1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: dmod.lib,v 1.36 2009-03-06 21:05:54 levandov Exp $"; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: dmod.lib Algorithms for algebraic D-modules |
---|
6 | AUTHORS: Viktor Levandovskyy, levandov@math.rwth-aachen.de |
---|
7 | @* Jorge Martin Morales, jorge@unizar.es |
---|
8 | |
---|
9 | THEORY: Let K be a field of characteristic 0. Given a polynomial ring |
---|
10 | @* R = K[x_1,...,x_n] and a polynomial F in R, |
---|
11 | @* one is interested in the R[1/F]-module of rank one, generated by |
---|
12 | @* the symbol F^s for a symbolic discrete variable s. |
---|
13 | @* In fact, the module R[1/F]*F^s has a structure of a D(R)[s]-module, where D(R) |
---|
14 | @* is an n-th Weyl algebra K<x_1,...,x_n,d_1,...,d_n | d_j x_j = x_j d_j +1> and |
---|
15 | @* D(R)[s] = D(R) tensored with K[s] over K. |
---|
16 | @* Constructively, one needs to find a left ideal I = I(F^s) in D(R), such |
---|
17 | @* that K[x_1,...,x_n,1/F]*F^s is isomorphic to D(R)/I as a D(R)-module. |
---|
18 | @* We often write just D for D(R) and D[s] for D(R)[s]. |
---|
19 | @* One is interested in the following data: |
---|
20 | @* - Ann F^s = I = I(F^s) in D(R)[s], denoted by LD in the output |
---|
21 | @* - global Bernstein polynomial in K[s], denoted by bs, |
---|
22 | @* - its minimal integer root s0, the list of all roots of bs, which are known |
---|
23 | @* to be rational, with their multiplicities, which is denoted by BS |
---|
24 | @* - Ann F^s0 = I(F^s0) in D(R), denoted by LD0 in the output |
---|
25 | @* (LD0 is a holonomic ideal in D(R)) |
---|
26 | @* - Ann^(1) F^s in D(R)[s], denoted by LD1 (logarithmic derivations) |
---|
27 | @* - an operator in D(R)[s], denoted by PS, such that the functional equality |
---|
28 | @* PS*F^(s+1) = bs*F^s holds in K[x_1,...,x_n,1/F]*F^s. |
---|
29 | |
---|
30 | @* We provide the following implementations: |
---|
31 | @* OT) the classical Ann F^s algorithm from Oaku and Takayama (Journal of |
---|
32 | @* Pure and Applied Math., 1999), |
---|
33 | @* LOT) Levandovskyy's modification of the Oaku-Takayama algorithm (ISSAC 2007) |
---|
34 | @* BM) the Ann F^s algorithm by Briancon and Maisonobe (Remarques sur |
---|
35 | @* l'ideal de Bernstein associe a des polynomes, preprint, 2002) |
---|
36 | |
---|
37 | GUIDE: |
---|
38 | @* - Ann F^s = I(F^s) = LD in D(R)[s] can be computed by Sannfs [BM, OT, LOT] |
---|
39 | @* - Ann^(1) F^s in D(R)[s] can be computed by Sannfslog |
---|
40 | @* - global Bernstein polynomial bs in K[s] can be computed by bernsteinBM |
---|
41 | @* - Ann F^s0 = I(F^s0) = LD0 in D(R) can be computed by annfs0, annfs, annfsBM, |
---|
42 | @* annfsOT, annfsLOT, annfs2, annfsRB etc. |
---|
43 | @* - all the relevant data to F^s (LD, LD0, bs, PS) are computed by operatorBM |
---|
44 | @* |
---|
45 | @* - annihilator of F^{s1} for a number s1 is computed with annfspecial |
---|
46 | @* - annihilator of F_1^s_1 * ... * F_p^s_p is computed with annfsBMI |
---|
47 | @* - computing the multiplicity of a rational number r in the Bernstein poly |
---|
48 | @* of a given ideal goes with checkRoot |
---|
49 | @* - check, whether a given univariate polynomial divides the Bernstein poly |
---|
50 | @* goes with checkFactor |
---|
51 | |
---|
52 | |
---|
53 | MAIN PROCEDURES: |
---|
54 | |
---|
55 | annfs(F[,S,eng]); compute Ann F^s0 in D and Bernstein poly for a poly F |
---|
56 | annfspecial(I, F, m, n); compute Ann F^n from Ann F^s for a poly F and a number n |
---|
57 | Sannfs(F[,S,eng]); compute Ann F^s in D[s] for a poly F |
---|
58 | Sannfslog(F[,eng]); compute Ann^(1) F^s in D[s] for a poly F |
---|
59 | bernsteinBM(F[,eng]); compute global Bernstein poly for a poly F (algorithm of Briancon-Maisonobe) |
---|
60 | operatorBM(F[,eng]); compute Ann F^s, Ann F^s0, BS and PS for a poly F (algorithm of Briancon-Maisonobe) |
---|
61 | annfsParamBM(F[,eng]); compute the generic Ann F^s (algorithm by Briancon and Maisonobe) and exceptional parametric constellations for a poly F with parametric coefficients |
---|
62 | annfsBMI(F[,eng]); compute Ann F^s and Bernstein ideal for a poly F=f1*..*fP (multivariate algorithm of Briancon-Maisonobe) |
---|
63 | checkRoot(F,a[,S,eng]); check if a given rational is a root of the global Bernstein polynomial of F and compute its multiplicity |
---|
64 | annfsBM(F[,eng]); compute Ann F^s0 in D and Bernstein poly for a poly F (algorithm of Briancon-Maisonobe) |
---|
65 | annfsLOT(F[,eng]); compute Ann F^s0 in D and Bernstein poly for a poly F (Levandovskyy modification of the Oaku-Takayama algorithm) |
---|
66 | annfsOT(F[,eng]); compute Ann F^s0 in D and Bernstein poly for a poly F (algorithm of Oaku-Takayama) |
---|
67 | SannfsBM(F[,eng]); compute Ann F^s in D[s] for a poly F (algorithm of Briancon-Maisonobe) |
---|
68 | SannfsBFCT(F[,eng]); compute Ann F^s in D[s] for a poly F (algorithm of Briancon-Maisonobe, other output ordering) |
---|
69 | SannfsLOT(F[,eng]); compute Ann F^s in D[s] for a poly F (Levandovskyy modification of the Oaku-Takayama algorithm) |
---|
70 | SannfsOT(F[,eng]); compute Ann F^s in D[s] for a poly F (algorithm of Oaku-Takayama) |
---|
71 | annfs0(I,F [,eng]); compute Ann F^s0 in D and Bernstein poly from the known Ann F^s in D[s] |
---|
72 | annfs2(I,F [,eng]); compute Ann F^s0 in D and Bernstein poly from the known Ann F^s in D[s] by using a trick of Noro |
---|
73 | annfsRB(I,F [,eng]); compute Ann F^s0 in D and Bernstein poly from the known Ann F^s in D[s] by reduceB strategy of Macaulay |
---|
74 | checkRoot1(I,F,a[,eng]); check whether a rational is a root of the global Bernstein polynomial of F from the known Ann F^s in D[s] |
---|
75 | checkRoot2(I,F,a[,eng]); check whether a rational is a root of the global Bernstein polynomial of F and compute its multiplicity from the known Ann F^s in D[s] |
---|
76 | checkFactor(I,F,q[,eng]); check whether a polynomial q in K[s] is a factor of the global Bernstein polynomial of F from the known Ann F^s in D[s] |
---|
77 | |
---|
78 | AUXILIARY PROCEDURES: |
---|
79 | |
---|
80 | arrange(p); create a poly, describing a full hyperplane arrangement |
---|
81 | reiffen(p,q); create a poly, describing a Reiffen curve |
---|
82 | isHolonomic(M); check whether a module is holonomic |
---|
83 | convloc(L); replace global orderings with local in the ringlist L |
---|
84 | minIntRoot(P,fact); minimal integer root among the roots of a maximal ideal P |
---|
85 | varnum(s); the number of the variable with the name s |
---|
86 | |
---|
87 | |
---|
88 | SEE ALSO: gmssing_lib, bfun_lib, dmodapp_lib |
---|
89 | "; |
---|
90 | |
---|
91 | LIB "matrix.lib"; // for submat |
---|
92 | LIB "nctools.lib"; |
---|
93 | LIB "elim.lib"; // for nselect |
---|
94 | LIB "qhmoduli.lib"; // for Max |
---|
95 | LIB "gkdim.lib"; |
---|
96 | LIB "gmssing.lib"; |
---|
97 | LIB "control.lib"; // for genericity |
---|
98 | LIB "dmodapp.lib"; // for e.g. engine |
---|
99 | |
---|
100 | proc testdmodlib() |
---|
101 | { |
---|
102 | /* tests all procs for consistency */ |
---|
103 | /* adding the new proc, add it here */ |
---|
104 | |
---|
105 | "MAIN PROCEDURES:"; |
---|
106 | example annfs; |
---|
107 | example Sannfs; |
---|
108 | example Sannfslog; |
---|
109 | example bernsteinBM; |
---|
110 | example operatorBM; |
---|
111 | example annfspecial; |
---|
112 | example annfsParamBM; |
---|
113 | example annfsBMI; |
---|
114 | example checkRoot; |
---|
115 | example annfs0; |
---|
116 | example annfs2; |
---|
117 | example annfsRB; |
---|
118 | example annfs2; |
---|
119 | "SECONDARY D-MOD PROCEDURES:"; |
---|
120 | example annfsBM; |
---|
121 | example annfsLOT; |
---|
122 | example annfsOT; |
---|
123 | example SannfsBM; |
---|
124 | example SannfsLOT; |
---|
125 | example SannfsOT; |
---|
126 | example SannfsBFCT; |
---|
127 | example checkRoot1; |
---|
128 | example checkRoot2; |
---|
129 | example checkFactor; |
---|
130 | } |
---|
131 | |
---|
132 | |
---|
133 | |
---|
134 | // new top-level procedures |
---|
135 | proc annfs(poly F, list #) |
---|
136 | "USAGE: annfs(f [,S,eng]); f a poly, S a string, eng an optional int |
---|
137 | RETURN: ring |
---|
138 | PURPOSE: compute the D-module structure of basering[1/f]*f^s with the algorithm given in S and with the Groebner basis engine given in 'eng' |
---|
139 | NOTE: activate the output ring with the @code{setring} command. |
---|
140 | @* The value of a string S can be |
---|
141 | @* 'bm' (default) - for the algorithm of Briancon and Maisonobe, |
---|
142 | @* 'ot' - for the algorithm of Oaku and Takayama, |
---|
143 | @* 'lot' - for the Levandovskyy's modification of the algorithm of Oaku and Takayama. |
---|
144 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
145 | @* otherwise and by default @code{slimgb} is used. |
---|
146 | @* In the output ring: |
---|
147 | @* - the ideal LD (which is a Groebner basis) is the needed D-module structure, |
---|
148 | @* - the list BS is the list of roots and multiplicities of a Bernstein polynomial of f. |
---|
149 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
150 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
151 | EXAMPLE: example annfs; shows examples |
---|
152 | " |
---|
153 | { |
---|
154 | int eng = 0; |
---|
155 | int chs = 0; // choice |
---|
156 | string algo = "bm"; |
---|
157 | string st; |
---|
158 | if ( size(#)>0 ) |
---|
159 | { |
---|
160 | if ( typeof(#[1]) == "string" ) |
---|
161 | { |
---|
162 | st = string(#[1]); |
---|
163 | if ( (st == "BM") || (st == "Bm") || (st == "bM") ||(st == "bm")) |
---|
164 | { |
---|
165 | algo = "bm"; |
---|
166 | chs = 1; |
---|
167 | } |
---|
168 | if ( (st == "OT") || (st == "Ot") || (st == "oT") || (st == "ot")) |
---|
169 | { |
---|
170 | algo = "ot"; |
---|
171 | chs = 1; |
---|
172 | } |
---|
173 | if ( (st == "LOT") || (st == "lOT") || (st == "Lot") || (st == "lot")) |
---|
174 | { |
---|
175 | algo = "lot"; |
---|
176 | chs = 1; |
---|
177 | } |
---|
178 | if (chs != 1) |
---|
179 | { |
---|
180 | // incorrect value of S |
---|
181 | print("Incorrect algorithm given, proceed with the default BM"); |
---|
182 | algo = "bm"; |
---|
183 | } |
---|
184 | // second arg |
---|
185 | if (size(#)>1) |
---|
186 | { |
---|
187 | // exists 2nd arg |
---|
188 | if ( typeof(#[2]) == "int" ) |
---|
189 | { |
---|
190 | // the case: given alg, given engine |
---|
191 | eng = int(#[2]); |
---|
192 | } |
---|
193 | else |
---|
194 | { |
---|
195 | eng = 0; |
---|
196 | } |
---|
197 | } |
---|
198 | else |
---|
199 | { |
---|
200 | // no second arg |
---|
201 | eng = 0; |
---|
202 | } |
---|
203 | } |
---|
204 | else |
---|
205 | { |
---|
206 | if ( typeof(#[1]) == "int" ) |
---|
207 | { |
---|
208 | // the case: default alg, engine |
---|
209 | eng = int(#[1]); |
---|
210 | // algo = "bm"; //is already set |
---|
211 | } |
---|
212 | else |
---|
213 | { |
---|
214 | // incorr. 1st arg |
---|
215 | algo = "bm"; |
---|
216 | } |
---|
217 | } |
---|
218 | } |
---|
219 | |
---|
220 | // size(#)=0, i.e. there is no algorithm and no engine given |
---|
221 | // eng = 0; algo = "bm"; //are already set |
---|
222 | // int ppl = printlevel-voice+2; |
---|
223 | |
---|
224 | int old_printlevel = printlevel; |
---|
225 | printlevel=printlevel+1; |
---|
226 | def save = basering; |
---|
227 | if ( algo=="ot") |
---|
228 | { |
---|
229 | def @A = annfsOT(F,eng); |
---|
230 | } |
---|
231 | else |
---|
232 | { |
---|
233 | if ( algo=="lot") |
---|
234 | { |
---|
235 | def @A = annfsLOT(F,eng); |
---|
236 | } |
---|
237 | else |
---|
238 | { |
---|
239 | // bm = default |
---|
240 | def @A = annfsBM(F,eng); |
---|
241 | } |
---|
242 | } |
---|
243 | printlevel = old_printlevel; |
---|
244 | return(@A); |
---|
245 | } |
---|
246 | example |
---|
247 | { |
---|
248 | "EXAMPLE:"; echo = 2; |
---|
249 | ring r = 0,(x,y,z),Dp; |
---|
250 | poly F = z*x^2+y^3; |
---|
251 | def A = annfs(F); // here, the default BM algorithm will be used |
---|
252 | setring A; // the Weyl algebra in (x,y,z,Dx,Dy,Dz) |
---|
253 | LD; //the annihilator of F^{-1} over A |
---|
254 | BS; // roots with multiplicities of BS polynomial |
---|
255 | } |
---|
256 | |
---|
257 | |
---|
258 | proc Sannfs(poly F, list #) |
---|
259 | "USAGE: Sannfs(f [,S,eng]); f a poly, S a string, eng an optional int |
---|
260 | RETURN: ring |
---|
261 | PURPOSE: compute the D-module structure of basering[f^s] with the algorithm given in S and with the Groebner basis engine given in eng |
---|
262 | NOTE: activate the output ring with the @code{setring} command. |
---|
263 | @* The value of a string S can be |
---|
264 | @* 'bm' (default) - for the algorithm of Briancon and Maisonobe, |
---|
265 | @* 'lot' - for the Levandovskyy's modification of the algorithm of Oaku and Takayama, |
---|
266 | @* 'ot' - for the algorithm of Oaku and Takayama. |
---|
267 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
268 | @* otherwise, and by default @code{slimgb} is used. |
---|
269 | @* In the output ring: |
---|
270 | @* - the ideal LD is the needed D-module structure. |
---|
271 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
272 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
273 | EXAMPLE: example Sannfs; shows examples |
---|
