1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: decodegb.lib,v 1.5 2008-10-07 14:14:56 bulygin Exp $"; |
---|
3 | category="Coding theory"; |
---|
4 | info=" |
---|
5 | LIBRARY: decodedistGB.lib Generating and solving systems of polynomial equations for decoding and finding the minimum distance of linear codes |
---|
6 | AUTHORS: Stanislav Bulygin, bulygin@mathematik.uni-kl.de |
---|
7 | |
---|
8 | OVERVIEW: |
---|
9 | In this library we generate several systems used for decoding cyclic codes and finding their minimum distance. |
---|
10 | Namely, we work with the Cooper's philosophy and generalized Newton identities. |
---|
11 | The original method of quadratic equations is worked out here as well. |
---|
12 | We also (for comparison) enable to work with the system of Fitzgerald-Lax. |
---|
13 | We provide some auxiliary functions for further manipulations and decoding. |
---|
14 | For an overview of the methods mentioned above, cf. Stanislav Bulygin, Ruud Pellikaan: 'Decoding and finding the minimum distance with |
---|
15 | Groebner bases: history and new insights', in 'Selected Topics in Information and Coding Theory', World Scientific (2008) (to appear) (*). |
---|
16 | For the vanishing ideal computation the algorithm of Farr and Gao is implemented. |
---|
17 | |
---|
18 | MAIN PROCEDURES: |
---|
19 | sysCRHT(n,defset,e,q,m,#); generates the CRHT-ideal that follows Cooper's philosophy |
---|
20 | sysCRHTMindistBinary(n,defset,w); generates the CRHT-ideal to find the minimum distance in the binary case |
---|
21 | sysNewton(n,defset,t,q,m,#); generates the ideal with the Generalized Newton identities |
---|
22 | sysBin(v,Q,n,#); generates Bin system as in the work of Augot et.al, cf. [*] for the reference |
---|
23 | encode(x,g); encodes given message with the given generator matrix |
---|
24 | syndrome(h, c); computes a syndrome w.r.t. the given check matrix |
---|
25 | sysQE(check,y,t,fieldeq,formal); generates the system of quadratic equations as in [*] |
---|
26 | errorInsert(y,pos,val); inserts errors in a word |
---|
27 | errorRand(y,num,e); inserts random errors in a word |
---|
28 | randomCheck(m,n,e); generates a random check matrix |
---|
29 | genMDSMat(n,a); generates an MDS (actually an RS) matrix |
---|
30 | mindist(check); computes the minimum distance of a code |
---|
31 | decode(rec); decoding of a word using the system of quadratic equations |
---|
32 | solveForRandom(redun,ncodes,ntrials,#); a procedure for manipulation with random codes |
---|
33 | solveForCode(check,ntrials,#); a procedure for manipulation with the given codes |
---|
34 | vanishId(points); computes the vanishing ideal for the given set of points |
---|
35 | sysFL(check,y,t,e,s); generates the Fitzgerald-Lax system |
---|
36 | solveForRandomFL(n,redun,p,e,t,ncodes,ntrials,minpol); a procedure for manipulation with random codes via Fitzgerald-Lax |
---|
37 | |
---|
38 | |
---|
39 | KEYWORDS: Cyclic code; Linear code; Decoding; |
---|
40 | Minimum distance; Groebner bases |
---|
41 | "; |
---|
42 | |
---|
43 | LIB "linalg.lib"; |
---|
44 | LIB "brnoeth.lib"; |
---|
45 | |
---|
46 | /////////////////////////////////////////////////////////////////////////////// |
---|
47 | // creates a list result, where result[i]=i, 1<=i<=n |
---|
48 | static proc lis (int n) |
---|
49 | { |
---|
50 | list result; |
---|
51 | if (n<=0) {print("ERRORlis");} |
---|
52 | for (int i=1; i<=n; i++) |
---|
53 | { |
---|
54 | result=result+list(i); |
---|
55 | } |
---|
56 | return(result); |
---|
57 | } |
---|
58 | |
---|
59 | /////////////////////////////////////////////////////////////////////////////// |
---|
60 | // creates a list of all combinations without repititions of m objects out of n |
---|
61 | static proc combinations (int m, int n) |
---|
62 | { |
---|
63 | list result; |
---|
64 | if (m>n) {print("ERRORcombinations");} |
---|
65 | if (m==n) {result[size(result)+1]=lis(m);return(result);} |
---|
66 | if (m==0) {result[size(result)+1]=list();return(result);} |
---|
67 | list temp=combinations(m-1,n-1); |
---|
68 | for (int i=1; i<=size(temp); i++) |
---|
69 | { |
---|
70 | temp[i]=temp[i]+list(n); |
---|
71 | } |
---|
72 | result=combinations(m,n-1)+temp; |
---|
73 | return(result); |
---|
74 | } |
---|
75 | |
---|
76 | |
---|
77 | /////////////////////////////////////////////////////////////////////////////// |
---|
78 | // the poolynomial for Sala's restrictions |
---|
79 | static proc p_poly(int n, int a, int b) |
---|
80 | { |
---|
81 | poly f; |
---|
82 | for (int i=0; i<=n-1; i++) |
---|
83 | { |
---|
84 | f=f+Z(a)^i*Z(b)^(n-1-i); |
---|
85 | } |
---|
86 | return(f); |
---|
87 | } |
---|
88 | |
---|
89 | /////////////////////////////////////////////////////////////////////////////// |
---|
90 | |
---|
91 | proc sysCRHT (int n, list defset, int e, int q, int m, int #) |
---|
92 | "USAGE: sysCRHT(n,defset,e,q,m,#); n length of the cyclic code, defset is a list representing the defining set, |
---|
93 | e the error-correcting capacity, m degree extension of the splitting field, if #>0 additional equations |
---|
94 | representing the fact that every two error positions are either different or at least one of them is zero |
---|
95 | RETURN: the ring to work with the CRHT-ideal (with Sala's additions), the ideal itself is exported with the name 'crht' |
---|
96 | EXAMPLE: example sysCRHT; shows an example |
---|
97 | " |
---|
98 | { |
---|
99 | int r=size(defset); |
---|
100 | ring @crht=(q,a),(Y(e..1),Z(1..e),X(r..1)),lp; |
---|
101 | ideal crht; |
---|
102 | int i,j; |
---|
103 | poly sum; |
---|
104 | |
---|
105 | //------------ add check equations ----------------- |
---|
106 | for (i=1; i<=r; i++) |
---|
107 | { |
---|
108 | sum=0; |
---|
109 | for (j=1; j<=e; j++) |
---|
110 | { |
---|
111 | sum=sum+Y(j)*Z(j)^defset[i]; |
---|
112 | } |
---|
113 | crht[i]=sum-X(i); |
---|
114 | } |
---|
115 | |
---|
116 | //------------ field equations on syndromes ----------- |
---|
117 | for (i=1; i<=r; i++) |
---|
118 | { |
---|
119 | crht=crht,X(i)^(q^m)-X(i); |
---|
120 | } |
---|
121 | |
---|
122 | //------------ restrictions on error-locations: n-th roots of unity -------------- |
---|
123 | for (i=1; i<=e; i++) |
---|
124 | { |
---|
125 | crht=crht,Z(i)^(n+1)-Z(i); |
---|
126 | } |
---|
127 | |
---|
128 | for (i=1; i<=e; i++) |
---|
129 | { |
---|
130 | crht=crht,Y(i)^(q-1)-1; |
---|
131 | } |
---|
132 | |
---|
133 | //------------ add Sala's additional conditions if necessary ----------------- |
---|
134 | if (#) |
---|
135 | { |
---|
136 | for (i=1; i<=e; i++) |
---|
137 | { |
---|
138 | for (j=i+1; j<=e; j++) |
---|
139 | { |
---|
140 | crht=crht,Z(i)*Z(j)*p_poly(n,i,j); |
---|
141 | } |
---|
142 | } |
---|
143 | } |
---|
144 | export crht; |
---|
145 | return(@crht); |
---|
146 | } example |
---|
147 | { |
---|
148 | "EXAMPLE:"; echo=2; |
---|
149 | // binary cyclic [15,7,5] code with defining set (1,3) |
---|
150 | |
---|
151 | list defset=1,3; // defining set |
---|
152 | |
---|
153 | int n=15; // length |
---|
154 | int e=2; // error-correcting capacity |
---|
155 | int q=2; // basefield size |
---|
156 | int m=4; // degree extension of the splitting field |
---|
157 | int sala=1; // indicator to add additional equations |
---|
158 | |
---|
159 | def A=sysCRHT(n,defset,e,q,m); |
---|
160 | setring A; |
---|
161 | A; // shows the ring we are working in |
---|
162 | print(crht); // the CRHT-ideal |
---|
163 | option(redSB); |
---|
164 | ideal red_crht=std(crht); |
---|
165 | // reduced Groebner basis |
---|
166 | print(red_crht); |
---|
167 | |
---|
168 | //============================ |
---|
169 | A=sysCRHT(n,defset,e,q,m,sala); |
---|
170 | setring A; |
---|
171 | print(crht); // the CRHT-ideal with additional equations from Sala |
---|
172 | option(redSB); |
---|
173 | ideal red_crht=std(crht); |
---|
174 | // reduced Groebner basis |
---|
175 | print(red_crht); |
---|
176 | // general error-locator polynomial for this code |
---|
177 | red_crht[5]; |
---|
178 | } |
---|
179 | |
---|
180 | /////////////////////////////////////////////////////////////////////////////// |
---|
181 | |
---|
182 | |
---|
183 | proc sysCRHTMindistBinary (int n, list defset, int w) |
---|
184 | "USAGE: sysCRHTMindistBinary(n,defset,w); n length of the cyclic code, defset is a list representing the defining set, |
---|
185 | w is a candidate for the minimum distance |
---|
186 | RETURN: the ring to work with the Sala's ideal for the minimum distance, the ideal itself is exported with the name 'crht_md' |
---|
187 | EXAMPLE: example sysCRHTMindistBinary; shows an example |
---|
188 | " |
---|
189 | { |
---|
190 | int r=size(defset); |
---|
191 | ring @crht_md=2,Z(1..w),lp; |
---|
192 | ideal crht_md; |
---|
