1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: bfun.lib,v 1.3 2009-03-06 20:32:28 levandov Exp $"; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: bfun.lib Algorithms for b-functions and Bernstein-Sato polynomial |
---|
6 | AUTHORS: Daniel Andres, daniel.andres@math.rwth-aachen.de |
---|
7 | @* Viktor Levandovskyy, levandov@math.rwth-aachen.de |
---|
8 | |
---|
9 | THEORY: Given a polynomial ring R = K[x_1,...,x_n] and a polynomial F in R, |
---|
10 | @* one is interested in the global b-Function (also known as Bernstein-Sato |
---|
11 | @* polynomial) b(s) in K[s], defined to be the monic polynomial, satisfying |
---|
12 | @* a functional identity L * F^{s+1} = b(s) F^s, |
---|
13 | @* for some operator L in D[s]. Here, D stands for an n-th Weyl algebra |
---|
14 | @* K<x_1,...,x_n,d_1,...,d_n | d_j x_j = x_j d_j +1>. |
---|
15 | @* One is interested in the following data: |
---|
16 | @* - Bernstein-Sato polynomial b(s) in K[s], |
---|
17 | @* - the list of its roots, which are known to be rational |
---|
18 | @* - the multiplicities of the roots. |
---|
19 | @* |
---|
20 | @* There is a general definition of a b-function of a holonomic ideal [SST] |
---|
21 | @* (that is, an ideal I in a Weyl algebra D, such that D/I is holonomic module) |
---|
22 | @* with respect to the given weight vector. B-function b_w(s) is in K[s]. |
---|
23 | @* Unlike Bernstein-Sato polynomial, general B-function with respect to |
---|
24 | @* arbitrary weights need not have rational roots at all. |
---|
25 | @* |
---|
26 | @* References: [SST] Saito, Sturmfels, Takayama: Groebner Deformations of |
---|
27 | @* Hypergeometric Differential Equations (2000), |
---|
28 | @* Noro: An Efficient Modular Algorithm for Computing the Global b-function, |
---|
29 | @* (2002). |
---|
30 | |
---|
31 | |
---|
32 | MAIN PROCEDURES: |
---|
33 | |
---|
34 | bfct(f[,s,t,v]); computes the Bernstein-Sato polynomial of poly f |
---|
35 | bfctSyz(f[,r,s,t,u,v]); computes the Bernstein-Sato polynomial of poly f |
---|
36 | bfctAnn(f[,s]); computes the Bernstein-Sato polynomial of poly f |
---|
37 | bfctOneGB(f[,s,t]); computes the Bernstein-Sato polynomial of poly f |
---|
38 | bfctIdeal(I,w[,s,t]); computes the global b-function of ideal wrt weight |
---|
39 | pIntersect(f,I[,s]); intersection of ideal with subalgebra K[f] for poly f |
---|
40 | pIntersectSyz(f,I[,p,s,t]); intersection of ideal with subalgebra K[f] for poly f |
---|
41 | linReduce(f,I[,s]); reduces a poly by linear reductions only |
---|
42 | linReduceIdeal(I,[s,t]); reduces generators of ideal by linear reductions only |
---|
43 | linSyzSolve(I[,s]); computes a linear dependency of elements of ideal I |
---|
44 | |
---|
45 | AUXILIARY PROCEDURES: |
---|
46 | |
---|
47 | allPositive(v); checks whether all entries of an intvec are positive |
---|
48 | scalarProd(v,w); computes the standard scalar product of two intvecs |
---|
49 | vec2poly(v[,i]); constructs an univariate poly with given coefficients |
---|
50 | |
---|
51 | SEE ALSO: dmod_lib, dmodapp_lib, gmssing_lib |
---|
52 | "; |
---|
53 | |
---|
54 | |
---|
55 | LIB "qhmoduli.lib"; // for Max |
---|
56 | LIB "dmod.lib"; // for SannfsBFCT etc |
---|
57 | LIB "dmodapp.lib"; // for initialIdealW etc |
---|
58 | LIB "nctools.lib"; // for isWeyl etc |
---|
59 | |
---|
60 | /////////////////////////////////////////////////////////////////////////////// |
---|
61 | // testing for consistency of the library: |
---|
62 | proc testbfunlib () |
---|
63 | { |
---|
64 | // tests all procs for consistency |
---|
65 | "AUXILIARY PROCEDURES:"; |
---|
66 | example allPositive; |
---|
67 | example scalarProd; |
---|
68 | example vec2poly; |
---|
69 | "MAIN PROCEDURES:"; |
---|
70 | example bfct; |
---|
71 | example bfctSyz; |
---|
72 | example bfctAnn; |
---|
73 | example bfctOneGB; |
---|
74 | example bfctIdeal; |
---|
75 | example pIntersect; |
---|
76 | example pIntersectSyz; |
---|
77 | example linReduce; |
---|
78 | example linReduceIdeal; |
---|
79 | example linSyzSolve; |
---|
80 | } |
---|
81 | |
---|
82 | //--------------- auxiliary procedures ---------------------------------------- |
---|
83 | |
---|
84 | static proc gradedWeyl (intvec u,intvec v) |
---|
85 | "USAGE: gradedWeyl(u,v); u,v intvecs |
---|
86 | RETURN: a ring, the associated graded ring of the basering w.r.t. u and v |
---|
87 | PURPOSE: compute the associated graded ring of the basering w.r.t. u and v |
---|
88 | ASSUME: basering is a Weyl algebra |
---|
89 | EXAMPLE: example gradedWeyl; shows examples |
---|
90 | NOTE: u[i] is the weight of x(i), v[i] the weight of D(i). |
---|
91 | @* u+v has to be a non-negative intvec. |
---|
92 | " |
---|
93 | { |
---|
94 | // todo check assumption |
---|
95 | int i; |
---|
96 | def save = basering; |
---|
97 | int n = nvars(save)/2; |
---|
98 | if (nrows(u)<>n || nrows(v)<>n) |
---|
99 | { |
---|
100 | ERROR("weight vectors have wrong dimension"); |
---|
101 | } |
---|
102 | intvec uv,gr; |
---|
103 | uv = u+v; |
---|
104 | for (i=1; i<=n; i++) |
---|
105 | { |
---|
106 | if (uv[i]>=0) |
---|
107 | { |
---|
108 | if (uv[i]==0) |
---|
109 | { |
---|
110 | gr[i] = 0; |
---|
111 | } |
---|
112 | else |
---|
113 | { |
---|
114 | gr[i] = 1; |
---|
115 | } |
---|
116 | } |
---|
117 | else |
---|
118 | { |
---|
119 | ERROR("the sum of the weight vectors has to be a non-negative intvec"); |
---|
120 | } |
---|
121 | } |
---|
122 | list l = ringlist(save); |
---|
123 | list l2 = l[2]; |
---|
124 | matrix l6 = l[6]; |
---|
125 | for (i=1; i<=n; i++) |
---|
126 | { |
---|
127 | if (gr[i] == 1) |
---|
128 | { |
---|
129 | l2[n+i] = "xi("+string(i)+")"; |
---|
130 | l6[i,n+i] = 0; |
---|
131 | } |
---|
132 | } |
---|
133 | l[2] = l2; |
---|
134 | l[6] = l6; |
---|
135 | def G = ring(l); |
---|
136 | return(G); |
---|
137 | } |
---|
138 | example |
---|
139 | { |
---|
140 | "EXAMPLE:"; echo = 2; |
---|
141 | ring @D = 0,(x,y,z,Dx,Dy,Dz),dp; |
---|
142 | def D = Weyl(); |
---|
143 | setring D; |
---|
144 | intvec u = -1,-1,1; intvec v = 2,1,1; |
---|
145 | def G = gradedWeyl(u,v); |
---|
146 | setring G; G; |
---|
147 | } |
---|
148 | |
---|
149 | static proc safeVarName (string s) |
---|
150 | { |
---|
151 | string cv = "," + charstr(basering) + "," + varstr(basering) + ","; |
---|
152 | s = "," + s + ","; |
---|
153 | while (find(cv,s) <> 0) |
---|
154 | { |
---|
155 | s[1] = "@"; |
---|
156 | s = "," + s; |
---|
157 | } |
---|
158 | s = s[2..size(s)-1]; |
---|
159 | return(s) |
---|
160 | } |
---|
161 | |
---|
162 | proc allPositive (intvec v) |
---|
163 | "USAGE: allPositive(v); v an intvec |
---|
164 | RETURN: int, 1 if all components of v are positive, or 0 otherwise |
---|
165 | PURPOSE: check whether all components of an intvec are positive |
---|
166 | EXAMPLE: example allPositive; shows an example |
---|
167 | " |
---|
168 | { |
---|
169 | int i; |
---|
170 | for (i=1; i<=size(v); i++) |
---|
171 | { |
---|
172 | if (v[i]<=0) |
---|
173 | { |
---|
174 | return(0); |
---|
175 | break; |
---|
176 | } |
---|
177 | } |
---|
178 | return(1); |
---|
179 | } |
---|
180 | example |
---|
181 | { |
---|
182 | "EXAMPLE:"; echo = 2; |
---|
183 | intvec v = 1,2,3; |
---|
184 | allPositive(v); |
---|
185 | intvec w = 1,-2,3; |
---|
186 | allPositive(w); |
---|
187 | } |
---|
188 | |
---|
189 | static proc findFirst (list l, i) |
---|
190 | "USAGE: findFirst(l,i); l a list, i an argument of any type |
---|
191 | RETURN: int, the position of the first appearance of i in l, |
---|
192 | @* or 0 if i is not a member of l |
---|
193 | PURPOSE: check whether the second argument is a member of a list |
---|
194 | EXAMPLE: example findFirst; shows an example |
---|
195 | " |
---|
196 | { |
---|
197 | int j; |
---|
198 | for (j=1; j<=size(l); j++) |
---|
199 | { |
---|
200 | if (l[j]==i) |
---|
201 | { |
---|
202 | return(j); |
---|
203 | break; |
---|
204 | } |
---|
205 | } |
---|
206 | return(0); |
---|
207 | } |
---|
208 | // findFirst(list(1, 2, list(1)),2); // seems to be a bit buggy, |