274 | " |
---|
275 | { |
---|
276 | int eng = 0; |
---|
277 | int chs = 0; // choice |
---|
278 | string algo = "bm"; |
---|
279 | string st; |
---|
280 | if ( size(#)>0 ) |
---|
281 | { |
---|
282 | if ( typeof(#[1]) == "string" ) |
---|
283 | { |
---|
284 | st = string(#[1]); |
---|
285 | if ( (st == "BM") || (st == "Bm") || (st == "bM") ||(st == "bm")) |
---|
286 | { |
---|
287 | algo = "bm"; |
---|
288 | chs = 1; |
---|
289 | } |
---|
290 | if ( (st == "OT") || (st == "Ot") || (st == "oT") || (st == "ot")) |
---|
291 | { |
---|
292 | algo = "ot"; |
---|
293 | chs = 1; |
---|
294 | } |
---|
295 | if ( (st == "LOT") || (st == "lOT") || (st == "Lot") || (st == "lot")) |
---|
296 | { |
---|
297 | algo = "lot"; |
---|
298 | chs = 1; |
---|
299 | } |
---|
300 | if (chs != 1) |
---|
301 | { |
---|
302 | // incorrect value of S |
---|
303 | print("Incorrect algorithm given, proceed with the default BM"); |
---|
304 | algo = "bm"; |
---|
305 | } |
---|
306 | // second arg |
---|
307 | if (size(#)>1) |
---|
308 | { |
---|
309 | // exists 2nd arg |
---|
310 | if ( typeof(#[2]) == "int" ) |
---|
311 | { |
---|
312 | // the case: given alg, given engine |
---|
313 | eng = int(#[2]); |
---|
314 | } |
---|
315 | else |
---|
316 | { |
---|
317 | eng = 0; |
---|
318 | } |
---|
319 | } |
---|
320 | else |
---|
321 | { |
---|
322 | // no second arg |
---|
323 | eng = 0; |
---|
324 | } |
---|
325 | } |
---|
326 | else |
---|
327 | { |
---|
328 | if ( typeof(#[1]) == "int" ) |
---|
329 | { |
---|
330 | // the case: default alg, engine |
---|
331 | eng = int(#[1]); |
---|
332 | // algo = "bm"; //is already set |
---|
333 | } |
---|
334 | else |
---|
335 | { |
---|
336 | // incorr. 1st arg |
---|
337 | algo = "bm"; |
---|
338 | } |
---|
339 | } |
---|
340 | } |
---|
341 | // size(#)=0, i.e. there is no algorithm and no engine given |
---|
342 | // eng = 0; algo = "bm"; //are already set |
---|
343 | // int ppl = printlevel-voice+2; |
---|
344 | printlevel=printlevel+1; |
---|
345 | def save = basering; |
---|
346 | if ( algo=="ot") |
---|
347 | { |
---|
348 | def @A = SannfsOT(F,eng); |
---|
349 | } |
---|
350 | else |
---|
351 | { |
---|
352 | if ( algo=="lot") |
---|
353 | { |
---|
354 | def @A = SannfsLOT(F,eng); |
---|
355 | } |
---|
356 | else |
---|
357 | { |
---|
358 | // bm = default |
---|
359 | def @A = SannfsBM(F,eng); |
---|
360 | } |
---|
361 | } |
---|
362 | printlevel=printlevel-1; |
---|
363 | return(@A); |
---|
364 | } |
---|
365 | example |
---|
366 | { |
---|
367 | "EXAMPLE:"; echo = 2; |
---|
368 | ring r = 0,(x,y,z),Dp; |
---|
369 | poly F = x^3+y^3+z^3; |
---|
370 | printlevel = 0; |
---|
371 | def A = Sannfs(F); // here, the default BM algorithm will be used |
---|
372 | setring A; |
---|
373 | LD; |
---|
374 | } |
---|
375 | |
---|
376 | proc Sannfslog (poly F, list #) |
---|
377 | "USAGE: Sannfslog(f [,eng]); f a poly, eng an optional int |
---|
378 | RETURN: ring |
---|
379 | PURPOSE: compute the D-module structure of basering[1/f]*f^s, where D is the Weyl algebra |
---|
380 | NOTE: activate this ring with the @code{setring} command. |
---|
381 | @* In the ring D[s], the ideal LD1 is generated by the elements in Ann F^s in D[s] coming from logarithmic derivations. |
---|
382 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
383 | @* otherwise, and by default @code{slimgb} is used. |
---|
384 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
385 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
386 | EXAMPLE: example Sannfslog; shows examples |
---|
387 | " |
---|
388 | { |
---|
389 | int eng = 0; |
---|
390 | if ( size(#)>0 ) |
---|
391 | { |
---|
392 | if ( typeof(#[1]) == "int" ) |
---|
393 | { |
---|
394 | eng = int(#[1]); |
---|
395 | } |
---|
396 | } |
---|
397 | int ppl = printlevel-voice+2; |
---|
398 | def save = basering; |
---|
399 | int N = nvars(basering); |
---|
400 | int Nnew = 2*N+1; |
---|
401 | int i; |
---|
402 | string s; |
---|
403 | list RL = ringlist(basering); |
---|
404 | list L, Lord; |
---|
405 | list tmp; |
---|
406 | intvec iv; |
---|
407 | L[1] = RL[1]; // char |
---|
408 | L[4] = RL[4]; // char, minpoly |
---|
409 | // check whether vars have admissible names |
---|
410 | list Name = RL[2]; |
---|
411 | for (i=1; i<=N; i++) |
---|
412 | { |
---|
413 | if (Name[i] == "s") |
---|
414 | { |
---|
415 | ERROR("Variable names should not include s"); |
---|
416 | } |
---|
417 | } |
---|
418 | // the ideal I |
---|
419 | ideal I = -F, jacob(F); |
---|
420 | dbprint(ppl,"// -1-1- starting the computation of syz(-F,_Dx(F))"); |
---|
421 | dbprint(ppl-1, I); |
---|
422 | matrix M = syz(I); |
---|
423 | M = transpose(M); // it is more usefull working with columns |
---|
424 | dbprint(ppl,"// -1-2- the module syz(-F,_Dx(F)) has been computed"); |
---|
425 | dbprint(ppl-1, M); |
---|
426 | // ------------ the ring @R ------------ |
---|
427 | // _x, _Dx, s; elim.ord for _x,_Dx. |
---|
428 | // now, create the names for new vars |
---|
429 | list DName; |
---|
430 | for (i=1; i<=N; i++) |
---|
431 | { |
---|
432 | DName[i] = "D"+Name[i]; // concat |
---|
433 | } |
---|
434 | tmp[1] = "s"; |
---|
435 | list NName; |
---|
436 | for (i=1; i<=N; i++) |
---|
437 | { |
---|
438 | NName[2*i-1] = Name[i]; |
---|
439 | NName[2*i] = DName[i]; |
---|
440 | //NName[2*i-1] = DName[i]; |
---|
441 | //NName[2*i] = Name[i]; |
---|
442 | } |
---|
443 | NName[Nnew] = tmp[1]; |
---|
444 | L[2] = NName; |
---|
445 | tmp = 0; |
---|
446 | // block ord (a(1,1),a(0,0,1,1),...,dp); |
---|
447 | //list("a",intvec(1,1)), list("a",intvec(0,0,1,1)), ... |
---|
448 | tmp[1] = "a"; // string |
---|
449 | for (i=1; i<=N; i++) |
---|
450 | { |
---|
451 | iv[2*i-1] = 1; |
---|
452 | iv[2*i] = 1; |
---|
453 | tmp[2] = iv; iv = 0; // intvec |
---|
454 | Lord[i] = tmp; |
---|
455 | } |
---|
456 | //list("dp",intvec(1,1,1,1,1,...)) |
---|
457 | s = "iv="; |
---|
458 | for (i=1; i<=Nnew; i++) |
---|
459 | { |
---|
460 | s = s+"1,"; |
---|
461 | } |
---|
462 | s[size(s)]=";"; |
---|
463 | execute(s); |
---|
464 | kill s; |
---|
465 | tmp[1] = "dp"; // string |
---|
466 | tmp[2] = iv; // intvec |
---|
467 | Lord[N+1] = tmp; |
---|
468 | //list("C",intvec(0)) |
---|
469 | tmp[1] = "C"; // string |
---|
470 | iv = 0; |
---|
471 | tmp[2] = iv; // intvec |
---|
472 | Lord[N+2] = tmp; |
---|
473 | tmp = 0; |
---|
474 | L[3] = Lord; |
---|
475 | // we are done with the list. Now add a Plural part |
---|
476 | def @R@ = ring(L); |
---|
477 | setring @R@; |
---|
478 | matrix @D[Nnew][Nnew]; |
---|
479 | for (i=1; i<=N; i++) |
---|
480 | { |
---|
481 | @D[2*i-1,2*i]=1; |
---|
482 | //@D[2*i-1,2*i]=-1; |
---|
483 | } |
---|
484 | def @R = nc_algebra(1,@D); |
---|
485 | setring @R; |
---|
486 | kill @R@; |
---|
487 | dbprint(ppl,"// -2-1- the ring @R(_x,_Dx,s) is ready"); |
---|
488 | dbprint(ppl-1, @R); |
---|
489 | matrix M = imap(save,M); |
---|
490 | // now, create the vector [-s,_Dx] |
---|
491 | vector v = [-s]; // now s is a variable |
---|
492 | for (i=1; i<=N; i++) |
---|
493 | { |
---|
494 | v = v + var(2*i)*gen(i+1); |
---|
495 | //v = v + var(2*i-1)*gen(i+1); |
---|
496 | } |
---|
497 | ideal J = ideal(M*v); |
---|
498 | // make leadcoeffs positive |
---|
499 | for (i=1; i<= ncols(J); i++) |
---|
500 | { |
---|
501 | if ( leadcoef(J[i])<0 ) |
---|
502 | { |
---|
503 | J[i] = -J[i]; |
---|
504 | } |
---|
505 | } |
---|
506 | ideal LD1 = J; |
---|
507 | kill J; |
---|
508 | export LD1; |
---|
509 | return(@R); |
---|
510 | } |
---|
511 | example |
---|
512 | { |
---|
513 | "EXAMPLE:"; echo = 2; |
---|
514 | ring r = 0,(x,y),Dp; |
---|
515 | poly F = x^4+y^5+x*y^4; |
---|
516 | printlevel = 0; |
---|
517 | def A = Sannfslog(F); |
---|
518 | setring A; |
---|
519 | LD1; |
---|
520 | } |
---|
521 | |
---|
522 | |
---|
523 | // alternative code for SannfsBM, renamed from annfsBM to ALTannfsBM |
---|
524 | // is superfluos - will not be included in the official documentation |
---|
525 | static proc ALTannfsBM (poly F, list #) |
---|
526 | "USAGE: ALTannfsBM(f [,eng]); f a poly, eng an optional int |
---|
527 | RETURN: ring |
---|
528 | PURPOSE: compute the annihilator ideal of f^s in D[s], where D is the Weyl Algebra, according to the algorithm by Briancon and Maisonobe |
---|
529 | NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
530 | @* - the ideal LD is the annihilator of f^s. |
---|
531 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
532 | @* otherwise, and by default @code{slimgb} is used. |
---|
533 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
534 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
535 | EXAMPLE: example ALTannfsBM; shows examples |
---|
536 | " |
---|
537 | { |
---|
538 | int eng = 0; |
---|
539 | if ( size(#)>0 ) |
---|
540 | { |
---|
541 | if ( typeof(#[1]) == "int" ) |
---|
542 | { |
---|
543 | eng = int(#[1]); |
---|
544 | } |
---|
545 | } |
---|
546 | // returns a list with a ring and an ideal LD in it |
---|
547 | int ppl = printlevel-voice+2; |
---|
548 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
549 | def save = basering; |
---|
550 | int N = nvars(basering); |
---|
551 | int Nnew = 2*N+2; |
---|
552 | int i,j; |
---|
553 | string s; |
---|
554 | list RL = ringlist(basering); |
---|
555 | list L, Lord; |
---|
556 | list tmp; |
---|
557 | intvec iv; |
---|
558 | L[1] = RL[1]; //char |
---|
559 | L[4] = RL[4]; //char, minpoly |
---|
560 | // check whether vars have admissible names |
---|
561 | list Name = RL[2]; |
---|
562 | list RName; |
---|
563 | RName[1] = "t"; |
---|
564 | RName[2] = "s"; |
---|
565 | for (i=1; i<=N; i++) |
---|
566 | { |
---|
567 | for(j=1; j<=size(RName); j++) |
---|
568 | { |
---|
569 | if (Name[i] == RName[j]) |
---|
570 | { |
---|
571 | ERROR("Variable names should not include t,s"); |
---|
572 | } |
---|
573 | } |
---|
574 | } |
---|
575 | // now, create the names for new vars |
---|
576 | list DName; |
---|
577 | for (i=1; i<=N; i++) |
---|
578 | { |
---|
579 | DName[i] = "D"+Name[i]; //concat |
---|
580 | } |
---|
581 | tmp[1] = "t"; |
---|
582 | tmp[2] = "s"; |
---|
583 | list NName = tmp + Name + DName; |
---|
584 | L[2] = NName; |
---|
585 | // Name, Dname will be used further |
---|
586 | kill NName; |
---|
587 | // block ord (lp(2),dp); |
---|
588 | tmp[1] = "lp"; // string |
---|
589 | iv = 1,1; |
---|
590 | tmp[2] = iv; //intvec |
---|
591 | Lord[1] = tmp; |
---|
592 | // continue with dp 1,1,1,1... |
---|
593 | tmp[1] = "dp"; // string |
---|
594 | s = "iv="; |
---|
595 | for (i=1; i<=Nnew; i++) |
---|
596 | { |
---|
597 | s = s+"1,"; |
---|
598 | } |
---|
599 | s[size(s)]= ";"; |
---|
600 | execute(s); |
---|
601 | kill s; |
---|
602 | tmp[2] = iv; |
---|
603 | Lord[2] = tmp; |
---|
604 | tmp[1] = "C"; |
---|
605 | iv = 0; |
---|
606 | tmp[2] = iv; |
---|
607 | Lord[3] = tmp; |
---|
608 | tmp = 0; |
---|
609 | L[3] = Lord; |
---|
610 | // we are done with the list |
---|
611 | def @R@ = ring(L); |
---|
612 | setring @R@; |
---|
613 | matrix @D[Nnew][Nnew]; |
---|
614 | @D[1,2]=t; |
---|
615 | for(i=1; i<=N; i++) |
---|
616 | { |
---|
617 | @D[2+i,N+2+i]=1; |
---|
618 | } |
---|
619 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
620 | // L[6] = @D; |
---|
621 | def @R = nc_algebra(1,@D); |
---|
622 | setring @R; |
---|
623 | kill @R@; |
---|
624 | dbprint(ppl,"// -1-1- the ring @R(t,s,_x,_Dx) is ready"); |
---|
625 | dbprint(ppl-1, @R); |
---|
626 | // create the ideal I |
---|
627 | poly F = imap(save,F); |
---|
628 | ideal I = t*F+s; |
---|
629 | poly p; |
---|
630 | for(i=1; i<=N; i++) |
---|
631 | { |
---|
632 | p = t; //t |
---|
633 | p = diff(F,var(2+i))*p; |
---|
634 | I = I, var(N+2+i) + p; |
---|
635 | } |
---|
636 | // -------- the ideal I is ready ---------- |
---|
637 | dbprint(ppl,"// -1-2- starting the elimination of t in @R"); |
---|
638 | dbprint(ppl-1, I); |
---|
639 | ideal J = engine(I,eng); |
---|
640 | ideal K = nselect(J,1); |
---|
641 | kill I,J; |
---|
642 | dbprint(ppl,"// -1-3- t is eliminated"); |
---|
643 | dbprint(ppl-1, K); //K is without t |
---|
644 | // create Dn[s], where Dn is the ordinary Weyl Algebra, and put the result into it, |
---|
645 | // thus creating the ring @R2 |
---|
646 | // keep: N, i,j,s, tmp, RL |
---|
647 | setring save; |
---|
648 | Nnew = 2*N+1; |
---|
649 | // list RL = ringlist(save); //is defined earlier |
---|
650 | kill Lord, tmp, iv; |
---|
651 | L = 0; |
---|
652 | list Lord, tmp; |
---|
653 | intvec iv; |
---|
654 | L[1] = RL[1]; |
---|
655 | L[4] = RL[4]; //char, minpoly |
---|
656 | // check whether vars have admissible names -> done earlier |
---|
657 | // list Name = RL[2] |
---|
658 | // DName is defined earlier |
---|
659 | tmp[1] = "s"; |
---|
660 | list NName = Name + DName + tmp; |
---|
661 | L[2] = NName; |
---|
662 | // dp ordering; |
---|
663 | string s = "iv="; |
---|
664 | for (i=1; i<=Nnew; i++) |
---|
665 | { |
---|
666 | s = s+"1,"; |
---|
667 | } |
---|
668 | s[size(s)] = ";"; |
---|
669 | execute(s); |
---|
670 | kill s; |
---|
671 | tmp = 0; |
---|
672 | tmp[1] = "dp"; //string |
---|
673 | tmp[2] = iv; //intvec |
---|
674 | Lord[1] = tmp; |
---|
675 | tmp[1] = "C"; |
---|
676 | iv = 0; |
---|
677 | tmp[2] = iv; |
---|
678 | Lord[2] = tmp; |
---|
679 | tmp = 0; |
---|
680 | L[3] = Lord; |
---|
681 | // we are done with the list |