193 | int i,j; |
---|
194 | poly sum; |
---|
195 | |
---|
196 | //------------ add check equations -------------- |
---|
197 | for (i=1; i<=r; i++) |
---|
198 | { |
---|
199 | sum=0; |
---|
200 | for (j=1; j<=w; j++) |
---|
201 | { |
---|
202 | sum=sum+Z(j)^defset[i]; |
---|
203 | } |
---|
204 | crht_md[i]=sum; |
---|
205 | } |
---|
206 | |
---|
207 | |
---|
208 | //----------- locations are n-th roots of unity ------------ |
---|
209 | for (i=1; i<=w; i++) |
---|
210 | { |
---|
211 | crht_md=crht_md,Z(i)^n-1; |
---|
212 | } |
---|
213 | |
---|
214 | //------------ adding conditions on locations being different ------------ |
---|
215 | for (i=1; i<=w; i++) |
---|
216 | { |
---|
217 | for (j=i+1; j<=w; j++) |
---|
218 | { |
---|
219 | crht_md=crht_md,Z(i)*Z(j)*p_poly(n,i,j); |
---|
220 | } |
---|
221 | } |
---|
222 | |
---|
223 | export crht_md; |
---|
224 | return(@crht_md); |
---|
225 | } example |
---|
226 | { |
---|
227 | "EXAMPLE:"; echo=2; |
---|
228 | // binary cyclic [15,7,5] code with defining set (1,3) |
---|
229 | |
---|
230 | list defset=1,3; // defining set |
---|
231 | |
---|
232 | int n=15; // length |
---|
233 | int d=5; // candidate for the minimum distance |
---|
234 | |
---|
235 | def A=sysCRHTMindistBinary(n,defset,d); |
---|
236 | setring A; |
---|
237 | A; // shows the ring we are working in |
---|
238 | print(crht_md); // the Sala's ideal for mindist |
---|
239 | option(redSB); |
---|
240 | ideal red_crht_md=std(crht_md); |
---|
241 | // reduced Groebner basis |
---|
242 | print(red_crht_md); |
---|
243 | } |
---|
244 | |
---|
245 | /////////////////////////////////////////////////////////////////////////////// |
---|
246 | // slightly modified mod function |
---|
247 | static proc mod_ (int n, int m) |
---|
248 | { |
---|
249 | if (n mod m==0) {return(m);} |
---|
250 | if (n mod m!=0) {return(n mod m);} |
---|
251 | } |
---|
252 | |
---|
253 | /////////////////////////////////////////////////////////////////////////////// |
---|
254 | |
---|
255 | proc sysNewton (int n, list defset, int t, int q, int m, int #) |
---|
256 | "USAGE: sysNewton (n, defset, t, q, m, #); n is length, defset is the defining set, |
---|
257 | t is the number of errors, q is basefield size, m is degree extension of the splitting field |
---|
258 | if triangular>0 it indicates that Newton identities in triangular form should be constructed |
---|
259 | RETURN: the ring to work with the generalized Newton identities (in triangular form if applicable), |
---|
260 | the ideal itself is exported with the name 'newton' |
---|
261 | EXAMPLE: example sysNewton; shows an example |
---|
262 | " |
---|
263 | { |
---|
264 | string s="ring @newton=("+string(q)+",a),("; |
---|
265 | int i,j; |
---|
266 | int flag; |
---|
267 | for (i=n; i>=1; i--) |
---|
268 | { |
---|
269 | for (j=1; j<=size(defset); j++) |
---|
270 | { |
---|
271 | flag=1; |
---|
272 | if (i==defset[j]) |
---|
273 | { |
---|
274 | flag=0; |
---|
275 | break; |
---|
276 | } |
---|
277 | } |
---|
278 | if (flag) |
---|
279 | { |
---|
280 | s=s+"S("+string(i)+"),"; |
---|
281 | } |
---|
282 | } |
---|
283 | s=s+"sigma(1.."+string(t)+"),"; |
---|
284 | for (i=size(defset); i>=2; i--) |
---|
285 | { |
---|
286 | s=s+"S("+string(defset[i])+"),"; |
---|
287 | } |
---|
288 | s=s+"S("+string(defset[1])+")),lp;"; |
---|
289 | |
---|
290 | execute(s); |
---|
291 | |
---|
292 | ideal newton; |
---|
293 | poly sum; |
---|
294 | |
---|
295 | |
---|
296 | //------------ generate generalized Newton identities ---------- |
---|
297 | if (#) |
---|
298 | { |
---|
299 | for (i=1; i<=t; i++) |
---|
300 | { |
---|
301 | sum=0; |
---|
302 | for (j=1; j<=i-1; j++) |
---|
303 | { |
---|
304 | sum=sum+sigma(j)*S(i-j); |
---|
305 | } |
---|
306 | newton=newton,S(i)+sum+number(i)*sigma(i); |
---|
307 | } |
---|
308 | } else |
---|
309 | { |
---|
310 | for (i=1; i<=t; i++) |
---|
311 | { |
---|
312 | sum=0; |
---|
313 | for (j=1; j<=t; j++) |
---|
314 | { |
---|
315 | sum=sum+sigma(j)*S(mod_(i-j,n)); |
---|
316 | } |
---|
317 | newton=newton,S(i)+sum; |
---|
318 | } |
---|
319 | } |
---|
320 | for (i=1; i<=n-t; i++) |
---|
321 | { |
---|
322 | sum=0; |
---|
323 | for (j=1; j<=t; j++) |
---|
324 | { |
---|
325 | sum=sum+sigma(j)*S(t+i-j); |
---|
326 | } |
---|
327 | newton=newton,S(t+i)+sum; |
---|
328 | } |
---|
329 | |
---|
330 | //----------- add field equations on sigma's -------------- |
---|
331 | for (i=1; i<=t; i++) |
---|
332 | { |
---|
333 | newton=newton,sigma(i)^(q^m)-sigma(i); |
---|
334 | } |
---|
335 | |
---|
336 | //----------- add conjugacy relations ------------------ |
---|
337 | for (i=1; i<=n; i++) |
---|
338 | { |
---|
339 | newton=newton,S(i)^q-S(mod_(q*i,n)); |
---|
340 | } |
---|
341 | newton=simplify(newton,2); |
---|
342 | export newton; |
---|
343 | return(@newton); |
---|
344 | } example |
---|
345 | { |
---|
346 | "EXAMPLE:"; echo = 2; |
---|
347 | // Newton identities for a binary 3-error-correcting cyclic code of length 31 with defining set (1,5,7) |
---|
348 | |
---|
349 | int n=31; // length |
---|
350 | list defset=1,5,7; //defining set |
---|
351 | int t=3; // number of errors |
---|
352 | int q=2; // basefield size |
---|
353 | int m=5; // degree extension of the splitting field |
---|
354 | int triangular=1; // indicator of triangular form of Newton identities |
---|
355 | |
---|
356 | def A=sysNewton(n,defset,t,q,m); |
---|
357 | setring A; |
---|
358 | A; // shows the ring we are working in |
---|
359 | print(newton); // generalized Newton identities |
---|
360 | |
---|
361 | //=============================== |
---|
362 | A=sysNewton(n,defset,t,q,m,triangular); |
---|
363 | setring A; |
---|
364 | print(newton); // generalized Newton identities in triangular form |
---|
365 | } |
---|
366 | |
---|
367 | /////////////////////////////////////////////////////////////////////////////// |
---|
368 | // forms a list of special combinations needed for computation of Waring's function |
---|
369 | static proc combinations_sum (int m, int n) |
---|
370 | { |
---|
371 | list result; |
---|
372 | list comb=combinations(m-1,n+m-1); |
---|
373 | int i,j,flag,count; |
---|
374 | list interm=comb; |
---|
375 | for (i=1; i<=size(comb); i++) |
---|
376 | { |
---|
377 | interm[i][1]=comb[i][1]-1; |
---|
378 | for (j=2; j<=m-1; j++) |
---|
379 | { |
---|
380 | interm[i][j]=comb[i][j]-comb[i][j-1]-1; |
---|
381 | } |
---|
382 | interm[i][m]=n+m-comb[i][m-1]-1; |
---|
383 | flag=1; |
---|
384 | count=2; |
---|
385 | while ((flag)&&(count<=m)) |
---|
386 | { |
---|
387 | if (interm[i][count] mod count != 0) {flag=0;} |
---|
388 | count++; |
---|
389 | } |
---|
390 | if (flag) |
---|
391 | { |
---|
392 | for (j=2; j<=m; j++) |
---|
393 | { |
---|
394 | interm[i][j]=interm[i][j] div j; |
---|
395 | } |
---|
396 | result[size(result)+1]=interm[i]; |
---|
397 | } |
---|
398 | } |
---|
399 | return(result); |
---|
400 | } |
---|
401 | |
---|
402 | /////////////////////////////////////////////////////////////////////////////// |
---|
403 | //if n=q^e*m, m and n are coprime, then return e |
---|
404 | static proc exp_count (int n, int q) |
---|
405 | { |
---|
406 | int flag=1; |
---|
407 | int result=0; |
---|
408 | while(flag) |
---|
409 | { |
---|
410 | if (n mod q != 0) {flag=0;} |
---|
411 | else {n=n div q; result++;} |
---|
412 | } |
---|
413 | return(result); |
---|
414 | } |
---|
415 | |
---|
416 | /////////////////////////////////////////////////////////////////////////////// |
---|
417 | |
---|
418 | |
---|
419 | proc sysBin (int v, list Q, int n, int#) |
---|
420 | "USAGE: sysBin (v, Q, n, #); v a number if errors, Q is a generating set of the code, n the length, # is an additional parameter: if |
---|
421 | set to 1, then the generating set is enlarged by odd elements, which are 2^(some power)*(some elment in the gen.set) mod n |
---|
422 | RETURN: keeps the ring with the resulting system, which ideal is called 'bin' |
---|
423 | EXAMPLE: example sysBin; shows an example |
---|
424 | " |
---|
425 | { |
---|
426 | //ring r=2,(sigma(1..v),S(1..n)),(lp(v),dp(n)); |
---|
427 | ring r=2,(S(1..n),sigma(1..v)),lp; |
---|
428 | list cyclot; |
---|
429 | ideal result; |
---|
430 | int i,j,k,s; |
---|
431 | list comb; |
---|
432 | poly sum_, mon; |
---|
433 | int count1, count2, upper, coef_, flag, gener; |
---|
434 | list Q_update; |
---|
435 | if (#==1) |
---|
436 | { |
---|
437 | for (i=1; i<=n; i++) |
---|
438 | { |
---|
439 | cyclot[i]=0; |
---|
440 | } |
---|
441 | for (i=1; i<=size(Q); i++) |
---|
442 | { |
---|
443 | flag=1; |
---|
444 | gener=Q[i]; |
---|
445 | while(flag) |
---|
446 | { |
---|
447 | cyclot[gener]=1; |
---|
448 | gener=2*gener mod n; |
---|
449 | if (gener == Q[i]) {flag=0;} |
---|
450 | } |
---|
451 | } |
---|
