282 | int remembercoeffs = 0; // default |
---|
283 | int redtail = 1; // default |
---|
284 | int sortideal = 1; // default |
---|
285 | if (size(#)>0) |
---|
286 | { |
---|
287 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
288 | { |
---|
289 | remembercoeffs = #[1]; |
---|
290 | } |
---|
291 | if (size(#)>1) |
---|
292 | { |
---|
293 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
294 | { |
---|
295 | redtail = #[2]; |
---|
296 | } |
---|
297 | if (size(#)>2) |
---|
298 | { |
---|
299 | if (typeof(#[3])=="int" || typeof(#[3])=="number") |
---|
300 | { |
---|
301 | sortideal = #[3]; |
---|
302 | } |
---|
303 | } |
---|
304 | } |
---|
305 | } |
---|
306 | int sI = ncols(I); |
---|
307 | int sZeros = sI - size(I); |
---|
308 | int i,j; |
---|
309 | ideal J,lmJ,ordJ; |
---|
310 | list lJ = sort(I); |
---|
311 | module M; // for the coefficients |
---|
312 | // step 1: prepare, e.g. sort I |
---|
313 | if (sortideal <> 0) |
---|
314 | { |
---|
315 | if (sZeros > 0) // I contains zeros |
---|
316 | { |
---|
317 | if (remembercoeffs <> 0) |
---|
318 | { |
---|
319 | j = 0; |
---|
320 | for (i=1; i<=sI; i++) |
---|
321 | { |
---|
322 | if (I[i] == 0) |
---|
323 | { |
---|
324 | j++; |
---|
325 | J[j] = 0; |
---|
326 | ordJ[j] = -1; |
---|
327 | M[j] = gen(i); |
---|
328 | } |
---|
329 | else |
---|
330 | { |
---|
331 | M[i+sZeros-j] = gen(lJ[2][i-j]+j); |
---|
332 | } |
---|
333 | } |
---|
334 | } |
---|
335 | else |
---|
336 | { |
---|
337 | for (i=1; i<=sZeros; i++) |
---|
338 | { |
---|
339 | J[i] = 0; |
---|
340 | ordJ[i] = -1; |
---|
341 | } |
---|
342 | } |
---|
343 | I = J,lJ[1]; |
---|
344 | } |
---|
345 | else // I contains no zeros |
---|
346 | { |
---|
347 | I = lJ[1]; |
---|
348 | if (remembercoeffs <> 0) |
---|
349 | { |
---|
350 | for (i=1; i<=size(lJ[1]); i++) { M[i+sZeros] = gen(lJ[2][i]); } |
---|
351 | } |
---|
352 | } |
---|
353 | } |
---|
354 | else // assume I is already sorted |
---|
355 | { |
---|
356 | if (remembercoeffs <> 0) |
---|
357 | { |
---|
358 | for (i=1; i<=ncols(I); i++) { M[i] = gen(i); } |
---|
359 | } |
---|
360 | } |
---|
361 | dbprint(ppl-1,"// initially sorted ideal:", I); |
---|
362 | if (remembercoeffs <> 0) { dbprint(ppl-1,"// used permutations:", M); } |
---|
363 | // step 2: reduce leading monomials by linear reductions |
---|
364 | poly lm,c,redpoly,maxlmJ; |
---|
365 | J[sZeros+1] = I[sZeros+1]; |
---|
366 | lm = I[sZeros+1]; |
---|
367 | maxlmJ = leadmonom(lm); |
---|
368 | lmJ[sZeros+1] = maxlmJ; |
---|
369 | int ordlm,reduction; |
---|
370 | ordJ[sZeros+1] = ord(lm); |
---|
371 | vector v; |
---|
372 | int noRedPast; |
---|
373 | for (i=sZeros+2; i<=sI; i++) |
---|
374 | { |
---|
375 | redpoly = I[i]; |
---|
376 | lm = leadmonom(redpoly); |
---|
377 | ordlm = ord(lm); |
---|
378 | if (remembercoeffs <> 0) { v = M[i]; } |
---|
379 | reduction = 1; |
---|
380 | while (reduction == 1) // while there was a reduction |
---|
381 | { |
---|
382 | noRedPast = i; |
---|
383 | reduction = 0; |
---|
384 | for (j=sZeros+1; j<noRedPast; j++) |
---|
385 | { |
---|
386 | if (lm == 0) { break; } // nothing more to reduce |
---|
387 | if (lm > maxlmJ) { break; } //lm is bigger than maximal monomial to reduce with |
---|
388 | if (ordlm == ordJ[j]) |
---|
389 | { |
---|
390 | if (lm == lmJ[j]) |
---|
391 | { |
---|
392 | dbprint(ppl-1,"// reducing " + string(redpoly)); |
---|
393 | dbprint(ppl-1,"// with " + string(J[j])); |
---|
394 | c = leadcoef(redpoly)/leadcoef(J[j]); |
---|
395 | redpoly = redpoly - c*J[j]; |
---|
396 | dbprint(ppl-1,"// to " + string(redpoly)); |
---|
397 | lm = leadmonom(redpoly); |
---|
398 | ordlm = ord(lm); |
---|
399 | if (remembercoeffs <> 0) { M[i] = M[i] - c * M[j]; } |
---|
400 | noRedPast = j; |
---|
401 | reduction = 1; |
---|
402 | } |
---|
403 | } |
---|
404 | } |
---|
405 | } |
---|
406 | for (j=sZeros+1; j<i; j++) |
---|
407 | { |
---|
408 | if (redpoly < J[j]) { break; } |
---|
409 | } |
---|
410 | J = insertGenerator(J,redpoly,j); |
---|
411 | lmJ = insertGenerator(lmJ,lm,j); |
---|
412 | ordJ = insertGenerator(ordJ,poly(ordlm),j); |
---|
413 | if (remembercoeffs <> 0) |
---|
414 | { |
---|
415 | v = M[i]; |
---|
416 | M = deleteGenerator(M,i); |
---|
417 | M = insertGenerator(M,v,j); |
---|
418 | } |
---|
419 | maxlmJ = lmJ[i]; |
---|
420 | } |
---|
421 | // step 3: reduce tails by linear reductions as well |
---|
422 | if (redtail <> 0) |
---|
423 | { |
---|
424 | dbprint(ppl,"// finished reducing leading monomials"); |
---|
425 | dbprint(ppl-1,string(J)); |
---|
426 | if (remembercoeffs <> 0) { dbprint(ppl-1,"// used reductions:" + string(M)); } |
---|
427 | int k; |
---|
428 | for (i=sZeros+1; i<=sI; i++) |
---|
429 | { |
---|
430 | lm = lmJ[i]; |
---|
431 | for (j=i+1; j<=sI; j++) |
---|
432 | { |
---|
433 | for (k=2; k<=size(J[j]); k++) // run over all terms in J[j] |
---|
434 | { |
---|
435 | if (ordJ[i] == ord(J[j][k])) |
---|
436 | { |
---|
437 | if (lm == normalize(J[j][k])) |
---|
438 | { |
---|
439 | c = leadcoef(J[j][k])/leadcoef(J[i]); |
---|
440 | dbprint(ppl-1,"// reducing " + string(J[j])); |
---|
441 | dbprint(ppl-1,"// with " + string(J[i])); |
---|
442 | J[j] = J[j] - c*J[i]; |
---|
443 | dbprint(ppl-1,"// to " + string(J[j])); |
---|
444 | if (remembercoeffs <> 0) { M[j] = M[j] - c * M[i]; } |
---|
445 | } |
---|
446 | } |
---|
447 | } |
---|
448 | } |
---|
449 | } |
---|
450 | } |
---|
451 | if (remembercoeffs <> 0) { return(list(J,M)); } |
---|
452 | else { return(J); } |
---|
453 | } |
---|
454 | example |
---|
455 | { |
---|
456 | "EXAMPLE:"; echo = 2; |
---|
457 | ring r = 0,(x,y),dp; |
---|
458 | ideal I = 3,x+9,y4+5x,2y4+7x+2; |
---|
459 | linReduceIdeal(I); // reduces tails |
---|
460 | linReduceIdeal(I,0,0); // no reductions of tails |
---|
461 | list l = linReduceIdeal(I,1); // reduces tails and shows reductions used |
---|
462 | l; |
---|
463 | module M = I; |
---|
464 | l[1] - ideal(M*l[2]); |
---|
465 | } |
---|
466 | |
---|
467 | proc linReduce(poly f, ideal I, list #) |
---|
468 | "USAGE: linReduce(f, I [,s,t,u]); f a poly, I an ideal, s,t,u optional ints |
---|
469 | RETURN: poly or list, linear reductum (over field) of f by elements from I |
---|
470 | PURPOSE: reduce a polynomial only by linear reductions (no monomial multiplications) |
---|
471 | NOTE: If s<>0, a list consisting of the reduced polynomial and the coefficient |
---|
472 | @* vector of the used reductions is returned, otherwise (and by default) |
---|
473 | @* only reduced polynomial is returned. |
---|
474 | @* If t<>0 (and by default) all monomials are reduced (if possible), |
---|
475 | @* otherwise, only leading monomials are reduced. |
---|
476 | @* If u<>0 (and by default), the ideal is linearly pre-reduced, i.e. |
---|
477 | @* instead of the given ideal, the output of @code{linReduceIdeal} is used. |
---|
478 | @* If u is set to 0 and the given ideal does not equal the output of |
---|
479 | @* @code{linReduceIdeal}, the result might not be as expected. |
---|
480 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
481 | @* if printlevel>=2, all the debug messages will be printed. |
---|
482 | EXAMPLE: example linReduce; shows examples |
---|
483 | " |
---|
484 | { |
---|
485 | int ppl = printlevel - voice + 2; |
---|
486 | int remembercoeffs = 0; // default |