---|
209 | // findFirst(list(1, 2, list(1)),3); // but works for the purposes |
---|
210 | // findFirst(list(1, 2, list(1)),list(1)); // of this library |
---|
211 | // findFirst(l,list(2)); |
---|
212 | example |
---|
213 | { |
---|
214 | "EXAMPLE:"; echo = 2; |
---|
215 | ring r = 0,x,dp; |
---|
216 | list l = 1,2,3; |
---|
217 | findFirst(l,4); |
---|
218 | findFirst(l,2); |
---|
219 | } |
---|
220 | |
---|
221 | proc scalarProd (intvec v, intvec w) |
---|
222 | "USAGE: scalarProd(v,w); v,w intvecs |
---|
223 | RETURN: int, the standard scalar product of v and w |
---|
224 | PURPOSE: computes the scalar product of two intvecs |
---|
225 | ASSUME: the arguments are of the same size |
---|
226 | EXAMPLE: example scalarProd; shows examples |
---|
227 | " |
---|
228 | { |
---|
229 | int i; int sp; |
---|
230 | if (size(v)!=size(w)) |
---|
231 | { |
---|
232 | ERROR("non-matching dimensions"); |
---|
233 | } |
---|
234 | else |
---|
235 | { |
---|
236 | for (i=1; i<=size(v);i++) |
---|
237 | { |
---|
238 | sp = sp + v[i]*w[i]; |
---|
239 | } |
---|
240 | } |
---|
241 | return(sp); |
---|
242 | } |
---|
243 | example |
---|
244 | { |
---|
245 | "EXAMPLE:"; echo = 2; |
---|
246 | intvec v = 1,2,3; |
---|
247 | intvec w = 4,5,6; |
---|
248 | scalarProd(v,w); |
---|
249 | } |
---|
250 | |
---|
251 | //-------------- main procedures ------------------------------------------------------- |
---|
252 | proc linReduceIdeal(ideal I, list #) |
---|
253 | "USAGE: linReduceIdeal(I [,s,t,u]); I an ideal, s,t,u optional ints |
---|
254 | RETURN: ideal or list, linear reductum (over field) of I by its elements |
---|
255 | PURPOSE: reduces a list of polys only by linear reductions (no monomial |
---|
256 | @* multiplications) |
---|
257 | NOTE: If s<>0, a list consisting of the reduced ideal and the coefficient |
---|
258 | @* vectors of the used reductions given as module is returned. |
---|
259 | @* Otherwise (and by default), only the reduced ideal is returned. |
---|
260 | @* If t<>0 (and by default) all monomials are reduced (if possible), |
---|
261 | @* otherwise, only leading monomials are reduced. |
---|
262 | @* If u<>0 (and by default), the ideal is first sorted in increasing order. |
---|
263 | @* If u is set to 0 and the given ideal is not sorted in the way described, |
---|
264 | @* the result might not be as expected. |
---|
265 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
266 | @* if printlevel>=2, all the debug messages will be printed. |
---|
267 | EXAMPLE: example linReduceIdeal; shows examples |
---|
268 | " |
---|
269 | { |
---|
270 | // #[1] = remembercoeffs |
---|
271 | // #[2] = redtail |
---|
272 | // #[3] = sortideal |
---|
273 | int ppl = printlevel - voice + 2; |
---|
274 | int remembercoeffs = 0; // default |
---|
275 | int redtail = 1; // default |
---|
276 | int sortideal = 1; // default |
---|
277 | if (size(#)>0) |
---|
278 | { |
---|
279 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
280 | { |
---|
281 | remembercoeffs = #[1]; |
---|
282 | } |
---|
283 | if (size(#)>1) |
---|
284 | { |
---|
285 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
286 | { |
---|
287 | redtail = #[2]; |
---|
288 | } |
---|
289 | if (size(#)>2) |
---|
290 | { |
---|
291 | if (typeof(#[3])=="int" || typeof(#[3])=="number") |
---|
292 | { |
---|
293 | sortideal = #[3]; |
---|
294 | } |
---|
295 | } |
---|
296 | } |
---|
297 | } |
---|
298 | int sI = ncols(I); |
---|
299 | int sZeros = sI - size(I); |
---|
300 | int i,j; |
---|
301 | ideal J,lmJ,ordJ; |
---|
302 | list lJ = sort(I); |
---|
303 | module M; // for the coefficients |
---|
304 | // step 1: prepare, e.g. sort I |
---|
305 | if (sortideal <> 0) |
---|
306 | { |
---|
307 | if (sZeros > 0) // I contains zeros |
---|
308 | { |
---|
309 | if (remembercoeffs <> 0) |
---|
310 | { |
---|
311 | j = 0; |
---|
312 | for (i=1; i<=sI; i++) |
---|
313 | { |
---|
314 | if (I[i] == 0) |
---|
315 | { |
---|
316 | j++; |
---|
317 | J[j] = 0; |
---|
318 | ordJ[j] = -1; |
---|
319 | M[j] = gen(i); |
---|
320 | } |
---|
321 | else |
---|
322 | { |
---|
323 | M[i+sZeros-j] = gen(lJ[2][i-j]+j); |
---|
324 | } |
---|
325 | } |
---|
326 | } |
---|
327 | else |
---|
328 | { |
---|
329 | for (i=1; i<=sZeros; i++) |
---|
330 | { |
---|
331 | J[i] = 0; |
---|
332 | ordJ[i] = -1; |
---|
333 | } |
---|
334 | } |
---|
335 | I = J,lJ[1]; |
---|
336 | } |
---|
337 | else // I contains no zeros |
---|
338 | { |
---|
339 | I = lJ[1]; |
---|
340 | if (remembercoeffs <> 0) |
---|
341 | { |
---|
342 | for (i=1; i<=size(lJ[1]); i++) { M[i+sZeros] = gen(lJ[2][i]); } |
---|
343 | } |
---|
344 | } |
---|
345 | } |
---|
346 | else // assume I is already sorted |
---|
347 | { |
---|
348 | if (remembercoeffs <> 0) |
---|
349 | { |
---|
350 | for (i=1; i<=ncols(I); i++) { M[i] = gen(i); } |
---|
351 | } |
---|
352 | } |
---|
353 | dbprint(ppl-1,"// initially sorted ideal:", I); |
---|
354 | if (remembercoeffs <> 0) { dbprint(ppl-1,"// used permutations:", M); } |
---|
355 | // step 2: reduce leading monomials by linear reductions |
---|
356 | poly lm,c,redpoly,maxlmJ; |
---|
357 | J[sZeros+1] = I[sZeros+1]; |
---|
358 | lm = I[sZeros+1]; |
---|
359 | maxlmJ = leadmonom(lm); |
---|
360 | lmJ[sZeros+1] = maxlmJ; |
---|
361 | int ordlm,reduction; |
---|
362 | ordJ[sZeros+1] = ord(lm); |
---|
363 | vector v; |
---|
364 | int noRedPast; |
---|
365 | for (i=sZeros+2; i<=sI; i++) |
---|
366 | { |
---|
367 | redpoly = I[i]; |
---|
368 | lm = leadmonom(redpoly); |
---|
369 | ordlm = ord(lm); |
---|
370 | if (remembercoeffs <> 0) { v = M[i]; } |
---|
371 | reduction = 1; |
---|
372 | while (reduction == 1) // while there was a reduction |
---|
373 | { |
---|
374 | noRedPast = i; |
---|
375 | reduction = 0; |
---|
376 | for (j=sZeros+1; j<noRedPast; j++) |
---|
377 | { |
---|
378 | if (lm == 0) { break; } // nothing more to reduce |
---|
379 | if (lm > maxlmJ) { break; } //lm is bigger than maximal monomial to reduce with |
---|
380 | if (ordlm == ordJ[j]) |
---|
381 | { |
---|
382 | if (lm == lmJ[j]) |
---|
383 | { |
---|
384 | dbprint(ppl-1,"// reducing " + string(redpoly)); |
---|
385 | dbprint(ppl-1,"// with " + string(J[j])); |
---|
386 | c = leadcoef(redpoly)/leadcoef(J[j]); |
---|
387 | redpoly = redpoly - c*J[j]; |
---|
388 | dbprint(ppl-1,"// to " + string(redpoly)); |
---|
389 | lm = leadmonom(redpoly); |
---|
390 | ordlm = ord(lm); |
---|
391 | if (remembercoeffs <> 0) { M[i] = M[i] - c * M[j]; } |
---|
392 | noRedPast = j; |
---|
393 | reduction = 1; |
---|
394 | } |
---|
395 | } |
---|
396 | } |
---|
397 | } |
---|
398 | for (j=sZeros+1; j<i; j++) |
---|
399 | { |
---|
400 | if (redpoly < J[j]) { break; } |
---|
401 | } |
---|
402 | J = insertGenerator(J,redpoly,j); |
---|
403 | lmJ = insertGenerator(lmJ,lm,j); |
---|
404 | ordJ = insertGenerator(ordJ,poly(ordlm),j); |
---|
405 | if (remembercoeffs <> 0) |
---|
406 | { |
---|
407 | v = M[i]; |
---|
408 | M = deleteGenerator(M,i); |
---|
409 | M = insertGenerator(M,v,j); |
---|
410 | } |
---|
411 | maxlmJ = lmJ[i]; |
---|
412 | } |
---|
413 | // step 3: reduce tails by linear reductions as well |
---|
414 | if (redtail <> 0) |
---|
415 | { |
---|
416 | dbprint(ppl,"// finished reducing leading monomials"); |
---|
417 | dbprint(ppl-1,string(J)); |
---|
418 | if (remembercoeffs <> 0) { dbprint(ppl-1,"// used reductions:" + string(M)); } |
---|
419 | int k; |
---|
420 | for (i=sZeros+1; i<=sI; i++) |
---|
421 | { |
---|
422 | lm = lmJ[i]; |
---|
423 | for (j=i+1; j<=sI; j++) |
---|
424 | { |
---|
425 | for (k=2; k<=size(J[j]); k++) // run over all terms in J[j] |
---|
426 | { |
---|
427 | if (ordJ[i] == ord(J[j][k])) |
---|
428 | { |
---|
429 | if (lm == normalize(J[j][k])) |
---|
430 | { |
---|
431 | c = leadcoef(J[j][k])/leadcoef(J[i]); |
---|
432 | dbprint(ppl-1,"// reducing " + string(J[j])); |
---|
433 | dbprint(ppl-1,"// with " + string(J[i])); |
---|
434 | J[j] = J[j] - c*J[i]; |
---|