---|
682 | // Add: Plural part |
---|
683 | def @R2@ = ring(L); |
---|
684 | setring @R2@; |
---|
685 | matrix @D[Nnew][Nnew]; |
---|
686 | for (i=1; i<=N; i++) |
---|
687 | { |
---|
688 | @D[i,N+i]=1; |
---|
689 | } |
---|
690 | def @R2 = nc_algebra(1,@D); |
---|
691 | setring @R2; |
---|
692 | kill @R2@; |
---|
693 | dbprint(ppl,"// -2-1- the ring @R2(_x,_Dx,s) is ready"); |
---|
694 | dbprint(ppl-1, @R2); |
---|
695 | ideal K = imap(@R,K); |
---|
696 | option(redSB); |
---|
697 | //dbprint(ppl,"// -2-2- the final cosmetic std"); |
---|
698 | //K = engine(K,eng); //std does the job too |
---|
699 | // total cleanup |
---|
700 | kill @R; |
---|
701 | ideal LD = K; |
---|
702 | export LD; |
---|
703 | return(@R2); |
---|
704 | } |
---|
705 | example |
---|
706 | { |
---|
707 | "EXAMPLE:"; echo = 2; |
---|
708 | ring r = 0,(x,y,z,w),Dp; |
---|
709 | poly F = x^3+y^3+z^2*w; |
---|
710 | printlevel = 0; |
---|
711 | def A = ALTannfsBM(F); |
---|
712 | setring A; |
---|
713 | LD; |
---|
714 | } |
---|
715 | |
---|
716 | proc bernsteinBM(poly F, list #) |
---|
717 | "USAGE: bernsteinBM(f [,eng]); f a poly, eng an optional int |
---|
718 | RETURN: list of roots of the Bernstein polynomial b and its multiplicies |
---|
719 | PURPOSE: compute the global Bernstein-Sato polynomial for a hypersurface, defined by f, according to the algorithm by Briancon and Maisonobe |
---|
720 | NOTE: If eng <>0, @code{std} is used for Groebner basis computations, |
---|
721 | @* otherwise, and by default @code{slimgb} is used. |
---|
722 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
723 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
724 | EXAMPLE: example bernsteinBM; shows examples |
---|
725 | " |
---|
726 | { |
---|
727 | int eng = 0; |
---|
728 | if ( size(#)>0 ) |
---|
729 | { |
---|
730 | if ( typeof(#[1]) == "int" ) |
---|
731 | { |
---|
732 | eng = int(#[1]); |
---|
733 | } |
---|
734 | } |
---|
735 | // returns a list with a ring and an ideal LD in it |
---|
736 | int ppl = printlevel-voice+2; |
---|
737 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
738 | def save = basering; |
---|
739 | int N = nvars(basering); |
---|
740 | int Nnew = 2*N+2; |
---|
741 | int i,j; |
---|
742 | string s; |
---|
743 | list RL = ringlist(basering); |
---|
744 | list L, Lord; |
---|
745 | list tmp; |
---|
746 | intvec iv; |
---|
747 | L[1] = RL[1]; //char |
---|
748 | L[4] = RL[4]; //char, minpoly |
---|
749 | // check whether vars have admissible names |
---|
750 | list Name = RL[2]; |
---|
751 | list RName; |
---|
752 | RName[1] = "t"; |
---|
753 | RName[2] = "s"; |
---|
754 | for (i=1; i<=N; i++) |
---|
755 | { |
---|
756 | for(j=1; j<=size(RName); j++) |
---|
757 | { |
---|
758 | if (Name[i] == RName[j]) |
---|
759 | { |
---|
760 | ERROR("Variable names should not include t,s"); |
---|
761 | } |
---|
762 | } |
---|
763 | } |
---|
764 | // now, create the names for new vars |
---|
765 | list DName; |
---|
766 | for (i=1; i<=N; i++) |
---|
767 | { |
---|
768 | DName[i] = "D"+Name[i]; //concat |
---|
769 | } |
---|
770 | tmp[1] = "t"; |
---|
771 | tmp[2] = "s"; |
---|
772 | list NName = tmp + Name + DName; |
---|
773 | L[2] = NName; |
---|
774 | // Name, Dname will be used further |
---|
775 | kill NName; |
---|
776 | // block ord (lp(2),dp); |
---|
777 | tmp[1] = "lp"; // string |
---|
778 | iv = 1,1; |
---|
779 | tmp[2] = iv; //intvec |
---|
780 | Lord[1] = tmp; |
---|
781 | // continue with dp 1,1,1,1... |
---|
782 | tmp[1] = "dp"; // string |
---|
783 | s = "iv="; |
---|
784 | for (i=1; i<=Nnew; i++) |
---|
785 | { |
---|
786 | s = s+"1,"; |
---|
787 | } |
---|
788 | s[size(s)]= ";"; |
---|
789 | execute(s); |
---|
790 | kill s; |
---|
791 | tmp[2] = iv; |
---|
792 | Lord[2] = tmp; |
---|
793 | tmp[1] = "C"; |
---|
794 | iv = 0; |
---|
795 | tmp[2] = iv; |
---|
796 | Lord[3] = tmp; |
---|
797 | tmp = 0; |
---|
798 | L[3] = Lord; |
---|
799 | // we are done with the list |
---|
800 | def @R@ = ring(L); |
---|
801 | setring @R@; |
---|
802 | matrix @D[Nnew][Nnew]; |
---|
803 | @D[1,2]=t; |
---|
804 | for(i=1; i<=N; i++) |
---|
805 | { |
---|
806 | @D[2+i,N+2+i]=1; |
---|
807 | } |
---|
808 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
809 | // L[6] = @D; |
---|
810 | def @R = nc_algebra(1,@D); |
---|
811 | setring @R; |
---|
812 | kill @R@; |
---|
813 | dbprint(ppl,"// -1-1- the ring @R(t,s,_x,_Dx) is ready"); |
---|
814 | dbprint(ppl-1, @R); |
---|
815 | // create the ideal I |
---|
816 | poly F = imap(save,F); |
---|
817 | ideal I = t*F+s; |
---|
818 | poly p; |
---|
819 | for(i=1; i<=N; i++) |
---|
820 | { |
---|
821 | p = t; //t |
---|
822 | p = diff(F,var(2+i))*p; |
---|
823 | I = I, var(N+2+i) + p; |
---|
824 | } |
---|
825 | // -------- the ideal I is ready ---------- |
---|
826 | dbprint(ppl,"// -1-2- starting the elimination of t in @R"); |
---|
827 | dbprint(ppl-1, I); |
---|
828 | ideal J = engine(I,eng); |
---|
829 | ideal K = nselect(J,1); |
---|
830 | kill I,J; |
---|
831 | dbprint(ppl,"// -1-3- t is eliminated"); |
---|
832 | dbprint(ppl-1, K); //K is without t |
---|
833 | // ----------- the ring @R2 ------------ |
---|
834 | // _x, _Dx,s; elim.ord for _x,_Dx. |
---|
835 | // keep: N, i,j,s, tmp, RL |
---|
836 | setring save; |
---|
837 | Nnew = 2*N+1; |
---|
838 | kill Lord, tmp, iv, RName; |
---|
839 | list Lord, tmp; |
---|
840 | intvec iv; |
---|
841 | L[1] = RL[1]; |
---|
842 | L[4] = RL[4]; //char, minpoly |
---|
843 | // check whether vars hava admissible names -> done earlier |
---|
844 | // now, create the names for new var |
---|
845 | tmp[1] = "s"; |
---|
846 | // DName is defined earlier |
---|
847 | list NName = Name + DName + tmp; |
---|
848 | L[2] = NName; |
---|
849 | tmp = 0; |
---|
850 | // block ord (dp(N),dp); |
---|
851 | string s = "iv="; |
---|
852 | for (i=1; i<=Nnew-1; i++) |
---|
853 | { |
---|
854 | s = s+"1,"; |
---|
855 | } |
---|
856 | s[size(s)]=";"; |
---|
857 | execute(s); |
---|
858 | tmp[1] = "dp"; //string |
---|
859 | tmp[2] = iv; //intvec |
---|
860 | Lord[1] = tmp; |
---|
861 | // continue with dp 1,1,1,1... |
---|
862 | tmp[1] = "dp"; //string |
---|
863 | s[size(s)] = ","; |
---|
864 | s = s+"1;"; |
---|
865 | execute(s); |
---|
866 | kill s; |
---|
867 | kill NName; |
---|
868 | tmp[2] = iv; |
---|
869 | Lord[2] = tmp; |
---|
870 | tmp[1] = "C"; |
---|
871 | iv = 0; |
---|
872 | tmp[2] = iv; |
---|
873 | Lord[3] = tmp; |
---|
874 | tmp = 0; |
---|
875 | L[3] = Lord; |
---|
876 | // we are done with the list. Now add a Plural part |
---|
877 | def @R2@ = ring(L); |
---|
878 | setring @R2@; |
---|
879 | matrix @D[Nnew][Nnew]; |
---|
880 | for (i=1; i<=N; i++) |
---|
881 | { |
---|
882 | @D[i,N+i]=1; |
---|
883 | } |
---|
884 | def @R2 = nc_algebra(1,@D); |
---|
885 | setring @R2; |
---|
886 | kill @R2@; |
---|
887 | dbprint(ppl,"// -2-1- the ring @R2(_x,_Dx,s) is ready"); |
---|
888 | dbprint(ppl-1, @R2); |
---|
889 | ideal MM = maxideal(1); |
---|
890 | MM = 0,s,MM; |
---|
891 | map R01 = @R, MM; |
---|
892 | ideal K = R01(K); |
---|
893 | kill @R, R01; |
---|
894 | poly F = imap(save,F); |
---|
895 | K = K,F; |
---|
896 | dbprint(ppl,"// -2-2- starting the elimination of _x,_Dx in @R2"); |
---|
897 | dbprint(ppl-1, K); |
---|
898 | ideal M = engine(K,eng); |
---|
899 | ideal K2 = nselect(M,1..Nnew-1); |
---|
900 | kill K,M; |
---|
901 | dbprint(ppl,"// -2-3- _x,_Dx are eliminated in @R2"); |
---|
902 | dbprint(ppl-1, K2); |
---|
903 | // the ring @R3 and the search for minimal negative int s |
---|
904 | ring @R3 = 0,s,dp; |
---|
905 | dbprint(ppl,"// -3-1- the ring @R3(s) is ready"); |
---|
906 | ideal K3 = imap(@R2,K2); |
---|
907 | kill @R2; |
---|
908 | poly p = K3[1]; |
---|
909 | dbprint(ppl,"// -3-2- factorization"); |
---|
910 | list P = factorize(p); //with constants and multiplicities |
---|
911 | ideal bs; intvec m; //the Bernstein polynomial is monic, so we are not interested in constants |
---|
912 | for (i=2; i<= size(P[1]); i++) //we delete P[1][1] and P[2][1] |
---|
913 | { |
---|
914 | bs[i-1] = P[1][i]; |
---|
915 | m[i-1] = P[2][i]; |
---|
916 | } |
---|
917 | // "--------- b-function factorizes into ---------"; P; |
---|
918 | //int sP = minIntRoot(bs,1); |
---|
919 | //dbprint(ppl,"// -3-3- minimal integer root found"); |
---|
920 | //dbprint(ppl-1, sP); |
---|
921 | // convert factors to a list of their roots and multiplicities |
---|
922 | bs = normalize(bs); |
---|
923 | bs = -subst(bs,s,0); |
---|
924 | setring save; |
---|
925 | ideal bs = imap(@R3,bs); |
---|
926 | kill @R3; |
---|
927 | list BS = bs,m; |
---|
928 | return(BS); |
---|
929 | } |
---|
930 | example |
---|
931 | { |
---|
932 | "EXAMPLE:"; echo = 2; |
---|
933 | ring r = 0,(x,y,z,w),Dp; |
---|
934 | poly F = x^3+y^3+z^2*w; |
---|
935 | printlevel = 0; |
---|
936 | bernsteinBM(F); |
---|
937 | } |
---|
938 | |
---|
939 | // some changes |
---|
940 | proc annfsBM (poly F, list #) |
---|
941 | "USAGE: annfsBM(f [,eng]); f a poly, eng an optional int |
---|
942 | RETURN: ring |
---|
943 | PURPOSE: compute the D-module structure of basering[1/f]*f^s, according |
---|
944 | to the algorithm by Briancon and Maisonobe |
---|
945 | NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
946 | @* - the ideal LD (which is a Groebner basis) is the needed D-module structure, |
---|
947 | @* which is obtained by substituting the minimal integer root of a Bernstein |
---|
948 | @* polynomial into the s-parametric ideal; |
---|
949 | @* - the list BS is the list of roots and multiplicities of a Bernstein polynomial of f. |
---|
950 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
951 | @* otherwise, and by default @code{slimgb} is used. |
---|
952 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
953 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
954 | EXAMPLE: example annfsBM; shows examples |
---|
955 | " |
---|
956 | { |
---|
957 | int eng = 0; |
---|
958 | if ( size(#)>0 ) |
---|
959 | { |
---|
960 | if ( typeof(#[1]) == "int" ) |
---|
961 | { |
---|
962 | eng = int(#[1]); |
---|
963 | } |
---|
964 | } |
---|
965 | // returns a list with a ring and an ideal LD in it |
---|
966 | int ppl = printlevel-voice+2; |
---|
967 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
968 | def save = basering; |
---|
969 | int N = nvars(basering); |
---|
970 | int Nnew = 2*N+2; |
---|
971 | int i,j; |
---|
972 | string s; |
---|
973 | list RL = ringlist(basering); |
---|
974 | list L, Lord; |
---|
975 | list tmp; |
---|
976 | intvec iv; |
---|
977 | L[1] = RL[1]; //char |
---|
978 | L[4] = RL[4]; //char, minpoly |
---|
979 | // check whether vars have admissible names |
---|
980 | list Name = RL[2]; |
---|
981 | list RName; |
---|
982 | RName[1] = "t"; |
---|
983 | RName[2] = "s"; |
---|
984 | for (i=1; i<=N; i++) |
---|
985 | { |
---|
986 | for(j=1; j<=size(RName); j++) |
---|
987 | { |
---|
988 | if (Name[i] == RName[j]) |
---|
989 | { |
---|
990 | ERROR("Variable names should not include t,s"); |
---|
991 | } |
---|
992 | } |
---|
993 | } |
---|
994 | // now, create the names for new vars |
---|
995 | list DName; |
---|
996 | for (i=1; i<=N; i++) |
---|
997 | { |
---|
998 | DName[i] = "D"+Name[i]; //concat |
---|
999 | } |
---|
1000 | tmp[1] = "t"; |
---|
1001 | tmp[2] = "s"; |
---|
1002 | list NName = tmp + Name + DName; |
---|
1003 | L[2] = NName; |
---|
1004 | // Name, Dname will be used further |
---|
1005 | kill NName; |
---|
1006 | // block ord (lp(2),dp); |
---|
1007 | tmp[1] = "lp"; // string |
---|
1008 | iv = 1,1; |
---|
1009 | tmp[2] = iv; //intvec |
---|
1010 | Lord[1] = tmp; |
---|
1011 | // continue with dp 1,1,1,1... |
---|
1012 | tmp[1] = "dp"; // string |
---|
1013 | s = "iv="; |
---|
1014 | for (i=1; i<=Nnew; i++) |
---|
1015 | { |
---|
1016 | s = s+"1,"; |
---|
1017 | } |
---|
1018 | s[size(s)]= ";"; |
---|
1019 | execute(s); |
---|
1020 | kill s; |
---|
1021 | tmp[2] = iv; |
---|
1022 | Lord[2] = tmp; |
---|
1023 | tmp[1] = "C"; |
---|
1024 | iv = 0; |
---|
1025 | tmp[2] = iv; |
---|
1026 | Lord[3] = tmp; |
---|
1027 | tmp = 0; |
---|
1028 | L[3] = Lord; |
---|
1029 | // we are done with the list |
---|
1030 | def @R@ = ring(L); |
---|
1031 | setring @R@; |
---|
1032 | matrix @D[Nnew][Nnew]; |
---|
1033 | @D[1,2]=t; |
---|
1034 | for(i=1; i<=N; i++) |
---|
1035 | { |
---|
1036 | @D[2+i,N+2+i]=1; |
---|
1037 | } |
---|
1038 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
1039 | // L[6] = @D; |
---|
1040 | def @R = nc_algebra(1,@D); |
---|
1041 | setring @R; |
---|
1042 | kill @R@; |
---|
1043 | dbprint(ppl,"// -1-1- the ring @R(t,s,_x,_Dx) is ready"); |
---|
1044 | dbprint(ppl-1, @R); |
---|
1045 | // create the ideal I |
---|
1046 | poly F = imap(save,F); |
---|
1047 | ideal I = t*F+s; |
---|
1048 | poly p; |
---|
1049 | for(i=1; i<=N; i++) |
---|
1050 | { |
---|
1051 | p = t; //t |
---|
1052 | p = diff(F,var(2+i))*p; |
---|
1053 | I = I, var(N+2+i) + p; |
---|
1054 | } |
---|
1055 | // -------- the ideal I is ready ---------- |
---|
1056 | dbprint(ppl,"// -1-2- starting the elimination of t in @R"); |
---|
1057 | dbprint(ppl-1, I); |
---|
1058 | ideal J = engine(I,eng); |
---|
1059 | ideal K = nselect(J,1); |
---|
1060 | kill I,J; |
---|
1061 | dbprint(ppl,"// -1-3- t is eliminated"); |
---|