---|
487 | int redtail = 1; // default |
---|
488 | int prepareideal = 1; // default |
---|
489 | if (size(#)>0) |
---|
490 | { |
---|
491 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
492 | { |
---|
493 | remembercoeffs = #[1]; |
---|
494 | } |
---|
495 | if (size(#)>1) |
---|
496 | { |
---|
497 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
498 | { |
---|
499 | redtail = #[2]; |
---|
500 | } |
---|
501 | if (size(#)>2) |
---|
502 | { |
---|
503 | if (typeof(#[3])=="int" || typeof(#[3])=="number") |
---|
504 | { |
---|
505 | prepareideal = #[3]; |
---|
506 | } |
---|
507 | } |
---|
508 | } |
---|
509 | } |
---|
510 | int i,j,k; |
---|
511 | int sI = ncols(I); |
---|
512 | // pre-reduce I: |
---|
513 | module M; |
---|
514 | if (prepareideal <> 0) |
---|
515 | { |
---|
516 | if (remembercoeffs <> 0) |
---|
517 | { |
---|
518 | list sortedI = linReduceIdeal(I,1,redtail); |
---|
519 | I = sortedI[1]; |
---|
520 | M = sortedI[2]; |
---|
521 | dbprint(ppl-1,"// prepared ideal:" +string(I)); |
---|
522 | dbprint(ppl-1,"// with operations:" +string(M)); |
---|
523 | } |
---|
524 | else { I = linReduceIdeal(I,0,redtail); } |
---|
525 | } |
---|
526 | else |
---|
527 | { |
---|
528 | if (remembercoeffs <> 0) |
---|
529 | { |
---|
530 | for (i=1; i<=sI; i++) { M[i] = gen(i); } |
---|
531 | } |
---|
532 | } |
---|
533 | ideal lmI,lcI,ordI; |
---|
534 | for (i=1; i<=sI; i++) |
---|
535 | { |
---|
536 | lmI[i] = leadmonom(I[i]); |
---|
537 | lcI[i] = leadcoef(I[i]); |
---|
538 | ordI[i] = ord(lmI[i]); |
---|
539 | } |
---|
540 | vector v; |
---|
541 | poly c; |
---|
542 | // === reduce leading monomials === |
---|
543 | poly lm = leadmonom(f); |
---|
544 | int ordf = ord(lm); |
---|
545 | for (i=sI; i>=1; i--) // I is sorted: smallest lm's on top |
---|
546 | { |
---|
547 | if (lm == 0) { break; } |
---|
548 | else |
---|
549 | { |
---|
550 | if (ordf == ordI[i]) |
---|
551 | { |
---|
552 | if (lm == lmI[i]) |
---|
553 | { |
---|
554 | c = leadcoef(f)/lcI[i]; |
---|
555 | f = f - c*I[i]; |
---|
556 | lm = leadmonom(f); |
---|
557 | ordf = ord(lm); |
---|
558 | if (remembercoeffs <> 0) { v = v - c * M[i]; } |
---|
559 | } |
---|
560 | } |
---|
561 | } |
---|
562 | } |
---|
563 | // === reduce tails as well === |
---|
564 | if (redtail <> 0) |
---|
565 | { |
---|
566 | dbprint(ppl,"// finished reducing leading monomials"); |
---|
567 | dbprint(ppl-1,string(f)); |
---|
568 | if (remembercoeffs <> 0) { dbprint(ppl-1,"// used reductions:" + string(v)); } |
---|
569 | for (i=1; i<=sI; i++) |
---|
570 | { |
---|
571 | dbprint(ppl,"// testing ideal entry "+string(i)); |
---|
572 | for (j=1; j<=size(f); j++) |
---|
573 | { |
---|
574 | if (ord(f[j]) == ordI[i]) |
---|
575 | { |
---|
576 | if (normalize(f[j]) == lmI[i]) |
---|
577 | { |
---|
578 | c = leadcoef(f[j])/lcI[i]; |
---|
579 | f = f - c*I[i]; |
---|
580 | dbprint(ppl-1,"// reducing with " + string(I[i])); |
---|
581 | dbprint(ppl-1,"// to " + string(f)); |
---|
582 | if (remembercoeffs <> 0) { v = v - c * M[i]; } |
---|
583 | } |
---|
584 | } |
---|
585 | } |
---|
586 | } |
---|
587 | } |
---|
588 | if (remembercoeffs <> 0) |
---|
589 | { |
---|
590 | list l = f,v; |
---|
591 | return(l); |
---|
592 | } |
---|
593 | else { return(f); } |
---|
594 | } |
---|
595 | example |
---|
596 | { |
---|
597 | "EXAMPLE:"; echo = 2; |
---|
598 | ring r = 0,(x,y),dp; |
---|
599 | ideal I = 1,y,xy; |
---|
600 | poly f = 5xy+7y+3; |
---|
601 | poly g = 7x+5y+3; |
---|
602 | linReduce(g,I); // reduces tails |
---|
603 | linReduce(g,I,0,0); // no reductions of tails |
---|
604 | linReduce(f,I,1); // reduces tails and shows reductions used |
---|
605 | f = x3+y2+x2+y+x; |
---|
606 | I = x3-y3, y3-x2,x3-y2,x2-y,y2-x; |
---|
607 | list l = linReduce(f,I,1); |
---|
608 | l; |
---|
609 | module M = I; |
---|
610 | f - (l[1]-(M*l[2])[1,1]); |
---|
611 | } |
---|
612 | |
---|
613 | proc linSyzSolve (ideal I, list #) |
---|
614 | "USAGE: linSyzSolve(I[,s]); I an ideal, s an optional int |
---|
615 | RETURN: vector, coefficient vector of linear combination of 0 in elements of I |
---|
616 | PURPOSE: compute a linear dependency between the elements of an ideal |
---|
617 | @* if such one exists |
---|
618 | NOTE: If s<>0, @code{std} is used for Groebner basis computations, |
---|
619 | @* otherwise, @code{slimgb} is used. |
---|
620 | @* By default, @code{slimgb} is used in char 0 and @code{std} in char >0. |
---|
621 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
622 | @* if printlevel>=2, all the debug messages will be printed. |
---|
623 | EXAMPLE: example linSyzSolve; shows examples |
---|
624 | " |
---|
625 | { |
---|
626 | int whichengine = 0; // default |
---|
627 | int enginespecified = 0; // default |
---|
628 | if (size(#)>0) |
---|
629 | { |
---|
630 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
631 | { |
---|
632 | whichengine = int( #[1]); |
---|
633 | enginespecified = 1; |
---|
634 | } |
---|
635 | } |
---|
636 | int ppl = printlevel - voice +2; |
---|
637 | int sI = ncols(I); |
---|
638 | // check if we are done |
---|
639 | if (I[sI]==0) |
---|
640 | { |
---|
641 | vector v = gen(sI); |
---|
642 | } |
---|
643 | else |
---|
644 | { |
---|
645 | // ------- 1. introduce undefined coeffs ------------------ |
---|
646 | def save = basering; |
---|
647 | list RL = ringlist(save); |
---|
648 | int nv = nvars(save); |
---|
649 | int np = npars(save); |
---|
650 | int p = char(save); |
---|
651 | string cs = "(" + charstr(save) + ")"; |
---|
652 | if (enginespecified == 0) |
---|
653 | { |
---|
654 | if (p <> 0) |
---|
655 | { |
---|
656 | whichengine = 1; |
---|
657 | } |
---|
658 | } |
---|
659 | int i; |
---|
660 | list Lvar; |
---|
661 | for (i=1; i<=sI; i++) |
---|
662 | { |
---|
663 | Lvar[i] = safeVarName("@a(" + string(i) + ")"); |
---|
664 | } |
---|
665 | list L@A = RL[1..4]; |
---|
666 | L@A[2] = Lvar; |
---|
667 | L@A[3] = list(list("lp",intvec(1:sI)),list("C",intvec(0))); |
---|
668 | def @A = ring(L@A); |
---|
669 | L@A[2] = list(safeVarName("@z")); |
---|
670 | L@A[3][1] = list("dp",intvec(1)); |
---|
671 | if (size(L@A[1])>1) |
---|
672 | { |
---|
673 | L@A[1][2] = L@A[1][2] + Lvar; |
---|
674 | L@A[1][3][size(L@A[1][3])+1] = list("lp",intvec(1:sI)); |
---|
675 | } |
---|
676 | else |
---|
677 | { |
---|
678 | L@A[1] = list(p,Lvar,list(list("lp",intvec(1:sI))),ideal(0)); |
---|
679 | } |
---|
680 | def @aA = ring(L@A); |
---|
681 | def @B = save + @aA; |
---|
682 | setring @B; |
---|
683 | ideal I = imap(save,I); |
---|
684 | // ------- 2. form the linear system for the undef coeffs --- |
---|
685 | poly W; ideal QQ; |
---|
686 | for (i=1; i<=sI; i++) |
---|
687 | { |
---|
688 | W = W + par(np+i)*I[i]; |
---|
689 | } |
---|
690 | while (W!=0) |
---|
691 | { |
---|
692 | QQ = QQ,leadcoef(W); |
---|
693 | W = W - lead(W); |
---|
694 | } |
---|
695 | // QQ consists of polynomial expressions in @a(i) of type number |
---|
696 | setring @A; |
---|
697 | ideal QQ = imap(@B,QQ); |
---|
698 | // ------- 3. this QQ is a polynomial ideal, so "solve" the system ----- |
---|
699 | dbprint(ppl, "// linSyzSolve: starting Groebner basis computation with engine:", whichengine); |
---|
700 | QQ = engine(QQ,whichengine); |
---|
701 | dbprint(ppl, "// QQ after engine:", QQ); |
---|
702 | if (dim(QQ) == -1) |