435 | dbprint(ppl-1,"// to " + string(J[j])); |
---|
436 | if (remembercoeffs <> 0) { M[j] = M[j] - c * M[i]; } |
---|
437 | } |
---|
438 | } |
---|
439 | } |
---|
440 | } |
---|
441 | } |
---|
442 | } |
---|
443 | if (remembercoeffs <> 0) { return(list(J,M)); } |
---|
444 | else { return(J); } |
---|
445 | } |
---|
446 | example |
---|
447 | { |
---|
448 | "EXAMPLE:"; echo = 2; |
---|
449 | ring r = 0,(x,y),dp; |
---|
450 | ideal I = 3,x+9,y4+5x,2y4+7x+2; |
---|
451 | linReduceIdeal(I); // reduces tails |
---|
452 | linReduceIdeal(I,0,0); // no reductions of tails |
---|
453 | list l = linReduceIdeal(I,1); // reduces tails and shows reductions used |
---|
454 | l; |
---|
455 | module M = I; |
---|
456 | l[1] - ideal(M*l[2]); |
---|
457 | } |
---|
458 | |
---|
459 | proc linReduce(poly f, ideal I, list #) |
---|
460 | "USAGE: linReduce(f, I [,s,t,u]); f a poly, I an ideal, s,t,u optional ints |
---|
461 | RETURN: poly or list, linear reductum (over field) of f by elements from I |
---|
462 | PURPOSE: reduce a poly only by linear reductions (no monomial multiplications) |
---|
463 | NOTE: If s<>0, a list consisting of the reduced poly and the coefficient |
---|
464 | @* vector of the used reductions is returned, otherwise (and by default) |
---|
465 | @* only reduced poly is returned. |
---|
466 | @* If t<>0 (and by default) all monomials are reduced (if possible), |
---|
467 | @* otherwise, only leading monomials are reduced. |
---|
468 | @* If u<>0 (and by default), the ideal is linearly pre-reduced, i.e. |
---|
469 | @* instead of the given ideal, the output of @code{linReduceIdeal} is used. |
---|
470 | @* If u is set to 0 and the given ideal does not equal the output of |
---|
471 | @* @code{linReduceIdeal}, the result might not be as expected. |
---|
472 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
473 | @* if printlevel>=2, all the debug messages will be printed. |
---|
474 | EXAMPLE: example linReduce; shows examples |
---|
475 | " |
---|
476 | { |
---|
477 | int ppl = printlevel - voice + 2; |
---|
478 | int remembercoeffs = 0; // default |
---|
479 | int redtail = 1; // default |
---|
480 | int prepareideal = 1; // default |
---|
481 | if (size(#)>0) |
---|
482 | { |
---|
483 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
484 | { |
---|
485 | remembercoeffs = #[1]; |
---|
486 | } |
---|
487 | if (size(#)>1) |
---|
488 | { |
---|
489 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
490 | { |
---|
491 | redtail = #[2]; |
---|
492 | } |
---|
493 | if (size(#)>2) |
---|
494 | { |
---|
495 | if (typeof(#[3])=="int" || typeof(#[3])=="number") |
---|
496 | { |
---|
497 | prepareideal = #[3]; |
---|
498 | } |
---|
499 | } |
---|
500 | } |
---|
501 | } |
---|
502 | int i,j,k; |
---|
503 | int sI = ncols(I); |
---|
504 | // pre-reduce I: |
---|
505 | module M; |
---|
506 | if (prepareideal <> 0) |
---|
507 | { |
---|
508 | if (remembercoeffs <> 0) |
---|
509 | { |
---|
510 | list sortedI = linReduceIdeal(I,1,redtail); |
---|
511 | I = sortedI[1]; |
---|
512 | M = sortedI[2]; |
---|
513 | dbprint(ppl-1,"// prepared ideal:" +string(I)); |
---|
514 | dbprint(ppl-1,"// with operations:" +string(M)); |
---|
515 | } |
---|
516 | else { I = linReduceIdeal(I,0,redtail); } |
---|
517 | } |
---|
518 | else |
---|
519 | { |
---|
520 | if (remembercoeffs <> 0) |
---|
521 | { |
---|
522 | for (i=1; i<=sI; i++) { M[i] = gen(i); } |
---|
523 | } |
---|
524 | } |
---|
525 | ideal lmI,lcI,ordI; |
---|
526 | for (i=1; i<=sI; i++) |
---|
527 | { |
---|
528 | lmI[i] = leadmonom(I[i]); |
---|
529 | lcI[i] = leadcoef(I[i]); |
---|
530 | ordI[i] = ord(lmI[i]); |
---|
531 | } |
---|
532 | vector v; |
---|
533 | poly c; |
---|
534 | // === reduce leading monomials === |
---|
535 | poly lm = leadmonom(f); |
---|
536 | int ordf = ord(lm); |
---|
537 | for (i=sI; i>=1; i--) // I is sorted: smallest lm's on top |
---|
538 | { |
---|
539 | if (lm == 0) { break; } |
---|
540 | else |
---|
541 | { |
---|
542 | if (ordf == ordI[i]) |
---|
543 | { |
---|
544 | if (lm == lmI[i]) |
---|
545 | { |
---|
546 | c = leadcoef(f)/lcI[i]; |
---|
547 | f = f - c*I[i]; |
---|
548 | lm = leadmonom(f); |
---|
549 | ordf = ord(lm); |
---|
550 | if (remembercoeffs <> 0) { v = v - c * M[i]; } |
---|
551 | } |
---|
552 | } |
---|
553 | } |
---|
554 | } |
---|
555 | // === reduce tails as well === |
---|
556 | if (redtail <> 0) |
---|
557 | { |
---|
558 | dbprint(ppl,"// finished reducing leading monomials"); |
---|
559 | dbprint(ppl-1,string(f)); |
---|
560 | if (remembercoeffs <> 0) { dbprint(ppl-1,"// used reductions:" + string(v)); } |
---|
561 | for (i=1; i<=sI; i++) |
---|
562 | { |
---|
563 | dbprint(ppl,"// testing ideal entry "+string(i)); |
---|
564 | for (j=1; j<=size(f); j++) |
---|
565 | { |
---|
566 | if (ord(f[j]) == ordI[i]) |
---|
567 | { |
---|
568 | if (normalize(f[j]) == lmI[i]) |
---|
569 | { |
---|
570 | c = leadcoef(f[j])/lcI[i]; |
---|
571 | f = f - c*I[i]; |
---|
572 | dbprint(ppl-1,"// reducing with " + string(I[i])); |
---|
573 | dbprint(ppl-1,"// to " + string(f)); |
---|
574 | if (remembercoeffs <> 0) { v = v - c * M[i]; } |
---|
575 | } |
---|
576 | } |
---|
577 | } |
---|
578 | } |
---|
579 | } |
---|
580 | if (remembercoeffs <> 0) |
---|
581 | { |
---|
582 | list l = f,v; |
---|
583 | return(l); |
---|
584 | } |
---|
585 | else { return(f); } |
---|
586 | } |
---|
587 | example |
---|
588 | { |
---|
589 | "EXAMPLE:"; echo = 2; |
---|
590 | ring r = 0,(x,y),dp; |
---|
591 | ideal I = 1,y,xy; |
---|
592 | poly f = 5xy+7y+3; |
---|
593 | poly g = 7x+5y+3; |
---|
594 | linReduce(g,I); // reduces tails |
---|
595 | linReduce(g,I,0,0); // no reductions of tails |
---|
596 | linReduce(f,I,1); // reduces tails and shows reductions used |
---|
597 | f = x3+y2+x2+y+x; |
---|
598 | I = x3-y3, y3-x2,x3-y2,x2-y,y2-x; |
---|
599 | list l = linReduce(f,I,1); |
---|
600 | l; |
---|
601 | module M = I; |
---|
602 | f - (l[1]-(M*l[2])[1,1]); |
---|
603 | } |
---|
604 | |
---|
605 | proc linSyzSolve (ideal I, list #) |
---|
606 | "USAGE: linSyzSolve(I[,s]); I an ideal, s an optional int |
---|
607 | RETURN: vector, coefficient vector of linear combination of 0 in elements of I |
---|
608 | PURPOSE: compute a linear dependency between the elements of an ideal |
---|
609 | @* if such one exists |
---|
610 | NOTE: If s<>0, @code{std} is used for Groebner basis computations, |
---|
611 | @* otherwise, @code{slimgb} is used. |
---|
612 | @* By default, @code{slimgb} is used in char 0 and @code{std} in char >0. |
---|
613 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
614 | @* if printlevel>=2, all the debug messages will be printed. |
---|
615 | EXAMPLE: example linSyzSolve; shows examples |
---|
616 | " |
---|
617 | { |
---|
618 | int whichengine = 0; // default |
---|
619 | int enginespecified = 0; // default |
---|
620 | if (size(#)>0) |
---|
621 | { |
---|
622 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
623 | { |
---|
624 | whichengine = int( #[1]); |
---|
625 | enginespecified = 1; |
---|
626 | } |
---|
627 | } |
---|
628 | int ppl = printlevel - voice +2; |
---|
629 | int sI = ncols(I); |
---|
630 | // check if we are done |
---|
631 | if (I[sI]==0) |
---|
632 | { |
---|
633 | vector v = gen(sI); |
---|
634 | } |
---|
635 | else |
---|
636 | { |
---|
637 | // ------- 1. introduce undefined coeffs ------------------ |
---|
638 | def save = basering; |
---|
639 | list RL = ringlist(save); |
---|
640 | int nv = nvars(save); |
---|
641 | int np = npars(save); |
---|
642 | int p = char(save); |
---|
643 | string cs = "(" + charstr(save) + ")"; |
---|
644 | if (enginespecified == 0) |
---|
645 | { |
---|
646 | if (p <> 0) |
---|
647 | { |
---|
648 | whichengine = 1; |
---|
649 | } |
---|
650 | } |
---|
651 | int i; |
---|
652 | list Lvar; |
---|
653 | for (i=1; i<=sI; i++) |
---|
654 | { |
---|
655 | Lvar[i] = safeVarName("@a(" + string(i) + ")"); |
---|
656 | } |
---|
657 | list L@A = RL[1..4]; |
---|
658 | L@A[2] = Lvar; |
---|