1062 | dbprint(ppl-1, K); //K is without t |
---|
1063 | setring save; |
---|
1064 | // ----------- the ring @R2 ------------ |
---|
1065 | // _x, _Dx,s; elim.ord for _x,_Dx. |
---|
1066 | // keep: N, i,j,s, tmp, RL |
---|
1067 | Nnew = 2*N+1; |
---|
1068 | kill Lord, tmp, iv, RName; |
---|
1069 | list Lord, tmp; |
---|
1070 | intvec iv; |
---|
1071 | L[1] = RL[1]; |
---|
1072 | L[4] = RL[4]; //char, minpoly |
---|
1073 | // check whether vars hava admissible names -> done earlier |
---|
1074 | // now, create the names for new var |
---|
1075 | tmp[1] = "s"; |
---|
1076 | // DName is defined earlier |
---|
1077 | list NName = Name + DName + tmp; |
---|
1078 | L[2] = NName; |
---|
1079 | tmp = 0; |
---|
1080 | // block ord (dp(N),dp); |
---|
1081 | string s = "iv="; |
---|
1082 | for (i=1; i<=Nnew-1; i++) |
---|
1083 | { |
---|
1084 | s = s+"1,"; |
---|
1085 | } |
---|
1086 | s[size(s)]=";"; |
---|
1087 | execute(s); |
---|
1088 | tmp[1] = "dp"; //string |
---|
1089 | tmp[2] = iv; //intvec |
---|
1090 | Lord[1] = tmp; |
---|
1091 | // continue with dp 1,1,1,1... |
---|
1092 | tmp[1] = "dp"; //string |
---|
1093 | s[size(s)] = ","; |
---|
1094 | s = s+"1;"; |
---|
1095 | execute(s); |
---|
1096 | kill s; |
---|
1097 | kill NName; |
---|
1098 | tmp[2] = iv; |
---|
1099 | Lord[2] = tmp; |
---|
1100 | tmp[1] = "C"; |
---|
1101 | iv = 0; |
---|
1102 | tmp[2] = iv; |
---|
1103 | Lord[3] = tmp; |
---|
1104 | tmp = 0; |
---|
1105 | L[3] = Lord; |
---|
1106 | // we are done with the list. Now add a Plural part |
---|
1107 | def @R2@ = ring(L); |
---|
1108 | setring @R2@; |
---|
1109 | matrix @D[Nnew][Nnew]; |
---|
1110 | for (i=1; i<=N; i++) |
---|
1111 | { |
---|
1112 | @D[i,N+i]=1; |
---|
1113 | } |
---|
1114 | def @R2 = nc_algebra(1,@D); |
---|
1115 | setring @R2; |
---|
1116 | kill @R2@; |
---|
1117 | dbprint(ppl,"// -2-1- the ring @R2(_x,_Dx,s) is ready"); |
---|
1118 | dbprint(ppl-1, @R2); |
---|
1119 | ideal MM = maxideal(1); |
---|
1120 | MM = 0,s,MM; |
---|
1121 | map R01 = @R, MM; |
---|
1122 | ideal K = R01(K); |
---|
1123 | poly F = imap(save,F); |
---|
1124 | K = K,F; |
---|
1125 | dbprint(ppl,"// -2-2- starting the elimination of _x,_Dx in @R2"); |
---|
1126 | dbprint(ppl-1, K); |
---|
1127 | ideal M = engine(K,eng); |
---|
1128 | ideal K2 = nselect(M,1..Nnew-1); |
---|
1129 | kill K,M; |
---|
1130 | dbprint(ppl,"// -2-3- _x,_Dx are eliminated in @R2"); |
---|
1131 | dbprint(ppl-1, K2); |
---|
1132 | // the ring @R3 and the search for minimal negative int s |
---|
1133 | ring @R3 = 0,s,dp; |
---|
1134 | dbprint(ppl,"// -3-1- the ring @R3(s) is ready"); |
---|
1135 | ideal K3 = imap(@R2,K2); |
---|
1136 | poly p = K3[1]; |
---|
1137 | dbprint(ppl,"// -3-2- factorization"); |
---|
1138 | list P = factorize(p); //with constants and multiplicities |
---|
1139 | ideal bs; intvec m; //the Bernstein polynomial is monic, so we are not interested in constants |
---|
1140 | for (i=2; i<= size(P[1]); i++) //we ignore P[1][1] (constant) and P[2][1] (its mult.) |
---|
1141 | { |
---|
1142 | bs[i-1] = P[1][i]; |
---|
1143 | m[i-1] = P[2][i]; |
---|
1144 | } |
---|
1145 | // "--------- b-function factorizes into ---------"; P; |
---|
1146 | int sP = minIntRoot(bs,1); |
---|
1147 | dbprint(ppl,"// -3-3- minimal integer root found"); |
---|
1148 | dbprint(ppl-1, sP); |
---|
1149 | // convert factors to a list of their roots |
---|
1150 | bs = normalize(bs); |
---|
1151 | bs = -subst(bs,s,0); |
---|
1152 | list BS = bs,m; |
---|
1153 | //TODO: sort BS! |
---|
1154 | // --------- substitute s found in the ideal --------- |
---|
1155 | // --------- going back to @R and substitute --------- |
---|
1156 | setring @R; |
---|
1157 | ideal K2 = subst(K,s,sP); |
---|
1158 | kill K; |
---|
1159 | // create the ordinary Weyl algebra and put the result into it, |
---|
1160 | // thus creating the ring @R4 |
---|
1161 | // keep: N, i,j,s, tmp, RL |
---|
1162 | setring save; |
---|
1163 | Nnew = 2*N; |
---|
1164 | // list RL = ringlist(save); //is defined earlier |
---|
1165 | kill Lord, tmp, iv; |
---|
1166 | L = 0; |
---|
1167 | list Lord, tmp; |
---|
1168 | intvec iv; |
---|
1169 | L[1] = RL[1]; |
---|
1170 | L[4] = RL[4]; //char, minpoly |
---|
1171 | // check whether vars have admissible names -> done earlier |
---|
1172 | // list Name = RL[2]M |
---|
1173 | // DName is defined earlier |
---|
1174 | list NName = Name + DName; |
---|
1175 | L[2] = NName; |
---|
1176 | // dp ordering; |
---|
1177 | string s = "iv="; |
---|
1178 | for (i=1; i<=Nnew; i++) |
---|
1179 | { |
---|
1180 | s = s+"1,"; |
---|
1181 | } |
---|
1182 | s[size(s)] = ";"; |
---|
1183 | execute(s); |
---|
1184 | kill s; |
---|
1185 | tmp = 0; |
---|
1186 | tmp[1] = "dp"; //string |
---|
1187 | tmp[2] = iv; //intvec |
---|
1188 | Lord[1] = tmp; |
---|
1189 | tmp[1] = "C"; |
---|
1190 | iv = 0; |
---|
1191 | tmp[2] = iv; |
---|
1192 | Lord[2] = tmp; |
---|
1193 | tmp = 0; |
---|
1194 | L[3] = Lord; |
---|
1195 | // we are done with the list |
---|
1196 | // Add: Plural part |
---|
1197 | def @R4@ = ring(L); |
---|
1198 | setring @R4@; |
---|
1199 | matrix @D[Nnew][Nnew]; |
---|
1200 | for (i=1; i<=N; i++) |
---|
1201 | { |
---|
1202 | @D[i,N+i]=1; |
---|
1203 | } |
---|
1204 | def @R4 = nc_algebra(1,@D); |
---|
1205 | setring @R4; |
---|
1206 | kill @R4@; |
---|
1207 | dbprint(ppl,"// -4-1- the ring @R4(_x,_Dx) is ready"); |
---|
1208 | dbprint(ppl-1, @R4); |
---|
1209 | ideal K4 = imap(@R,K2); |
---|
1210 | option(redSB); |
---|
1211 | dbprint(ppl,"// -4-2- the final cosmetic std"); |
---|
1212 | K4 = engine(K4,eng); //std does the job too |
---|
1213 | // total cleanup |
---|
1214 | kill @R; |
---|
1215 | kill @R2; |
---|
1216 | list BS = imap(@R3,BS); |
---|
1217 | export BS; |
---|
1218 | kill @R3; |
---|
1219 | ideal LD = K4; |
---|
1220 | export LD; |
---|
1221 | return(@R4); |
---|
1222 | } |
---|
1223 | example |
---|
1224 | { |
---|
1225 | "EXAMPLE:"; echo = 2; |
---|
1226 | ring r = 0,(x,y,z),Dp; |
---|
1227 | poly F = z*x^2+y^3; |
---|
1228 | printlevel = 0; |
---|
1229 | def A = annfsBM(F); |
---|
1230 | setring A; |
---|
1231 | LD; |
---|
1232 | BS; |
---|
1233 | } |
---|
1234 | |
---|
1235 | |
---|
1236 | // replacing s with -s-1 => data is shorter |
---|
1237 | // analogue of annfs0 |
---|
1238 | proc annfs2(ideal I, poly F, list #) |
---|
1239 | "USAGE: annfs2(I, F [,eng]); I an ideal, F a poly, eng an optional int |
---|
1240 | RETURN: ring |
---|
1241 | PURPOSE: compute the annihilator ideal of f^s in the Weyl Algebra, based on the |
---|
1242 | output of Sannfs-like procedure |
---|
1243 | NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
1244 | @* - the ideal LD (which is a Groebner basis) is the annihilator of f^s, |
---|
1245 | @* - the list BS contains the roots with multiplicities of a Bernstein polynomial of f. |
---|
1246 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
1247 | @* otherwise and by default @code{slimgb} is used. |
---|
1248 | @* annfs2 uses the shorter form of expressions in the variable s (the idea of Noro). |
---|
1249 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
1250 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
1251 | EXAMPLE: example annfs2; shows examples |
---|
1252 | " |
---|
1253 | { |
---|
1254 | int eng = 0; |
---|
1255 | if ( size(#)>0 ) |
---|
1256 | { |
---|
1257 | if ( typeof(#[1]) == "int" ) |
---|
1258 | { |
---|
1259 | eng = int(#[1]); |
---|
1260 | } |
---|
1261 | } |
---|
1262 | def @R2 = basering; |
---|
1263 | // we're in D_n[s], where the elim ord for s is set |
---|
1264 | ideal J = NF(I,std(F)); |
---|
1265 | // make leadcoeffs positive |
---|
1266 | int i; |
---|
1267 | J = subst(J,s,-s-1); |
---|
1268 | for (i=1; i<= ncols(J); i++) |
---|
1269 | { |
---|
1270 | if (leadcoef(J[i]) <0 ) |
---|
1271 | { |
---|
1272 | J[i] = -J[i]; |
---|
1273 | } |
---|
1274 | } |
---|
1275 | J = J,F; |
---|
1276 | ideal M = engine(J,eng); |
---|
1277 | int Nnew = nvars(@R2); |
---|
1278 | ideal K2 = nselect(M,1..Nnew-1); |
---|
1279 | int ppl = printlevel-voice+2; |
---|
1280 | dbprint(ppl,"// -1-1- _x,_Dx are eliminated in basering"); |
---|
1281 | dbprint(ppl-1, K2); |
---|
1282 | // the ring @R3 and the search for minimal negative int s |
---|
1283 | ring @R3 = 0,s,dp; |
---|
1284 | dbprint(ppl,"// -2-1- the ring @R3 i.e. K[s] is ready"); |
---|
1285 | ideal K3 = imap(@R2,K2); |
---|
1286 | poly p = K3[1]; |
---|
1287 | dbprint(ppl,"// -2-2- factorization"); |
---|
1288 | // ideal P = factorize(p,1); //without constants and multiplicities |
---|
1289 | // "--------- b-function factorizes into ---------"; P; |
---|
1290 | // convert factors to the list of their roots with mults |
---|
1291 | // assume all factors are linear |
---|
1292 | // ideal BS = normalize(P); |
---|
1293 | // BS = subst(BS,s,0); |
---|
1294 | // BS = -BS; |
---|
1295 | list P = factorize(p); //with constants and multiplicities |
---|
1296 | ideal bs; intvec m; //the Bernstein polynomial is monic, so we are not interested in constants |
---|
1297 | for (i=2; i<= size(P[1]); i++) //we delete P[1][1] and P[2][1] |
---|
1298 | { |
---|
1299 | bs[i-1] = P[1][i]; bs[i-1] = subst(bs[i-1],s,-s-1); |
---|
1300 | m[i-1] = P[2][i]; |
---|
1301 | } |
---|
1302 | int sP = minIntRoot(bs,1); |
---|
1303 | bs = normalize(bs); |
---|
1304 | bs = -subst(bs,s,0); |
---|
1305 | dbprint(ppl,"// -2-3- minimal integer root found"); |
---|
1306 | dbprint(ppl-1, sP); |
---|
1307 | //TODO: sort BS! |
---|
1308 | // --------- substitute s found in the ideal --------- |
---|
1309 | // --------- going back to @R and substitute --------- |
---|
1310 | setring @R2; |
---|
1311 | K2 = subst(I,s,sP); |
---|
1312 | // create the ordinary Weyl algebra and put the result into it, |
---|
1313 | // thus creating the ring @R5 |
---|
1314 | // keep: N, i,j,s, tmp, RL |
---|
1315 | Nnew = Nnew - 1; // former 2*N; |
---|
1316 | // list RL = ringlist(save); // is defined earlier |
---|
1317 | // kill Lord, tmp, iv; |
---|
1318 | list L = 0; |
---|
1319 | list Lord, tmp; |
---|
1320 | intvec iv; |
---|
1321 | list RL = ringlist(basering); |
---|
1322 | L[1] = RL[1]; |
---|
1323 | L[4] = RL[4]; //char, minpoly |
---|
1324 | // check whether vars have admissible names -> done earlier |
---|
1325 | // list Name = RL[2]M |
---|
1326 | // DName is defined earlier |
---|
1327 | list NName; // = RL[2]; // skip the last var 's' |
---|
1328 | for (i=1; i<=Nnew; i++) |
---|
1329 | { |
---|
1330 | NName[i] = RL[2][i]; |
---|
1331 | } |
---|
1332 | L[2] = NName; |
---|
1333 | // dp ordering; |
---|
1334 | string s = "iv="; |
---|
1335 | for (i=1; i<=Nnew; i++) |
---|
1336 | { |
---|
1337 | s = s+"1,"; |
---|
1338 | } |
---|
1339 | s[size(s)] = ";"; |
---|
1340 | execute(s); |
---|
1341 | tmp = 0; |
---|
1342 | tmp[1] = "dp"; // string |
---|
1343 | tmp[2] = iv; // intvec |
---|
1344 | Lord[1] = tmp; |
---|
1345 | kill s; |
---|
1346 | tmp[1] = "C"; |
---|
1347 | iv = 0; |
---|
1348 | tmp[2] = iv; |
---|
1349 | Lord[2] = tmp; |
---|
1350 | tmp = 0; |
---|
1351 | L[3] = Lord; |
---|
1352 | // we are done with the list |
---|
1353 | // Add: Plural part |
---|
1354 | def @R4@ = ring(L); |
---|
1355 | setring @R4@; |
---|
1356 | int N = Nnew/2; |
---|
1357 | matrix @D[Nnew][Nnew]; |
---|
1358 | for (i=1; i<=N; i++) |
---|
1359 | { |
---|
1360 | @D[i,N+i]=1; |
---|
1361 | } |
---|
1362 | def @R4 = nc_algebra(1,@D); |
---|
1363 | setring @R4; |
---|
1364 | kill @R4@; |
---|
1365 | dbprint(ppl,"// -3-1- the ring @R4 is ready"); |
---|
1366 | dbprint(ppl-1, @R4); |
---|
1367 | ideal K4 = imap(@R2,K2); |
---|
1368 | option(redSB); |
---|
1369 | dbprint(ppl,"// -3-2- the final cosmetic std"); |
---|
1370 | K4 = engine(K4,eng); // std does the job too |
---|
1371 | // total cleanup |
---|
1372 | ideal bs = imap(@R3,bs); |
---|
1373 | kill @R3; |
---|
1374 | list BS = bs,m; |
---|
1375 | export BS; |
---|
1376 | ideal LD = K4; |
---|
1377 | export LD; |
---|
1378 | return(@R4); |
---|
1379 | } |
---|
1380 | example |
---|
1381 | { "EXAMPLE:"; echo = 2; |
---|
1382 | ring r = 0,(x,y,z),Dp; |
---|
1383 | poly F = x^3+y^3+z^3; |
---|
1384 | printlevel = 0; |
---|
1385 | def A = SannfsBM(F); |
---|
1386 | setring A; |
---|
1387 | LD; |
---|
1388 | poly F = imap(r,F); |
---|
1389 | def B = annfs2(LD,F); |
---|
1390 | setring B; |
---|
1391 | LD; |
---|
1392 | BS; |
---|
1393 | } |
---|
1394 | |
---|
1395 | // try to replace s with -s-1 => data is shorter as in annfs2 |
---|
1396 | // and use Macaulay's reduceB strategy, that is add |
---|
1397 | // not F but <F,dF/dx1,...,dF/dxN>; the resulting B-function |
---|
1398 | // has to be multiplied with (s+1) at the very end |
---|
1399 | proc annfsRB(ideal I, poly F, list #) |
---|
1400 | "USAGE: annfsRB(I, F [,eng]); I an ideal, F a poly, eng an optional int |
---|
1401 | RETURN: ring |
---|
1402 | PURPOSE: compute the annihilator ideal of f^s in the Weyl Algebra, based on the |
---|
1403 | output of Sannfs like procedure |
---|
1404 | NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
1405 | @* - the ideal LD (which is a Groebner basis) is the annihilator of f^s, |
---|
1406 | @* - the list BS contains the roots with multiplicities of a Bernstein polynomial of f. |
---|
1407 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