452 | for (i=1; i<=n; i++) |
---|
453 | { |
---|
454 | if ((cyclot[i] == 1)&&(i mod 2 == 1)) {Q_update[size(Q_update)+1]=i;} |
---|
455 | } |
---|
456 | } |
---|
457 | else |
---|
458 | { |
---|
459 | Q_update=Q; |
---|
460 | } |
---|
461 | |
---|
462 | //-------------- form polynomials for the Bin system via Waring's function -------------- |
---|
463 | for (i=1; i<=size(Q_update); i++) |
---|
464 | { |
---|
465 | comb=combinations_sum(v,Q_update[i]); |
---|
466 | sum_=0; |
---|
467 | for (k=1; k<=size(comb); k++) |
---|
468 | { |
---|
469 | upper=0; |
---|
470 | for (j=1; j<=v; j++) |
---|
471 | { |
---|
472 | upper=upper+comb[k][j]; |
---|
473 | } |
---|
474 | count1=0; |
---|
475 | for (j=2; j<=upper-1; j++) |
---|
476 | { |
---|
477 | count1=count1+exp_count(j,2); |
---|
478 | } |
---|
479 | count1=count1+exp_count(Q_update[i],2); |
---|
480 | count2=0; |
---|
481 | for (j=1; j<=v; j++) |
---|
482 | { |
---|
483 | for (s=2; s<=comb[k][j]; s++) |
---|
484 | { |
---|
485 | count2=count2+exp_count(s,2); |
---|
486 | } |
---|
487 | } |
---|
488 | if (count1<count2) {print("ERRORsysBin");} |
---|
489 | if (count1>count2) {coef_=0;} |
---|
490 | if (count1 == count2) {coef_=1;} |
---|
491 | mon=1; |
---|
492 | for (j=1; j<=v; j++) |
---|
493 | { |
---|
494 | mon=mon*sigma(j)^(comb[k][j]); |
---|
495 | } |
---|
496 | sum_=sum_+coef_*mon; |
---|
497 | } |
---|
498 | result=result,S(Q_update[i])-sum_; |
---|
499 | } |
---|
500 | ideal bin=simplify(result,2); |
---|
501 | export bin; |
---|
502 | return(r); |
---|
503 | } example |
---|
504 | { |
---|
505 | "EXAMPLE:"; echo = 2; |
---|
506 | // [31,16,7] quadratic residue code |
---|
507 | list l=1,5,7,9,19,25; |
---|
508 | // we do not need even synromes here |
---|
509 | def A=sysBin(3,l,31); |
---|
510 | setring A; |
---|
511 | print(bin); |
---|
512 | } |
---|
513 | |
---|
514 | /////////////////////////////////////////////////////////////////////////////// |
---|
515 | |
---|
516 | proc encode (matrix x, matrix g) |
---|
517 | "USAGE: encode (x, g); x a row vector (message), and g a generator matrix |
---|
518 | RETURN: corresponding codeword |
---|
519 | EXAMPLE: example encode; shows an example |
---|
520 | " |
---|
521 | { |
---|
522 | if (nrows(x)>1) {print("ERRORencode1!");} |
---|
523 | if (ncols(x)!=nrows(g)) {print("ERRORencode2!");} |
---|
524 | return(x*g); |
---|
525 | } example |
---|
526 | { |
---|
527 | "EXAMPLE:"; echo = 2; |
---|
528 | ring r=2,x,dp; |
---|
529 | matrix x[1][4]=1,0,1,0; |
---|
530 | matrix g[4][7]=1,0,0,0,0,1,1, |
---|
531 | 0,1,0,0,1,0,1, |
---|
532 | 0,0,1,0,1,1,1, |
---|
533 | 0,0,0,1,1,1,0; |
---|
534 | //encode x with the generator matrix g |
---|
535 | print(encode(x,g)); |
---|
536 | } |
---|
537 | |
---|
538 | /////////////////////////////////////////////////////////////////////////////// |
---|
539 | |
---|
540 | proc syndrome (matrix h, matrix c) |
---|
541 | "USAGE: syndrome (h, c); h a check matrix, c a row vector (codeword) |
---|
542 | RETURN: corresponding syndrome |
---|
543 | EXAMPLE: example syndrome; shows an example |
---|
544 | " |
---|
545 | { |
---|
546 | if (nrows(c)>1) {print("ERRORsyndrome1!");} |
---|
547 | if (ncols(c)!=ncols(h)) {print("ERRORsyndrome2!");} |
---|
548 | return(h*transpose(c)); |
---|
549 | } example |
---|
550 | { |
---|
551 | "EXAMPLE:"; echo = 2; |
---|
552 | ring r=2,x,dp; |
---|
553 | matrix x[1][4]=1,0,1,0; |
---|
554 | matrix g[4][7]=1,0,0,0,0,1,1, |
---|
555 | 0,1,0,0,1,0,1, |
---|
556 | 0,0,1,0,1,1,1, |
---|
557 | 0,0,0,1,1,1,0; |
---|
558 | //encode x with the generator matrix g |
---|
559 | matrix c=encode(x,g); |
---|
560 | // disturb |
---|
561 | c[1,3]=0; |
---|
562 | //compute syndrome |
---|
563 | //corresponding check matrix |
---|
564 | matrix check[3][7]=1,0,0,1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,1; |
---|
565 | print(syndrome(check,c)); |
---|
566 | c[1,3]=1; |
---|
567 | //now c is a codeword |
---|
568 | print(syndrome(check,c)); |
---|
569 | } |
---|
570 | |
---|
571 | /////////////////////////////////////////////////////////////////////////////// |
---|
572 | // (coordinatewise) star product of two vectors |
---|
573 | static proc star(matrix m, int i, int j) |
---|
574 | { |
---|
575 | matrix result[ncols(m)][1]; |
---|
576 | for (int k=1; k<=ncols(m); k++) |
---|
577 | { |
---|
578 | result[k,1]=m[i,k]*m[j,k]; |
---|
579 | } |
---|
580 | return(result); |
---|
581 | } |
---|
582 | |
---|
583 | /////////////////////////////////////////////////////////////////////////////// |
---|
584 | |
---|
585 | proc sysQE(matrix check, matrix y, int t, int fieldeq, int formal) |
---|
586 | "USAGE: sysQE(check, y, t, fieldeq, formal); check is the check matrix of the code |
---|
587 | y is a received word, t the number of errors to be corrected, |
---|
588 | if fieldeq=1, then field equations are added; if formal=0, field equations on (known) syndrome variables |
---|
589 | are not added, in order to add them (note that the exponent should be as a number of elements in the INITIAL alphabet) one |
---|
590 | needs to set formal>0 for the exponent |
---|
591 | RETURN: the ring to work with together with the resulting system |
---|
592 | EXAMPLE: example sysQE; shows an example |
---|
593 | " |
---|
594 | { |
---|
595 | def br=basering; |
---|
596 | list rl=ringlist(br); |
---|
597 | |
---|
598 | int red=nrows(check); |
---|
599 | int n=ncols(check); |
---|
600 | int q=rl[1][1]; |
---|
601 | |
---|
602 | if (formal==0) |
---|
603 | { |
---|
604 | ring work=(q,a),(V(1..t),U(1..n)),dp; |
---|
605 | } else |
---|
606 | { |
---|
607 | ring work=(q,a),(V(1..t),U(1..n),s(1..red)),(dp(t),lp(n),dp(red)); |
---|
608 | } |
---|
609 | |
---|
610 | matrix check=imap(br,check); |
---|
611 | matrix y=imap(br,y); |
---|
612 | |
---|
613 | matrix h_full=genMDSMat(n,a); |
---|
614 | matrix h=submat(h_full,1..red,1..n); |
---|
615 | if (nrows(y)!=1) {print("ERROR1Pell");} |
---|
616 | if (ncols(y)!=n) {print("ERROR2Pell");} |
---|
617 | |
---|
618 | ideal result; |
---|
619 | |
---|
620 | list c; |
---|
621 | list a; |
---|
622 | list tmp,tmp2; |
---|
623 | int i,j,l,k; |
---|
624 | number sum,prod,sig; |
---|
625 | poly sum1,sum2,sum3; |
---|
626 | for (i=1; i<=n; i++) |
---|
627 | { |
---|
628 | c[i]=tmp; |
---|
629 | } |
---|
630 | |
---|
631 | int tim=rtimer; |
---|
632 | matrix transf=inverse(transpose(h_full)); |
---|
633 | |
---|
634 | //----------- expression matrix of check vectors w.r.t. the MDS basis -------------- |
---|
635 | tim=rtimer; |
---|
636 | for (i=1; i<=red ; i++) |
---|
637 | { |
---|
638 | a[i]=transpose(submat(check,i..i,1..n)); |
---|
639 | a[i]=transf*a[i]; |
---|
640 | } |
---|
641 | |
---|
642 | //----------- compute the structure constants ------------------------ |
---|
643 | tim=rtimer; |
---|
644 | matrix te[n][1]; |
---|
645 | for (i=1; i<=n; i++) |
---|
646 | { |
---|
647 | for (j=1; j<=t+1; j++) |
---|
648 | { |
---|
649 | if ((j<i)&&(i<=t+1)) {c[i][j]=c[j][i];} |
---|
650 | else |
---|
651 | { |
---|
652 | if (i+j<=n+1) |
---|
653 | { |
---|
654 | c[i][j]=te; |
---|
655 | c[i][j][i+j-1,1]=1; |
---|
656 | } |
---|
657 | else |
---|
658 | { |
---|
659 | c[i][j]=star(h_full,i,j); |
---|
660 | c[i][j]=transf*c[i][j]; |
---|
661 | } |
---|
662 | } |
---|
663 | } |
---|
664 | } |
---|
665 | |
---|
666 | |
---|
667 | tim=rtimer; |
---|
668 | if (formal==0) |
---|
669 | { |
---|
670 | matrix s[red][1]=syndrome(check,y); |
---|
671 | for (j=1; j<=red; j++) |
---|
672 | { |
---|
673 | sum1=0; |
---|
674 | for (l=1; l<=n; l++) |
---|
675 | { |
---|
676 | sum1=sum1+a[j][l,1]*U(l); |
---|
677 | } |
---|
678 | result=result,sum1-s[j,1]; |
---|
679 | } |
---|
680 | } else |
---|
681 | { |
---|
682 | for (j=1; j<=red; j++) |
---|
683 | { |
---|
684 | sum1=0; |
---|
685 | for (l=1; l<=n; l++) |
---|
686 | { |
---|
687 | sum1=sum1+a[j][l,1]*U(l); |
---|
688 | } |
---|
689 | result=result,sum1-s(j); |
---|
690 | } |
---|
691 | for (j=1; j<=red; j++) |
---|
692 | { |
---|
693 | result=result,s(j)^(formal)-s(j); |
---|
694 | } |
---|
695 | } |
---|
696 | if (fieldeq) |
---|
697 | { |
---|
698 | for (i=1; i<=n; i++) |
---|
699 | { |
---|
700 | result=result,U(i)^q-U(i); |
---|
701 | } |
---|
702 | for (j=1; j<=t; j++) |
---|
703 | { |
---|
704 | result=result,V(j)^q-V(j); |
---|
705 | } |
---|
706 | } |
---|
707 | |
---|
708 | //--------- form the quadratic equations according to the theory --------------- |
---|
709 | for (i=1; i<=n; i++) |
---|
710 | { |
---|
711 | sum1=0; |
---|
712 | for (j=1; j<=t; j++) |
---|
713 | { |
---|
714 | sum2=0; |
---|
715 | for (l=1; l<=n; l++) |
---|
716 | { |
---|
717 | sum2=sum2+c[i][j][l,1]*U(l); |
---|
718 | } |
---|
719 | sum1=sum1+sum2*V(j); |
---|
720 | } |
---|
721 | sum3=0; |
---|
722 | for (l=1; l<=n; l++) |