659 | L@A[3] = list(list("lp",intvec(1:sI)),list("C",intvec(0))); |
---|
660 | def @A = ring(L@A); |
---|
661 | L@A[2] = list(safeVarName("@z")); |
---|
662 | L@A[3][1] = list("dp",intvec(1)); |
---|
663 | if (size(L@A[1])>1) |
---|
664 | { |
---|
665 | L@A[1][2] = L@A[1][2] + Lvar; |
---|
666 | L@A[1][3][size(L@A[1][3])+1] = list("lp",intvec(1:sI)); |
---|
667 | } |
---|
668 | else |
---|
669 | { |
---|
670 | L@A[1] = list(p,Lvar,list(list("lp",intvec(1:sI))),ideal(0)); |
---|
671 | } |
---|
672 | def @aA = ring(L@A); |
---|
673 | def @B = save + @aA; |
---|
674 | setring @B; |
---|
675 | ideal I = imap(save,I); |
---|
676 | // ------- 2. form the linear system for the undef coeffs --- |
---|
677 | poly W; ideal QQ; |
---|
678 | for (i=1; i<=sI; i++) |
---|
679 | { |
---|
680 | W = W + par(np+i)*I[i]; |
---|
681 | } |
---|
682 | while (W!=0) |
---|
683 | { |
---|
684 | QQ = QQ,leadcoef(W); |
---|
685 | W = W - lead(W); |
---|
686 | } |
---|
687 | // QQ consists of polynomial expressions in @a(i) of type number |
---|
688 | setring @A; |
---|
689 | ideal QQ = imap(@B,QQ); |
---|
690 | // ------- 3. this QQ is a polynomial ideal, so "solve" the system ----- |
---|
691 | dbprint(ppl, "// linSyzSolve: starting Groebner basis computation with engine:", whichengine); |
---|
692 | QQ = engine(QQ,whichengine); |
---|
693 | dbprint(ppl, "// QQ after engine:", QQ); |
---|
694 | if (dim(QQ) == -1) |
---|
695 | { |
---|
696 | dbprint(ppl+1, "// no solutions by linSyzSolve"); |
---|
697 | // output zeroes |
---|
698 | setring save; |
---|
699 | kill @A,@aA,@B; |
---|
700 | return(v); |
---|
701 | } |
---|
702 | // ------- 4. in order to get the numeric values ------- |
---|
703 | matrix AA = matrix(maxideal(1)); |
---|
704 | module MQQ = std(module(QQ)); |
---|
705 | AA = NF(AA,MQQ); // todo: we still receive NF warnings |
---|
706 | dbprint(ppl, "// AA after NF:",AA); |
---|
707 | // "AA after NF:"; print(AA); |
---|
708 | for(i=1; i<=sI; i++) |
---|
709 | { |
---|
710 | AA = subst(AA,var(i),1); |
---|
711 | } |
---|
712 | dbprint(ppl, "// AA after subst:",AA); |
---|
713 | // "AA after subst: "; print(AA); |
---|
714 | vector v = (module(transpose(AA)))[1]; |
---|
715 | setring save; |
---|
716 | vector v = imap(@A,v); |
---|
717 | kill @A,@aA,@B; |
---|
718 | } |
---|
719 | return(v); |
---|
720 | } |
---|
721 | example |
---|
722 | { |
---|
723 | "EXAMPLE:"; echo = 2; |
---|
724 | ring r = 0,x,dp; |
---|
725 | ideal I = x,2x; |
---|
726 | linSyzSolve(I); |
---|
727 | ideal J = x,x2; |
---|
728 | linSyzSolve(J); |
---|
729 | } |
---|
730 | |
---|
731 | proc pIntersect (poly s, ideal I, list #) |
---|
732 | "USAGE: pIntersect(f, I [,s]); f a poly, I an ideal, s an optional int |
---|
733 | RETURN: vector, coefficient vector of the monic polynomial |
---|
734 | PURPOSE: compute the intersection of ideal I with the subalgebra K[f] |
---|
735 | ASSUME: I is given as Groebner basis, basering is not a qring. |
---|
736 | NOTE: If the intersection is zero, this proc might not terminate. |
---|
737 | @* If s>0 is given, it is searched for the generator of the intersection |
---|
738 | @* only up to degree s. Otherwise (and by default), no bound is assumed. |
---|
739 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
740 | @* if printlevel>=2, all the debug messages will be printed. |
---|
741 | EXAMPLE: example pIntersect; shows examples |
---|
742 | " |
---|
743 | { |
---|
744 | def save = basering; |
---|
745 | int n = nvars(save); |
---|
746 | list RL = ringlist(save); |
---|
747 | int i,j,k; |
---|
748 | if (RL[4]<>0) |
---|
749 | { |
---|
750 | ERROR ("basering must not be a qring"); |
---|
751 | } |
---|
752 | // assume I is given in Groebner basis |
---|
753 | if (attrib(I,"isSB") <> 1) |
---|
754 | { |
---|
755 | print("// WARNING: The input has no SB attribute!"); |
---|
756 | print("// Treating it as if it were a Groebner basis and proceeding..."); |
---|
757 | attrib(I,"isSB",1); // set attribute for suppressing NF messages |
---|
758 | } |
---|
759 | int bound = 0; // default |
---|
760 | if (size(#)>0) |
---|
761 | { |
---|
762 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
763 | { |
---|
764 | bound = #[1]; |
---|
765 | } |
---|
766 | } |
---|
767 | int ppl = printlevel-voice+2; |
---|
768 | // ---case 1: I = basering--- |
---|
769 | if (size(I) == 1) |
---|
770 | { |
---|
771 | if (simplify(I,2)[1] == 1) |
---|
772 | { |
---|
773 | return(gen(1)); // = 1 |
---|
774 | } |
---|
775 | } |
---|
776 | // ---case 2: intersection is zero--- |
---|
777 | intvec degs = leadexp(s); |
---|
778 | intvec possdegbounds; |
---|
779 | list degI; |
---|
780 | i = 1; |
---|
781 | while (i <= ncols(I)) |
---|
782 | { |
---|
783 | if (i == ncols(I)+1) { break; } |
---|
784 | degI[i] = leadexp(I[i]); |
---|
785 | for (j=1; j<=n; j++) |
---|
786 | { |
---|
787 | if (degs[j] == 0) |
---|
788 | { |
---|
789 | if (degI[i][j] <> 0) { break; } |
---|
790 | } |
---|
791 | if (j == n) |
---|
792 | { |
---|
793 | k++; |
---|
794 | possdegbounds[k] = Max(degI[i]); |
---|
795 | } |
---|
796 | } |
---|
797 | i++; |
---|
798 | } |
---|
799 | int degbound = Min(possdegbounds); |
---|
800 | if (bound>0 && bound<degbound) // given bound is too small |
---|
801 | { |
---|
802 | print("// Try a bound of at least " + string(degbound)); |
---|
803 | return(vector(0)); |
---|
804 | } |
---|
805 | dbprint(ppl,"// lower bound for the degree of the insection is " +string(degbound)); |
---|
806 | if (degbound == 0) // lm(s) does not appear in lm(I) |
---|
807 | { |
---|
808 | print("// Intersection is zero"); |
---|
809 | return(vector(0)); |
---|
810 | } |
---|
811 | // ---case 3: intersection is non-trivial--- |
---|
812 | ideal redNI = 1; |
---|
813 | vector v; |
---|
814 | list l,ll; |
---|
815 | l[1] = vector(0); |
---|
816 | poly toNF,tobracket,newNF,rednewNF,oldNF,secNF; |
---|
817 | i = 1; |
---|
818 | while (1) |
---|
819 | { |
---|
820 | if (bound>0 && i>bound) { return(vector(0)); } |
---|
821 | dbprint(ppl,"// Testing degree "+string(i)); |
---|
822 | if (i>1) |
---|
823 | { |
---|
824 | oldNF = newNF; |
---|
825 | tobracket = s^(i-1) - oldNF; |
---|
826 | if (tobracket==0) // todo bug in bracket? |
---|
827 | { |
---|
828 | toNF = 0; |
---|
829 | } |
---|
830 | else |
---|
831 | { |
---|
832 | toNF = bracket(tobracket,secNF); |
---|
833 | } |
---|
834 | newNF = NF(toNF+oldNF*secNF,I); // = NF(s^i,I) |
---|
835 | } |
---|
836 | else |
---|
837 | { |
---|
838 | newNF = NF(s,I); |
---|
839 | secNF = newNF; |
---|
840 | } |
---|
841 | ll = linReduce(newNF,redNI,1); |
---|
842 | rednewNF = ll[1]; |
---|
843 | l[i+1] = ll[2]; |
---|
844 | dbprint(ppl-1,"// newNF is: "+string(newNF)); |
---|
845 | dbprint(ppl-1,"// rednewNF is: "+string(rednewNF)); |
---|
846 | if (rednewNF != 0) // no linear dependency |
---|
847 | { |
---|
848 | redNI[i+1] = rednewNF; |
---|
849 | i++; |
---|
850 | } |
---|
851 | else // there is a linear dependency, hence we are done |
---|
852 | { |
---|
853 | dbprint(ppl,"// degree of the generator of the intersection is: "+string(i)); |
---|
854 | break; |
---|
855 | } |
---|
856 | } |
---|
857 | dbprint(ppl-1,"// used linear reductions:", l); |
---|
858 | // we obtain the coefficients of the generator by the used reductions: |
---|
859 | list Lvar; |
---|
860 | for (j=1; j<=i+1; j++) |
---|
861 | { |
---|
862 | Lvar[j] = safeVarName("a("+string(j)+")"); |
---|
863 | } |
---|
864 | list Lord = list("dp",intvec(1:(i+1))),list("C",intvec(0)); |
---|
865 | list L@R = RL[1..4]; |
---|
866 | L@R[2] = Lvar; L@R[3] = Lord; |
---|
867 | def @R = ring(L@R); setring @R; |
---|
868 | list l = imap(save,l); |
---|
869 | ideal C; |
---|
870 | for (j=1;j<=i+1;j++) |
---|
871 | { |
---|
872 | C[j] = 0; |
---|
873 | for (k=1;k<=j;k++) |
---|
874 | { |
---|
875 | C[j] = C[j]+l[j][k]*var(k); |
---|
876 | } |
---|
877 | } |
---|
878 | for (j=i;j>=1;j--) |
---|
879 | { |
---|
880 | C[i+1]= subst(C[i+1],var(j),var(j)+C[j]); |
---|
881 | } |
---|