1408 | @* otherwise and by default @code{slimgb} is used. |
---|
1409 | @* This procedure follows the 'reduceB' strategy, used in Macaulay2. |
---|
1410 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
1411 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
1412 | EXAMPLE: example annfsRB; shows examples |
---|
1413 | " |
---|
1414 | { |
---|
1415 | int eng = 0; |
---|
1416 | if ( size(#)>0 ) |
---|
1417 | { |
---|
1418 | if ( typeof(#[1]) == "int" ) |
---|
1419 | { |
---|
1420 | eng = int(#[1]); |
---|
1421 | } |
---|
1422 | } |
---|
1423 | def @R2 = basering; |
---|
1424 | int ppl = printlevel-voice+2; |
---|
1425 | // we're in D_n[s], where the elim ord for s is set |
---|
1426 | // switch to comm. ring in X's and compute the GB of Tjurina ideal |
---|
1427 | dbprint(ppl,"// -1-0- creating K[x] and Tjurina ideal"); |
---|
1428 | list nL = ringlist(@R2); |
---|
1429 | list temp,t2; |
---|
1430 | temp[1] = nL[1]; |
---|
1431 | temp[4] = nL[4]; |
---|
1432 | int @n = int((nvars(@R2)-1)/2); // # of x's |
---|
1433 | int i; |
---|
1434 | for (i=1; i<=@n; i++) |
---|
1435 | { |
---|
1436 | t2[i] = nL[2][i]; |
---|
1437 | } |
---|
1438 | temp[2] = t2; |
---|
1439 | t2 = 0; |
---|
1440 | t2[1] = nL[3][1]; // more weights than vars? |
---|
1441 | t2[2] = nL[3][3]; |
---|
1442 | temp[3] = t2; |
---|
1443 | def @R22 = ring(temp); |
---|
1444 | setring @R22; |
---|
1445 | poly F = imap(@R2,F); |
---|
1446 | ideal J = F; |
---|
1447 | for (i=1; i<=@n; i++) |
---|
1448 | { |
---|
1449 | J = J, diff(F,var(i)); |
---|
1450 | } |
---|
1451 | J = engine(J,eng); |
---|
1452 | dbprint(ppl,"// -1-1- finished computing the GB of Tjurina ideal"); |
---|
1453 | dbprint(ppl-1, J); |
---|
1454 | setring @R2; |
---|
1455 | ideal JF = imap(@R22,J); |
---|
1456 | kill @R22; |
---|
1457 | attrib(JF,"isSB",1); // embedded comm ring is used |
---|
1458 | ideal J = NF(I,JF); |
---|
1459 | dbprint(ppl,"// -1-2- finished computing the NF of I wrt Tjurina ideal"); |
---|
1460 | dbprint(ppl-1, J2); |
---|
1461 | // make leadcoeffs positive |
---|
1462 | J = subst(J,s,-s-1); |
---|
1463 | for (i=1; i<= ncols(J); i++) |
---|
1464 | { |
---|
1465 | if (leadcoef(J[i]) <0 ) |
---|
1466 | { |
---|
1467 | J[i] = -J[i]; |
---|
1468 | } |
---|
1469 | } |
---|
1470 | J = J,JF; |
---|
1471 | ideal M = engine(J,eng); |
---|
1472 | int Nnew = nvars(@R2); |
---|
1473 | ideal K2 = nselect(M,1..Nnew-1); |
---|
1474 | dbprint(ppl,"// -2-0- _x,_Dx are eliminated in basering"); |
---|
1475 | dbprint(ppl-1, K2); |
---|
1476 | // the ring @R3 and the search for minimal negative int s |
---|
1477 | ring @R3 = 0,s,dp; |
---|
1478 | dbprint(ppl,"// -2-1- the ring @R3 i.e. K[s] is ready"); |
---|
1479 | ideal K3 = imap(@R2,K2); |
---|
1480 | poly p = K3[1]; |
---|
1481 | p = s*p; // mult with the lost (s+1) factor |
---|
1482 | dbprint(ppl,"// -2-2- factorization"); |
---|
1483 | // ideal P = factorize(p,1); //without constants and multiplicities |
---|
1484 | // "--------- b-function factorizes into ---------"; P; |
---|
1485 | // convert factors to the list of their roots with mults |
---|
1486 | // assume all factors are linear |
---|
1487 | // ideal BS = normalize(P); |
---|
1488 | // BS = subst(BS,s,0); |
---|
1489 | // BS = -BS; |
---|
1490 | list P = factorize(p); //with constants and multiplicities |
---|
1491 | ideal bs; intvec m; //the Bernstein polynomial is monic, so we are not interested in constants |
---|
1492 | for (i=2; i<= size(P[1]); i++) //we delete P[1][1] and P[2][1] |
---|
1493 | { |
---|
1494 | bs[i-1] = P[1][i]; bs[i-1] = subst(bs[i-1],s,-s-1); |
---|
1495 | m[i-1] = P[2][i]; |
---|
1496 | } |
---|
1497 | int sP = minIntRoot(bs,1); |
---|
1498 | bs = normalize(bs); |
---|
1499 | bs = -subst(bs,s,0); |
---|
1500 | dbprint(ppl,"// -2-3- minimal integer root found"); |
---|
1501 | dbprint(ppl-1, sP); |
---|
1502 | //TODO: sort BS! |
---|
1503 | // --------- substitute s found in the ideal --------- |
---|
1504 | // --------- going back to @R and substitute --------- |
---|
1505 | setring @R2; |
---|
1506 | K2 = subst(I,s,sP); |
---|
1507 | // create the ordinary Weyl algebra and put the result into it, |
---|
1508 | // thus creating the ring @R5 |
---|
1509 | // keep: N, i,j,s, tmp, RL |
---|
1510 | Nnew = Nnew - 1; // former 2*N; |
---|
1511 | // list RL = ringlist(save); // is defined earlier |
---|
1512 | // kill Lord, tmp, iv; |
---|
1513 | list L = 0; |
---|
1514 | list Lord, tmp; |
---|
1515 | intvec iv; |
---|
1516 | list RL = ringlist(basering); |
---|
1517 | L[1] = RL[1]; |
---|
1518 | L[4] = RL[4]; //char, minpoly |
---|
1519 | // check whether vars have admissible names -> done earlier |
---|
1520 | // list Name = RL[2]M |
---|
1521 | // DName is defined earlier |
---|
1522 | list NName; // = RL[2]; // skip the last var 's' |
---|
1523 | for (i=1; i<=Nnew; i++) |
---|
1524 | { |
---|
1525 | NName[i] = RL[2][i]; |
---|
1526 | } |
---|
1527 | L[2] = NName; |
---|
1528 | // dp ordering; |
---|
1529 | string s = "iv="; |
---|
1530 | for (i=1; i<=Nnew; i++) |
---|
1531 | { |
---|
1532 | s = s+"1,"; |
---|
1533 | } |
---|
1534 | s[size(s)] = ";"; |
---|
1535 | execute(s); |
---|
1536 | tmp = 0; |
---|
1537 | tmp[1] = "dp"; // string |
---|
1538 | tmp[2] = iv; // intvec |
---|
1539 | Lord[1] = tmp; |
---|
1540 | kill s; |
---|
1541 | tmp[1] = "C"; |
---|
1542 | iv = 0; |
---|
1543 | tmp[2] = iv; |
---|
1544 | Lord[2] = tmp; |
---|
1545 | tmp = 0; |
---|
1546 | L[3] = Lord; |
---|
1547 | // we are done with the list |
---|
1548 | // Add: Plural part |
---|
1549 | def @R4@ = ring(L); |
---|
1550 | setring @R4@; |
---|
1551 | int N = Nnew/2; |
---|
1552 | matrix @D[Nnew][Nnew]; |
---|
1553 | for (i=1; i<=N; i++) |
---|
1554 | { |
---|
1555 | @D[i,N+i]=1; |
---|
1556 | } |
---|
1557 | def @R4 = nc_algebra(1,@D); |
---|
1558 | setring @R4; |
---|
1559 | kill @R4@; |
---|
1560 | dbprint(ppl,"// -3-1- the ring @R4 is ready"); |
---|
1561 | dbprint(ppl-1, @R4); |
---|
1562 | ideal K4 = imap(@R2,K2); |
---|
1563 | option(redSB); |
---|
1564 | dbprint(ppl,"// -3-2- the final cosmetic std"); |
---|
1565 | K4 = engine(K4,eng); // std does the job too |
---|
1566 | // total cleanup |
---|
1567 | ideal bs = imap(@R3,bs); |
---|
1568 | kill @R3; |
---|
1569 | list BS = bs,m; |
---|
1570 | export BS; |
---|
1571 | ideal LD = K4; |
---|
1572 | export LD; |
---|
1573 | return(@R4); |
---|
1574 | } |
---|
1575 | example |
---|
1576 | { "EXAMPLE:"; echo = 2; |
---|
1577 | ring r = 0,(x,y,z),Dp; |
---|
1578 | poly F = x^3+y^3+z^3; |
---|
1579 | printlevel = 0; |
---|
1580 | def A = SannfsBM(F); setring A; |
---|
1581 | LD; // s-parametric ahhinilator |
---|
1582 | poly F = imap(r,F); |
---|
1583 | def B = annfsRB(LD,F); setring B; |
---|
1584 | LD; |
---|
1585 | BS; |
---|
1586 | } |
---|
1587 | |
---|
1588 | proc operatorBM(poly F, list #) |
---|
1589 | "USAGE: operatorBM(f [,eng]); f a poly, eng an optional int |
---|
1590 | RETURN: ring |
---|
1591 | PURPOSE: compute the B-operator and other relevant data for Ann F^s, according to the algorithm by Briancon and Maisonobe |
---|
1592 | NOTE: activate this ring with the @code{setring} command. In this ring D[s] |
---|
1593 | @* - the polynomial F is the same as the input, |
---|
1594 | @* - the ideal LD is the annihilator of f^s in Dn[s], |
---|
1595 | @* - the ideal LD0 is the needed D-mod structure, where LD0 = LD|s=s0, |
---|
1596 | @* - the polynomial bs is the global Bernstein polynomial of f in the variable s, |
---|
1597 | @* - the list BS contains all the roots with multiplicities of the global Bernstein polynomial of f, |
---|
1598 | @* - the polynomial PS is an operator in Dn[s] such that PS*f^(s+1) = bs*f^s. |
---|
1599 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
1600 | @* otherwise and by default @code{slimgb} is used. |
---|
1601 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
1602 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
1603 | EXAMPLE: example operatorBM; shows examples |
---|
1604 | " |
---|
1605 | { |
---|
1606 | int eng = 0; |
---|
1607 | if ( size(#)>0 ) |
---|
1608 | { |
---|
1609 | if ( typeof(#[1]) == "int" ) |
---|
1610 | { |
---|
1611 | eng = int(#[1]); |
---|
1612 | } |
---|
1613 | } |
---|
1614 | // returns a list with a ring and an ideal LD in it |
---|
1615 | int ppl = printlevel-voice+2; |
---|
1616 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
1617 | def save = basering; |
---|
1618 | int N = nvars(basering); |
---|
1619 | int Nnew = 2*N+2; |
---|
1620 | int i,j; |
---|
1621 | string s; |
---|
1622 | list RL = ringlist(basering); |
---|
1623 | list L, Lord; |
---|
1624 | list tmp; |
---|
1625 | intvec iv; |
---|
1626 | L[1] = RL[1]; //char |
---|
1627 | L[4] = RL[4]; //char, minpoly |
---|
1628 | // check whether vars have admissible names |
---|
1629 | list Name = RL[2]; |
---|
1630 | list RName; |
---|
1631 | RName[1] = "t"; |
---|
1632 | RName[2] = "s"; |
---|
1633 | for (i=1; i<=N; i++) |
---|
1634 | { |
---|
1635 | for(j=1; j<=size(RName); j++) |
---|
1636 | { |
---|
1637 | if (Name[i] == RName[j]) |
---|
1638 | { |
---|
1639 | ERROR("Variable names should not include t,s"); |
---|
1640 | } |
---|
1641 | } |
---|
1642 | } |
---|
1643 | // now, create the names for new vars |
---|
1644 | list DName; |
---|
1645 | for (i=1; i<=N; i++) |
---|
1646 | { |
---|
1647 | DName[i] = "D"+Name[i]; //concat |
---|
1648 | } |
---|
1649 | tmp[1] = "t"; |
---|
1650 | tmp[2] = "s"; |
---|
1651 | list NName = tmp + Name + DName; |
---|
1652 | L[2] = NName; |
---|
1653 | // Name, Dname will be used further |
---|
1654 | kill NName; |
---|
1655 | // block ord (lp(2),dp); |
---|
1656 | tmp[1] = "lp"; // string |
---|
1657 | iv = 1,1; |
---|
1658 | tmp[2] = iv; //intvec |
---|
1659 | Lord[1] = tmp; |
---|
1660 | // continue with dp 1,1,1,1... |
---|
1661 | tmp[1] = "dp"; // string |
---|
1662 | s = "iv="; |
---|
1663 | for (i=1; i<=Nnew; i++) |
---|
1664 | { |
---|
1665 | s = s+"1,"; |
---|
1666 | } |
---|
1667 | s[size(s)]= ";"; |
---|
1668 | execute(s); |
---|
1669 | kill s; |
---|
1670 | tmp[2] = iv; |
---|
1671 | Lord[2] = tmp; |
---|
1672 | tmp[1] = "C"; |
---|
1673 | iv = 0; |
---|
1674 | tmp[2] = iv; |
---|
1675 | Lord[3] = tmp; |
---|
1676 | tmp = 0; |
---|
1677 | L[3] = Lord; |
---|
1678 | // we are done with the list |
---|
1679 | def @R@ = ring(L); |
---|
1680 | setring @R@; |
---|
1681 | matrix @D[Nnew][Nnew]; |
---|
1682 | @D[1,2]=t; |
---|
1683 | for(i=1; i<=N; i++) |
---|
1684 | { |
---|
1685 | @D[2+i,N+2+i]=1; |
---|
1686 | } |
---|
1687 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
1688 | // L[6] = @D; |
---|
1689 | def @R = nc_algebra(1,@D); |
---|
1690 | setring @R; |
---|
1691 | kill @R@; |
---|
1692 | dbprint(ppl,"// -1-1- the ring @R(t,s,_x,_Dx) is ready"); |
---|
1693 | dbprint(ppl-1, @R); |
---|
1694 | // create the ideal I |
---|
1695 | poly F = imap(save,F); |
---|
1696 | ideal I = t*F+s; |
---|
1697 | poly p; |
---|
1698 | for(i=1; i<=N; i++) |
---|
1699 | { |
---|
1700 | p = t; //t |
---|
1701 | p = diff(F,var(2+i))*p; |
---|
1702 | I = I, var(N+2+i) + p; |
---|
1703 | } |
---|
1704 | // -------- the ideal I is ready ---------- |
---|
1705 | dbprint(ppl,"// -1-2- starting the elimination of t in @R"); |
---|
1706 | dbprint(ppl-1, I); |
---|
1707 | ideal J = engine(I,eng); |
---|
1708 | ideal K = nselect(J,1); |
---|
1709 | kill I,J; |
---|
1710 | dbprint(ppl,"// -1-3- t is eliminated"); |
---|
1711 | dbprint(ppl-1, K); //K is without t |
---|
1712 | setring save; |
---|
1713 | // ----------- the ring @R2 ------------ |
---|
1714 | // _x, _Dx,s; elim.ord for _x,_Dx. |
---|
1715 | // keep: N, i,j,s, tmp, RL |
---|
1716 | Nnew = 2*N+1; |
---|
1717 | kill Lord, tmp, iv, RName; |
---|
1718 | list Lord, tmp; |
---|
1719 | intvec iv; |
---|
1720 | L[1] = RL[1]; |
---|
1721 | L[4] = RL[4]; //char, minpoly |
---|
1722 | // check whether vars hava admissible names -> done earlier |
---|
1723 | // now, create the names for new var |
---|
1724 | tmp[1] = "s"; |
---|
1725 | // DName is defined earlier |
---|
1726 | list NName = Name + DName + tmp; |
---|
1727 | L[2] = NName; |
---|
1728 | tmp = 0; |
---|
1729 | // block ord (dp(N),dp); |
---|
1730 | string s = "iv="; |
---|
1731 | for (i=1; i<=Nnew-1; i++) |
---|
1732 | { |
---|
1733 | s = s+"1,"; |
---|
1734 | } |
---|
1735 | s[size(s)]=";"; |
---|
1736 | execute(s); |
---|
1737 | tmp[1] = "dp"; //string |
---|
1738 | tmp[2] = iv; //intvec |
---|
1739 | Lord[1] = tmp; |
---|
1740 | // continue with dp 1,1,1,1... |
---|
1741 | tmp[1] = "dp"; //string |
---|
1742 | s[size(s)] = ","; |
---|
1743 | s = s+"1;"; |
---|
1744 | execute(s); |
---|
1745 | kill s; |
---|
1746 | kill NName; |
---|
1747 | tmp[2] = iv; |
---|
1748 | Lord[2] = tmp; |
---|
1749 | tmp[1] = "C"; |
---|
1750 | iv = 0; |
---|
1751 | tmp[2] = iv; |
---|
1752 | Lord[3] = tmp; |
---|
1753 | tmp = 0; |
---|
1754 | L[3] = Lord; |
---|
1755 | // we are done with the list. Now add a Plural part |
---|
1756 | def @R2@ = ring(L); |
---|
1757 | setring @R2@; |
---|
1758 | matrix @D[Nnew][Nnew]; |
---|
1759 | for (i=1; i<=N; i++) |
---|
1760 | { |
---|
1761 | @D[i,N+i]=1; |
---|
1762 | } |
---|
1763 | def @R2 = nc_algebra(1,@D); |
---|
1764 | setring @R2; |
---|
1765 | kill @R2@; |
---|