---|
723 | { |
---|
724 | sum3=sum3+c[i][t+1][l,1]*U(l); |
---|
725 | } |
---|
726 | result=result,sum1-sum3; |
---|
727 | } |
---|
728 | |
---|
729 | result=simplify(result,2); |
---|
730 | |
---|
731 | ideal qe=result; |
---|
732 | export qe; |
---|
733 | return(work); |
---|
734 | //exportto(Top,h_full); |
---|
735 | } example |
---|
736 | { |
---|
737 | "EXAMPLE:"; echo = 2; |
---|
738 | //correct 2 errors in [7,3] 8-ary code RS code |
---|
739 | int t=2; int q=8; int n=7; int redun=4; |
---|
740 | ring r=(q,a),x,dp; |
---|
741 | matrix h_full=genMDSMat(n,a); |
---|
742 | matrix h=submat(h_full,1..redun,1..n); |
---|
743 | matrix g=dual_code(h); |
---|
744 | matrix x[1][3]=0,0,1,0; |
---|
745 | matrix y[1][7]=encode(x,g); |
---|
746 | //disturb with 2 errors |
---|
747 | matrix rec[1][7]=errorInsert(y,list(2,4),list(1,a)); |
---|
748 | //generate the system |
---|
749 | def A=sysQE(h,rec,t,0,0); |
---|
750 | setring A; |
---|
751 | print(qe); |
---|
752 | //let us decode |
---|
753 | option(redSB); |
---|
754 | ideal sys_qe=std(qe); |
---|
755 | print(sys_qe); |
---|
756 | } |
---|
757 | |
---|
758 | /////////////////////////////////////////////////////////////////////////////// |
---|
759 | |
---|
760 | proc errorInsert(matrix y, list pos, list val) |
---|
761 | "USAGE: errorInsert(y, pos, val); y is a (code) word, pos = positions where errors occured, val = their corresponding values |
---|
762 | RETURN: corresponding received word |
---|
763 | EXAMPLE: example error; shows an example |
---|
764 | " |
---|
765 | { |
---|
766 | matrix result[1][ncols(y)]=y; |
---|
767 | if (size(pos)!=size(val)) {print("ERRORerror");} |
---|
768 | for (int i=1; i<=size(pos); i++) |
---|
769 | { |
---|
770 | result[1,pos[i]]=y[1,pos[i]]+val[i]; |
---|
771 | } |
---|
772 | return(result); |
---|
773 | } example |
---|
774 | { |
---|
775 | "EXAMPLE:"; echo = 2; |
---|
776 | //correct 2 errors in [7,3] 8-ary code RS code |
---|
777 | int t=2; int q=8; int n=7; int redun=4; |
---|
778 | ring r=(q,a),x,dp; |
---|
779 | matrix h_full=genMDSMat(n,a); |
---|
780 | matrix h=submat(h_full,1..redun,1..n); |
---|
781 | matrix g=dual_code(h); |
---|
782 | matrix x[1][3]=0,0,1,0; |
---|
783 | matrix y[1][7]=encode(x,g); |
---|
784 | print(y); |
---|
785 | |
---|
786 | //disturb with 2 errors |
---|
787 | matrix rec[1][7]=errorInsert(y,list(2,4),list(1,a)); |
---|
788 | print(rec); |
---|
789 | print(rec-y); |
---|
790 | } |
---|
791 | |
---|
792 | /////////////////////////////////////////////////////////////////////////////// |
---|
793 | |
---|
794 | proc errorRand(matrix y, int num, int e) |
---|
795 | "USAGE: errorRand(y, num, e); y is a (code) word, num is the number of errors, e is an extension degree (if one wants values to |
---|
796 | be from GF(p^e)) |
---|
797 | RETURN: corresponding received word |
---|
798 | EXAMPLE: example errorRand; shows an example |
---|
799 | " |
---|
800 | { |
---|
801 | matrix result[1][ncols(y)]=y; |
---|
802 | int i,j, flag, temp; |
---|
803 | list pos, val; |
---|
804 | matrix tempnum; |
---|
805 | |
---|
806 | for (i=1; i<=num; i++) |
---|
807 | { |
---|
808 | while(1) |
---|
809 | { |
---|
810 | temp=random(1,ncols(y)); |
---|
811 | flag=1; |
---|
812 | for (j=1; j<=size(pos); j++) |
---|
813 | { |
---|
814 | if (temp==pos[j]) {flag=0;} |
---|
815 | } |
---|
816 | if (flag) {pos[i]=temp;break;} |
---|
817 | } |
---|
818 | } |
---|
819 | |
---|
820 | for (i=1; i<=num; i++) |
---|
821 | { |
---|
822 | flag=1; |
---|
823 | while(flag) |
---|
824 | { |
---|
825 | tempnum=randomvector(1,e); |
---|
826 | if (tempnum!=0) {flag=0;} |
---|
827 | } |
---|
828 | val[i]=tempnum; |
---|
829 | } |
---|
830 | |
---|
831 | for (i=1; i<=size(pos); i++) |
---|
832 | { |
---|
833 | result[1,pos[i]]=y[1,pos[i]]+val[i]; |
---|
834 | } |
---|
835 | return(result); |
---|
836 | } example |
---|
837 | { |
---|
838 | "EXAMPLE:"; echo = 2; |
---|
839 | //correct 2 errors in [7,3] 8-ary code RS code |
---|
840 | int t=2; int q=8; int n=7; int redun=4; |
---|
841 | ring r=(q,a),x,dp; |
---|
842 | matrix h_full=genMDSMat(n,a); |
---|
843 | matrix h=submat(h_full,1..redun,1..n); |
---|
844 | matrix g=dual_code(h); |
---|
845 | matrix x[1][3]=0,0,1,0; |
---|
846 | matrix y[1][7]=encode(x,g); |
---|
847 | |
---|
848 | //disturb with 2 random errors |
---|
849 | matrix rec[1][7]=errorRand(y,2,3); |
---|
850 | print(rec); |
---|
851 | print(rec-y); |
---|
852 | } |
---|
853 | |
---|
854 | /////////////////////////////////////////////////////////////////////////////// |
---|
855 | |
---|
856 | proc randomCheck(int m, int n, int e, int #) |
---|
857 | "USAGE: randomCheck(m, n, e); m x n are dimensions of the matrix, e is an extension degree (if one wants values to |
---|
858 | be from GF(p^e)) |
---|
859 | RETURN: random check matrix |
---|
860 | EXAMPLE: example randomCheck; shows an example |
---|
861 | " |
---|
862 | { |
---|
863 | matrix result[m][n]; |
---|
864 | matrix rand[m][n-m]; |
---|
865 | int i,j; |
---|
866 | matrix temp; |
---|
867 | for (i=1; i<=m; i++) |
---|
868 | { |
---|
869 | temp=randomvector(n-m,e,#); |
---|
870 | for (j=1; j<=n-m; j++) |
---|
871 | { |
---|
872 | rand[i,j]=temp[j,1]; |
---|
873 | } |
---|
874 | } |
---|
875 | result=concat(rand,unitmat(m)); |
---|
876 | return(result); |
---|
877 | } example |
---|
878 | { |
---|
879 | "EXAMPLE:"; echo = 2; |
---|
880 | int redun=5; int n=15; |
---|
881 | ring r=2,x,dp; |
---|
882 | |
---|
883 | //generate random check matrix for a [15,5] binary code |
---|
884 | matrix h=randomCheck(redun,n,1); |
---|
885 | print(h); |
---|
886 | |
---|
887 | //corresponding generator matrix |
---|
888 | matrix g=dual_code(h); |
---|
889 | print(g); |
---|
890 | } |
---|
891 | |
---|
892 | /////////////////////////////////////////////////////////////////////////////// |
---|
893 | |
---|
894 | proc genMDSMat(int n, number a) |
---|
895 | "USAGE: genMDSMat(n, a); n x n are dimensions of the matrix, a is a primitive element of the field. |
---|
896 | NOTE: An MDS matrix is constructed in the following way. We take a to be a generator of the multiplicative group of the field. |
---|
897 | Then we construct the Vandermonde matrix with this a. |
---|
898 | ASSUME: extension field should already be defined |
---|
899 | RETURN: a matrix with the MDS property |
---|
900 | EXAMPLE: example genMDSMat; shows an example |
---|
901 | " |
---|
902 | { |
---|
903 | int i,j; |
---|
904 | matrix result[n][n]; |
---|
905 | for (i=0; i<=n-1; i++) |
---|
906 | { |
---|
907 | for (j=0; j<=n-1; j++) |
---|
908 | { |
---|
909 | result[j+1,i+1]=(a^i)^j; |
---|
910 | } |
---|
911 | } |
---|
912 | return(result); |
---|
913 | } example |
---|
914 | { |
---|
915 | "EXAMPLE:"; echo = 2; |
---|
916 | int q=16; int n=15; |
---|
917 | ring r=(q,a),x,dp; |
---|
918 | |
---|
919 | //generate an MDS (Vandermonde) matrix |
---|
920 | matrix h_full=genMDSMat(n,a); |
---|
921 | print(h_full); |
---|
922 | } |
---|
923 | |
---|
924 | /////////////////////////////////////////////////////////////////////////////// |
---|
925 | |
---|
926 | |
---|
927 | proc mindist (matrix check) |
---|
928 | "USAGE: mindist (check, q); check is a check matrix, q = field size |
---|
929 | RETURN: minimum distance of the code together with the time needed for its calculation |
---|
930 | EXAMPLE: example mindist; shows an example |
---|
931 | " |
---|
932 | { |
---|
933 | int n=ncols(check); int redun=nrows(check); int t=redun+1; |
---|
934 | |
---|
935 | def br=basering; |
---|
936 | list rl=ringlist(br); |
---|
937 | int q=rl[1][1]; |
---|
938 | |
---|
939 | ring work=(q,a),(V(1..t),U(1..n)),dp; |
---|
940 | matrix check=imap(br,check); |
---|
941 | |
---|
942 | ideal temp; |
---|
943 | int count=1; |
---|
944 | int flag=1; |
---|
945 | int flag2; |
---|
946 | int i, tim, timsolve; |
---|
947 | matrix z[1][n]; |
---|
948 | option(redSB); |
---|
949 | def A=sysQE(check,z,count,0,0); |
---|
950 | |
---|
951 | //----------- proceed with solving the system w.r.t zero vector until some solutions are found -------------------- |
---|
952 | while (flag) |
---|
953 | { |
---|
954 | A=sysQE(check,z,count,0,0); |
---|
955 | setring A; |
---|
956 | ideal temp=qe; |
---|
957 | tim=rtimer; |
---|
958 | temp=std(temp); |
---|
959 | timsolve=timsolve+rtimer-tim; |
---|
960 | flag2=1; |
---|
961 | setring work; |
---|
962 | temp=imap(A,temp); |
---|
963 | for (i=1; i<=n; i++) |
---|
964 | { |
---|
965 | if |
---|
966 | (temp[i]!=U(n-i+1)) |
---|
967 | { |
---|
968 | flag2=0; |
---|
969 | } |
---|
970 | } |
---|
971 | if (!flag2) |
---|
972 | { |
---|
973 | flag=0; |
---|
974 | } |
---|
975 | else |
---|
976 | { |
---|
977 | count++; |
---|
978 | } |
---|
979 | } |
---|
980 | list result=list(count,timsolve); |