882 | matrix m = coeffs(C[i+1],maxideal(1)); |
---|
883 | vector v = gen(i+1); |
---|
884 | for (j=1;j<=i+1;j++) |
---|
885 | { |
---|
886 | v = v + m[j,1]*gen(j); |
---|
887 | } |
---|
888 | setring save; |
---|
889 | v = imap(@R,v); |
---|
890 | kill @R; |
---|
891 | return(v); |
---|
892 | } |
---|
893 | example |
---|
894 | { |
---|
895 | "EXAMPLE:"; echo = 2; |
---|
896 | ring r = 0,(x,y),dp; |
---|
897 | poly f = x^2+y^3+x*y^2; |
---|
898 | def D = initialMalgrange(f); |
---|
899 | setring D; |
---|
900 | inF; |
---|
901 | pIntersect(t*Dt,inF); |
---|
902 | pIntersect(t*Dt,inF,1); |
---|
903 | } |
---|
904 | |
---|
905 | proc pIntersectSyz (poly s, ideal II, list #) |
---|
906 | "USAGE: pIntersectSyz(f, I [,p,s,t]); f poly, I ideal, p,t optial ints, p prime |
---|
907 | RETURN: vector, coefficient vector of the monic polynomial |
---|
908 | PURPOSE: compute the intersection of an ideal I with the subalgebra K[f] |
---|
909 | ASSUME: I is given as Groebner basis, basering is free of parameters. |
---|
910 | NOTE: If the intersection is zero, this procedure might not terminate. |
---|
911 | @* If p>0 is given, this proc computes the generator of the intersection in |
---|
912 | @* char p first and then only searches for a generator of the obtained |
---|
913 | @* degree in the basering. Otherwise, it searched for all degrees by |
---|
914 | @* computing syzygies. |
---|
915 | @* If s<>0, @code{std} is used for Groebner basis computations in char 0, |
---|
916 | @* otherwise, and by default, @code{slimgb} is used. |
---|
917 | @* If t<>0 and by default, @code{std} is used for Groebner basis |
---|
918 | @* computations in char >0, otherwise, @code{slimgb} is used. |
---|
919 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
920 | @* if printlevel>=2, all the debug messages will be printed. |
---|
921 | EXAMPLE: example pIntersectSyz; shows examples |
---|
922 | " |
---|
923 | { |
---|
924 | // assume I is given in Groebner basis |
---|
925 | ideal I = II; |
---|
926 | if (attrib(I,"isSB") <> 1) |
---|
927 | { |
---|
928 | print("// WARNING: The input has no SB attribute!"); |
---|
929 | print("// Treating it as if it were a Groebner basis and proceeding..."); |
---|
930 | attrib(I,"isSB",1); // set attribute for suppressing NF messages |
---|
931 | } |
---|
932 | int ppl = printlevel-voice+2; |
---|
933 | int whichengine = 0; // default |
---|
934 | int modengine = 1; // default |
---|
935 | int solveincharp = 0; // default |
---|
936 | def save = basering; |
---|
937 | if (size(#)>0) |
---|
938 | { |
---|
939 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
940 | { |
---|
941 | solveincharp = int(#[1]); |
---|
942 | } |
---|
943 | if (size(#)>1) |
---|
944 | { |
---|
945 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
946 | { |
---|
947 | whichengine = int(#[2]); |
---|
948 | } |
---|
949 | if (size(#)>2) |
---|
950 | { |
---|
951 | if (typeof(#[3])=="int" || typeof(#[3])=="number") |
---|
952 | { |
---|
953 | modengine = int(#[3]); |
---|
954 | } |
---|
955 | } |
---|
956 | } |
---|
957 | } |
---|
958 | int i,j; |
---|
959 | vector v; |
---|
960 | poly tobracket,toNF,newNF,p; |
---|
961 | ideal NI = 1; |
---|
962 | newNF = NF(s,I); |
---|
963 | NI[2] = newNF; |
---|
964 | if (solveincharp<>0) |
---|
965 | { |
---|
966 | list l = ringlist(save); |
---|
967 | l[1] = solveincharp; |
---|
968 | matrix l5 = l[5]; |
---|
969 | matrix l6 = l[6]; |
---|
970 | def @Rp = ring(l); |
---|
971 | setring @Rp; |
---|
972 | list l = ringlist(@Rp); |
---|
973 | l[5] = fetch(save,l5); |
---|
974 | l[6] = fetch(save,l6); |
---|
975 | def Rp = ring(l); |
---|
976 | setring Rp; |
---|
977 | kill @Rp; |
---|
978 | dbprint(ppl+1,"// solving in ring ", Rp); |
---|
979 | vector v; |
---|
980 | map phi = save,maxideal(1); |
---|
981 | poly s = phi(s); |
---|
982 | ideal NI = 1; |
---|
983 | setring save; |
---|
984 | } |
---|
985 | i = 1; |
---|
986 | dbprint(ppl+1,"// pIntersectSyz starts..."); |
---|
987 | dbprint(ppl+1,"// with ideal I=", I); |
---|
988 | while (1) |
---|
989 | { |
---|
990 | dbprint(ppl,"// i:"+string(i)); |
---|
991 | if (i>1) |
---|
992 | { |
---|
993 | tobracket = s^(i-1)-NI[i]; |
---|
994 | if (tobracket!=0) |
---|
995 | { |
---|
996 | toNF = bracket(tobracket,NI[2]) + NI[i]*NI[2]; |
---|
997 | } |
---|
998 | else |
---|
999 | { |
---|
1000 | toNF = NI[i]*NI[2]; |
---|
1001 | } |
---|
1002 | newNF = NF(toNF,I); |
---|
1003 | NI[i+1] = newNF; |
---|
1004 | } |
---|
1005 | // look for a solution |
---|
1006 | dbprint(ppl,"// linSyzSolve starts with: "+string(matrix(NI))); |
---|
1007 | if (solveincharp<>0) // modular method |
---|
1008 | { |
---|
1009 | setring Rp; |
---|
1010 | NI[i+1] = phi(newNF); |
---|
1011 | v = linSyzSolve(NI,modengine); |
---|
1012 | if (v!=0) // there is a modular solution |
---|
1013 | { |
---|
1014 | dbprint(ppl,"// got solution in char "+string(solveincharp)+" of degree "+string(i)); |
---|
1015 | setring save; |
---|
1016 | v = linSyzSolve(NI,whichengine); |
---|
1017 | if (v==0) |
---|
1018 | { |
---|
1019 | break; |
---|
1020 | } |
---|
1021 | } |
---|
1022 | else // no modular solution |
---|
1023 | { |
---|
1024 | setring save; |
---|
1025 | v = 0; |
---|
1026 | } |
---|
1027 | } |
---|
1028 | else // non-modular method |
---|
1029 | { |
---|
1030 | v = linSyzSolve(NI,whichengine); |
---|
1031 | } |
---|
1032 | matrix MM[1][nrows(v)] = matrix(v); |
---|
1033 | dbprint(ppl,"// linSyzSolve ready with: "+string(MM)); |
---|
1034 | kill MM; |
---|
1035 | // "linSyzSolve ready with"; print(v); |
---|
1036 | if (v!=0) |
---|
1037 | { |
---|
1038 | // a solution: |
---|
1039 | //check for the reality of the solution |
---|
1040 | p = 0; |
---|
1041 | for (j=1; j<=i+1; j++) |
---|
1042 | { |
---|
1043 | p = p + v[j]*NI[j]; |
---|
1044 | } |
---|
1045 | if (p!=0) |
---|
1046 | { |
---|
1047 | dbprint(ppl,"// linSyzSolve: bad solution!"); |
---|
1048 | } |
---|
1049 | else |
---|
1050 | { |
---|
1051 | dbprint(ppl,"// linSyzSolve: got solution!"); |
---|
1052 | // "got solution!"; |
---|
1053 | break; |
---|
1054 | } |
---|
1055 | } |
---|
1056 | // no solution: |
---|
1057 | i++; |
---|
1058 | } |
---|
1059 | dbprint(ppl+1,"// pIntersectSyz finished"); |
---|
1060 | return(v); |
---|
1061 | } |
---|
1062 | example |
---|
1063 | { |
---|
1064 | "EXAMPLE:"; echo = 2; |
---|
1065 | ring r = 0,(x,y),dp; |
---|
1066 | poly f = x^2+y^3+x*y^2; |
---|
1067 | def D = initialMalgrange(f); |
---|
1068 | setring D; |
---|
1069 | inF; |
---|
1070 | poly s = t*Dt; |
---|
1071 | pIntersectSyz(s,inF); |
---|
1072 | int p = prime(20000); |
---|
1073 | pIntersectSyz(s,inF,p,0,0); |
---|
1074 | } |
---|
1075 | |
---|
1076 | proc vec2poly (list #) |
---|
1077 | "USAGE: vec2poly(v [,i]); v a vector or an intvec, i an optional int |
---|
1078 | RETURN: poly, an univariate poly in i-th variable with coefficients given by v |
---|
1079 | PURPOSE: constructs an univariate poly in K[var(i)] with given coefficients, |
---|
1080 | @* such that the coefficient at var(i)^{j-1} is v[j]. |
---|
1081 | NOTE: The optional argument i must be positive, by default i is 1. |
---|
1082 | EXAMPLE: example vec2poly; shows examples |
---|
1083 | " |
---|
1084 | { |
---|
1085 | def save = basering; |
---|
1086 | int i,ringvar; |
---|
1087 | ringvar = 1; // default |
---|
1088 | if (size(#) > 0) |
---|
1089 | { |
---|
1090 | if (typeof(#[1])=="vector" || typeof(#[1])=="intvec") |
---|
1091 | { |
---|
1092 | def v = #[1]; |
---|
1093 | } |
---|
1094 | else |
---|
1095 | { |
---|
1096 | ERROR("wrong input: expected vector/intvec expression"); |
---|
1097 | } |
---|
1098 | if (size(#) > 1) |
---|
1099 | { |
---|
1100 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1101 | { |
---|
1102 | ringvar = int(#[2]); |
---|
1103 | } |
---|
1104 | } |
---|
1105 | } |
---|
1106 | if (ringvar > nvars(save)) |
---|
1107 | { |
---|
1108 | ERROR("var out of range"); |
---|
1109 | } |
---|
1110 | poly p; |
---|
1111 | for (i=1; i<=nrows(v); i++) |
---|
1112 | { |