---|
703 | { |
---|
704 | dbprint(ppl+1, "// no solutions by linSyzSolve"); |
---|
705 | // output zeroes |
---|
706 | setring save; |
---|
707 | kill @A,@aA,@B; |
---|
708 | return(v); |
---|
709 | } |
---|
710 | // ------- 4. in order to get the numeric values ------- |
---|
711 | matrix AA = matrix(maxideal(1)); |
---|
712 | module MQQ = std(module(QQ)); |
---|
713 | AA = NF(AA,MQQ); // todo: we still receive NF warnings |
---|
714 | dbprint(ppl, "// AA after NF:",AA); |
---|
715 | // "AA after NF:"; print(AA); |
---|
716 | for(i=1; i<=sI; i++) |
---|
717 | { |
---|
718 | AA = subst(AA,var(i),1); |
---|
719 | } |
---|
720 | dbprint(ppl, "// AA after subst:",AA); |
---|
721 | // "AA after subst: "; print(AA); |
---|
722 | vector v = (module(transpose(AA)))[1]; |
---|
723 | setring save; |
---|
724 | vector v = imap(@A,v); |
---|
725 | kill @A,@aA,@B; |
---|
726 | } |
---|
727 | return(v); |
---|
728 | } |
---|
729 | example |
---|
730 | { |
---|
731 | "EXAMPLE:"; echo = 2; |
---|
732 | ring r = 0,x,dp; |
---|
733 | ideal I = x,2x; |
---|
734 | linSyzSolve(I); |
---|
735 | ideal J = x,x2; |
---|
736 | linSyzSolve(J); |
---|
737 | } |
---|
738 | |
---|
739 | proc pIntersect (poly s, ideal I, list #) |
---|
740 | "USAGE: pIntersect(f, I [,s]); f a poly, I an ideal, s an optional int |
---|
741 | RETURN: vector, coefficient vector of the monic polynomial |
---|
742 | PURPOSE: compute the intersection of ideal I with the subalgebra K[f] |
---|
743 | ASSUME: I is given as Groebner basis, basering is not a qring. |
---|
744 | NOTE: If the intersection is zero, this proc might not terminate. |
---|
745 | @* If s>0 is given, it is searched for the generator of the intersection |
---|
746 | @* only up to degree s. Otherwise (and by default), no bound is assumed. |
---|
747 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
748 | @* if printlevel>=2, all the debug messages will be printed. |
---|
749 | EXAMPLE: example pIntersect; shows examples |
---|
750 | " |
---|
751 | { |
---|
752 | def save = basering; |
---|
753 | int n = nvars(save); |
---|
754 | list RL = ringlist(save); |
---|
755 | int i,j,k; |
---|
756 | if (RL[4]<>0) |
---|
757 | { |
---|
758 | ERROR ("basering must not be a qring"); |
---|
759 | } |
---|
760 | // assume I is given in Groebner basis |
---|
761 | if (attrib(I,"isSB") <> 1) |
---|
762 | { |
---|
763 | print("// WARNING: The input has no SB attribute!"); |
---|
764 | print("// Treating it as if it were a Groebner basis and proceeding..."); |
---|
765 | attrib(I,"isSB",1); // set attribute for suppressing NF messages |
---|
766 | } |
---|
767 | int bound = 0; // default |
---|
768 | if (size(#)>0) |
---|
769 | { |
---|
770 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
771 | { |
---|
772 | bound = #[1]; |
---|
773 | } |
---|
774 | } |
---|
775 | int ppl = printlevel-voice+2; |
---|
776 | // ---case 1: I = basering--- |
---|
777 | if (size(I) == 1) |
---|
778 | { |
---|
779 | if (simplify(I,2)[1] == 1) |
---|
780 | { |
---|
781 | return(gen(1)); // = 1 |
---|
782 | } |
---|
783 | } |
---|
784 | // ---case 2: intersection is zero--- |
---|
785 | intvec degs = leadexp(s); |
---|
786 | intvec possdegbounds; |
---|
787 | list degI; |
---|
788 | i = 1; |
---|
789 | while (i <= ncols(I)) |
---|
790 | { |
---|
791 | if (i == ncols(I)+1) { break; } |
---|
792 | degI[i] = leadexp(I[i]); |
---|
793 | for (j=1; j<=n; j++) |
---|
794 | { |
---|
795 | if (degs[j] == 0) |
---|
796 | { |
---|
797 | if (degI[i][j] <> 0) { break; } |
---|
798 | } |
---|
799 | if (j == n) |
---|
800 | { |
---|
801 | k++; |
---|
802 | possdegbounds[k] = Max(degI[i]); |
---|
803 | } |
---|
804 | } |
---|
805 | i++; |
---|
806 | } |
---|
807 | int degbound = Min(possdegbounds); |
---|
808 | if (bound>0 && bound<degbound) // given bound is too small |
---|
809 | { |
---|
810 | print("// Try a bound of at least " + string(degbound)); |
---|
811 | return(vector(0)); |
---|
812 | } |
---|
813 | dbprint(ppl,"// lower bound for the degree of the insection is " +string(degbound)); |
---|
814 | if (degbound == 0) // lm(s) does not appear in lm(I) |
---|
815 | { |
---|
816 | print("// Intersection is zero"); |
---|
817 | return(vector(0)); |
---|
818 | } |
---|
819 | // ---case 3: intersection is non-trivial--- |
---|
820 | ideal redNI = 1; |
---|
821 | vector v; |
---|
822 | list l,ll; |
---|
823 | l[1] = vector(0); |
---|
824 | poly toNF,tobracket,newNF,rednewNF,oldNF,secNF; |
---|
825 | i = 1; |
---|
826 | while (1) |
---|
827 | { |
---|
828 | if (bound>0 && i>bound) { return(vector(0)); } |
---|
829 | dbprint(ppl,"// Testing degree "+string(i)); |
---|
830 | if (i>1) |
---|
831 | { |
---|
832 | oldNF = newNF; |
---|
833 | tobracket = s^(i-1) - oldNF; |
---|
834 | if (tobracket==0) // todo bug in bracket? |
---|
835 | { |
---|
836 | toNF = 0; |
---|
837 | } |
---|
838 | else |
---|
839 | { |
---|
840 | toNF = bracket(tobracket,secNF); |
---|
841 | } |
---|
842 | newNF = NF(toNF+oldNF*secNF,I); // = NF(s^i,I) |
---|
843 | } |
---|
844 | else |
---|
845 | { |
---|
846 | newNF = NF(s,I); |
---|
847 | secNF = newNF; |
---|
848 | } |
---|
849 | ll = linReduce(newNF,redNI,1); |
---|
850 | rednewNF = ll[1]; |
---|
851 | l[i+1] = ll[2]; |
---|
852 | dbprint(ppl-1,"// newNF is: "+string(newNF)); |
---|
853 | dbprint(ppl-1,"// rednewNF is: "+string(rednewNF)); |
---|
854 | if (rednewNF != 0) // no linear dependency |
---|
855 | { |
---|
856 | redNI[i+1] = rednewNF; |
---|
857 | i++; |
---|
858 | } |
---|
859 | else // there is a linear dependency, hence we are done |
---|
860 | { |
---|
861 | dbprint(ppl,"// degree of the generator of the intersection is: "+string(i)); |
---|
862 | break; |
---|
863 | } |
---|
864 | } |
---|
865 | dbprint(ppl-1,"// used linear reductions:", l); |
---|
866 | // we obtain the coefficients of the generator by the used reductions: |
---|
867 | list Lvar; |
---|
868 | for (j=1; j<=i+1; j++) |
---|
869 | { |
---|
870 | Lvar[j] = safeVarName("a("+string(j)+")"); |
---|
871 | } |
---|
872 | list Lord = list("dp",intvec(1:(i+1))),list("C",intvec(0)); |
---|
873 | list L@R = RL[1..4]; |
---|
874 | L@R[2] = Lvar; L@R[3] = Lord; |
---|
875 | def @R = ring(L@R); setring @R; |
---|
876 | list l = imap(save,l); |
---|
877 | ideal C; |
---|
878 | for (j=1;j<=i+1;j++) |
---|
879 | { |
---|
880 | C[j] = 0; |
---|
881 | for (k=1;k<=j;k++) |
---|
882 | { |
---|
883 | C[j] = C[j]+l[j][k]*var(k); |
---|
884 | } |
---|
885 | } |
---|
886 | for (j=i;j>=1;j--) |
---|
887 | { |
---|
888 | C[i+1]= subst(C[i+1],var(j),var(j)+C[j]); |
---|
889 | } |
---|
890 | matrix m = coeffs(C[i+1],maxideal(1)); |
---|
891 | vector v = gen(i+1); |
---|
892 | for (j=1;j<=i+1;j++) |
---|
893 | { |
---|
894 | v = v + m[j,1]*gen(j); |
---|
895 | } |
---|
896 | setring save; |
---|
897 | v = imap(@R,v); |
---|
898 | kill @R; |
---|
899 | return(v); |
---|
900 | } |
---|
901 | example |
---|
902 | { |
---|
903 | "EXAMPLE:"; echo = 2; |
---|
904 | ring r = 0,(x,y),dp; |
---|
905 | poly f = x^2+y^3+x*y^2; |
---|
906 | def D = initialMalgrange(f); |
---|
907 | setring D; |
---|
908 | inF; |
---|
909 | pIntersect(t*Dt,inF); |
---|
910 | pIntersect(t*Dt,inF,1); |
---|
911 | } |
---|
912 | |
---|
913 | proc pIntersectSyz (poly s, ideal I, list #) |
---|