1766 | dbprint(ppl,"// -2-1- the ring @R2(_x,_Dx,s) is ready"); |
---|
1767 | dbprint(ppl-1, @R2); |
---|
1768 | ideal MM = maxideal(1); |
---|
1769 | MM = 0,s,MM; |
---|
1770 | map R01 = @R, MM; |
---|
1771 | ideal K = R01(K); |
---|
1772 | poly F = imap(save,F); |
---|
1773 | K = K,F; |
---|
1774 | dbprint(ppl,"// -2-2- starting the elimination of _x,_Dx in @R2"); |
---|
1775 | dbprint(ppl-1, K); |
---|
1776 | ideal M = engine(K,eng); |
---|
1777 | ideal K2 = nselect(M,1..Nnew-1); |
---|
1778 | kill K,M; |
---|
1779 | dbprint(ppl,"// -2-3- _x,_Dx are eliminated in @R2"); |
---|
1780 | dbprint(ppl-1, K2); |
---|
1781 | // the ring @R3 and the search for minimal negative int s |
---|
1782 | ring @R3 = 0,s,dp; |
---|
1783 | dbprint(ppl,"// -3-1- the ring @R3(s) is ready"); |
---|
1784 | ideal K3 = imap(@R2,K2); |
---|
1785 | kill @R2; |
---|
1786 | poly p = K3[1]; |
---|
1787 | dbprint(ppl,"// -3-2- factorization"); |
---|
1788 | list P = factorize(p); //with constants and multiplicities |
---|
1789 | ideal bs; intvec m; //the Bernstein polynomial is monic, so we are not interested in constants |
---|
1790 | for (i=2; i<= size(P[1]); i++) //we delete P[1][1] and P[2][1] |
---|
1791 | { |
---|
1792 | bs[i-1] = P[1][i]; |
---|
1793 | m[i-1] = P[2][i]; |
---|
1794 | } |
---|
1795 | // "--------- b-function factorizes into ---------"; P; |
---|
1796 | int sP = minIntRoot(bs,1); |
---|
1797 | dbprint(ppl,"// -3-3- minimal integer root found"); |
---|
1798 | dbprint(ppl-1, sP); |
---|
1799 | // convert factors to a list of their roots with multiplicities |
---|
1800 | bs = normalize(bs); |
---|
1801 | bs = -subst(bs,s,0); |
---|
1802 | list BS = bs,m; |
---|
1803 | //TODO: sort BS! |
---|
1804 | // --------- substitute s found in the ideal --------- |
---|
1805 | // --------- going back to @R and substitute --------- |
---|
1806 | setring @R; |
---|
1807 | ideal K2 = subst(K,s,sP); |
---|
1808 | // create Dn[s], where Dn is the ordinary Weyl algebra, and put the result into it, |
---|
1809 | // thus creating the ring @R4 |
---|
1810 | // keep: N, i,j,s, tmp, RL |
---|
1811 | setring save; |
---|
1812 | Nnew = 2*N+1; |
---|
1813 | // list RL = ringlist(save); //is defined earlier |
---|
1814 | kill Lord, tmp, iv; |
---|
1815 | L = 0; |
---|
1816 | list Lord, tmp; |
---|
1817 | intvec iv; |
---|
1818 | L[1] = RL[1]; |
---|
1819 | L[4] = RL[4]; //char, minpoly |
---|
1820 | // check whether vars have admissible names -> done earlier |
---|
1821 | // list Name = RL[2] |
---|
1822 | // DName is defined earlier |
---|
1823 | tmp[1] = "s"; |
---|
1824 | list NName = Name + DName + tmp; |
---|
1825 | L[2] = NName; |
---|
1826 | // dp ordering; |
---|
1827 | string s = "iv="; |
---|
1828 | for (i=1; i<=Nnew; i++) |
---|
1829 | { |
---|
1830 | s = s+"1,"; |
---|
1831 | } |
---|
1832 | s[size(s)] = ";"; |
---|
1833 | execute(s); |
---|
1834 | kill s; |
---|
1835 | tmp = 0; |
---|
1836 | tmp[1] = "dp"; //string |
---|
1837 | tmp[2] = iv; //intvec |
---|
1838 | Lord[1] = tmp; |
---|
1839 | tmp[1] = "C"; |
---|
1840 | iv = 0; |
---|
1841 | tmp[2] = iv; |
---|
1842 | Lord[2] = tmp; |
---|
1843 | tmp = 0; |
---|
1844 | L[3] = Lord; |
---|
1845 | // we are done with the list |
---|
1846 | // Add: Plural part |
---|
1847 | def @R4@ = ring(L); |
---|
1848 | setring @R4@; |
---|
1849 | matrix @D[Nnew][Nnew]; |
---|
1850 | for (i=1; i<=N; i++) |
---|
1851 | { |
---|
1852 | @D[i,N+i]=1; |
---|
1853 | } |
---|
1854 | def @R4 = nc_algebra(1,@D); |
---|
1855 | setring @R4; |
---|
1856 | kill @R4@; |
---|
1857 | dbprint(ppl,"// -4-1- the ring @R4(_x,_Dx,s) is ready"); |
---|
1858 | dbprint(ppl-1, @R4); |
---|
1859 | ideal LD0 = imap(@R,K2); |
---|
1860 | ideal LD = imap(@R,K); |
---|
1861 | kill @R; |
---|
1862 | poly bs = imap(@R3,p); |
---|
1863 | list BS = imap(@R3,BS); |
---|
1864 | kill @R3; |
---|
1865 | bs = normalize(bs); |
---|
1866 | poly F = imap(save,F); |
---|
1867 | dbprint(ppl,"// -4-2- starting the computation of PS via lift"); |
---|
1868 | //better liftstd, I didn't knot it works also for Plural, liftslimgb? |
---|
1869 | // liftstd may give extra coeffs in the resulting ideal |
---|
1870 | matrix T = lift(F+LD,bs); |
---|
1871 | poly PS = T[1,1]; |
---|
1872 | dbprint(ppl,"// -4-3- an operator PS found, PS*f^(s+1) = b(s)*f^s"); |
---|
1873 | dbprint(ppl-1,PS); |
---|
1874 | option(redSB); |
---|
1875 | dbprint(ppl,"// -4-4- the final cosmetic std"); |
---|
1876 | LD0 = engine(LD0,eng); //std does the job too |
---|
1877 | LD = engine(LD,eng); |
---|
1878 | export F,LD,LD0,bs,BS,PS; |
---|
1879 | return(@R4); |
---|
1880 | } |
---|
1881 | example |
---|
1882 | { |
---|
1883 | "EXAMPLE:"; echo = 2; |
---|
1884 | ring r = 0,(x,y,z),Dp; |
---|
1885 | poly F = x^3+y^3+z^3; |
---|
1886 | printlevel = 0; |
---|
1887 | def A = operatorBM(F); |
---|
1888 | setring A; |
---|
1889 | F; // the original polynomial itself |
---|
1890 | LD; // generic annihilator |
---|
1891 | LD0; // annihilator |
---|
1892 | bs; // normalized Bernstein poly |
---|
1893 | BS; // roots and multiplicities of the Bernstein poly |
---|
1894 | PS; // the operator, s.t. PS*F^{s+1} = bs*F^s mod LD |
---|
1895 | reduce(PS*F-bs,LD); // check the property of PS |
---|
1896 | } |
---|
1897 | |
---|
1898 | // more interesting: |
---|
1899 | // ring r = 0,(x,y,z,w),Dp; |
---|
1900 | // poly F = x^3+y^3+z^2*w; |
---|
1901 | |
---|
1902 | // TODO: 1 has to appear in the 1nd column of transp. matrix |
---|
1903 | // this does not happen automatically |
---|
1904 | // for this, do special modulo with emphasis on the 1comp (c,<) |
---|
1905 | // of the transp matrix, there must appear 1 in the GB |
---|
1906 | // then use lift to get the expression... |
---|
1907 | // need: (c,<) ordering for such comp's |
---|
1908 | |
---|
1909 | /* |
---|
1910 | proc operatorModulo(poly F, ideal I, poly b) |
---|
1911 | "USAGE: operatorModulo(f,I,b); f a poly, I an ideal, b a poly |
---|
1912 | RETURN: poly |
---|
1913 | PURPOSE: compute the B-operator from the poly f, ideal I = Ann f^s and Bernstein-Sato |
---|
1914 | polynomial b using modulo i.e. kernel of module homomorphism |
---|
1915 | NOTE: The computations take place in the ring, similar to the one returned by Sannfs procedure. |
---|
1916 | @* If printlevel=1, progress debug messages will be printed, |
---|
1917 | @* if printlevel>=2, all the debug messages will be printed. |
---|
1918 | EXAMPLE: example operatorModulo; shows examples |
---|
1919 | " |
---|
1920 | { |
---|
1921 | // with hom_kernel; |
---|
1922 | matrix AA[1][2] = F,-b; |
---|
1923 | // matrix M = matrix(subst(I,s,s+1)*freemodule(2)); // ann f^{s+1} |
---|
1924 | matrix N = matrix(I); // ann f^s |
---|
1925 | // matrix K = hom_kernel(AA,M,N); |
---|
1926 | matrix K = modulo(AA,N); |
---|
1927 | K = transpose(K); |
---|
1928 | print(K); |
---|
1929 | ideal J; |
---|
1930 | int i; |
---|
1931 | poly t; number n; |
---|
1932 | for(i=1; i<=nrows(K); i++) |
---|
1933 | { |
---|
1934 | if (K[i,2]!=0) |
---|
1935 | { |
---|
1936 | if ( leadmonom(K[i,2]) == 1) |
---|
1937 | { |
---|
1938 | t = K[i,1]; |
---|
1939 | n = leadcoef(K[i,2]); |
---|
1940 | t = t/n; |
---|
1941 | // J = J, K[i][2]; |
---|
1942 | break; |
---|
1943 | } |
---|
1944 | } |
---|
1945 | } |
---|
1946 | ideal J = groebner(subst(I,s,s+1)); // for NF |
---|
1947 | t = NF(t,J); |
---|
1948 | "candidate:"; t; |
---|
1949 | J = subst(J,s,s-1); |
---|
1950 | // test: |
---|
1951 | if ( NF(t*F-b,J) !=0) |
---|
1952 | { |
---|
1953 | "Problem: PS does not work on F"; |
---|
1954 | } |
---|
1955 | return(t); |
---|
1956 | } |
---|
1957 | example |
---|
1958 | { |
---|
1959 | "EXAMPLE:"; echo = 2; |
---|
1960 | // ring r = 0,(x,y,z),Dp; |
---|
1961 | // poly F = x^3+y^3+z^3; |
---|
1962 | LIB "dmod.lib"; option(prot); option(mem); |
---|
1963 | ring r = 0,(x,y),Dp; |
---|
1964 | // poly F = x^3+y^3+x*y^2; |
---|
1965 | poly F = x^4 + y^4 + x*y^4; |
---|
1966 | def A = Sannfs(F); // here we get LD = ann f^s |
---|
1967 | setring A; |
---|
1968 | poly F = imap(r,F); |
---|
1969 | def B = annfs0(LD,F); // to obtain BS polynomial |
---|
1970 | list BS = imap(B,BS); |
---|
1971 | poly b = fl2poly(BS,"s"); |
---|
1972 | LD = groebner(LD); |
---|
1973 | poly PS = operatorModulo(F,LD,b); |
---|
1974 | PS; // the operator, s.t. PS*F^{s+1} = bs*F^s mod LD |
---|
1975 | reduce(PS*F-bs,LD); // check the property of PS |
---|
1976 | } |
---|
1977 | */ |
---|
1978 | |
---|
1979 | |
---|
1980 | |
---|
1981 | proc annfsParamBM (poly F, list #) |
---|
1982 | "USAGE: annfsParamBM(f [,eng]); f a poly, eng an optional int |
---|
1983 | RETURN: ring |
---|
1984 | PURPOSE: compute the generic Ann F^s and exceptional parametric constellations of a polynomial with parametric coefficients, according to the algorithm by Briancon and Maisonobe |
---|
1985 | NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
1986 | @* - the ideal LD is the D-module structure oa Ann F^s |
---|
1987 | @* - the ideal Param contains the list of the special parameters. |
---|
1988 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
1989 | @* otherwise, and by default @code{slimgb} is used. |
---|
1990 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
1991 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
1992 | EXAMPLE: example annfsParamBM; shows examples |
---|
1993 | " |
---|
1994 | { |
---|
1995 | //PURPOSE: compute the list of all possible Bernstein-Sato polynomials for a polynomial with parametric coefficients, according to the algorithm by Briancon and Maisonobe |
---|
1996 | // @* - the list BS is the list of roots and multiplicities of a Bernstein polynomial of f. |
---|
1997 | // ***** not implented yet **** |
---|
1998 | int eng = 0; |
---|
1999 | if ( size(#)>0 ) |
---|
2000 | { |
---|
2001 | if ( typeof(#[1]) == "int" ) |
---|
2002 | { |
---|
2003 | eng = int(#[1]); |
---|
2004 | } |
---|
2005 | } |
---|
2006 | // returns a list with a ring and an ideal LD in it |
---|
2007 | int ppl = printlevel-voice+2; |
---|
2008 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
2009 | def save = basering; |
---|
2010 | int N = nvars(basering); |
---|
2011 | int Nnew = 2*N+2; |
---|
2012 | int i,j; |
---|
2013 | string s; |
---|
2014 | list RL = ringlist(basering); |
---|
2015 | list L, Lord; |
---|
2016 | list tmp; |
---|
2017 | intvec iv; |
---|
2018 | L[1] = RL[1]; //char |
---|
2019 | L[4] = RL[4]; //char, minpoly |
---|
2020 | // check whether vars have admissible names |
---|
2021 | list Name = RL[2]; |
---|
2022 | list RName; |
---|
2023 | RName[1] = "t"; |
---|
2024 | RName[2] = "s"; |
---|
2025 | for (i=1; i<=N; i++) |
---|
2026 | { |
---|
2027 | for(j=1; j<=size(RName); j++) |
---|
2028 | { |
---|
2029 | if (Name[i] == RName[j]) |
---|
2030 | { |
---|
2031 | ERROR("Variable names should not include t,s"); |
---|
2032 | } |
---|
2033 | } |
---|
2034 | } |
---|
2035 | // now, create the names for new vars |
---|
2036 | list DName; |
---|
2037 | for (i=1; i<=N; i++) |
---|
2038 | { |
---|
2039 | DName[i] = "D"+Name[i]; //concat |
---|
2040 | } |
---|
2041 | tmp[1] = "t"; |
---|
2042 | tmp[2] = "s"; |
---|
2043 | list NName = tmp + Name + DName; |
---|
2044 | L[2] = NName; |
---|
2045 | // Name, Dname will be used further |
---|
2046 | kill NName; |
---|
2047 | // block ord (lp(2),dp); |
---|
2048 | tmp[1] = "lp"; // string |
---|
2049 | iv = 1,1; |
---|
2050 | tmp[2] = iv; //intvec |
---|
2051 | Lord[1] = tmp; |
---|
2052 | // continue with dp 1,1,1,1... |
---|
2053 | tmp[1] = "dp"; // string |
---|
2054 | s = "iv="; |
---|
2055 | for (i=1; i<=Nnew; i++) |
---|
2056 | { |
---|
2057 | s = s+"1,"; |
---|
2058 | } |
---|
2059 | s[size(s)]= ";"; |
---|
2060 | execute(s); |
---|
2061 | kill s; |
---|
2062 | tmp[2] = iv; |
---|
2063 | Lord[2] = tmp; |
---|
2064 | tmp[1] = "C"; |
---|
2065 | iv = 0; |
---|
2066 | tmp[2] = iv; |
---|
2067 | Lord[3] = tmp; |
---|
2068 | tmp = 0; |
---|
2069 | L[3] = Lord; |
---|
2070 | // we are done with the list |
---|
2071 | def @R@ = ring(L); |
---|
2072 | setring @R@; |
---|
2073 | matrix @D[Nnew][Nnew]; |
---|
2074 | @D[1,2]=t; |
---|
2075 | for(i=1; i<=N; i++) |
---|
2076 | { |
---|
2077 | @D[2+i,N+2+i]=1; |
---|
2078 | } |
---|
2079 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
2080 | // L[6] = @D; |
---|
2081 | def @R = nc_algebra(1,@D); |
---|
2082 | setring @R; |
---|
2083 | kill @R@; |
---|
2084 | dbprint(ppl,"// -1-1- the ring @R(t,s,_x,_Dx) is ready"); |
---|
2085 | dbprint(ppl-1, @R); |
---|
2086 | // create the ideal I |
---|
2087 | poly F = imap(save,F); |
---|
2088 | ideal I = t*F+s; |
---|
2089 | poly p; |
---|
2090 | for(i=1; i<=N; i++) |
---|
2091 | { |
---|
2092 | p = t; //t |
---|
2093 | p = diff(F,var(2+i))*p; |
---|
2094 | I = I, var(N+2+i) + p; |
---|
2095 | } |
---|
2096 | // -------- the ideal I is ready ---------- |
---|
2097 | dbprint(ppl,"// -1-2- starting the elimination of t in @R"); |
---|
2098 | dbprint(ppl-1, I); |
---|
2099 | ideal J = engine(I,eng); |
---|
2100 | ideal K = nselect(J,1); |
---|
2101 | dbprint(ppl,"// -1-3- t is eliminated"); |
---|
2102 | dbprint(ppl-1, K); //K is without t |
---|
2103 | // ----- looking for special parameters ----- |
---|
2104 | dbprint(ppl,"// -2-1- starting the computation of the transformation matrix (via lift)"); |
---|