---|
981 | return(result); |
---|
982 | } example |
---|
983 | { |
---|
984 | "EXAMPLE:"; echo = 2; |
---|
985 | //determine a minimum distance for a [7,3] binary code |
---|
986 | int q=8; int n=7; int redun=4; int t=redun+1; |
---|
987 | ring r=(q,a),x,dp; |
---|
988 | |
---|
989 | //generate random check matrix |
---|
990 | matrix h=randomCheck(redun,n,1); |
---|
991 | print(h); |
---|
992 | list l=mindist(h); |
---|
993 | print(l[1]); |
---|
994 | //time for the comutation in secs |
---|
995 | print(l[2]); |
---|
996 | } |
---|
997 | |
---|
998 | /////////////////////////////////////////////////////////////////////////////// |
---|
999 | |
---|
1000 | proc decode(matrix check, matrix rec) |
---|
1001 | "USAGE: decode(check, rec, t); check is the check matrix of the code |
---|
1002 | rec is a received word, t is an upper bound for the number of errors one wants to correct |
---|
1003 | ASSUME: Errors in rec should be correctable, otherwise the output is unpredictable |
---|
1004 | RETURN: a codeword that is closest to rec |
---|
1005 | EXAMPLE: example decode; shows an example |
---|
1006 | " |
---|
1007 | { |
---|
1008 | def br=basering; |
---|
1009 | int n=ncols(check); |
---|
1010 | |
---|
1011 | int count=1; |
---|
1012 | def A=sysQE(check,rec,count,0,0); |
---|
1013 | while(1) |
---|
1014 | { |
---|
1015 | A=sysQE(check,rec,count,0,0); |
---|
1016 | setring A; |
---|
1017 | matrix h_full=genMDSMat(n,a); |
---|
1018 | matrix rec=imap(br,rec); |
---|
1019 | option(redSB); |
---|
1020 | ideal qe_red=std(qe); |
---|
1021 | if (qe_red[1]!=1) |
---|
1022 | { |
---|
1023 | break; |
---|
1024 | } |
---|
1025 | else |
---|
1026 | { |
---|
1027 | count++; |
---|
1028 | } |
---|
1029 | setring br; |
---|
1030 | } |
---|
1031 | |
---|
1032 | setring A; |
---|
1033 | |
---|
1034 | //obtain a codeword |
---|
1035 | //this works only if our code is indeed can correct these errors |
---|
1036 | matrix syn[n][1]; |
---|
1037 | for (int i=1; i<=n; i++) |
---|
1038 | { |
---|
1039 | syn[i,1]=-qe_red[n-i+1]+lead(qe_red[n-i+1]); |
---|
1040 | } |
---|
1041 | |
---|
1042 | matrix real_syn=inverse(h_full)*syn; |
---|
1043 | setring br; |
---|
1044 | matrix real_syn=imap(A,real_syn); |
---|
1045 | return(rec-transpose(real_syn)); |
---|
1046 | } example |
---|
1047 | { |
---|
1048 | "EXAMPLE:"; echo = 2; |
---|
1049 | //correct 1 error in [15,7] binary code |
---|
1050 | int t=1; int q=16; int n=15; int redun=10; |
---|
1051 | ring r=(q,a),x,dp; |
---|
1052 | |
---|
1053 | //generate random check matrix |
---|
1054 | matrix h=randomCheck(redun,n,1); |
---|
1055 | matrix g=dual_code(h); |
---|
1056 | matrix x[1][n-redun]=0,0,1,0,1,0,1; |
---|
1057 | matrix y[1][n]=encode(x,g); |
---|
1058 | print(y); |
---|
1059 | |
---|
1060 | // find out the minimum distance of the code |
---|
1061 | list l=mindist(h); |
---|
1062 | |
---|
1063 | //disturb with errors |
---|
1064 | "Correct ",(l[1]-1) div 2," errors"; |
---|
1065 | matrix rec[1][n]=errorRand(y,(l[1]-1) div 2,1); |
---|
1066 | print(rec); |
---|
1067 | |
---|
1068 | //let us decode |
---|
1069 | matrix dec_word=decode(h,rec); |
---|
1070 | print(dec_word); |
---|
1071 | } |
---|
1072 | |
---|
1073 | /////////////////////////////////////////////////////////////////////////////// |
---|
1074 | |
---|
1075 | |
---|
1076 | proc solveForRandom(int n, int redun, int ncodes, int ntrials, int #) |
---|
1077 | "USAGE: solveForRandom(redun, q, ncodes, ntrials); redun is a redundabcy of a (random) code, |
---|
1078 | q = field size, ncodes = number of random codes to be processed, |
---|
1079 | ntrials = number of received vectors per code to be corrected. |
---|
1080 | If # is given it sets the correction capacity explicitly. It should be used in case one expexts some lower bound, |
---|
1081 | otherwise the procedure tries to compute the real minimum distance to find out the error-correction capacity |
---|
1082 | RETURN: nothing; |
---|
1083 | EXAMPLE: example solveForRandom; shows an example |
---|
1084 | " |
---|
1085 | { |
---|
1086 | int i,j; |
---|
1087 | matrix h; |
---|
1088 | int dist, t, tim, tim2, tim3, timdist, timdec, timdist2, timdec2, timdec3; |
---|
1089 | ideal sys; |
---|
1090 | list tmp; |
---|
1091 | |
---|
1092 | option(redSB); |
---|
1093 | def br=basering; |
---|
1094 | matrix h_full=genMDSMat(n,a); |
---|
1095 | matrix z[1][ncols(h_full)]; |
---|
1096 | |
---|
1097 | //------------------ determine error-correction capacity ------------------- |
---|
1098 | for (i=1; i<=ncodes; i++) |
---|
1099 | { |
---|
1100 | setring br; |
---|
1101 | h=randomCheck(redun,n,1); |
---|
1102 | "check matrix:"; |
---|
1103 | print(h); |
---|
1104 | if (#>0) |
---|
1105 | { |
---|
1106 | t=#; |
---|
1107 | } else { |
---|
1108 | tim=rtimer; |
---|
1109 | tmp=mindist(h); |
---|
1110 | timdist=timdist+rtimer-tim; |
---|
1111 | timdist2=timdist2+tmp[2]; |
---|
1112 | dist=tmp[1]; |
---|
1113 | printf("d= %p",dist); |
---|
1114 | t=(dist-1) div 2; |
---|
1115 | } |
---|
1116 | tim2=rtimer; |
---|
1117 | tim3=rtimer; |
---|
1118 | |
---|
1119 | //------------- generate the template system ---------------------- |
---|
1120 | def A=sysQE(h,z,t,0,0); |
---|
1121 | setring A; |
---|
1122 | matrix word,y,rec; |
---|
1123 | ideal sys2,sys3; |
---|
1124 | matrix h=imap(br,h); |
---|
1125 | matrix g=dual_code(h); |
---|
1126 | ideal sys=qe; |
---|
1127 | print("The system is generated"); |
---|
1128 | timdec3=timdec3+rtimer-tim3; |
---|
1129 | |
---|
1130 | //------------- modify the template according to every received word ------------------- |
---|
1131 | for (j=1; j<=ntrials; j++) |
---|
1132 | { |
---|
1133 | word=randomvector(n-redun,1); |
---|
1134 | y=encode(transpose(word),g); |
---|
1135 | rec=errorRand(y,t,1); |
---|
1136 | sys2=add_synd(rec,h,redun,sys); |
---|
1137 | |
---|
1138 | tim=rtimer; |
---|
1139 | sys3=std(sys2); |
---|
1140 | timdec=timdec+rtimer-tim; |
---|
1141 | } |
---|
1142 | timdec2=timdec2+rtimer-tim2; |
---|
1143 | kill A; |
---|
1144 | } |
---|
1145 | printf("Time for mindist: %p", timdist); |
---|
1146 | printf("Time for GB in mindist: %p", timdist); |
---|
1147 | printf("Time for decoding: %p", timdec2); |
---|
1148 | printf("Time for GB in decoding: %p", timdec); |
---|
1149 | printf("Time for sysQE in decoding: %p", timdec3); |
---|
1150 | } example |
---|
1151 | { |
---|
1152 | "EXAMPLE:"; echo = 2; |
---|
1153 | int q=32; int n=25; int redun=n-11; int t=redun+1; |
---|
1154 | ring r=(q,a),x,dp; |
---|
1155 | |
---|
1156 | // correct 2 errors in 5 random binary codes, 50 trials each |
---|
1157 | solveForRandom(n,redun,5,50,2); |
---|
1158 | } |
---|
1159 | |
---|
1160 | /////////////////////////////////////////////////////////////////////////////// |
---|
1161 | |
---|
1162 | |
---|
1163 | proc solveForCode(matrix check, int ntrials, int #) |
---|
1164 | "USAGE: solveForCode(check, ntrials); |
---|
1165 | check is a check matrix for the code, ntrials = number of received vectors per code to be corrected. |
---|
1166 | If # is given it sets the correction capacity explicitly. It should be used in case one expects some lower bound, |
---|
1167 | otherwise the procedure tries to compute the real minimum distance to find out the error-correction capacity |
---|
1168 | RETURN: nothing; |
---|
1169 | EXAMPLE: example solveForCode; shows an example |
---|
1170 | " |
---|
1171 | { |
---|
1172 | int n=ncols(check); |
---|
1173 | int redun=nrows(check); |
---|
1174 | int i,j; |
---|
1175 | matrix h; |
---|
1176 | int dist, t, tim, tim2, tim3, timdist, timdec, timdist2, timdec2, timdec3; |
---|
1177 | ideal sys; |
---|
1178 | list tmp; |
---|
1179 | |
---|
1180 | option(redSB); |
---|
1181 | def br=basering; |
---|
1182 | matrix h_full=genMDSMat(n,a); |
---|
1183 | matrix z[1][ncols(h_full)]; |
---|
1184 | setring br; |
---|
1185 | h=check; |
---|
1186 | "check matrix:"; |
---|
1187 | print(h); |
---|
1188 | |
---|
1189 | //------------------ determine error-correction capacity ------------------- |
---|
1190 | if (#>0) |
---|
1191 | { |
---|
1192 | t=#; |
---|
1193 | } else { |
---|
1194 | tim=rtimer; |
---|
1195 | tmp=mindist(h); |
---|
1196 | timdist=timdist+rtimer-tim; |
---|
1197 | timdist2=timdist2+tmp[2]; |
---|
1198 | dist=tmp[1]; |
---|
1199 | printf("d= %p",dist); |
---|
1200 | t=(dist-1) div 2; |
---|
1201 | } |
---|
1202 | tim2=rtimer; |
---|
1203 | tim3=rtimer; |
---|
1204 | |
---|
1205 | //------------- generate the template system ---------------------- |
---|
1206 | def A=sysQE(h,z,t,0,0); |
---|
1207 | setring A; |
---|
1208 | matrix word,y,rec; |
---|
1209 | ideal sys2,sys3; |
---|
1210 | matrix h=imap(br,h); |
---|
1211 | matrix g=dual_code(h); |
---|
1212 | ideal sys=qe; |
---|
1213 | print("The system is generated"); |