914 | "USAGE: pIntersectSyz(f, I [,p,s,t]); f poly, I ideal, p,t optial ints, p prime |
---|
915 | RETURN: vector, coefficient vector of the monic polynomial |
---|
916 | PURPOSE: compute the intersection of an ideal I with the subalgebra K[f] |
---|
917 | ASSUME: I is given as Groebner basis. |
---|
918 | NOTE: If the intersection is zero, this procedure might not terminate. |
---|
919 | @* If p>0 is given, this proc computes the generator of the intersection in |
---|
920 | @* char p first and then only searches for a generator of the obtained |
---|
921 | @* degree in the basering. Otherwise, it searches for all degrees by |
---|
922 | @* computing syzygies. |
---|
923 | @* If s<>0, @code{std} is used for Groebner basis computations in char 0, |
---|
924 | @* otherwise, and by default, @code{slimgb} is used. |
---|
925 | @* If t<>0 and by default, @code{std} is used for Groebner basis |
---|
926 | @* computations in char >0, otherwise, @code{slimgb} is used. |
---|
927 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
928 | @* if printlevel>=2, all the debug messages will be printed. |
---|
929 | EXAMPLE: example pIntersectSyz; shows examples |
---|
930 | " |
---|
931 | { |
---|
932 | // assume I is given in Groebner basis |
---|
933 | if (attrib(I,"isSB") <> 1) |
---|
934 | { |
---|
935 | print("// WARNING: The input has no SB attribute!"); |
---|
936 | print("// Treating it as if it were a Groebner basis and proceeding..."); |
---|
937 | attrib(I,"isSB",1); // set attribute for suppressing NF messages |
---|
938 | } |
---|
939 | int ppl = printlevel-voice+2; |
---|
940 | int whichengine = 0; // default |
---|
941 | int modengine = 1; // default |
---|
942 | int solveincharp = 0; // default |
---|
943 | def save = basering; |
---|
944 | int n = nvars(save); |
---|
945 | if (size(#)>0) |
---|
946 | { |
---|
947 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
948 | { |
---|
949 | solveincharp = int(#[1]); |
---|
950 | } |
---|
951 | if (size(#)>1) |
---|
952 | { |
---|
953 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
954 | { |
---|
955 | whichengine = int(#[2]); |
---|
956 | } |
---|
957 | if (size(#)>2) |
---|
958 | { |
---|
959 | if (typeof(#[3])=="int" || typeof(#[3])=="number") |
---|
960 | { |
---|
961 | modengine = int(#[3]); |
---|
962 | } |
---|
963 | } |
---|
964 | } |
---|
965 | } |
---|
966 | int i,j; |
---|
967 | vector v; |
---|
968 | poly tobracket,toNF,newNF,p; |
---|
969 | ideal NI = 1; |
---|
970 | newNF = NF(s,I); |
---|
971 | NI[2] = newNF; |
---|
972 | list RL = ringlist(save); |
---|
973 | if (solveincharp) |
---|
974 | { |
---|
975 | int psolveincharp = prime(solveincharp); |
---|
976 | if (solveincharp <> psolveincharp) |
---|
977 | { |
---|
978 | print("// " + string(solveincharp) + " is invalid characteristic of ground field."); |
---|
979 | print("// " + string(psolveincharp) + " is used."); |
---|
980 | solveincharp = psolveincharp; |
---|
981 | kill psolveincharp; |
---|
982 | } |
---|
983 | list RLp = RL[1..4]; |
---|
984 | if (typeof(RL[1]) == "int") { RLp[1] = solveincharp; } |
---|
985 | else { RLp[1][1] = solveincharp; } // parameters |
---|
986 | def @Rp = ring(RLp); |
---|
987 | setring @Rp; |
---|
988 | number c; |
---|
989 | setring save; |
---|
990 | int shortSave = short; // workaround for maps Q(a_i) -> Z/p(a_i) |
---|
991 | short = 0; |
---|
992 | string str; |
---|
993 | int badprime; |
---|
994 | i=1; |
---|
995 | while (badprime == 0 && i<=size(s)) // detect bad primes |
---|
996 | { |
---|
997 | str = string(denominator(leadcoef(s[i]))); |
---|
998 | str = "c = " + str + ";"; |
---|
999 | setring @Rp; |
---|
1000 | execute(str); |
---|
1001 | if (c == 0) { badprime = 1; } |
---|
1002 | setring save; |
---|
1003 | i++; |
---|
1004 | } |
---|
1005 | str = "poly s = " + string(s) + ";"; |
---|
1006 | if (size(RL) > 4) // basering is NC-algebra |
---|
1007 | { |
---|
1008 | string RL5 = "@C = " + string(RL[5]) + ";"; |
---|
1009 | string RL6 = "@D = " + string(RL[6]) + ";"; |
---|
1010 | setring @Rp; |
---|
1011 | matrix @C[n][n]; matrix @D[n][n]; |
---|
1012 | execute(RL5); execute(RL6); |
---|
1013 | def Rp = nc_algebra(@C,@D); |
---|
1014 | } |
---|
1015 | else { def Rp = @Rp; } |
---|
1016 | setring Rp; |
---|
1017 | kill @Rp; |
---|
1018 | dbprint(ppl-1,"// solving in ring ", Rp); |
---|
1019 | execute(str); |
---|
1020 | vector v; |
---|
1021 | number c; |
---|
1022 | ideal NI = 1; |
---|
1023 | setring save; |
---|
1024 | i=1; |
---|
1025 | while (badprime == 0 && i<=size(I)) // detect bad primes |
---|
1026 | { |
---|
1027 | str = string(leadcoef(cleardenom(I[i]))); |
---|
1028 | str = "c = " + str + ";"; |
---|
1029 | setring Rp; |
---|
1030 | execute(str); |
---|
1031 | if (c == 0) { badprime = 1; } |
---|
1032 | setring save; |
---|
1033 | i++; |
---|
1034 | } |
---|
1035 | if (badprime == 1) |
---|
1036 | { |
---|
1037 | print("// WARNING: bad prime"); |
---|
1038 | short = shortSave; |
---|
1039 | return(vector(0)); |
---|
1040 | } |
---|
1041 | } |
---|
1042 | i = 1; |
---|
1043 | dbprint(ppl,"// pIntersectSyz starts..."); |
---|
1044 | dbprint(ppl-1,"// with ideal I=", I); |
---|
1045 | while (1) |
---|
1046 | { |
---|
1047 | dbprint(ppl,"// testing degree: "+string(i)); |
---|
1048 | if (i>1) |
---|
1049 | { |
---|
1050 | tobracket = s^(i-1)-NI[i]; |
---|
1051 | if (tobracket!=0) |
---|
1052 | { |
---|
1053 | toNF = bracket(tobracket,NI[2]) + NI[i]*NI[2]; |
---|
1054 | } |
---|
1055 | else |
---|
1056 | { |
---|
1057 | toNF = NI[i]*NI[2]; |
---|
1058 | } |
---|
1059 | newNF = NF(toNF,I); |
---|
1060 | NI[i+1] = newNF; |
---|
1061 | } |
---|
1062 | // look for a solution |
---|
1063 | dbprint(ppl-1,"// linSyzSolve starts with: "+string(matrix(NI))); |
---|
1064 | if (solveincharp) // modular method |
---|
1065 | { |
---|
1066 | for (j=1; j<=size(newNF); j++) |
---|
1067 | { |
---|
1068 | str = string(denominator(leadcoef(s[i]))); |
---|
1069 | str = "c = " + str + ";"; |
---|
1070 | setring Rp; |
---|
1071 | execute(str); |
---|
1072 | if (c == 0) |
---|
1073 | { |
---|
1074 | print("// WARNING: bad prime"); |
---|
1075 | setring save; |
---|
1076 | short = shortSave; |
---|
1077 | return(vector(0)); |
---|
1078 | } |
---|
1079 | setring save; |
---|
1080 | } |
---|
1081 | str = "NI[" + string(i) + "+1] = " + string(newNF) + ";"; |
---|
1082 | setring Rp; |
---|
1083 | execute(str); // NI[i+1] = [newNF]_{solveincharp} |
---|
1084 | v = linSyzSolve(NI,modengine); |
---|
1085 | if (v!=0) // there is a modular solution |
---|
1086 | { |
---|
1087 | dbprint(ppl,"// got solution in char "+string(solveincharp)+" of degree "+string(i)); |
---|
1088 | setring save; |
---|
1089 | v = linSyzSolve(NI,whichengine); |
---|
1090 | if (v==0) |
---|
1091 | { |
---|
1092 | break; |
---|
1093 | } |
---|
1094 | } |
---|
1095 | else // no modular solution |
---|
1096 | { |
---|
1097 | setring save; |
---|
1098 | v = 0; |
---|
1099 | } |
---|
1100 | } |
---|
1101 | else // non-modular method |
---|
1102 | { |
---|
1103 | v = linSyzSolve(NI,whichengine); |
---|
1104 | } |
---|
1105 | matrix MM[1][nrows(v)] = matrix(v); |
---|
1106 | dbprint(ppl-1,"// linSyzSolve ready with: "+string(MM)); |
---|
1107 | kill MM; |
---|
1108 | // "linSyzSolve ready with"; print(v); |
---|
1109 | if (v!=0) |
---|
1110 | { |
---|
1111 | // a solution: |
---|