2105 | J = normalize(J); |
---|
2106 | matrix T = lift(I,J); //try also with liftstd |
---|
2107 | kill I,J; |
---|
2108 | dbprint(ppl,"// -2-2- the transformation matrix has been computed"); |
---|
2109 | dbprint(ppl-1, T); //T is the transformation matrix |
---|
2110 | dbprint(ppl,"// -2-3- genericity does the job"); |
---|
2111 | list lParam = genericity(T); |
---|
2112 | int ip = size(lParam); |
---|
2113 | int cip; |
---|
2114 | string sParam; |
---|
2115 | if (sParam[1]=="-") { sParam=""; } //genericity returns "-" |
---|
2116 | // if no parameters exist in a basering |
---|
2117 | for (cip=1; cip <= ip; cip++) |
---|
2118 | { |
---|
2119 | sParam = sParam + "," +lParam[cip]; |
---|
2120 | } |
---|
2121 | if (size(sParam) >=2) |
---|
2122 | { |
---|
2123 | sParam = sParam[2..size(sParam)]; // removes the 1st colon |
---|
2124 | } |
---|
2125 | export sParam; |
---|
2126 | kill T; |
---|
2127 | dbprint(ppl,"// -2-4- the special parameters has been computed"); |
---|
2128 | dbprint(ppl, sParam); |
---|
2129 | // create Dn[s], where Dn is the ordinary Weyl Algebra, and put the result into it, |
---|
2130 | // thus creating the ring @R2 |
---|
2131 | // keep: N, i,j,s, tmp, RL |
---|
2132 | setring save; |
---|
2133 | Nnew = 2*N+1; |
---|
2134 | // list RL = ringlist(save); //is defined earlier |
---|
2135 | kill Lord, tmp, iv; |
---|
2136 | L = 0; |
---|
2137 | list Lord, tmp; |
---|
2138 | intvec iv; |
---|
2139 | L[1] = RL[1]; |
---|
2140 | L[4] = RL[4]; //char, minpoly |
---|
2141 | // check whether vars have admissible names -> done earlier |
---|
2142 | // list Name = RL[2]M |
---|
2143 | // DName is defined earlier |
---|
2144 | tmp[1] = "s"; |
---|
2145 | list NName = Name + DName + tmp; |
---|
2146 | L[2] = NName; |
---|
2147 | // dp ordering; |
---|
2148 | string s = "iv="; |
---|
2149 | for (i=1; i<=Nnew; i++) |
---|
2150 | { |
---|
2151 | s = s+"1,"; |
---|
2152 | } |
---|
2153 | s[size(s)] = ";"; |
---|
2154 | execute(s); |
---|
2155 | kill s; |
---|
2156 | tmp = 0; |
---|
2157 | tmp[1] = "dp"; //string |
---|
2158 | tmp[2] = iv; //intvec |
---|
2159 | Lord[1] = tmp; |
---|
2160 | tmp[1] = "C"; |
---|
2161 | iv = 0; |
---|
2162 | tmp[2] = iv; |
---|
2163 | Lord[2] = tmp; |
---|
2164 | tmp = 0; |
---|
2165 | L[3] = Lord; |
---|
2166 | // we are done with the list |
---|
2167 | // Add: Plural part |
---|
2168 | def @R2@ = ring(L); |
---|
2169 | setring @R2@; |
---|
2170 | matrix @D[Nnew][Nnew]; |
---|
2171 | for (i=1; i<=N; i++) |
---|
2172 | { |
---|
2173 | @D[i,N+i]=1; |
---|
2174 | } |
---|
2175 | def @R2 = nc_algebra(1,@D); |
---|
2176 | setring @R2; |
---|
2177 | kill @R2@; |
---|
2178 | dbprint(ppl,"// -3-1- the ring @R2(_x,_Dx,s) is ready"); |
---|
2179 | dbprint(ppl-1, @R2); |
---|
2180 | ideal K = imap(@R,K); |
---|
2181 | kill @R; |
---|
2182 | option(redSB); |
---|
2183 | dbprint(ppl,"// -3-2- the final cosmetic std"); |
---|
2184 | K = engine(K,eng); //std does the job too |
---|
2185 | ideal LD = K; |
---|
2186 | export LD; |
---|
2187 | if (sParam[1] == ",") |
---|
2188 | { |
---|
2189 | sParam = sParam[2..size(sParam)]; |
---|
2190 | } |
---|
2191 | // || ((sParam[1] == " ") && (sParam[2] == ","))) |
---|
2192 | execute("ideal Param ="+sParam+";"); |
---|
2193 | export Param; |
---|
2194 | kill sParam; |
---|
2195 | return(@R2); |
---|
2196 | } |
---|
2197 | example |
---|
2198 | { |
---|
2199 | "EXAMPLE:"; echo = 2; |
---|
2200 | ring r = (0,a,b),(x,y),Dp; |
---|
2201 | poly F = x^2 - (y-a)*(y-b); |
---|
2202 | printlevel = 0; |
---|
2203 | def A = annfsParamBM(F); setring A; |
---|
2204 | LD; |
---|
2205 | Param; |
---|
2206 | setring r; |
---|
2207 | poly G = x2-(y-a)^2; // try the exceptional value b=a of parameters |
---|
2208 | def B = annfsParamBM(G); setring B; |
---|
2209 | LD; |
---|
2210 | Param; |
---|
2211 | } |
---|
2212 | |
---|
2213 | // *** the following example is nice, but too complicated for the documentation *** |
---|
2214 | // ring r = (0,a),(x,y,z),Dp; |
---|
2215 | // poly F = x^4+y^4+z^2+a*x*y*z; |
---|
2216 | // printlevel = 2; //0 |
---|
2217 | // def A = annfsParamBM(F); |
---|
2218 | // setring A; |
---|
2219 | // LD; |
---|
2220 | // Param; |
---|
2221 | |
---|
2222 | |
---|
2223 | proc annfsBMI(ideal F, list #) |
---|
2224 | "USAGE: annfsBMI(F [,eng]); F an ideal, eng an optional int |
---|
2225 | RETURN: ring |
---|
2226 | PURPOSE: compute the D-module structure of basering[1/f]*f^s where f = F[1]*..*F[P], |
---|
2227 | according to the algorithm by Briancon and Maisonobe. |
---|
2228 | NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
2229 | @* - the ideal LD is the needed D-mod structure, |
---|
2230 | @* - the list BS is the Bernstein ideal of a polynomial f = F[1]*..*F[P]. |
---|
2231 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
2232 | @* otherwise, and by default @code{slimgb} is used. |
---|
2233 | @* If printlevel=1, progress debug messages will be printed, |
---|
2234 | @* if printlevel>=2, all the debug messages will be printed. |
---|
2235 | EXAMPLE: example annfsBMI; shows examples |
---|
2236 | " |
---|
2237 | { |
---|
2238 | int eng = 0; |
---|
2239 | if ( size(#)>0 ) |
---|
2240 | { |
---|
2241 | if ( typeof(#[1]) == "int" ) |
---|
2242 | { |
---|
2243 | eng = int(#[1]); |
---|
2244 | } |
---|
2245 | } |
---|
2246 | // returns a list with a ring and an ideal LD in it |
---|
2247 | int ppl = printlevel-voice+2; |
---|
2248 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
2249 | def save = basering; |
---|
2250 | int N = nvars(basering); |
---|
2251 | int P = size(F); //if F has some generators which are zero, int P = ncols(I); |
---|
2252 | int Nnew = 2*N+2*P; |
---|
2253 | int i,j; |
---|
2254 | string s; |
---|
2255 | list RL = ringlist(basering); |
---|
2256 | list L, Lord; |
---|
2257 | list tmp; |
---|
2258 | intvec iv; |
---|
2259 | L[1] = RL[1]; //char |
---|
2260 | L[4] = RL[4]; //char, minpoly |
---|
2261 | // check whether vars have admissible names |
---|
2262 | list Name = RL[2]; |
---|
2263 | list RName; |
---|
2264 | for (j=1; j<=P; j++) |
---|
2265 | { |
---|
2266 | RName[j] = "t("+string(j)+")"; |
---|
2267 | RName[j+P] = "s("+string(j)+")"; |
---|
2268 | } |
---|
2269 | for(i=1; i<=N; i++) |
---|
2270 | { |
---|
2271 | for(j=1; j<=size(RName); j++) |
---|
2272 | { |
---|
2273 | if (Name[i] == RName[j]) |
---|
2274 | { ERROR("Variable names should not include t(i),s(i)"); } |
---|
2275 | } |
---|
2276 | } |
---|
2277 | // now, create the names for new vars |
---|
2278 | list DName; |
---|
2279 | for(i=1; i<=N; i++) |
---|
2280 | { |
---|
2281 | DName[i] = "D"+Name[i]; //concat |
---|
2282 | } |
---|
2283 | list NName = RName + Name + DName; |
---|
2284 | L[2] = NName; |
---|
2285 | // Name, Dname will be used further |
---|
2286 | kill NName; |
---|
2287 | // block ord (lp(P),dp); |
---|
2288 | tmp[1] = "lp"; //string |
---|
2289 | s = "iv="; |
---|
2290 | for (i=1; i<=2*P; i++) |
---|
2291 | { |
---|
2292 | s = s+"1,"; |
---|
2293 | } |
---|
2294 | s[size(s)]= ";"; |
---|
2295 | execute(s); |
---|
2296 | tmp[2] = iv; //intvec |
---|
2297 | Lord[1] = tmp; |
---|
2298 | // continue with dp 1,1,1,1... |
---|
2299 | tmp[1] = "dp"; //string |
---|
2300 | s = "iv="; |
---|
2301 | for (i=1; i<=Nnew; i++) //actually i<=2*N |
---|
2302 | { |
---|
2303 | s = s+"1,"; |
---|
2304 | } |
---|
2305 | s[size(s)]= ";"; |
---|
2306 | execute(s); |
---|
2307 | kill s; |
---|
2308 | tmp[2] = iv; |
---|
2309 | Lord[2] = tmp; |
---|
2310 | tmp[1] = "C"; |
---|
2311 | iv = 0; |
---|
2312 | tmp[2] = iv; |
---|
2313 | Lord[3] = tmp; |
---|
2314 | tmp = 0; |
---|
2315 | L[3] = Lord; |
---|
2316 | // we are done with the list |
---|
2317 | def @R@ = ring(L); |
---|
2318 | setring @R@; |
---|
2319 | matrix @D[Nnew][Nnew]; |
---|
2320 | for (i=1; i<=P; i++) |
---|
2321 | { |
---|
2322 | @D[i,i+P] = t(i); |
---|
2323 | } |
---|
2324 | for(i=1; i<=N; i++) |
---|
2325 | { |
---|
2326 | @D[2*P+i,2*P+N+i] = 1; |
---|
2327 | } |
---|
2328 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
2329 | // L[6] = @D; |
---|
2330 | def @R = nc_algebra(1,@D); |
---|
2331 | setring @R; |
---|
2332 | kill @R@; |
---|
2333 | dbprint(ppl,"// -1-1- the ring @R(_t,_s,_x,_Dx) is ready"); |
---|
2334 | dbprint(ppl-1, @R); |
---|
2335 | // create the ideal I |
---|
2336 | ideal F = imap(save,F); |
---|
2337 | ideal I = t(1)*F[1]+s(1); |
---|
2338 | for (j=2; j<=P; j++) |
---|
2339 | { |
---|
2340 | I = I, t(j)*F[j]+s(j); |
---|
2341 | } |
---|
2342 | poly p,q; |
---|
2343 | for (i=1; i<=N; i++) |
---|
2344 | { |
---|
2345 | p=0; |
---|
2346 | for (j=1; j<=P; j++) |
---|
2347 | { |
---|
2348 | q = t(j); |
---|
2349 | q = diff(F[j],var(2*P+i))*q; |
---|
2350 | p = p + q; |
---|
2351 | } |
---|
2352 | I = I, var(2*P+N+i) + p; |
---|
2353 | } |
---|
2354 | // -------- the ideal I is ready ---------- |
---|
2355 | dbprint(ppl,"// -1-2- starting the elimination of "+string(t(1..P))+" in @R"); |
---|
2356 | dbprint(ppl-1, I); |
---|
2357 | ideal J = engine(I,eng); |
---|
2358 | ideal K = nselect(J,1..P); |
---|
2359 | kill I,J; |
---|
2360 | dbprint(ppl,"// -1-3- all t(i) are eliminated"); |
---|
2361 | dbprint(ppl-1, K); //K is without t(i) |
---|
2362 | // ----------- the ring @R2 ------------ |
---|
2363 | // _x, _Dx,s; elim.ord for _x,_Dx. |
---|
2364 | // keep: N, i,j,s, tmp, RL |
---|
2365 | setring save; |
---|
2366 | Nnew = 2*N+P; |
---|
2367 | kill Lord, tmp, iv, RName; |
---|
2368 | list Lord, tmp; |
---|
2369 | intvec iv; |
---|
2370 | L[1] = RL[1]; //char |
---|
2371 | L[4] = RL[4]; //char, minpoly |
---|
2372 | // check whether vars hava admissible names -> done earlier |
---|
2373 | // now, create the names for new var |
---|
2374 | for (j=1; j<=P; j++) |
---|
2375 | { |
---|
2376 | tmp[j] = "s("+string(j)+")"; |
---|
2377 | } |
---|
2378 | // DName is defined earlier |
---|
2379 | list NName = Name + DName + tmp; |
---|
2380 | L[2] = NName; |
---|
2381 | tmp = 0; |
---|
2382 | // block ord (dp(N),dp); |
---|
2383 | string s = "iv="; |
---|
2384 | for (i=1; i<=Nnew-P; i++) |
---|
2385 | { |
---|
2386 | s = s+"1,"; |
---|
2387 | } |
---|
2388 | s[size(s)]=";"; |
---|
2389 | execute(s); |
---|
2390 | tmp[1] = "dp"; //string |
---|
2391 | tmp[2] = iv; //intvec |
---|
2392 | Lord[1] = tmp; |
---|
2393 | // continue with dp 1,1,1,1... |
---|
2394 | tmp[1] = "dp"; //string |
---|
2395 | s[size(s)] = ","; |
---|
2396 | for (j=1; j<=P; j++) |
---|
2397 | { |
---|
2398 | s = s+"1,"; |
---|
2399 | } |
---|
2400 | s[size(s)]=";"; |
---|
2401 | execute(s); |
---|
2402 | kill s; |
---|
2403 | kill NName; |
---|
2404 | tmp[2] = iv; |
---|
2405 | Lord[2] = tmp; |
---|
2406 | tmp[1] = "C"; |
---|
2407 | iv = 0; |
---|
2408 | tmp[2] = iv; |
---|
2409 | Lord[3] = tmp; |
---|
2410 | tmp = 0; |
---|
2411 | L[3] = Lord; |
---|
2412 | // we are done with the list. Now add a Plural part |
---|
2413 | def @R2@ = ring(L); |
---|
2414 | setring @R2@; |
---|
2415 | matrix @D[Nnew][Nnew]; |
---|
2416 | for (i=1; i<=N; i++) |
---|
2417 | { |
---|
2418 | @D[i,N+i]=1; |
---|
2419 | } |
---|
2420 | def @R2 = nc_algebra(1,@D); |
---|
2421 | setring @R2; |
---|
2422 | kill @R2@; |
---|
2423 | dbprint(ppl,"// -2-1- the ring @R2(_x,_Dx,_s) is ready"); |
---|
2424 | dbprint(ppl-1, @R2); |
---|
2425 | // ideal MM = maxideal(1); |
---|
2426 | // MM = 0,s,MM; |
---|
2427 | // map R01 = @R, MM; |
---|
2428 | // ideal K = R01(K); |
---|
2429 | ideal F = imap(save,F); // maybe ideal F = R01(I); ? |
---|
2430 | ideal K = imap(@R,K); // maybe ideal K = R01(I); ? |
---|
2431 | poly f=1; |
---|
2432 | for (j=1; j<=P; j++) |
---|
2433 | { |
---|
2434 | f = f*F[j]; |
---|
2435 | } |
---|
2436 | K = K,f; // to compute B (Bernstein-Sato ideal) |
---|
2437 | //j=2; // for example |
---|
2438 | //K = K,F[j]; // to compute Bj (see "On the computation of Bernstein-Sato ideals"; Castro, Ucha) |
---|
2439 | //K = K,F; // to compute Bsigma (see "On the computation of Bernstein-Sato ideals"; Castro, Ucha) |
---|
2440 | dbprint(ppl,"// -2-2- starting the elimination of _x,_Dx in @R2"); |
---|
2441 | dbprint(ppl-1, K); |
---|
2442 | ideal M = engine(K,eng); |
---|
2443 | ideal K2 = nselect(M,1..Nnew-P); |
---|
2444 | kill K,M; |
---|
2445 | dbprint(ppl,"// -2-3- _x,_Dx are eliminated in @R2"); |
---|
2446 | dbprint(ppl-1, K2); |
---|
2447 | // the ring @R3 and factorize |
---|
2448 | ring @R3 = 0,s(1..P),dp; |
---|
2449 | dbprint(ppl,"// -3-1- the ring @R3(_s) is ready"); |
---|
2450 | ideal K3 = imap(@R2,K2); |
---|
2451 | if (size(K3)==1) |
---|
2452 | { |
---|
2453 | poly p = K3[1]; |
---|
2454 | dbprint(ppl,"// -3-2- factorization"); |
---|
2455 | // Warning: now P is an integer |
---|
2456 | list Q = factorize(p); //with constants and multiplicities |
---|
2457 | ideal bs; intvec m; |
---|
2458 | for (i=2; i<=size(Q[1]); i++) //we delete Q[1][1] and Q[2][1] |
---|
2459 | { |
---|
2460 | bs[i-1] = Q[1][i]; |
---|
2461 | m[i-1] = Q[2][i]; |
---|
2462 | } |
---|
2463 | // "--------- Q-ideal factorizes into ---------"; list(bs,m); |
---|
2464 | list BS = bs,m; |
---|
2465 | } |
---|
2466 | else |
---|
2467 | { |
---|
2468 | // conjecture: the Bernstein ideal is principal |
---|
2469 | dbprint(ppl,"// -3-2- the Bernstein ideal is not principal"); |
---|
2470 | ideal BS = K3; |
---|
2471 | } |