---|
1113 | p = p + v[i]*(var(ringvar))^(i-1); |
---|
1114 | } |
---|
1115 | return(p); |
---|
1116 | } |
---|
1117 | example |
---|
1118 | { |
---|
1119 | "EXAMPLE:"; echo = 2; |
---|
1120 | ring r = 0,(x,y),dp; |
---|
1121 | vector v = gen(1) + 3*gen(3) + 22/9*gen(4); |
---|
1122 | intvec iv = 3,2,1; |
---|
1123 | vec2poly(v,2); |
---|
1124 | vec2poly(iv); |
---|
1125 | } |
---|
1126 | |
---|
1127 | static proc listofroots (list #) |
---|
1128 | { |
---|
1129 | def save = basering; |
---|
1130 | int n = nvars(save); |
---|
1131 | int i; |
---|
1132 | poly p; |
---|
1133 | if (typeof(#[1])=="vector") |
---|
1134 | { |
---|
1135 | vector b = #[1]; |
---|
1136 | for (i=1; i<=nrows(b); i++) |
---|
1137 | { |
---|
1138 | p = p + b[i]*(var(1))^(i-1); |
---|
1139 | } |
---|
1140 | } |
---|
1141 | else |
---|
1142 | { |
---|
1143 | p = #[1]; |
---|
1144 | } |
---|
1145 | int substitution = int(#[2]); |
---|
1146 | string s = safeVarName("s"); |
---|
1147 | list RL = ringlist(save); RL = RL[1..4]; |
---|
1148 | RL[2] = list(s); RL[3] = list(list("dp",intvec(1)),list("C",0)); |
---|
1149 | def S = ring(RL); setring S; |
---|
1150 | ideal J; |
---|
1151 | for (i=1; i<=n; i++) |
---|
1152 | { |
---|
1153 | J[i] = var(1); |
---|
1154 | } |
---|
1155 | map @m = save,J; |
---|
1156 | poly p = @m(p); |
---|
1157 | if (substitution == 1) |
---|
1158 | { |
---|
1159 | p = subst(p,var(1),-var(1)-1); |
---|
1160 | } |
---|
1161 | // the rest of this proc is nicked from bernsteinBM from dmod.lib |
---|
1162 | list P = factorize(p);//with constants and multiplicities |
---|
1163 | ideal bs; intvec m; //the BS poly is monic, so we are not interested in constants |
---|
1164 | for (i=2; i<= size(P[1]); i++) //we delete P[1][1] and P[2][1] |
---|
1165 | { |
---|
1166 | bs[i-1] = P[1][i]; |
---|
1167 | m[i-1] = P[2][i]; |
---|
1168 | } |
---|
1169 | bs = normalize(bs); |
---|
1170 | bs = -subst(bs,var(1),0); |
---|
1171 | setring save; |
---|
1172 | ideal bs = imap(S,bs); |
---|
1173 | kill S; |
---|
1174 | list BS = bs,m; |
---|
1175 | return(BS); |
---|
1176 | } |
---|
1177 | |
---|
1178 | static proc bfctengine (poly f, int inorann, int whichengine, int methodord, int methodpIntersect, int pIntersectchar, int modengine, intvec u0) |
---|
1179 | { |
---|
1180 | int ppl = printlevel - voice +2; |
---|
1181 | int i; |
---|
1182 | def save = basering; |
---|
1183 | int n = nvars(save); |
---|
1184 | if (isCommutative() == 0) { ERROR("basering must be commutative"); } |
---|
1185 | if (char(save) <> 0) { ERROR("characteristic of basering has to be 0"); } |
---|
1186 | list L = ringlist(save); |
---|
1187 | int qr; |
---|
1188 | if (L[4] <> 0) // qring |
---|
1189 | { |
---|
1190 | print("// basering is qring:"); |
---|
1191 | print("// discarding the quotient and proceeding..."); |
---|
1192 | L[4] = 0; |
---|
1193 | qr = 1; |
---|
1194 | def save2 = ring(L); |
---|
1195 | setring save2; |
---|
1196 | poly f = imap(save,f); |
---|
1197 | } |
---|
1198 | if (size(variables(f)) == 0) // f is constant |
---|
1199 | { |
---|
1200 | return(list(ideal(0),intvec(0))); |
---|
1201 | } |
---|
1202 | if (inorann == 0) // bfct using initial ideal |
---|
1203 | { |
---|
1204 | def D = initialMalgrange(f,whichengine,methodord,u0); |
---|
1205 | setring D; |
---|
1206 | ideal J = inF; |
---|
1207 | kill inF; |
---|
1208 | poly s = t*Dt; |
---|
1209 | } |
---|
1210 | else // bfct using Ann(f^s) |
---|
1211 | { |
---|
1212 | def D = SannfsBFCT(f,whichengine); |
---|
1213 | setring D; |
---|
1214 | ideal J = LD; |
---|
1215 | kill LD; |
---|
1216 | } |
---|
1217 | vector b; |
---|
1218 | // try it modular |
---|
1219 | if (methodpIntersect <> 0) // pIntersectSyz |
---|
1220 | { |
---|
1221 | if (pIntersectchar == 0) // pIntersectSyz::modular |
---|
1222 | { |
---|
1223 | int lb = 30000; |
---|
1224 | int ub = 536870909; |
---|
1225 | i = 1; |
---|
1226 | list usedprimes; |
---|
1227 | while (b == 0) |
---|
1228 | { |
---|
1229 | dbprint(ppl,"// number of run in the loop: "+string(i)); |
---|
1230 | int q = prime(random(lb,ub)); |
---|
1231 | if (findFirst(usedprimes,q)==0) // if q was not already used |
---|
1232 | { |
---|
1233 | usedprimes = usedprimes,q; |
---|
1234 | dbprint(ppl,"// used prime is: "+string(q)); |
---|
1235 | b = pIntersectSyz(s,J,q,whichengine,modengine); |
---|
1236 | } |
---|
1237 | i++; |
---|
1238 | } |
---|
1239 | } |
---|
1240 | else // pIntersectSyz::non-modular |
---|
1241 | { |
---|
1242 | b = pIntersectSyz(s,J,0,whichengine); |
---|
1243 | } |
---|
1244 | } |
---|
1245 | else // pIntersect: linReduce |
---|
1246 | { |
---|
1247 | b = pIntersect(s,J); |
---|
1248 | } |
---|
1249 | if (qr == 1) { setring save2; } |
---|
1250 | else { setring save; } |
---|
1251 | vector b = imap(D,b); |
---|
1252 | if (inorann == 0) { list l = listofroots(b,1); } |
---|
1253 | else { list l = listofroots(b,0); } |
---|
1254 | if (qr == 1) |
---|
1255 | { |
---|
1256 | setring save; |
---|
1257 | list l = imap(save2,l); |
---|
1258 | } |
---|
1259 | return(l); |
---|
1260 | } |
---|
1261 | |
---|
1262 | proc bfct (poly f, list #) |
---|
1263 | "USAGE: bfct(f [,s,t,v]); f a poly, s,t optional ints, v an optional intvec |
---|
1264 | RETURN: list of ideal and intvec |
---|
1265 | PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) |
---|
1266 | @* for the hypersurface defined by f. |
---|
1267 | ASSUME: The basering is commutative and of characteristic 0. |
---|
1268 | BACKGROUND: In this proc, the initial Malgrange ideal is computed according to |
---|
1269 | @* the algorithm by Masayuki Noro and then a system of linear equations is |
---|
1270 | @* solved by linear reductions. |
---|
1271 | NOTE: In the output list, the ideal contains all the roots |
---|
1272 | @* and the intvec their multiplicities. |
---|
1273 | @* If s<>0, @code{std} is used for GB computations, |
---|
1274 | @* otherwise, and by default, @code{slimgb} is used. |
---|
1275 | @* If t<>0, a matrix ordering is used for Groebner basis computations, |
---|
1276 | @* otherwise, and by default, a block ordering is used. |
---|
1277 | @* If v is a positive weight vector, v is used for homogenization |
---|
1278 | @* computations, otherwise and by default, no weights are used. |
---|
1279 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1280 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1281 | EXAMPLE: example bfct; shows examples |
---|
1282 | " |
---|
1283 | { |
---|
1284 | int ppl = printlevel - voice +2; |
---|
1285 | int i; |
---|
1286 | int n = nvars(basering); |
---|
1287 | // in # we have two switches: |
---|
1288 | // one for the engine used for Groebner basis computations, |
---|
1289 | // one for M() ordering or its realization |
---|
1290 | // in # can also be the optional weight vector |
---|
1291 | int whichengine = 0; // default |
---|
1292 | int methodord = 0; // default |
---|
1293 | intvec u0 = 0; // default |
---|
1294 | if (size(#)>0) |
---|
1295 | { |
---|
1296 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1297 | { |
---|
1298 | whichengine = int(#[1]); |
---|
1299 | } |
---|
1300 | if (size(#)>1) |
---|
1301 | { |
---|
1302 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1303 | { |
---|
1304 | methodord = int(#[2]); |
---|
1305 | } |
---|
1306 | if (size(#)>2) |
---|
1307 | { |
---|
1308 | if (typeof(#[3])=="intvec" && size(#[3])==n && allPositive(#[3])==1) |
---|
1309 | { |
---|
1310 | u0 = #[3]; |
---|
1311 | } |
---|
1312 | } |
---|
1313 | } |
---|
1314 | } |
---|
1315 | list b = bfctengine(f,0,whichengine,methodord,0,0,0,u0); |
---|
1316 | return(b); |
---|
1317 | } |
---|
1318 | example |
---|
1319 | { |
---|
1320 | "EXAMPLE:"; echo = 2; |
---|
1321 | ring r = 0,(x,y),dp; |
---|
1322 | poly f = x^2+y^3+x*y^2; |
---|
1323 | bfct(f); |
---|
1324 | intvec v = 3,2; |
---|
1325 | bfct(f,1,0,v); |
---|
1326 | } |
---|
1327 | |
---|
1328 | proc bfctSyz (poly f, list #) |
---|
1329 | "USAGE: bfctSyz(f [,r,s,t,u,v]); f poly, r,s,t,u optional ints, v opt. intvec |