---|
1214 | timdec3=timdec3+rtimer-tim3; |
---|
1215 | |
---|
1216 | //------------- modify the template according to every received word ------------------- |
---|
1217 | for (j=1; j<=ntrials; j++) |
---|
1218 | { |
---|
1219 | word=randomvector(n-redun,1); |
---|
1220 | y=encode(transpose(word),g); |
---|
1221 | rec=errorRand(y,t,1); |
---|
1222 | sys2=add_synd(rec,h,redun,sys); |
---|
1223 | |
---|
1224 | tim=rtimer; |
---|
1225 | sys3=std(sys2); |
---|
1226 | timdec=timdec+rtimer-tim; |
---|
1227 | } |
---|
1228 | timdec2=timdec2+rtimer-tim2; |
---|
1229 | |
---|
1230 | printf("Time for mindist: %p", timdist); |
---|
1231 | printf("Time for GB in mindist: %p", timdist); |
---|
1232 | printf("Time for decoding: %p", timdec2); |
---|
1233 | printf("Time for GB in decoding: %p", timdec); |
---|
1234 | printf("Time for sysQE in decoding: %p", timdec3); |
---|
1235 | } example |
---|
1236 | { |
---|
1237 | "EXAMPLE:"; echo = 2; |
---|
1238 | int q=32; int n=25; int redun=n-11; int t=redun+1; |
---|
1239 | ring r=(q,a),x,dp; |
---|
1240 | matrix check=randomCheck(redun,n,1); |
---|
1241 | |
---|
1242 | // correct 2 errors in using the code above, 50 trials |
---|
1243 | solveForCode(check,50,2); |
---|
1244 | } |
---|
1245 | |
---|
1246 | |
---|
1247 | /////////////////////////////////////////////////////////////////////////////// |
---|
1248 | // adding syndrome values to the template system |
---|
1249 | static proc add_synd (matrix rec, matrix check, int redun, ideal sys) |
---|
1250 | { |
---|
1251 | ideal result=sys; |
---|
1252 | matrix s[redun][1]=syndrome(check,rec); |
---|
1253 | for (int i=1; i<=redun; i++) |
---|
1254 | |
---|
1255 | { |
---|
1256 | result[i]=result[i]-s[i,1]; |
---|
1257 | } |
---|
1258 | return(result); |
---|
1259 | } |
---|
1260 | |
---|
1261 | /////////////////////////////////////////////////////////////////////////////// |
---|
1262 | // evaluate a polynomial at a given point |
---|
1263 | static proc ev (poly f, matrix p) |
---|
1264 | { |
---|
1265 | if (ncols(p)>1) {ERROR("not a column vector");}; |
---|
1266 | int m=size(p); |
---|
1267 | poly temp=f; |
---|
1268 | for (int i=1; i<=m; i++) |
---|
1269 | { |
---|
1270 | temp=subst(temp,x(i),p[i,1]); |
---|
1271 | } |
---|
1272 | return(number(temp)); |
---|
1273 | } |
---|
1274 | |
---|
1275 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
1276 | // return index of an element in the ideal where it does not vanish at the given point |
---|
1277 | static proc find_index (ideal G, matrix p) |
---|
1278 | { |
---|
1279 | if (ncols(p)>1) {ERROR("not a column vector");}; |
---|
1280 | int i=1; |
---|
1281 | int n=size(G); |
---|
1282 | while(i<=n) |
---|
1283 | { |
---|
1284 | if (ev(G[i],p)!=0) {return(i);} |
---|
1285 | i++; |
---|
1286 | } |
---|
1287 | return(-1); |
---|
1288 | } |
---|
1289 | |
---|
1290 | /////////////////////////////////////////////////////////////////////////////// |
---|
1291 | // convert ideal to list |
---|
1292 | static proc ideal2list (ideal id) |
---|
1293 | { |
---|
1294 | list l; |
---|
1295 | for (int i=1; i<=size(id); i++) |
---|
1296 | { |
---|
1297 | l[i]=id[i]; |
---|
1298 | } |
---|
1299 | return(l); |
---|
1300 | } |
---|
1301 | |
---|
1302 | /////////////////////////////////////////////////////////////////////////////// |
---|
1303 | // convert list to ideal |
---|
1304 | static proc list2ideal (list l) |
---|
1305 | { |
---|
1306 | ideal id; |
---|
1307 | for (int i=1; i<=size(l); i++) |
---|
1308 | { |
---|
1309 | id[i]=l[i]; |
---|
1310 | } |
---|
1311 | return(id); |
---|
1312 | } |
---|
1313 | |
---|
1314 | //////////////////////////////////////////////////////////////////////////////////// |
---|
1315 | // checl whether given polynomial is divisible by some leading monomial of the ideal |
---|
1316 | static proc divisible (poly m, ideal G) |
---|
1317 | { |
---|
1318 | for (int i=1; i<=size(G); i++) |
---|
1319 | { |
---|
1320 | if (m/leadmonom(G[i])!=0) {return(1);} |
---|
1321 | } |
---|
1322 | return(0); |
---|
1323 | } |
---|
1324 | |
---|
1325 | /////////////////////////////////////////////////////////////////////////////// |
---|
1326 | |
---|
1327 | proc vanishId (list points) |
---|
1328 | "USAGE: vanishId (points,e); points is a list of points, for which the vanishing ideal is to be constructed. |
---|
1329 | RETURN: Vanishing ideal corresponding to the given set of points |
---|
1330 | EXAMPLE: example vanishId; shows an example |
---|
1331 | " |
---|
1332 | { |
---|
1333 | int m=size(points[1]); |
---|
1334 | int n=size(points); |
---|
1335 | |
---|
1336 | ideal G=1; |
---|
1337 | int i,k,j; |
---|
1338 | list temp; |
---|
1339 | poly h,cur; |
---|
1340 | |
---|
1341 | //------------- proceed according to Farr-Gao algorithm ---------------- |
---|
1342 | for (k=1; k<=n; k++) |
---|
1343 | { |
---|
1344 | i=find_index(G,points[k]); |
---|
1345 | cur=G[i]; |
---|
1346 | for(j=i+1; j<=size(G); j++) |
---|
1347 | { |
---|
1348 | G[j]=G[j]-ev(G[j],points[k])/ev(G[i],points[k])*G[i]; |
---|
1349 | } |
---|
1350 | G=simplify(G,2); |
---|
1351 | temp=ideal2list(G); |
---|
1352 | temp=delete(temp,i); |
---|
1353 | G=list2ideal(temp); |
---|
1354 | for (j=1; j<=m; j++) |
---|
1355 | { |
---|
1356 | if (!divisible(x(j)*leadmonom(cur),G)) |
---|
1357 | { |
---|
1358 | attrib(G,"isSB",1); |
---|
1359 | h=NF((x(j)-points[k][j,1])*cur,G); |
---|
1360 | temp=ideal2list(G); |
---|
1361 | temp=insert(temp,h); |
---|
1362 | G=list2ideal(temp); |
---|
1363 | G=sort(G)[1]; |
---|
1364 | } |
---|
1365 | } |
---|
1366 | } |
---|
1367 | attrib(G,"isSB",1); |
---|
1368 | return(G); |
---|
1369 | } example |
---|
1370 | { |
---|
1371 | "EXAMPLE:"; echo = 2; |
---|
1372 | ring r=3,(x(1..3)),dp; |
---|
1373 | |
---|
1374 | //generate all 3-vectors over GF(3) |
---|
1375 | list points=pointsGen(3,1); |
---|
1376 | |
---|
1377 | list points2=convPoints(points); |
---|
1378 | |
---|
1379 | //grasps the first 11 points |
---|
1380 | list p=graspList(points2,1,11); |
---|
1381 | print(p); |
---|
1382 | |
---|
1383 | //construct the vanishing ideal |
---|
1384 | ideal id=vanishId(p); |
---|
1385 | print(id); |
---|
1386 | } |
---|
1387 | |
---|
1388 | ////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
1389 | // construct the list of all vectors of length m with elements in p^e, where p is characteristics |
---|
1390 | proc pointsGen (int m, int e) |
---|
1391 | { |
---|
1392 | if (e>1) |
---|
1393 | { |
---|
1394 | list result; |
---|
1395 | int count=1; |
---|
1396 | int i,j; |
---|
1397 | list l=ringlist(basering); |
---|
1398 | int charac=l[1][1]; |
---|
1399 | number a=par(1); |
---|
1400 | list tmp; |
---|
1401 | for (i=1; i<=charac^(e*m); i++) |
---|
1402 | { |
---|
1403 | result[i]=tmp; |
---|
1404 | } |
---|
1405 | if (m==1) |
---|
1406 | { |
---|
1407 | result[count][m]=0; |
---|
1408 | count++; |
---|
1409 | for (j=1; j<=charac^(e)-1; j++) |
---|
1410 | { |
---|
1411 | result[count][m]=a^j; |
---|
1412 | count++; |
---|
1413 | } |
---|
1414 | return(result); |
---|
1415 | } |
---|
1416 | list prev=pointsGen(m-1,e); |
---|
1417 | for (i=1; i<=size(prev); i++) |
---|
1418 | { |
---|
1419 | result[count]=prev[i]; |
---|
1420 | result[count][m]=0; |
---|
1421 | count++; |
---|
1422 | for (j=1; j<=charac^(e)-1; j++) |
---|
1423 | { |
---|
1424 | result[count]=prev[i]; |
---|
1425 | result[count][m]=a^j; |
---|
1426 | count++; |
---|
1427 | } |
---|
1428 | } |
---|
1429 | return(result); |
---|
1430 | } |
---|
1431 | |
---|
1432 | if (e==1) |
---|
1433 | { |
---|
1434 | list result; |
---|
1435 | int count=1; |
---|
1436 | int i,j; |
---|
1437 | list l=ringlist(basering); |
---|
1438 | int charac=l[1][1]; |
---|
1439 | list tmp; |
---|
1440 | for (i=1; i<=charac^m; i++) |
---|
1441 | { |
---|
1442 | result[i]=tmp; |
---|
1443 | } |
---|
1444 | if (m==1) |
---|
1445 | { |
---|
1446 | for (j=0; j<=charac-1; j++) |
---|
1447 | { |
---|
1448 | result[count][m]=number(j); |
---|
1449 | count++; |
---|
1450 | } |
---|
1451 | return(result); |
---|
1452 | } |
---|
1453 | list prev=pointsGen(m-1,e); |
---|
1454 | for (i=1; i<=size(prev); i++) |
---|
1455 | { |
---|
1456 | for (j=0; j<=charac-1; j++) |
---|
1457 | { |
---|
1458 | result[count]=prev[i]; |
---|
1459 | result[count][m]=number(j); |
---|
1460 | count++; |
---|
1461 | } |
---|
1462 | } |
---|
1463 | return(result); |
---|
1464 | } |
---|
1465 | |
---|
1466 | } |
---|
1467 | |
---|
1468 | /////////////////////////////////////////////////////////////////////////////// |
---|
1469 | // convert list to a column vector |
---|
1470 | static proc list2vec (list l) |
---|
1471 | { |
---|
1472 | matrix m[size(l)][1]; |
---|
1473 | for (int i=1; i<=size(l); i++) |
---|
1474 | { |
---|
1475 | m[i,1]=l[i]; |
---|
1476 | } |