1112 | //check for the reality of the solution |
---|
1113 | p = 0; |
---|
1114 | for (j=1; j<=i+1; j++) |
---|
1115 | { |
---|
1116 | p = p + v[j]*NI[j]; |
---|
1117 | } |
---|
1118 | if (p!=0) |
---|
1119 | { |
---|
1120 | dbprint(ppl,"// linSyzSolve: bad solution!"); |
---|
1121 | } |
---|
1122 | else |
---|
1123 | { |
---|
1124 | dbprint(ppl,"// linSyzSolve: got solution!"); |
---|
1125 | // "got solution!"; |
---|
1126 | break; |
---|
1127 | } |
---|
1128 | } |
---|
1129 | // no solution: |
---|
1130 | i++; |
---|
1131 | } |
---|
1132 | dbprint(ppl,"// pIntersectSyz finished"); |
---|
1133 | if (solveincharp) { short = shortSave; } |
---|
1134 | return(v); |
---|
1135 | } |
---|
1136 | example |
---|
1137 | { |
---|
1138 | "EXAMPLE:"; echo = 2; |
---|
1139 | ring r = 0,(x,y),dp; |
---|
1140 | poly f = x^2+y^3+x*y^2; |
---|
1141 | def D = initialMalgrange(f); |
---|
1142 | setring D; |
---|
1143 | inF; |
---|
1144 | poly s = t*Dt; |
---|
1145 | pIntersectSyz(s,inF); |
---|
1146 | int p = prime(20000); |
---|
1147 | pIntersectSyz(s,inF,p,0,0); |
---|
1148 | } |
---|
1149 | |
---|
1150 | proc vec2poly (list #) |
---|
1151 | "USAGE: vec2poly(v [,i]); v a vector or an intvec, i an optional int |
---|
1152 | RETURN: poly, an univariate polynomial in i-th variable with coefficients given by v |
---|
1153 | PURPOSE: constructs an univariate polynomial in K[var(i)] with given coefficients, |
---|
1154 | @* such that the coefficient at var(i)^{j-1} is v[j]. |
---|
1155 | NOTE: The optional argument i must be positive, by default i is 1. |
---|
1156 | EXAMPLE: example vec2poly; shows examples |
---|
1157 | " |
---|
1158 | { |
---|
1159 | def save = basering; |
---|
1160 | int i,ringvar; |
---|
1161 | ringvar = 1; // default |
---|
1162 | if (size(#) > 0) |
---|
1163 | { |
---|
1164 | if (typeof(#[1])=="vector" || typeof(#[1])=="intvec") |
---|
1165 | { |
---|
1166 | def v = #[1]; |
---|
1167 | } |
---|
1168 | else |
---|
1169 | { |
---|
1170 | ERROR("wrong input: expected vector/intvec expression"); |
---|
1171 | } |
---|
1172 | if (size(#) > 1) |
---|
1173 | { |
---|
1174 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1175 | { |
---|
1176 | ringvar = int(#[2]); |
---|
1177 | } |
---|
1178 | } |
---|
1179 | } |
---|
1180 | if (ringvar > nvars(save)) |
---|
1181 | { |
---|
1182 | ERROR("var out of range"); |
---|
1183 | } |
---|
1184 | poly p; |
---|
1185 | for (i=1; i<=nrows(v); i++) |
---|
1186 | { |
---|
1187 | p = p + v[i]*(var(ringvar))^(i-1); |
---|
1188 | } |
---|
1189 | return(p); |
---|
1190 | } |
---|
1191 | example |
---|
1192 | { |
---|
1193 | "EXAMPLE:"; echo = 2; |
---|
1194 | ring r = 0,(x,y),dp; |
---|
1195 | vector v = gen(1) + 3*gen(3) + 22/9*gen(4); |
---|
1196 | intvec iv = 3,2,1; |
---|
1197 | vec2poly(v,2); |
---|
1198 | vec2poly(iv); |
---|
1199 | } |
---|
1200 | |
---|
1201 | static proc listofroots (list #) |
---|
1202 | { |
---|
1203 | def save = basering; |
---|
1204 | int n = nvars(save); |
---|
1205 | int i; |
---|
1206 | poly p; |
---|
1207 | if (typeof(#[1])=="vector") |
---|
1208 | { |
---|
1209 | vector b = #[1]; |
---|
1210 | for (i=1; i<=nrows(b); i++) |
---|
1211 | { |
---|
1212 | p = p + b[i]*(var(1))^(i-1); |
---|
1213 | } |
---|
1214 | } |
---|
1215 | else |
---|
1216 | { |
---|
1217 | p = #[1]; |
---|
1218 | } |
---|
1219 | int substitution = int(#[2]); |
---|
1220 | string s = safeVarName("s"); |
---|
1221 | list RL = ringlist(save); RL = RL[1..4]; |
---|
1222 | RL[2] = list(s); RL[3] = list(list("dp",intvec(1)),list("C",0)); |
---|
1223 | def S = ring(RL); setring S; |
---|
1224 | ideal J; |
---|
1225 | for (i=1; i<=n; i++) |
---|
1226 | { |
---|
1227 | J[i] = var(1); |
---|
1228 | } |
---|
1229 | map @m = save,J; |
---|
1230 | poly p = @m(p); |
---|
1231 | if (substitution == 1) |
---|
1232 | { |
---|
1233 | p = subst(p,var(1),-var(1)-1); |
---|
1234 | } |
---|
1235 | // the rest of this proc is nicked from bernsteinBM from dmod.lib |
---|
1236 | list P = factorize(p);//with constants and multiplicities |
---|
1237 | ideal bs; intvec m; //the BS polynomial is monic, so we are not interested in constants |
---|
1238 | for (i=2; i<= size(P[1]); i++) //we delete P[1][1] and P[2][1] |
---|
1239 | { |
---|
1240 | bs[i-1] = P[1][i]; |
---|
1241 | m[i-1] = P[2][i]; |
---|
1242 | } |
---|
1243 | bs = normalize(bs); |
---|
1244 | bs = -subst(bs,var(1),0); |
---|
1245 | setring save; |
---|
1246 | ideal bs = imap(S,bs); |
---|
1247 | kill S; |
---|
1248 | list BS = bs,m; |
---|
1249 | return(BS); |
---|
1250 | } |
---|
1251 | |
---|
1252 | static proc bfctengine (poly f, int inorann, int whichengine, int methodord, int methodpIntersect, int pIntersectchar, int modengine, intvec u0) |
---|
1253 | { |
---|
1254 | int ppl = printlevel - voice +2; |
---|
1255 | int i; |
---|
1256 | def save = basering; |
---|
1257 | int n = nvars(save); |
---|
1258 | if (isCommutative() == 0) { ERROR("basering must be commutative"); } |
---|
1259 | if (char(save) <> 0) { ERROR("characteristic of basering has to be 0"); } |
---|
1260 | list L = ringlist(save); |
---|
1261 | int qr; |
---|
1262 | if (L[4] <> 0) // qring |
---|
1263 | { |
---|
1264 | print("// basering is qring:"); |
---|
1265 | print("// discarding the quotient and proceeding..."); |
---|
1266 | L[4] = ideal(0); |
---|
1267 | qr = 1; |
---|
1268 | def save2 = ring(L); setring save2; |
---|
1269 | poly f = imap(save,f); |
---|
1270 | } |
---|
1271 | if (size(variables(f)) == 0) // f is constant |
---|
1272 | { |
---|
1273 | return(list(ideal(0),intvec(0))); |
---|
1274 | } |
---|
1275 | if (inorann == 0) // bfct using initial ideal |
---|
1276 | { |
---|
1277 | def D = initialMalgrange(f,whichengine,methodord,u0); |
---|
1278 | setring D; |
---|
1279 | ideal J = inF; |
---|
1280 | kill inF; |
---|
1281 | poly s = t*Dt; |
---|
1282 | } |
---|
1283 | else // bfct using Ann(f^s) |
---|
1284 | { |
---|
1285 | def D = SannfsBFCT(f,whichengine); |
---|
1286 | setring D; |
---|
1287 | ideal J = LD; |
---|
1288 | kill LD; |
---|
1289 | poly s = var(2*n+1); |
---|
1290 | } |
---|
1291 | vector b; |
---|
1292 | // try it modular |
---|
1293 | if (methodpIntersect <> 0) // pIntersectSyz |
---|
1294 | { |
---|
1295 | if (pIntersectchar == 0) // pIntersectSyz::modular |
---|
1296 | { |
---|
1297 | list L = ringlist(D); |
---|
1298 | int lb = 10000; int ub = 536870909; // bounds for random primes |
---|
1299 | list usedprimes; |
---|
1300 | int sJ = size(J); |
---|
1301 | int sLJq; |
---|
1302 | ideal LJ; |
---|
1303 | for (i=1; i<=sJ; i++) |
---|
1304 | { |
---|
1305 | LJ[i] = leadcoef(cleardenom(J[i])); |
---|
1306 | } |
---|
1307 | int short_save = short; // workaround for map Q(a_i) -> Z/q(a_i) |
---|
1308 | short = 0; |
---|
1309 | string strLJq = "ideal LJq = " + string(LJ) + ";"; |
---|
1310 | int nD = nvars(D); |
---|
1311 | string L5 = "matrix @C[nD][nD]; @C = " + string(L[5]) + ";"; |
---|
1312 | string L6 = "matrix @D[nD][nD]; @D = " + string(L[6]) + ";"; |
---|
1313 | L = L[1..4]; |
---|
1314 | i = 1; |
---|
1315 | while (b == 0) |
---|
1316 | { |
---|
1317 | dbprint(ppl,"// number of run in the loop: "+string(i)); |
---|
1318 | int q = prime(random(lb,ub)); |
---|
1319 | if (findFirst(usedprimes,q)==0) // if q has not been used already |
---|
1320 | { |
---|