---|
1330 | RETURN: list of ideal and intvec |
---|
1331 | PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) |
---|
1332 | @* for the hypersurface defined by f |
---|
1333 | ASSUME: The basering is commutative and of characteristic 0. |
---|
1334 | BACKGROUND: In this proc, the initial Malgrange ideal is computed according to |
---|
1335 | @* the algorithm by Masayuki Noro and then a system of linear equations is |
---|
1336 | @* solved by computing syzygies. |
---|
1337 | NOTE: In the output list, the ideal contains all the roots and the intvec |
---|
1338 | @* their multiplicities. |
---|
1339 | @* If r<>0, @code{std} is used for GB computations in characteristic 0, |
---|
1340 | @* otherwise, and by default, @code{slimgb} is used. |
---|
1341 | @* If s<>0, a matrix ordering is used for GB computations, otherwise, |
---|
1342 | @* and by default, a block ordering is used. |
---|
1343 | @* If t<>0, the computation of the intersection is solely performed over |
---|
1344 | @* charasteristic 0, otherwise and by default, a modular method is used. |
---|
1345 | @* If u<>0 and by default, @code{std} is used for GB computations in |
---|
1346 | @* characteristic >0, otherwise, @code{slimgb} is used. |
---|
1347 | @* If v is a positive weight vector, v is used for homogenization |
---|
1348 | @* computations, otherwise and by default, no weights are used. |
---|
1349 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1350 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1351 | EXAMPLE: example bfctSyz; shows examples |
---|
1352 | " |
---|
1353 | { |
---|
1354 | int ppl = printlevel - voice +2; |
---|
1355 | int i; |
---|
1356 | // in # we have four switches: |
---|
1357 | // one for the engine used for Groebner basis computations in char 0, |
---|
1358 | // one for M() ordering or its realization |
---|
1359 | // one for a modular method when computing the intersection |
---|
1360 | // and one for the engine used for Groebner basis computations in char >0 |
---|
1361 | // in # can also be the optional weight vector |
---|
1362 | int n = nvars(basering); |
---|
1363 | int whichengine = 0; // default |
---|
1364 | int methodord = 0; // default |
---|
1365 | int pIntersectchar = 0; // default |
---|
1366 | int modengine = 1; // default |
---|
1367 | intvec u0 = 0; // default |
---|
1368 | if (size(#)>0) |
---|
1369 | { |
---|
1370 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1371 | { |
---|
1372 | whichengine = int(#[1]); |
---|
1373 | } |
---|
1374 | if (size(#)>1) |
---|
1375 | { |
---|
1376 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1377 | { |
---|
1378 | methodord = int(#[2]); |
---|
1379 | } |
---|
1380 | if (size(#)>2) |
---|
1381 | { |
---|
1382 | if (typeof(#[3])=="int" || typeof(#[3])=="number") |
---|
1383 | { |
---|
1384 | pIntersectchar = int(#[3]); |
---|
1385 | } |
---|
1386 | if (size(#)>3) |
---|
1387 | { |
---|
1388 | if (typeof(#[4])=="int" || typeof(#[4])=="number") |
---|
1389 | { |
---|
1390 | modengine = int(#[4]); |
---|
1391 | } |
---|
1392 | if (size(#)>4) |
---|
1393 | { |
---|
1394 | if (typeof(#[5])=="intvec" && size(#[5])==n && allPositive(#[5])==1) |
---|
1395 | { |
---|
1396 | u0 = #[5]; |
---|
1397 | } |
---|
1398 | } |
---|
1399 | } |
---|
1400 | } |
---|
1401 | } |
---|
1402 | } |
---|
1403 | list b = bfctengine(f,0,whichengine,methodord,1,pIntersectchar,modengine,u0); |
---|
1404 | return(b); |
---|
1405 | } |
---|
1406 | example |
---|
1407 | { |
---|
1408 | "EXAMPLE:"; echo = 2; |
---|
1409 | ring r = 0,(x,y),dp; |
---|
1410 | poly f = x^2+y^3+x*y^2; |
---|
1411 | bfctSyz(f); |
---|
1412 | intvec v = 3,2; |
---|
1413 | bfctSyz(f,0,1,1,0,v); |
---|
1414 | } |
---|
1415 | |
---|
1416 | proc bfctIdeal (ideal I, intvec w, list #) |
---|
1417 | "USAGE: bfctIdeal(I,w[,s,t]); I an ideal, w an intvec, s,t optional ints |
---|
1418 | RETURN: list of ideal and intvec |
---|
1419 | PURPOSE: computes the roots of the global b-function of I wrt the weight (-w,w). |
---|
1420 | ASSUME: The basering is the n-th Weyl algebra in characteristic 0 and for all |
---|
1421 | @* 1<=i<=n the identity var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the |
---|
1422 | @* sequence of variables is given by x(1),...,x(n),D(1),...,D(n), |
---|
1423 | @* where D(i) is the differential operator belonging to x(i). |
---|
1424 | @* Further assume that I is holonomic. |
---|
1425 | BACKGROUND: In this proc, the initial ideal of I is computed according to the |
---|
1426 | @* algorithm by Masayuki Noro and then a system of linear equations is |
---|
1427 | @* solved by linear reductions. |
---|
1428 | NOTE: In the output list, the ideal contains all the roots and the intvec |
---|
1429 | @* their multiplicities. |
---|
1430 | @* If s<>0, @code{std} is used for GB computations in characteristic 0, |
---|
1431 | @* otherwise, and by default, @code{slimgb} is used. |
---|
1432 | @* If t<>0, a matrix ordering is used for GB computations, otherwise, |
---|
1433 | @* and by default, a block ordering is used. |
---|
1434 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1435 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1436 | EXAMPLE: example bfctIdeal; shows examples |
---|
1437 | " |
---|
1438 | { |
---|
1439 | int ppl = printlevel - voice +2; |
---|
1440 | int i; |
---|
1441 | def save = basering; |
---|
1442 | int n = nvars(save)/2; |
---|
1443 | int whichengine = 0; // default |
---|
1444 | int methodord = 0; // default |
---|
1445 | if (size(#)>0) |
---|
1446 | { |
---|
1447 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1448 | { |
---|
1449 | whichengine = int(#[1]); |
---|
1450 | } |
---|
1451 | if (size(#)>1) |
---|
1452 | { |
---|
1453 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1454 | { |
---|
1455 | methodord = int(#[2]); |
---|
1456 | } |
---|
1457 | } |
---|
1458 | } |
---|
1459 | if (isWeyl()==0) { ERROR("basering is not a Weyl algebra"); } |
---|
1460 | for (i=1; i<=n; i++) |
---|
1461 | { |
---|
1462 | if (bracket(var(i+n),var(i))<>1) |
---|
1463 | { |
---|
1464 | ERROR(string(var(i+n))+" is not a differential operator for " +string(var(i))); |
---|
1465 | } |
---|
1466 | } |
---|
1467 | int isH = isHolonomic(I); |
---|
1468 | if (isH<>1) |
---|
1469 | { |
---|
1470 | print("// given ideal is not holonomic"); |
---|
1471 | print("// setting bound for degree of b-fubction to 10 and proceeding"); |
---|
1472 | isH = 10; |
---|
1473 | } |
---|
1474 | else { isH = 0; } // no degree bound for pIntersect |
---|
1475 | ideal J = initialIdealW(I,-w,w,whichengine,methodord); |
---|
1476 | poly s; |
---|
1477 | for (i=1; i<=n; i++) |
---|
1478 | { |
---|
1479 | s = s + w[i]*var(i)*var(n+i); |
---|
1480 | } |
---|
1481 | vector b = pIntersect(s,J,isH); |
---|
1482 | list RL = ringlist(save); RL = RL[1..4]; |
---|
1483 | RL[2] = list(safeVarName("s")); |
---|
1484 | RL[3] = list(list("dp",intvec(1)),list("C",intvec(0))); |
---|
1485 | def @S = ring(RL); setring @S; |
---|
1486 | vector b = imap(save,b); |
---|
1487 | poly bs = vec2poly(b); |
---|
1488 | list l = bFactor(bs); |
---|
1489 | setring save; |
---|
1490 | list l = imap(@S,l); |
---|
1491 | return(l); |
---|
1492 | } |
---|
1493 | example |
---|
1494 | { |
---|
1495 | "EXAMPLE:"; echo = 2; |
---|
1496 | ring @D = 0,(x,y,Dx,Dy),dp; |
---|
1497 | def D = Weyl(); |
---|
1498 | setring D; |
---|
1499 | ideal I = 3*x^2*Dy+2*y*Dx,2*x*Dx+3*y*Dy+6; I = std(I); |
---|
1500 | intvec w1 = 1,1; |
---|
1501 | intvec w2 = 1,2; |
---|
1502 | intvec w3 = 2,3; |
---|
1503 | bfctIdeal(I,w1); |
---|
1504 | bfctIdeal(I,w2,1); |
---|
1505 | bfctIdeal(I,w3,0,1); |
---|
1506 | } |
---|
1507 | |
---|
1508 | proc bfctOneGB (poly f,list #) |
---|
1509 | "USAGE: bfctOneGB(f [,s,t]); f a poly, s,t optional ints |
---|
1510 | RETURN: list of ideal and intvec |
---|
1511 | PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) for the |
---|
1512 | @* hypersurface defined by f, using only one GB computation |
---|