---|
1477 | return(m); |
---|
1478 | } |
---|
1479 | |
---|
1480 | /////////////////////////////////////////////////////////////////////////////// |
---|
1481 | // convert all the point in the list with list2vec |
---|
1482 | proc convPoints (list points) |
---|
1483 | { |
---|
1484 | for (int i=1; i<=size(points); i++) |
---|
1485 | { |
---|
1486 | points[i]=list2vec(points[i]); |
---|
1487 | } |
---|
1488 | return(points); |
---|
1489 | } |
---|
1490 | |
---|
1491 | /////////////////////////////////////////////////////////////////////////////// |
---|
1492 | // extracts elements from l in the range m..n |
---|
1493 | proc graspList (list l, int m, int n) |
---|
1494 | { |
---|
1495 | list result; |
---|
1496 | int count=1; |
---|
1497 | for (int i=m; i<=n; i++) |
---|
1498 | { |
---|
1499 | result[count]=l[i]; |
---|
1500 | count++; |
---|
1501 | } |
---|
1502 | return(result); |
---|
1503 | } |
---|
1504 | |
---|
1505 | /////////////////////////////////////////////////////////////////////////////// |
---|
1506 | // "characteristic" polynomial |
---|
1507 | static proc xi_gen (matrix p, int e, int s) |
---|
1508 | { |
---|
1509 | poly prod=1; |
---|
1510 | list rl=ringlist(basering); |
---|
1511 | int charac=rl[1][1]; |
---|
1512 | int l; |
---|
1513 | for (l=1; l<=s; l++) |
---|
1514 | { |
---|
1515 | prod=prod*(1-(x(l)-p[l,1])^(charac^e-1)); |
---|
1516 | } |
---|
1517 | return(prod); |
---|
1518 | } |
---|
1519 | |
---|
1520 | /////////////////////////////////////////////////////////////////////////////// |
---|
1521 | // generating polynomials in Fitzgerald-Lax construction |
---|
1522 | static proc gener_funcs (matrix check, list points, int e, ideal id, int s) |
---|
1523 | { |
---|
1524 | int n=ncols(check); |
---|
1525 | if (n!=size(points)) {ERROR("Incompatible sizes of check and points");} |
---|
1526 | ideal xi; |
---|
1527 | int i,j; |
---|
1528 | for (i=1; i<=n; i++) |
---|
1529 | { |
---|
1530 | xi[i]=xi_gen(points[i],e,s); |
---|
1531 | } |
---|
1532 | ideal result; |
---|
1533 | int m=nrows(check); |
---|
1534 | poly sum; |
---|
1535 | for (i=1; i<=m; i++) |
---|
1536 | { |
---|
1537 | sum=0; |
---|
1538 | for (j=1; j<=n; j++) |
---|
1539 | { |
---|
1540 | sum=sum+check[i,j]*xi[j]; |
---|
1541 | } |
---|
1542 | result[i]=NF(sum,id); |
---|
1543 | } |
---|
1544 | return(result); |
---|
1545 | } |
---|
1546 | |
---|
1547 | /////////////////////////////////////////////////////////////////////////////// |
---|
1548 | |
---|
1549 | proc sysFL (matrix check, matrix y, int t, int e, int s) |
---|
1550 | "USAGE: sysFL (check,y,t,e,s); check is a check matrix of the code, y is a received word, t the number of errors to correct, |
---|
1551 | e is the extension degree, s is the dimension of the point for the vanishing ideal |
---|
1552 | RETURN: the system of Fitzgerald-Lax for the given decoding problem |
---|
1553 | EXAMPLE: example sysFL; shows an example |
---|
1554 | " |
---|
1555 | { |
---|
1556 | list rl=ringlist(basering); |
---|
1557 | int charac=rl[1][1]; |
---|
1558 | int n=ncols(check); |
---|
1559 | int m=nrows(check); |
---|
1560 | list points=pointsGen(s,e); |
---|
1561 | list points2=convPoints(points); |
---|
1562 | list p=graspList(points2,1,n); |
---|
1563 | ideal id=vanishId(p,e); |
---|
1564 | ideal funcs=gener_funcs(check,p,e,id,s); |
---|
1565 | |
---|
1566 | ideal result; |
---|
1567 | poly temp; |
---|
1568 | int i,j,k; |
---|
1569 | |
---|
1570 | //--------------- add vanishing realtions --------------------- |
---|
1571 | for (i=1; i<=t; i++) |
---|
1572 | { |
---|
1573 | for (j=1; j<=size(id); j++) |
---|
1574 | { |
---|
1575 | temp=id[j]; |
---|
1576 | for (k=1; k<=s; k++) |
---|
1577 | { |
---|
1578 | temp=subst(temp,x(k),x_var(i,k,s)); |
---|
1579 | } |
---|
1580 | result=result,temp; |
---|
1581 | } |
---|
1582 | } |
---|
1583 | |
---|
1584 | //--------------- add field equations -------------------- |
---|
1585 | for (i=1; i<=t; i++) |
---|
1586 | { |
---|
1587 | for (k=1; k<=s; k++) |
---|
1588 | { |
---|
1589 | result=result,x_var(i,k,s)^(charac^e)-x_var(i,k,s); |
---|
1590 | } |
---|
1591 | } |
---|
1592 | for (i=1; i<=t; i++) |
---|
1593 | { |
---|
1594 | result=result,e(i)^(charac^e-1)-1; |
---|
1595 | } |
---|
1596 | |
---|
1597 | result=simplify(result,8); |
---|
1598 | |
---|
1599 | //--------------- add check realtions -------------------- |
---|
1600 | poly sum; |
---|
1601 | matrix syn[m][1]=syndrome(check,y); |
---|
1602 | for (i=1; i<=size(funcs); i++) |
---|
1603 | { |
---|
1604 | sum=0; |
---|
1605 | for (j=1; j<=t; j++) |
---|
1606 | { |
---|
1607 | temp=funcs[i]; |
---|
1608 | for (k=1; k<=s; k++) |
---|
1609 | { |
---|
1610 | temp=subst(temp,x(k),x_var(j,k,s)); |
---|
1611 | } |
---|
1612 | sum=sum+temp*e(j); |
---|
1613 | } |
---|
1614 | result=result,sum-syn[i,1]; |
---|
1615 | } |
---|
1616 | |
---|
1617 | result=simplify(result,2); |
---|
1618 | |
---|
1619 | points=points2; |
---|
1620 | export points; |
---|
1621 | return(result); |
---|
1622 | } example |
---|
1623 | { |
---|
1624 | "EXAMPLE:"; echo = 2; |
---|
1625 | |
---|
1626 | list l=FLpreprocess(3,1,11,2,""); |
---|
1627 | def r=l[1]; |
---|
1628 | setring r; |
---|
1629 | int s_work=l[2]; |
---|
1630 | |
---|
1631 | //the check matrix of [11,6,5] ternary code |
---|
1632 | matrix h[5][11]=1,0,0,0,0,1,1,1,-1,-1,0, |
---|
1633 | 0,1,0,0,0,1,1,-1,1,0,-1, |
---|
1634 | 0,0,1,0,0,1,-1,1,0,1,-1, |
---|
1635 | 0,0,0,1,0,1,-1,0,1,-1,1, |
---|
1636 | 0,0,0,0,1,1,0,-1,-1,1,1; |
---|
1637 | matrix g=dual_code(h); |
---|
1638 | matrix x[1][6]; |
---|
1639 | matrix y[1][11]=encode(x,g); |
---|
1640 | //disturb with 2 errors |
---|
1641 | matrix rec[1][11]=errorInsert(y,list(2,4),list(1,-1)); |
---|
1642 | |
---|
1643 | //the Fitzgerald-Lax system |
---|
1644 | ideal sys=sysFL(h,rec,2,1,s_work); |
---|
1645 | print(sys); |
---|
1646 | option(redSB); |
---|
1647 | ideal red_sys=std(sys); |
---|
1648 | red_sys; // read the solutions from this redGB |
---|
1649 | // the points are (0,0,1) and (0,1,0) with error values 1 and -1 resp. |
---|
1650 | // use list points to find error positions; |
---|
1651 | points; |
---|
1652 | } |
---|
1653 | |
---|
1654 | /////////////////////////////////////////////////////////////////////////////// |
---|
1655 | // preprocessing steps for the Fitzgerald-Lax scheme |
---|
1656 | proc FLpreprocess (int p, int e, int n, int t, string minp) |
---|
1657 | { |
---|
1658 | ring r1=p,x,dp; |
---|
1659 | int s=1; |
---|
1660 | while(p^(s*e)<n) |
---|
1661 | { |
---|
1662 | s++; |
---|
1663 | } |
---|
1664 | list var_ord; |
---|
1665 | int i,j; |
---|
1666 | int count=1; |
---|
1667 | for (i=s; i>=1; i--) |
---|
1668 | { |
---|
1669 | var_ord[count]=string("x("+string(i)+")"); |
---|
1670 | count++; |
---|
1671 | } |
---|
1672 | for (i=t; i>=1; i--) |
---|
1673 | { |
---|
1674 | var_ord[count]=string("e("+string(i)+")"); |
---|
1675 | count++; |
---|
1676 | for (j=s; j>=1; j--) |
---|
1677 | { |
---|
1678 | var_ord[count]=string("x1("+string(s*(i-1)+j)+")"); |
---|
1679 | count++; |
---|
1680 | } |
---|
1681 | } |
---|
1682 | |
---|
1683 | list rl; |
---|
1684 | list tmp; |
---|
1685 | |
---|
1686 | if (e>1) |
---|
1687 | { |
---|
1688 | rl[1]=tmp; |
---|
1689 | rl[1][1]=p; |
---|
1690 | rl[1][2]=tmp; |
---|
1691 | rl[1][2][1]=string("a"); |
---|
1692 | rl[1][3]=tmp; |
---|
1693 | rl[1][3][1]=tmp; |
---|
1694 | //rl[1][3][1][1]=string("dp("+string((t-1)*(s+1)+s)+"),lp("+string(s+1)+")"); |
---|
1695 | rl[1][3][1][1]=string("lp"); |
---|
1696 | rl[1][3][1][2]=1; |
---|
1697 | rl[1][4]=ideal(0); |
---|
1698 | } else { |
---|
1699 | rl[1]=p; |
---|
1700 | } |
---|
1701 | |
---|
1702 | rl[2]=var_ord; |
---|
1703 | |
---|
1704 | rl[3]=tmp; |
---|
1705 | rl[3][1]=tmp; |
---|
1706 | //rl[3][1][1]=string("dp("+string((t-1)*(s+1)+s)+"),lp("+string(s+1)+")"); |
---|
1707 | rl[3][1][1]=string("lp"); |
---|
1708 | intvec v=1; |
---|
1709 | for (i=1; i<=size(var_ord)-1; i++) |
---|
1710 | { |
---|
1711 | v=v,1; |
---|
1712 | } |
---|
1713 | rl[3][1][2]=v; |
---|
1714 | rl[3][2]=tmp; |
---|
1715 | rl[3][2][1]=string("C"); |
---|
1716 | rl[3][2][2]=intvec(0); |
---|
1717 | |
---|
1718 | rl[4]=ideal(0); |
---|
1719 | |
---|
1720 | def r2=ring(rl); |
---|
1721 | setring r2; |
---|
1722 | list l=ringlist(r2); |
---|
1723 | if (e>1) |
---|
1724 | { |
---|
1725 | execute(string("poly f="+minp)); |
---|
1726 | ideal id=f; |
---|
1727 | l[1][4]=id; |
---|
1728 | } |
---|
1729 | |
---|
1730 | def r=ring(l); |
---|
1731 | setring r; |
---|
1732 | |
---|
1733 | return(list(r,s)); |
---|
1734 | } |
---|
1735 | |
---|
1736 | /////////////////////////////////////////////////////////////////////////////// |
---|
1737 | // imitating two indeces |
---|
1738 | static proc x_var (int i, int j, int s) |