1321 | usedprimes = usedprimes,q; |
---|
1322 | dbprint(ppl,"// using prime: "+string(q)); |
---|
1323 | if (typeof(L[1]) == "int") { L[1] = q; } |
---|
1324 | else { L[1][1] = q; } // parameters |
---|
1325 | def @Rq = ring(L); setring @Rq; |
---|
1326 | execute(L5); execute(L6); |
---|
1327 | def Rq = nc_algebra(@C,@D); // def Rq = nc_algebra(1,@D); |
---|
1328 | setring Rq; kill @Rq; |
---|
1329 | execute(strLJq); |
---|
1330 | sLJq = size(LJq); |
---|
1331 | setring D; kill Rq; |
---|
1332 | if (sLJq <> sJ ) // detect unlucky prime |
---|
1333 | { |
---|
1334 | dbprint(ppl,"// " +string(q) + " is unlucky"); |
---|
1335 | b = 0; |
---|
1336 | } |
---|
1337 | else |
---|
1338 | { |
---|
1339 | b = pIntersectSyz(s,J,q,whichengine,modengine); |
---|
1340 | } |
---|
1341 | } |
---|
1342 | i++; |
---|
1343 | } |
---|
1344 | short = short_save; |
---|
1345 | } |
---|
1346 | else // pIntersectSyz::non-modular |
---|
1347 | { |
---|
1348 | b = pIntersectSyz(s,J,0,whichengine); |
---|
1349 | } |
---|
1350 | } |
---|
1351 | else // pIntersect: linReduce |
---|
1352 | { |
---|
1353 | b = pIntersect(s,J); |
---|
1354 | } |
---|
1355 | if (inorann == 0) { list l = listofroots(b,1); } |
---|
1356 | else { list l = listofroots(b,0); } |
---|
1357 | setring save; |
---|
1358 | list l = imap(D,l); |
---|
1359 | return(l); |
---|
1360 | } |
---|
1361 | |
---|
1362 | proc bfct (poly f, list #) |
---|
1363 | "USAGE: bfct(f [,s,t,v]); f a poly, s,t optional ints, v an optional intvec |
---|
1364 | RETURN: list of ideal and intvec |
---|
1365 | PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) |
---|
1366 | @* for the hypersurface defined by f. |
---|
1367 | ASSUME: The basering is commutative and of characteristic 0. |
---|
1368 | BACKGROUND: In this proc, the initial Malgrange ideal is computed according to |
---|
1369 | @* the algorithm by Masayuki Noro and then a system of linear equations is |
---|
1370 | @* solved by linear reductions. |
---|
1371 | NOTE: In the output list, the ideal contains all the roots |
---|
1372 | @* and the intvec their multiplicities. |
---|
1373 | @* If s<>0, @code{std} is used for GB computations, |
---|
1374 | @* otherwise, and by default, @code{slimgb} is used. |
---|
1375 | @* If t<>0, a matrix ordering is used for Groebner basis computations, |
---|
1376 | @* otherwise, and by default, a block ordering is used. |
---|
1377 | @* If v is a positive weight vector, v is used for homogenization |
---|
1378 | @* computations, otherwise and by default, no weights are used. |
---|
1379 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1380 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1381 | EXAMPLE: example bfct; shows examples |
---|
1382 | " |
---|
1383 | { |
---|
1384 | int ppl = printlevel - voice +2; |
---|
1385 | int i; |
---|
1386 | int n = nvars(basering); |
---|
1387 | // in # we have two switches: |
---|
1388 | // one for the engine used for Groebner basis computations, |
---|
1389 | // one for M() ordering or its realization |
---|
1390 | // in # can also be the optional weight vector |
---|
1391 | int whichengine = 0; // default |
---|
1392 | int methodord = 0; // default |
---|
1393 | intvec u0 = 0; // default |
---|
1394 | if (size(#)>0) |
---|
1395 | { |
---|
1396 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1397 | { |
---|
1398 | whichengine = int(#[1]); |
---|
1399 | } |
---|
1400 | if (size(#)>1) |
---|
1401 | { |
---|
1402 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1403 | { |
---|
1404 | methodord = int(#[2]); |
---|
1405 | } |
---|
1406 | if (size(#)>2) |
---|
1407 | { |
---|
1408 | if (typeof(#[3])=="intvec" && size(#[3])==n && allPositive(#[3])==1) |
---|
1409 | { |
---|
1410 | u0 = #[3]; |
---|
1411 | } |
---|
1412 | } |
---|
1413 | } |
---|
1414 | } |
---|
1415 | list b = bfctengine(f,0,whichengine,methodord,0,0,0,u0); |
---|
1416 | return(b); |
---|
1417 | } |
---|
1418 | example |
---|
1419 | { |
---|
1420 | "EXAMPLE:"; echo = 2; |
---|
1421 | ring r = 0,(x,y),dp; |
---|
1422 | poly f = x^2+y^3+x*y^2; |
---|
1423 | bfct(f); |
---|
1424 | intvec v = 3,2; |
---|
1425 | bfct(f,1,0,v); |
---|
1426 | } |
---|
1427 | |
---|
1428 | proc bfctSyz (poly f, list #) |
---|
1429 | "USAGE: bfctSyz(f [,r,s,t,u,v]); f poly, r,s,t,u optional ints, v opt. intvec |
---|
1430 | RETURN: list of ideal and intvec |
---|
1431 | PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) |
---|
1432 | @* for the hypersurface defined by f |
---|
1433 | ASSUME: The basering is commutative and of characteristic 0. |
---|
1434 | BACKGROUND: In this proc, the initial Malgrange ideal is computed according to |
---|
1435 | @* the algorithm by Masayuki Noro and then a system of linear equations is |
---|
1436 | @* solved by computing syzygies. |
---|
1437 | NOTE: In the output list, the ideal contains all the roots and the intvec |
---|
1438 | @* their multiplicities. |
---|
1439 | @* If r<>0, @code{std} is used for GB computations in characteristic 0, |
---|
1440 | @* otherwise, and by default, @code{slimgb} is used. |
---|
1441 | @* If s<>0, a matrix ordering is used for GB computations, otherwise, |
---|
1442 | @* and by default, a block ordering is used. |
---|
1443 | @* If t<>0, the computation of the intersection is solely performed over |
---|
1444 | @* charasteristic 0, otherwise and by default, a modular method is used. |
---|
1445 | @* If u<>0 and by default, @code{std} is used for GB computations in |
---|
1446 | @* characteristic >0, otherwise, @code{slimgb} is used. |
---|
1447 | @* If v is a positive weight vector, v is used for homogenization |
---|
1448 | @* computations, otherwise and by default, no weights are used. |
---|
1449 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1450 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1451 | EXAMPLE: example bfctSyz; shows examples |
---|
1452 | " |
---|
1453 | { |
---|
1454 | int ppl = printlevel - voice +2; |
---|
1455 | int i; |
---|
1456 | // in # we have four switches: |
---|
1457 | // one for the engine used for Groebner basis computations in char 0, |
---|
1458 | // one for M() ordering or its realization |
---|
1459 | // one for a modular method when computing the intersection |
---|
1460 | // and one for the engine used for Groebner basis computations in char >0 |
---|
1461 | // in # can also be the optional weight vector |
---|
1462 | int n = nvars(basering); |
---|
1463 | int whichengine = 0; // default |
---|
1464 | int methodord = 0; // default |
---|
1465 | int pIntersectchar = 0; // default |
---|
1466 | int modengine = 1; // default |
---|
1467 | intvec u0 = 0; // default |
---|
1468 | if (size(#)>0) |
---|
1469 | { |
---|
1470 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1471 | { |
---|
1472 | whichengine = int(#[1]); |
---|
1473 | } |
---|
1474 | if (size(#)>1) |
---|
1475 | { |
---|
1476 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1477 | { |
---|
1478 | methodord = int(#[2]); |
---|
1479 | } |
---|
1480 | if (size(#)>2) |
---|
1481 | { |
---|
1482 | if (typeof(#[3])=="int" || typeof(#[3])=="number") |
---|
1483 | { |
---|
1484 | pIntersectchar = int(#[3]); |
---|
1485 | } |
---|
1486 | if (size(#)>3) |
---|
1487 | { |
---|
1488 | if (typeof(#[4])=="int" || typeof(#[4])=="number") |
---|
1489 | { |
---|
1490 | modengine = int(#[4]); |