1513 | ASSUME: The basering is commutative and of characteristic 0. |
---|
1514 | BACKGROUND: In this proc, the initial Malgrange ideal is computed based on the |
---|
1515 | @* algorithm by Masayuki Noro and combined with an elimination ordering. |
---|
1516 | NOTE: In the output list, the ideal contains all the roots and the intvec |
---|
1517 | @* their multiplicities. |
---|
1518 | @* If s<>0, @code{std} is used for the GB computation, otherwise, |
---|
1519 | @* and by default, @code{slimgb} is used. |
---|
1520 | @* If t<>0, a matrix ordering is used for GB computations, |
---|
1521 | @* otherwise, and by default, a block ordering is used. |
---|
1522 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1523 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1524 | EXAMPLE: example bfctOneGB; shows examples |
---|
1525 | " |
---|
1526 | { |
---|
1527 | int ppl = printlevel - voice +2; |
---|
1528 | if (isCommutative() == 0) { ERROR("basering must be commutative"); } |
---|
1529 | def save = basering; |
---|
1530 | int n = nvars(save); |
---|
1531 | if (char(save) <> 0) |
---|
1532 | { |
---|
1533 | ERROR("characteristic of basering has to be 0"); |
---|
1534 | } |
---|
1535 | list L = ringlist(save); |
---|
1536 | int qr; |
---|
1537 | if (L[4] <> 0) // qring? |
---|
1538 | { |
---|
1539 | print("// basering is qring:"); |
---|
1540 | print("// discarding the quotient and proceeding..."); |
---|
1541 | L[4] = 0; |
---|
1542 | qr = 1; |
---|
1543 | def save2 = ring(L); |
---|
1544 | setring save2; |
---|
1545 | poly f = imap(save,f); |
---|
1546 | } |
---|
1547 | int noofvars = 2*n+4; |
---|
1548 | int i; |
---|
1549 | int whichengine = 0; // default |
---|
1550 | int methodord = 0; // default |
---|
1551 | if (size(#)>0) |
---|
1552 | { |
---|
1553 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1554 | { |
---|
1555 | whichengine = int(#[1]); |
---|
1556 | } |
---|
1557 | if (size(#)>1) |
---|
1558 | { |
---|
1559 | if (typeof(#[2])=="int" || typeof(#[2])=="number") |
---|
1560 | { |
---|
1561 | methodord = int(#[2]); |
---|
1562 | } |
---|
1563 | } |
---|
1564 | } |
---|
1565 | intvec uv; |
---|
1566 | uv[n+3] = 1; |
---|
1567 | ring r = 0,(x(1..n)),dp; |
---|
1568 | poly f = fetch(save,f); |
---|
1569 | uv[1] = -1; uv[noofvars] = 0; |
---|
1570 | // for the ordering |
---|
1571 | intvec @a; @a = 1:noofvars; @a[2] = 2; |
---|
1572 | intvec @a2 = @a; @a2[2] = 0; @a2[2*n+4] = 0; |
---|
1573 | if (methodord == 0) // default: block ordering |
---|
1574 | { |
---|
1575 | ring @Dh = 0,(t,s,x(n..1),Dt,D(n..1),h),(a(@a),a(@a2),a(uv),dp(noofvars-1),lp(1)); |
---|
1576 | } |
---|
1577 | else // M() ordering |
---|
1578 | { |
---|
1579 | intmat @Ord[noofvars][noofvars]; |
---|
1580 | @Ord[1,1..noofvars] = uv; |
---|
1581 | @Ord[2,1..noofvars] = 1:(noofvars-1); |
---|
1582 | for (i=1; i<=noofvars-2; i++) |
---|
1583 | { |
---|
1584 | @Ord[2+i,noofvars - i] = -1; |
---|
1585 | } |
---|
1586 | dbprint(ppl,"// weights for ordering: "+string(transpose(@a))); |
---|
1587 | dbprint(ppl,"// the ordering matrix:",@Ord); |
---|
1588 | ring @Dh = 0,(t,s,x(n..1),Dt,D(n..1),h),(a(@a),a(@a2),M(@Ord)); |
---|
1589 | } |
---|
1590 | dbprint(ppl,"// the ring Dh:",Dh); |
---|
1591 | // non-commutative relations |
---|
1592 | matrix @relD[noofvars][noofvars]; |
---|
1593 | @relD[1,2] = t*h^2;// s*t = t*s+t*h^2 |
---|
1594 | @relD[2,n+3] = Dt*h^2;// Dt*s = s*Dt+h^2 |
---|
1595 | @relD[1,n+3] = h^2; |
---|
1596 | for (i=1; i<=n; i++) |
---|
1597 | { |
---|
1598 | @relD[i+2,n+3+i] = h^2; |
---|
1599 | } |
---|
1600 | dbprint(ppl,"// nc relations:",@relD); |
---|
1601 | def Dh = nc_algebra(1,@relD); |
---|
1602 | setring Dh; |
---|
1603 | dbprint(ppl,"// computing in ring",DDh); |
---|
1604 | ideal I; |
---|
1605 | poly f = imap(r,f); |
---|
1606 | kill r; |
---|
1607 | f = homog(f,h); |
---|
1608 | I = t - f, t*Dt - s; // defining the Malgrange ideal |
---|
1609 | for (i=1; i<=n; i++) |
---|
1610 | { |
---|
1611 | I = I, D(i)+diff(f,x(i))*Dt; |
---|
1612 | } |
---|
1613 | dbprint(ppl, "// starting Groebner basis computation with engine: "+string(whichengine)); |
---|
1614 | I = engine(I, whichengine); |
---|
1615 | dbprint(ppl, "// finished Groebner basis computation"); |
---|
1616 | dbprint(ppl, "// I before dehomogenization: "+string(I)); |
---|
1617 | I = subst(I,h,1); // dehomogenization |
---|
1618 | dbprint(ppl, "// I after dehomogenization: " +string(I)); |
---|
1619 | I = inForm(I,uv); // we are only interested in the initial form w.r.t. uv |
---|
1620 | dbprint(ppl, "// the initial ideal:", string(matrix(I))); |
---|
1621 | intvec tonselect = 1; |
---|
1622 | for (i=3; i<=2*n+4; i++) { tonselect = tonselect,i; } |
---|
1623 | I = nselect(I,tonselect); |
---|
1624 | dbprint(ppl, "// generators containing only s:", string(matrix(I))); |
---|
1625 | I = engine(I, whichengine); // is now a principal ideal; |
---|
1626 | if (qr == 1) { setring save2; } |
---|
1627 | else { setring save; } |
---|
1628 | ideal J; J[2] = var(1); |
---|
1629 | map @m = Dh,J; |
---|
1630 | ideal I = @m(I); |
---|
1631 | poly p = I[1]; |
---|
1632 | list l = listofroots(p,1); |
---|
1633 | if (qr == 1) |
---|
1634 | { |
---|
1635 | setring save; |
---|
1636 | list l = imap(save2,l); |
---|
1637 | } |
---|
1638 | return(l); |
---|
1639 | } |
---|
1640 | example |
---|
1641 | { |
---|
1642 | "EXAMPLE:"; echo = 2; |
---|
1643 | ring r = 0,(x,y),dp; |
---|
1644 | poly f = x^2+y^3+x*y^2; |
---|
1645 | bfctOneGB(f); |
---|
1646 | bfctOneGB(f,1,1); |
---|
1647 | } |
---|
1648 | |
---|
1649 | proc bfctAnn (poly f, list #) |
---|
1650 | "USAGE: bfctAnn(f [,r]); f a poly, r an optional int |
---|
1651 | RETURN: list of ideal and intvec |
---|
1652 | PURPOSE: computes the roots of the Bernstein-Sato polynomial b(s) for the |
---|
1653 | @* hypersurface defined by f. |
---|
1654 | ASSUME: The basering is commutative and of characteristic 0. |
---|
1655 | BACKGROUND: In this proc, ann(f^s) is computed and then a system of linear |
---|
1656 | @* equations is solved by linear reductions. |
---|
1657 | NOTE: In the output list, the ideal contains all the roots and the intvec |
---|
1658 | @* their multiplicities. |
---|
1659 | @* If r<>0, @code{std} is used for GB computations, |
---|
1660 | @* otherwise, and by default, @code{slimgb} is used. |
---|
1661 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
1662 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1663 | EXAMPLE: example bfctAnn; shows examples |
---|
1664 | " |
---|
1665 | { |
---|
1666 | def save = basering; |
---|
1667 | int ppl = printlevel - voice + 2; |
---|
1668 | int whichengine = 0; // default |
---|
1669 | if (size(#)>0) |
---|
1670 | { |
---|
1671 | if (typeof(#[1])=="int" || typeof(#[1])=="number") |
---|
1672 | { |
---|
1673 | whichengine = int(#[1]); |
---|
1674 | } |
---|
1675 | } |
---|
1676 | list b = bfctengine(f,1,whichengine,0,0,0,0,0); |
---|
1677 | return(b); |
---|
1678 | } |
---|
1679 | example |
---|
1680 | { |
---|
1681 | "EXAMPLE:"; echo = 2; |
---|
1682 | ring r = 0,(x,y),dp; |
---|
1683 | poly f = x^2+y^3+x*y^2; |
---|
1684 | bfctAnn(f); |
---|
1685 | } |
---|
1686 | |
---|
1687 | /* |
---|
1688 | //static proc hardexamples () |
---|
1689 | { |
---|
1690 | // some hard examples |
---|
1691 | ring r1 = 0,(x,y,z,w),dp; |
---|
1692 | // ab34 |
---|
1693 | poly ab34 = (z3+w4)*(3z2x+4w3y); |
---|
1694 | bfct(ab34); |
---|
1695 | // ha3 |
---|
1696 | poly ha3 = xyzw*(x+y)*(x+z)*(x+w)*(y+z+w); |
---|
1697 | bfct(ha3); |
---|
1698 | // ha4 |
---|
1699 | poly ha4 = xyzw*(x+y)*(x+z)*(x+w)*(y+z)*(y+w); |
---|
1700 | bfct(ha4); |
---|
1701 | // chal4: reiffen(4,5)*reiffen(5,4) |
---|
1702 | ring r2 = 0,(x,y),dp; |
---|
1703 | poly chal4 = (x4+xy4+y5)*(x5+x4y+y4); |
---|
1704 | bfct(chal4); |
---|
1705 | // (xy+z)*reiffen(4,5) |
---|
1706 | ring r3 = 0,(x,y,z),dp; |
---|
1707 | poly xyzreiffen45 = (xy+z)*(y4+yz4+z5); |
---|
1708 | bfct(xyzreiffen45); |
---|
1709 | } |
---|
1710 | */ |
---|