---|
1739 | { |
---|
1740 | return(x1(s*(i-1)+j)); |
---|
1741 | } |
---|
1742 | |
---|
1743 | /////////////////////////////////////////////////////////////////////////////// |
---|
1744 | // random vector of length n with entries from p^e, p the characteristic |
---|
1745 | static proc randomvector(int n, int e, int #) |
---|
1746 | { |
---|
1747 | int i; |
---|
1748 | matrix result[n][1]; |
---|
1749 | for (i=1; i<=n; i++) |
---|
1750 | { |
---|
1751 | result[i,1]=asElement(random_prime_vector(e,#)); |
---|
1752 | } |
---|
1753 | return(result); |
---|
1754 | } |
---|
1755 | |
---|
1756 | //////////////////////////////////////////////////////////////////////////////////////////// |
---|
1757 | // "convert" representation of an element from the field extension from vector to an elelemnt |
---|
1758 | static proc asElement(list l) |
---|
1759 | { |
---|
1760 | number s; |
---|
1761 | int i; |
---|
1762 | number w=1; |
---|
1763 | if (size(l)>1) {w=par(1);} |
---|
1764 | for (i=0; i<=size(l)-1; i++) |
---|
1765 | { |
---|
1766 | s=s+w^i*l[i+1]; |
---|
1767 | } |
---|
1768 | return(s); |
---|
1769 | } |
---|
1770 | |
---|
1771 | /////////////////////////////////////////////////////////////////////////////// |
---|
1772 | // random vector of length n with entries from p, p the characteristic |
---|
1773 | static proc random_prime_vector (int n, int #) |
---|
1774 | { |
---|
1775 | if (#==1) |
---|
1776 | { |
---|
1777 | list rl=ringlist(basering); |
---|
1778 | int charac=rl[1][1]; |
---|
1779 | } else { |
---|
1780 | int charac=2; |
---|
1781 | } |
---|
1782 | list l; |
---|
1783 | int i; |
---|
1784 | for (i=1; i<=n; i++) |
---|
1785 | { |
---|
1786 | l=l+list(random(0,charac-1)); |
---|
1787 | } |
---|
1788 | return(l); |
---|
1789 | } |
---|
1790 | |
---|
1791 | /////////////////////////////////////////////////////////////////////////////// |
---|
1792 | |
---|
1793 | proc solveForRandomFL(int n, int redun, int p, int e, int t, int ncodes, int ntrials, string minpol) |
---|
1794 | "USAGE: solveForRandomFL(redun,p,e,n,t,ncodes,ntrials,minpol); n = length of codes generated, redun = redundancy of codes generated, |
---|
1795 | p = characteristics, e is the extension degree, |
---|
1796 | t = number of errors to correct, ncodes = number of random codes to be processed |
---|
1797 | ntrials = number of received vectors per code to be corrected |
---|
1798 | due to some pecularities of SINGULAR one needs to provide minimal polynomial for the extension explicitly |
---|
1799 | RETURN: nothing |
---|
1800 | EXAMPLE: example solveForRandomFL; shows an example |
---|
1801 | { |
---|
1802 | list l=FLpreprocess(p,e,n,t,minpol); |
---|
1803 | |
---|
1804 | def r=l[1]; |
---|
1805 | int s_work=l[2]; |
---|
1806 | export(s_work); |
---|
1807 | setring r; |
---|
1808 | |
---|
1809 | int i,j; |
---|
1810 | matrix h, g, word, y, rec; |
---|
1811 | int dist, tim, tim2, tim3, timdist, timdec, timdist2, timdec2, timdec3; |
---|
1812 | ideal sys, sys2, sys3; |
---|
1813 | list tmp; |
---|
1814 | |
---|
1815 | option(redSB); |
---|
1816 | matrix z[1][n]; |
---|
1817 | |
---|
1818 | for (i=1; i<=ncodes; i++) |
---|
1819 | { |
---|
1820 | h=randomCheck(redun,n,e,1); |
---|
1821 | g=dual_code(h); |
---|
1822 | tim2=rtimer; |
---|
1823 | tim3=rtimer; |
---|
1824 | |
---|
1825 | //------------ generate the template system ------------------ |
---|
1826 | sys=sysFL(h,z,t,e,s_work); |
---|
1827 | timdec3=timdec3+rtimer-tim3; |
---|
1828 | |
---|
1829 | //------------- modifying the template according to the received word --------------- |
---|
1830 | for (j=1; j<=ntrials; j++) |
---|
1831 | { |
---|
1832 | word=randomvector(n-redun,1); |
---|
1833 | y=encode(transpose(word),g); |
---|
1834 | rec=errorRand(y,t,e); |
---|
1835 | sys2=LF_add_synd(rec,h,sys); |
---|
1836 | tim=rtimer; |
---|
1837 | sys3=std(sys2); |
---|
1838 | timdec=timdec+rtimer-tim; |
---|
1839 | } |
---|
1840 | timdec2=timdec2+rtimer-tim2; |
---|
1841 | } |
---|
1842 | |
---|
1843 | printf("Time for decoding: %p", timdec2); |
---|
1844 | printf("Time for GB in decoding: %p", timdec); |
---|
1845 | printf("Time for generating Fitzgerald-Lax system during decoding: %p", timdec3); |
---|
1846 | } example |
---|
1847 | { |
---|
1848 | "EXAMPLE:"; echo = 2; |
---|
1849 | |
---|
1850 | // correcting one error for one random binary code of length 25, redundancy 14; 300 words are processed |
---|
1851 | solveForRandomFL(25,14,2,1,1,1,300,""); |
---|
1852 | } |
---|
1853 | |
---|
1854 | /////////////////////////////////////////////////////////////////////////////// |
---|
1855 | // add syndrome values to the template system in FL |
---|
1856 | static proc LF_add_synd (matrix rec, matrix check, ideal sys) |
---|
1857 | { |
---|
1858 | int redun=nrows(check); |
---|
1859 | ideal result=sys; |
---|
1860 | matrix s[redun][1]=syndrome(check,rec); |
---|
1861 | for (int i=size(sys)-redun+1; i<=size(sys); i++) |
---|
1862 | { |
---|
1863 | result[i]=result[i]-s[i-size(sys)+redun,1]; |
---|
1864 | } |
---|
1865 | return(result); |
---|
1866 | } |
---|
1867 | |
---|
1868 | |
---|
1869 | /* |
---|
1870 | ////////////// SOME RELATIVELY EASY EXAMPLES ////////////// |
---|
1871 | /////////////////// THAT RUN AROUND ONE MINUTE //////////////// |
---|
1872 | |
---|
1873 | "EXAMPLE:"; echo = 2; |
---|
1874 | int q=128; int n=120; int redun=n-30; |
---|
1875 | ring r=(q,a),x,dp; |
---|
1876 | solveForRandom(n,redun,1,1,6); |
---|
1877 | |
---|
1878 | int q=128; int n=120; int redun=n-20; |
---|
1879 | ring r=(q,a),x,dp; |
---|
1880 | solveForRandom(n,redun,1,1,9); |
---|
1881 | |
---|
1882 | int q=128; int n=120; int redun=n-10; |
---|
1883 | ring r=(q,a),x,dp; |
---|
1884 | solveForRandom(n,redun,1,1,19); |
---|
1885 | |
---|
1886 | int q=256; int n=150; int redun=n-10; |
---|
1887 | ring r=(q,a),x,dp; |
---|
1888 | solveForRandom(n,redun,1,1,22); |
---|
1889 | |
---|
1890 | ////////////// SOME HARD EXAMPLES ////////////////////// |
---|
1891 | ////// THAT MAYBE WILL BE DOABLE LATER /////////////// |
---|
1892 | |
---|
1893 | 1.) These random instances are not doable in <=1000 sec. |
---|
1894 | |
---|
1895 | "EXAMPLE:"; echo = 2; |
---|
1896 | int q=128; int n=120; int redun=n-40; |
---|
1897 | ring r=(q,a),x,dp; |
---|
1898 | solveForRandom(n,redun,1,1,6); |
---|
1899 | |
---|
1900 | redun=n-30; |
---|
1901 | solveForRandom(n,redun,1,1,8); |
---|
1902 | |
---|
1903 | redun=n-20; |
---|
1904 | solveForRandom(n,redun,1,1,12); |
---|
1905 | |
---|
1906 | redun=n-10; |
---|
1907 | solveForRandom(n,redun,1,1,24); |
---|
1908 | |
---|
1909 | int q=256; int n=150; int redun=n-10; |
---|
1910 | ring r=(q,a),x,dp; |
---|
1911 | solveForRandom(n,redun,1,1,26); |
---|
1912 | |
---|
1913 | |
---|
1914 | 2.) Generic decoding is hard! |
---|
1915 | |
---|
1916 | int q=32; int n=31; int redun=n-16; int t=3; |
---|
1917 | ring r=(q,a),(V(1..n),U(n..1),s(redun..1)),(dp(n),lp(n),dp(redun)); |
---|
1918 | matrix check[redun][n]= 1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0, |
---|
1919 | 0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1, |
---|
1920 | 0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
1921 | 0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0, |
---|
1922 | 0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0, |
---|
1923 | 0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0, |
---|
1924 | 0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1, |
---|
1925 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1, |
---|
1926 | 0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0, |
---|
1927 | 0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0, |
---|
1928 | 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0, |
---|
1929 | 1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0, |
---|
1930 | 0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,0, |
---|
1931 | 1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, |
---|
1932 | 1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0, |
---|
1933 | 0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1, |
---|
1934 | 0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
1935 | 0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,0, |
---|
1936 | 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1, |
---|
1937 | 0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
1938 | 0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0, |
---|
1939 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0, |
---|
1940 | 0,1,0,1,0,0,1,0,0,1; |
---|
1941 | matrix rec[1][n]; |
---|
1942 | |
---|
1943 | def A=sysQE(check,rec,t,1,2); |
---|
1944 | setring A; |
---|
1945 | print(qe); |
---|
1946 | ideal red_qe=stdfglm(qe); |
---|
1947 | |
---|
1948 | */ |
---|