---|
1491 | } |
---|
1492 | if (size(#)>4) |
---|
1493 | { |
---|
1494 | if (typeof(#[5])=="intvec" && size(#[5])==n && allPositive(#[5])==1) |
---|
1495 | { |
---|
1496 | u0 = #[5]; |
---|
1497 | } |
---|
1498 | } |
---|
1499 | } |
---|
1500 | } |
---|
1501 | } |
---|
1502 | } |
---|
1503 | list b = bfctengine(f,0,whichengine,methodord,1,pIntersectchar,modengine,u0); |
---|
1504 | return(b); |
---|
1505 | } |
---|
1506 | example |
---|
1507 | { |
---|
1508 | "EXAMPLE:"; echo = 2; |
---|
1509 | ring r = 0,(x,y),dp; |
---|
1510 | poly f = x^2+y^3+x*y^2; |
---|
1511 | bfctSyz(f); |
---|
1512 | intvec v = 3,2; |
---|
1513 | bfctSyz(f,0,1,1,0,v); |
---|
1514 | } |
---|
1515 | |
---|
1516 | proc bfctIdeal (ideal I, intvec w, list #) |
---|
1517 | "USAGE: bfctIdeal(I,w[,s,t]); I an ideal, w an intvec, s,t optional ints |
---|
1518 | RETURN: list of ideal and intvec |
---|
1519 | PURPOSE: computes the roots of the global b-function of I w.r.t. the weight (-w,w). |
---|
1520 | ASSUME: The basering is the n-th Weyl algebra in characteristic 0 and for all |
---|
1521 | @* 1<=i<=n the identity var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the |
---|
1522 | @* sequence of variables is given by x(1),...,x(n),D(1),...,D(n), |
---|
1523 | @* where D(i) is the differential operator belonging to x(i). |
---|
1524 | @* Further we assume that I is holonomic. |
---|
1525 | BACKGROUND: In this proc, the initial ideal of I is computed according to the |
---|
1526 | @* algorithm by Masayuki Noro and then a system of linear equations is |
---|
1527 | @* solved by linear reductions. |
---|
1528 | NOTE: In the output list, say L, |
---|
1529 | @* - L[1] of type ideal contains all the rational roots of a b-function, |
---|
1530 | @* - L[2] of type intvec contains the multiplicities of above roots, |
---|
1531 | @* - optional L[3] of type string is the part of b-function without rational roots. |
---|
1532 | @* Note, that a b-function of degree 0 is encoded via L[1][1]=0, L[2]=0 and |
---|
1533 | @* L[3] is 1 (for nonzero constant) or 0 (for zero b-function). |
---|
1534 | @* If s<>0, @code{std} is used for GB computations in characteristic 0, |
---|
1535 | @* otherwise, and by default, @code{slimgb} is used. |
---|
1536 | @* If t<>0, a matrix ordering is used for GB computations, otherwise, |
---|
1537 | @* and by default, a block ordering is used. |
---|
1538 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1539 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1540 | EXAMPLE: example bfctIdeal; shows examples |
---|
1541 | " |
---|
1542 | { |
---|
1543 | int ppl = printlevel - voice +2; |
---|
1544 | int i; |
---|
1545 | def save = basering; |
---|
1546 | int n = nvars(save)/2; |
---|
1547 | int whichengine = 0; // default |
---|
1548 | int methodord = 0; // default |
---|
1549 | if (size(#)>0) |
---|
1550 | { |
---|
1551 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1552 | { |
---|
1553 | whichengine = int(#[1]); |
---|
1554 | } |
---|
1555 | if (size(#)>1) |
---|
1556 | { |
---|
1557 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1558 | { |
---|
1559 | methodord = int(#[2]); |
---|
1560 | } |
---|
1561 | } |
---|
1562 | } |
---|
1563 | if (isWeyl()==0) { ERROR("basering is not a Weyl algebra"); } |
---|
1564 | for (i=1; i<=n; i++) |
---|
1565 | { |
---|
1566 | if (bracket(var(i+n),var(i))<>1) |
---|
1567 | { |
---|
1568 | ERROR(string(var(i+n))+" is not a differential operator for " +string(var(i))); |
---|
1569 | } |
---|
1570 | } |
---|
1571 | int isH = isHolonomic(I); |
---|
1572 | if (isH<>1) |
---|
1573 | { |
---|
1574 | print("WARNING: given ideal is not holonomic"); |
---|
1575 | print("... setting bound for degree of b-function to 10 and proceeding"); |
---|
1576 | isH = 10; |
---|
1577 | } |
---|
1578 | else { isH = 0; } // no degree bound for pIntersect |
---|
1579 | ideal J = initialIdealW(I,-w,w,whichengine,methodord); |
---|
1580 | poly s; |
---|
1581 | for (i=1; i<=n; i++) |
---|
1582 | { |
---|
1583 | s = s + w[i]*var(i)*var(n+i); |
---|
1584 | } |
---|
1585 | vector b = pIntersect(s,J,isH); |
---|
1586 | list RL = ringlist(save); RL = RL[1..4]; |
---|
1587 | RL[2] = list(safeVarName("s")); |
---|
1588 | RL[3] = list(list("dp",intvec(1)),list("C",intvec(0))); |
---|
1589 | def @S = ring(RL); setring @S; |
---|
1590 | vector b = imap(save,b); |
---|
1591 | poly bs = vec2poly(b); |
---|
1592 | list l = bFactor(bs); |
---|
1593 | setring save; |
---|
1594 | list l = imap(@S,l); |
---|
1595 | return(l); |
---|
1596 | } |
---|
1597 | example |
---|
1598 | { |
---|
1599 | "EXAMPLE:"; echo = 2; |
---|
1600 | ring @D = 0,(x,y,Dx,Dy),dp; |
---|
1601 | def D = Weyl(); |
---|
1602 | setring D; |
---|
1603 | ideal I = 3*x^2*Dy+2*y*Dx,2*x*Dx+3*y*Dy+6; I = std(I); |
---|
1604 | intvec w1 = 0,1; |
---|
1605 | intvec w2 = 2,3; |
---|
1606 | bfctIdeal(I,w1); |
---|
1607 | bfctIdeal(I,w2,0,1); |
---|
1608 | ideal J = I[size(I)]; // J is not holonomic by construction |
---|
1609 | bfctIdeal(J,w1); // b-function of D/J w.r.t. w1 is non-zero |
---|
1610 | bfctIdeal(J,w2); // b-function of D/J w.r.t. w2 is zero |
---|
1611 | } |
---|
1612 | |
---|
1613 | proc bfctOneGB (poly f,list #) |
---|
1614 | "USAGE: bfctOneGB(f [,s,t]); f a poly, s,t optional ints |
---|
1615 | RETURN: list of ideal and intvec |
---|
1616 | PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) for the |
---|
1617 | @* hypersurface defined by f, using only one GB computation |
---|
1618 | ASSUME: The basering is commutative and of characteristic 0. |
---|
1619 | BACKGROUND: In this proc, the initial Malgrange ideal is computed based on the |
---|
1620 | @* algorithm by Masayuki Noro and combined with an elimination ordering. |
---|
1621 | NOTE: In the output list, the ideal contains all the roots and the intvec |
---|
1622 | @* their multiplicities. |
---|
1623 | @* If s<>0, @code{std} is used for the GB computation, otherwise, |
---|
1624 | @* and by default, @code{slimgb} is used. |
---|
1625 | @* If t<>0, a matrix ordering is used for GB computations, |
---|
1626 | @* otherwise, and by default, a block ordering is used. |
---|
1627 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1628 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1629 | EXAMPLE: example bfctOneGB; shows examples |
---|
1630 | " |
---|
1631 | { |
---|
1632 | int ppl = printlevel - voice +2; |
---|
1633 | if (!isCommutative()) { ERROR("Basering must be commutative"); } |
---|
1634 | def save = basering; |
---|
1635 | int n = nvars(save); |
---|
1636 | if (char(save) <> 0) |
---|
1637 | { |
---|
1638 | ERROR("characteristic of basering has to be 0"); |
---|
1639 | } |
---|
1640 | list L = ringlist(save); |
---|
1641 | int qr; |
---|
1642 | if (L[4] <> 0) // qring? |
---|
1643 | { |
---|
1644 | print("// basering is qring:"); |
---|
1645 | print("// discarding the quotient and proceeding..."); |
---|
1646 | L[4] = ideal(0); |
---|
1647 | qr = 1; |
---|
1648 | def save2 = ring(L); |
---|
1649 | setring save2; |
---|
1650 | poly f = imap(save,f); |
---|
1651 | } |
---|
1652 | int N = 2*n+4; |
---|
1653 | int i; |
---|
1654 | int whichengine = 0; // default |
---|
1655 | int methodord = 0; // default |
---|
1656 | if (size(#)>0) |
---|
1657 | { |
---|
1658 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1659 | { |
---|
1660 | whichengine = int(#[1]); |
---|
1661 | } |
---|
1662 | if (size(#)>1) |
---|
1663 | { |
---|
1664 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1665 | { |
---|
1666 | methodord = int(#[2]); |
---|
1667 | } |
---|
1668 | } |
---|
1669 | } |
---|
1670 | // creating the homogenized extended Weyl algebra |
---|
1671 | // create names for vars |
---|
1672 | list Lvar; |
---|
1673 | Lvar[1] = safeVarName("t"); |
---|
1674 | Lvar[2] = safeVarName("s"); |
---|
1675 | Lvar[n+3] = safeVarName("D"+Lvar[1]); |
---|
1676 | Lvar[N] = safeVarName("h"); |
---|
1677 | for (i=1; i<=n; i++) |
---|
1678 | { |
---|
1679 | Lvar[i+2] = string(var(i)); |
---|
1680 | Lvar[i+n+3] = safeVarName("D" + string(var(i))); |
---|
1681 | } |
---|
1682 | // create ordering |
---|
1683 | intvec uv = -1; uv[n+3] = 1; uv[N] = 0; |
---|
1684 | intvec @a = 1:N; @a[2] = 2; |
---|
1685 | intvec @a2 = @a; @a2[2] = 0; @a2[2*n+4] = 0; |
---|
1686 | list Lord; |
---|
1687 | Lord[1] = list("a",@a); Lord[2] = list("a",@a2); |
---|
1688 | if (methodord == 0) // default: block ordering |
---|
1689 | { |
---|
1690 | //ring @Dh = 0,(t,s,x(n..1),Dt,D(n..1),h),(a(@a),a(@a2),a(uv),dp(N-1),lp(1)); |
---|
1691 | Lord[3] = list("a",uv); |
---|
1692 | Lord[4] = list("dp",intvec(1:(N-1))); |
---|
1693 | Lord[5] = list("lp",intvec(1)); |
---|
1694 | Lord[6] = list("C",intvec(0)); |
---|
1695 | } |
---|
1696 | else // M() ordering |
---|
1697 | { |
---|
1698 | intmat @Ord[N][N]; |
---|
1699 | @Ord[1,1..N] = uv; @Ord[2,1..N] = 1:(N-1); |
---|
1700 | for (i=1; i<=N-2; i++) { @Ord[2+i,N - i] = -1; } |
---|
1701 | dbprint(ppl,"// weights for ordering: "+string(transpose(@a))); |
---|
1702 | dbprint(ppl,"// the ordering matrix:",@Ord); |
---|
1703 | //ring @Dh = 0,(t,s,x(n..1),Dt,D(n..1),h),(a(@a),a(@a2),M(@Ord)); |
---|
1704 | Lord[3] = list("M",intvec(@Ord)); |
---|
1705 | Lord[4] = list("C",intvec(0)); |
---|
1706 | } |
---|
1707 | // create commutative ring |
---|
1708 | list L@Dh = ringlist(basering); |
---|
1709 | L@Dh = L@Dh[1..4]; // if basering is commutative nc_algebra |
---|
1710 | L@Dh[2] = Lvar; L@Dh[3] = Lord; |
---|
1711 | def @Dh = ring(L@Dh); setring @Dh; |
---|
1712 | dbprint(ppl,"// the ring @Dh:",@Dh); |
---|
1713 | // create non-commutative relations |
---|
1714 | matrix @relD[N][N]; |
---|
1715 | @relD[1,2] = var(1)*var(N)^2; // s*t = t*s + t*h^2 |
---|
1716 | @relD[2,n+3] = var(n+3)*var(N)^2; // Dt*s = s*Dt+Dt*h^2 |
---|
1717 | @relD[1,n+3] = var(N)^2; |
---|
1718 | for (i=1; i<=n; i++) |
---|
1719 | { |
---|
1720 | @relD[i+2,n+3+i] = var(N)^2; |
---|
1721 | } |
---|
1722 | dbprint(ppl,"// nc relations:",@relD); |
---|
1723 | def Dh = nc_algebra(1,@relD); |
---|
1724 | setring Dh; kill @Dh; |
---|
1725 | dbprint(ppl,"// computing in ring",Dh); |
---|
1726 | poly f = imap(save,f); |
---|
1727 | f = homog(f,h); |
---|
1728 | // create the Malgrange ideal |
---|
1729 | ideal I = var(1) - f, var(1)*var(n+3) - var(2); |
---|
1730 | for (i=1; i<=n; i++) |
---|
1731 | { |
---|
1732 | I[3+i] = var(i+n+3)+diff(f,var(i+2))*var(n+3); |
---|
1733 | } |
---|
1734 | dbprint(ppl-1, "// the Malgrange ideal: " +string(I)); |
---|
1735 | // the hard part: Groebner basis computation |
---|
1736 | dbprint(ppl, "// starting Groebner basis computation with engine: "+string(whichengine)); |
---|
1737 | I = engine(I, whichengine); |
---|
1738 | dbprint(ppl, "// finished Groebner basis computation"); |
---|
1739 | I = subst(I,h,1); // dehomogenization |
---|
1740 | dbprint(ppl-1,string(I)); |
---|
1741 | // 3.3 the initial form |
---|
1742 | I = inForm(I,uv); |
---|
1743 | dbprint(ppl, "// the initial ideal:", string(matrix(I))); |
---|
1744 | // read off the solution |
---|
1745 | intvec tonselect = 1; |
---|
1746 | for (i=3; i<=2*n+4; i++) { tonselect = tonselect,i; } |
---|
1747 | I = nselect(I,tonselect); |
---|
1748 | dbprint(ppl, "// generators containing only s:", string(matrix(I))); |
---|
1749 | I = engine(I, whichengine); // is now a principal ideal; |
---|
1750 | if (qr == 1) { setring save2; } |
---|
1751 | else { setring save; } |
---|
1752 | ideal J; J[2] = var(1); |
---|
1753 | map @m = Dh,J; |
---|
1754 | ideal I = @m(I); |
---|
1755 | poly p = I[1]; |
---|
1756 | list l = listofroots(p,1); |
---|
1757 | if (qr == 1) |
---|
1758 | { |
---|
1759 | setring save; |
---|
1760 | list l = imap(save2,l); |
---|
1761 | } |
---|
1762 | return(l); |
---|
1763 | } |
---|
1764 | example |
---|
1765 | { |
---|
1766 | "EXAMPLE:"; echo = 2; |
---|
1767 | ring r = 0,(x,y),dp; |
---|
1768 | poly f = x^2+y^3+x*y^2; |
---|
1769 | bfctOneGB(f); |
---|
1770 | bfctOneGB(f,1,1); |
---|
1771 | } |
---|
1772 | |
---|
1773 | proc bfctAnn (poly f, list #) |
---|
1774 | "USAGE: bfctAnn(f [,r]); f a poly, r an optional int |
---|
1775 | RETURN: list of ideal and intvec |
---|
1776 | PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) for the |
---|
1777 | @* hypersurface defined by f. |
---|
1778 | ASSUME: The basering is commutative and of characteristic 0. |
---|
1779 | BACKGROUND: In this proc, ann(f^s) is computed and then a system of linear |
---|
1780 | @* equations is solved by linear reductions. |
---|
1781 | NOTE: In the output list, the ideal contains all the roots and the intvec |
---|
1782 | @* their multiplicities. |
---|
1783 | @* If r<>0, @code{std} is used for GB computations, |
---|
1784 | @* otherwise, and by default, @code{slimgb} is used. |
---|
1785 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1786 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1787 | EXAMPLE: example bfctAnn; shows examples |
---|
1788 | " |
---|
1789 | { |
---|
1790 | def save = basering; |
---|
1791 | int ppl = printlevel - voice + 2; |
---|
1792 | int whichengine = 0; // default |
---|
1793 | if (size(#)>0) |
---|
1794 | { |
---|
1795 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1796 | { |
---|
1797 | whichengine = int(#[1]); |
---|
1798 | } |
---|
1799 | } |
---|
1800 | list b = bfctengine(f,1,whichengine,0,0,0,0,0); |
---|
1801 | return(b); |
---|
1802 | } |
---|
1803 | example |
---|
1804 | { |
---|
1805 | "EXAMPLE:"; echo = 2; |
---|
1806 | ring r = 0,(x,y),dp; |
---|
1807 | poly f = x^2+y^3+x*y^2; |
---|
1808 | bfctAnn(f); |
---|
1809 | } |
---|
1810 | |
---|
1811 | /* |
---|
1812 | //static proc hardexamples () |
---|
1813 | { |
---|
1814 | // some hard examples |
---|
1815 | ring r1 = 0,(x,y,z,w),dp; |
---|
1816 | // ab34 |
---|
1817 | poly ab34 = (z3+w4)*(3z2x+4w3y); |
---|
1818 | bfct(ab34); |
---|
1819 | // ha3 |
---|
1820 | poly ha3 = xyzw*(x+y)*(x+z)*(x+w)*(y+z+w); |
---|
1821 | bfct(ha3); |
---|
1822 | // ha4 |
---|
1823 | poly ha4 = xyzw*(x+y)*(x+z)*(x+w)*(y+z)*(y+w); |
---|
1824 | bfct(ha4); |
---|
1825 | // chal4: reiffen(4,5)*reiffen(5,4) |
---|
1826 | ring r2 = 0,(x,y),dp; |
---|
1827 | poly chal4 = (x4+xy4+y5)*(x5+x4y+y4); |
---|
1828 | bfct(chal4); |
---|
1829 | // (xy+z)*reiffen(4,5) |
---|
1830 | ring r3 = 0,(x,y,z),dp; |
---|
1831 | poly xyzreiffen45 = (xy+z)*(y4+yz4+z5); |
---|
1832 | bfct(xyzreiffen45); |
---|
1833 | |
---|
1834 | // sparse ideal as suggested by Alex; gives 1 as std |
---|
1835 | ideal I1 = 28191*y^2+14628*x*Dy, 24865*x^2+24072*x*Dx+17756*Dy^2; |
---|
1836 | std(I1); |
---|
1837 | |
---|
1838 | |
---|
1839 | } |
---|
1840 | */ |
---|