---|
2472 | // create the ring @R4(_x,_Dx,_s) and put the result into it, |
---|
2473 | // _x, _Dx,s; ord "dp". |
---|
2474 | // keep: N, i,j,s, tmp, RL |
---|
2475 | setring save; |
---|
2476 | Nnew = 2*N+P; |
---|
2477 | // list RL = ringlist(save); //is defined earlier |
---|
2478 | kill Lord, tmp, iv; |
---|
2479 | L = 0; |
---|
2480 | list Lord, tmp; |
---|
2481 | intvec iv; |
---|
2482 | L[1] = RL[1]; //char |
---|
2483 | L[4] = RL[4]; //char, minpoly |
---|
2484 | // check whether vars hava admissible names -> done earlier |
---|
2485 | // now, create the names for new var |
---|
2486 | for (j=1; j<=P; j++) |
---|
2487 | { |
---|
2488 | tmp[j] = "s("+string(j)+")"; |
---|
2489 | } |
---|
2490 | // DName is defined earlier |
---|
2491 | list NName = Name + DName + tmp; |
---|
2492 | L[2] = NName; |
---|
2493 | tmp = 0; |
---|
2494 | // dp ordering; |
---|
2495 | string s = "iv="; |
---|
2496 | for (i=1; i<=Nnew; i++) |
---|
2497 | { |
---|
2498 | s = s+"1,"; |
---|
2499 | } |
---|
2500 | s[size(s)]=";"; |
---|
2501 | execute(s); |
---|
2502 | kill s; |
---|
2503 | kill NName; |
---|
2504 | tmp[1] = "dp"; //string |
---|
2505 | tmp[2] = iv; //intvec |
---|
2506 | Lord[1] = tmp; |
---|
2507 | tmp[1] = "C"; |
---|
2508 | iv = 0; |
---|
2509 | tmp[2] = iv; |
---|
2510 | Lord[2] = tmp; |
---|
2511 | tmp = 0; |
---|
2512 | L[3] = Lord; |
---|
2513 | // we are done with the list. Now add a Plural part |
---|
2514 | def @R4@ = ring(L); |
---|
2515 | setring @R4@; |
---|
2516 | matrix @D[Nnew][Nnew]; |
---|
2517 | for (i=1; i<=N; i++) |
---|
2518 | { |
---|
2519 | @D[i,N+i]=1; |
---|
2520 | } |
---|
2521 | def @R4 = nc_algebra(1,@D); |
---|
2522 | setring @R4; |
---|
2523 | kill @R4@; |
---|
2524 | dbprint(ppl,"// -4-1- the ring @R4i(_x,_Dx,_s) is ready"); |
---|
2525 | dbprint(ppl-1, @R4); |
---|
2526 | ideal K4 = imap(@R,K); |
---|
2527 | option(redSB); |
---|
2528 | dbprint(ppl,"// -4-2- the final cosmetic std"); |
---|
2529 | K4 = engine(K4,eng); //std does the job too |
---|
2530 | // total cleanup |
---|
2531 | kill @R; |
---|
2532 | kill @R2; |
---|
2533 | def BS = imap(@R3,BS); |
---|
2534 | export BS; |
---|
2535 | kill @R3; |
---|
2536 | ideal LD = K4; |
---|
2537 | export LD; |
---|
2538 | return(@R4); |
---|
2539 | } |
---|
2540 | example |
---|
2541 | { |
---|
2542 | "EXAMPLE:"; echo = 2; |
---|
2543 | ring r = 0,(x,y),Dp; |
---|
2544 | ideal F = x,y,x+y; |
---|
2545 | printlevel = 0; |
---|
2546 | def A = annfsBMI(F); |
---|
2547 | setring A; |
---|
2548 | LD; |
---|
2549 | BS; |
---|
2550 | } |
---|
2551 | |
---|
2552 | proc annfsOT(poly F, list #) |
---|
2553 | "USAGE: annfsOT(f [,eng]); f a poly, eng an optional int |
---|
2554 | RETURN: ring |
---|
2555 | PURPOSE: compute the D-module structure of basering[1/f]*f^s, according |
---|
2556 | to the algorithm by Oaku and Takayama |
---|
2557 | NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
2558 | @* - the ideal LD (which is a Groebner basis) is the needed D-module structure, |
---|
2559 | @* which is obtained by substituting the minimal integer root of a Bernstein |
---|
2560 | @* polynomial into the s-parametric ideal; |
---|
2561 | @* - the list BS contains roots with multiplicities of a Bernstein polynomial of f. |
---|
2562 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
2563 | @* otherwise, and by default @code{slimgb} is used. |
---|
2564 | @* If printlevel=1, progress debug messages will be printed, |
---|
2565 | @* if printlevel>=2, all the debug messages will be printed. |
---|
2566 | EXAMPLE: example annfsOT; shows examples |
---|
2567 | " |
---|
2568 | { |
---|
2569 | int eng = 0; |
---|
2570 | if ( size(#)>0 ) |
---|
2571 | { |
---|
2572 | if ( typeof(#[1]) == "int" ) |
---|
2573 | { |
---|
2574 | eng = int(#[1]); |
---|
2575 | } |
---|
2576 | } |
---|
2577 | // returns a list with a ring and an ideal LD in it |
---|
2578 | int ppl = printlevel-voice+2; |
---|
2579 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
2580 | def save = basering; |
---|
2581 | int N = nvars(basering); |
---|
2582 | int Nnew = 2*(N+2); |
---|
2583 | int i,j; |
---|
2584 | string s; |
---|
2585 | list RL = ringlist(basering); |
---|
2586 | list L, Lord; |
---|
2587 | list tmp; |
---|
2588 | intvec iv; |
---|
2589 | L[1] = RL[1]; // char |
---|
2590 | L[4] = RL[4]; // char, minpoly |
---|
2591 | // check whether vars have admissible names |
---|
2592 | list Name = RL[2]; |
---|
2593 | list RName; |
---|
2594 | RName[1] = "u"; |
---|
2595 | RName[2] = "v"; |
---|
2596 | RName[3] = "t"; |
---|
2597 | RName[4] = "Dt"; |
---|
2598 | for(i=1;i<=N;i++) |
---|
2599 | { |
---|
2600 | for(j=1; j<=size(RName);j++) |
---|
2601 | { |
---|
2602 | if (Name[i] == RName[j]) |
---|
2603 | { |
---|
2604 | ERROR("Variable names should not include u,v,t,Dt"); |
---|
2605 | } |
---|
2606 | } |
---|
2607 | } |
---|
2608 | // now, create the names for new vars |
---|
2609 | tmp[1] = "u"; |
---|
2610 | tmp[2] = "v"; |
---|
2611 | list UName = tmp; |
---|
2612 | list DName; |
---|
2613 | for(i=1;i<=N;i++) |
---|
2614 | { |
---|
2615 | DName[i] = "D"+Name[i]; // concat |
---|
2616 | } |
---|
2617 | tmp = 0; |
---|
2618 | tmp[1] = "t"; |
---|
2619 | tmp[2] = "Dt"; |
---|
2620 | list NName = UName + tmp + Name + DName; |
---|
2621 | L[2] = NName; |
---|
2622 | tmp = 0; |
---|
2623 | // Name, Dname will be used further |
---|
2624 | kill UName; |
---|
2625 | kill NName; |
---|
2626 | // block ord (a(1,1),dp); |
---|
2627 | tmp[1] = "a"; // string |
---|
2628 | iv = 1,1; |
---|
2629 | tmp[2] = iv; //intvec |
---|
2630 | Lord[1] = tmp; |
---|
2631 | // continue with dp 1,1,1,1... |
---|
2632 | tmp[1] = "dp"; // string |
---|
2633 | s = "iv="; |
---|
2634 | for(i=1;i<=Nnew;i++) |
---|
2635 | { |
---|
2636 | s = s+"1,"; |
---|
2637 | } |
---|
2638 | s[size(s)]= ";"; |
---|
2639 | execute(s); |
---|
2640 | tmp[2] = iv; |
---|
2641 | Lord[2] = tmp; |
---|
2642 | tmp[1] = "C"; |
---|
2643 | iv = 0; |
---|
2644 | tmp[2] = iv; |
---|
2645 | Lord[3] = tmp; |
---|
2646 | tmp = 0; |
---|
2647 | L[3] = Lord; |
---|
2648 | // we are done with the list |
---|
2649 | def @R@ = ring(L); |
---|
2650 | setring @R@; |
---|
2651 | matrix @D[Nnew][Nnew]; |
---|
2652 | @D[3,4]=1; |
---|
2653 | for(i=1; i<=N; i++) |
---|
2654 | { |
---|
2655 | @D[4+i,N+4+i]=1; |
---|
2656 | } |
---|
2657 | // @D[N+3,2*(N+2)]=1; old t,Dt stuff |
---|
2658 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
2659 | // L[6] = @D; |
---|
2660 | def @R = nc_algebra(1,@D); |
---|
2661 | setring @R; |
---|
2662 | kill @R@; |
---|
2663 | dbprint(ppl,"// -1-1- the ring @R(u,v,t,Dt,_x,_Dx) is ready"); |
---|
2664 | dbprint(ppl-1, @R); |
---|
2665 | // create the ideal I |
---|
2666 | poly F = imap(save,F); |
---|
2667 | ideal I = u*F-t,u*v-1; |
---|
2668 | poly p; |
---|
2669 | for(i=1; i<=N; i++) |
---|
2670 | { |
---|
2671 | p = u*Dt; // u*Dt |
---|
2672 | p = diff(F,var(4+i))*p; |
---|
2673 | I = I, var(N+4+i) + p; |
---|
2674 | } |
---|
2675 | // -------- the ideal I is ready ---------- |
---|
2676 | dbprint(ppl,"// -1-2- starting the elimination of u,v in @R"); |
---|
2677 | dbprint(ppl-1, I); |
---|
2678 | ideal J = engine(I,eng); |
---|
2679 | ideal K = nselect(J,1..2); |
---|
2680 | dbprint(ppl,"// -1-3- u,v are eliminated"); |
---|
2681 | dbprint(ppl-1, K); // K is without u,v |
---|
2682 | setring save; |
---|
2683 | // ------------ new ring @R2 ------------------ |
---|
2684 | // without u,v and with the elim.ord for t,Dt |
---|
2685 | // tensored with the K[s] |
---|
2686 | // keep: N, i,j,s, tmp, RL |
---|
2687 | Nnew = 2*N+2+1; |
---|
2688 | // list RL = ringlist(save); // is defined earlier |
---|
2689 | L = 0; // kill L; |
---|
2690 | kill Lord, tmp, iv, RName; |
---|
2691 | list Lord, tmp; |
---|
2692 | intvec iv; |
---|
2693 | L[1] = RL[1]; L[4] = RL[4]; // char, minpoly |
---|
2694 | // check whether vars have admissible names -> done earlier |
---|
2695 | // list Name = RL[2]; |
---|
2696 | list RName; |
---|
2697 | RName[1] = "t"; |
---|
2698 | RName[2] = "Dt"; |
---|
2699 | // now, create the names for new var (here, s only) |
---|
2700 | tmp[1] = "s"; |
---|
2701 | // DName is defined earlier |
---|
2702 | list NName = RName + Name + DName + tmp; |
---|
2703 | L[2] = NName; |
---|
2704 | tmp = 0; |
---|
2705 | // block ord (a(1,1),dp); |
---|
2706 | tmp[1] = "a"; iv = 1,1; tmp[2] = iv; //intvec |
---|
2707 | Lord[1] = tmp; |
---|
2708 | // continue with a(1,1,1,1)... |
---|
2709 | tmp[1] = "dp"; s = "iv="; |
---|
2710 | for(i=1; i<= Nnew; i++) |
---|
2711 | { |
---|
2712 | s = s+"1,"; |
---|
2713 | } |
---|
2714 | s[size(s)]= ";"; execute(s); |
---|
2715 | kill NName; |
---|
2716 | tmp[2] = iv; |
---|
2717 | Lord[2] = tmp; |
---|
2718 | // extra block for s |
---|
2719 | // tmp[1] = "dp"; iv = 1; |
---|
2720 | // s[size(s)]= ","; s = s + "1,1,1;"; execute(s); tmp[2] = iv; |
---|
2721 | // Lord[3] = tmp; |
---|
2722 | kill s; |
---|
2723 | tmp[1] = "C"; iv = 0; tmp[2] = iv; |
---|
2724 | Lord[3] = tmp; tmp = 0; |
---|
2725 | L[3] = Lord; |
---|
2726 | // we are done with the list. Now, add a Plural part |
---|
2727 | def @R2@ = ring(L); |
---|
2728 | setring @R2@; |
---|
2729 | matrix @D[Nnew][Nnew]; |
---|
2730 | @D[1,2] = 1; |
---|
2731 | for(i=1; i<=N; i++) |
---|
2732 | { |
---|
2733 | @D[2+i,2+N+i] = 1; |
---|
2734 | } |
---|
2735 | def @R2 = nc_algebra(1,@D); |
---|
2736 | setring @R2; |
---|
2737 | kill @R2@; |
---|
2738 | dbprint(ppl,"// -2-1- the ring @R2(t,Dt,_x,_Dx,s) is ready"); |
---|
2739 | dbprint(ppl-1, @R2); |
---|
2740 | ideal MM = maxideal(1); |
---|
2741 | MM = 0,0,MM; |
---|
2742 | map R01 = @R, MM; |
---|
2743 | ideal K = R01(K); |
---|
2744 | // ideal K = imap(@R,K); // names of vars are important! |
---|
2745 | poly G = t*Dt+s+1; // s is a variable here |
---|
2746 | K = NF(K,std(G)),G; |
---|
2747 | // -------- the ideal K_(@R2) is ready ---------- |
---|
2748 | dbprint(ppl,"// -2-2- starting the elimination of t,Dt in @R2"); |
---|
2749 | dbprint(ppl-1, K); |
---|
2750 | ideal M = engine(K,eng); |
---|
2751 | ideal K2 = nselect(M,1..2); |
---|
2752 | dbprint(ppl,"// -2-3- t,Dt are eliminated"); |
---|
2753 | dbprint(ppl-1, K2); |
---|
2754 | // dbprint(ppl-1+1," -2-4- std of K2"); |
---|
2755 | // option(redSB); option(redTail); K2 = std(K2); |
---|
2756 | // K2; // without t,Dt, and with s |
---|
2757 | // -------- the ring @R3 ---------- |
---|
2758 | // _x, _Dx, s; elim.ord for _x,_Dx. |
---|
2759 | // keep: N, i,j,s, tmp, RL |
---|
2760 | setring save; |
---|
2761 | Nnew = 2*N+1; |
---|
2762 | // list RL = ringlist(save); // is defined earlier |
---|
2763 | // kill L; |
---|
2764 | kill Lord, tmp, iv, RName; |
---|
2765 | list Lord, tmp; |
---|
2766 | intvec iv; |
---|
2767 | L[1] = RL[1]; L[4] = RL[4]; // char, minpoly |
---|
2768 | // check whether vars have admissible names -> done earlier |
---|
2769 | // list Name = RL[2]; |
---|
2770 | // now, create the names for new var (here, s only) |
---|
2771 | tmp[1] = "s"; |
---|
2772 | // DName is defined earlier |
---|
2773 | list NName = Name + DName + tmp; |
---|
2774 | L[2] = NName; |
---|
2775 | tmp = 0; |
---|
2776 | // block ord (a(1,1...),dp); |
---|
2777 | string s = "iv="; |
---|
2778 | for(i=1; i<=Nnew-1; i++) |
---|
2779 | { |
---|
2780 | s = s+"1,"; |
---|
2781 | } |
---|
2782 | s[size(s)]= ";"; |
---|
2783 | execute(s); |
---|
2784 | tmp[1] = "a"; // string |
---|
2785 | tmp[2] = iv; //intvec |
---|
2786 | Lord[1] = tmp; |
---|
2787 | // continue with dp 1,1,1,1... |
---|
2788 | tmp[1] = "dp"; // string |
---|
2789 | s[size(s)]=","; s= s+"1;"; |
---|
2790 | execute(s); |
---|
2791 | kill s; |
---|
2792 | kill NName; |
---|
2793 | tmp[2] = iv; |
---|
2794 | Lord[2] = tmp; |
---|
2795 | tmp[1] = "C"; iv = 0; tmp[2] = iv; |
---|
2796 | Lord[3] = tmp; tmp = 0; |
---|
2797 | L[3] = Lord; |
---|
2798 | // we are done with the list. Now add a Plural part |
---|
2799 | def @R3@ = ring(L); |
---|
2800 | setring @R3@; |
---|
2801 | matrix @D[Nnew][Nnew]; |
---|
2802 | for(i=1; i<=N; i++) |
---|
2803 | { |
---|
2804 | @D[i,N+i]=1; |
---|
2805 | } |
---|
2806 | def @R3 = nc_algebra(1,@D); |
---|
2807 | setring @R3; |
---|
2808 | kill @R3@; |
---|
2809 | dbprint(ppl,"// -3-1- the ring @R3(_x,_Dx,s) is ready"); |
---|
2810 | dbprint(ppl-1, @R3); |
---|
2811 | ideal MM = maxideal(1); |
---|
2812 | MM = 0,0,MM; |
---|
2813 | map R12 = @R2, MM; |
---|
2814 | ideal K = R12(K2); |
---|
2815 | poly F = imap(save,F); |
---|
2816 | K = K,F; |
---|
2817 | dbprint(ppl,"// -3-2- starting the elimination of _x,_Dx in @R3"); |
---|
2818 | dbprint(ppl-1, K); |
---|
2819 | ideal M = engine(K,eng); |
---|
2820 | ideal K3 = nselect(M,1..Nnew-1); |
---|
2821 | dbprint(ppl,"// -3-3- _x,_Dx are eliminated in @R3"); |
---|
2822 | dbprint(ppl-1, K3); |
---|
2823 | // the ring @R4 and the search for minimal negative int s |
---|
2824 | ring @R4 = 0,(s),dp; |
---|
2825 | dbprint(ppl,"// -4-1- the ring @R4 is ready"); |
---|
2826 | ideal K4 = imap(@R3,K3); |
---|
2827 | poly p = K4[1]; |
---|
2828 | dbprint(ppl,"// -4-2- factorization"); |
---|
2829 | //// ideal P = factorize(p,1); // without constants and multiplicities |
---|
2830 | list P = factorize(p); // with constants and multiplicities |
---|
2831 | ideal bs; intvec m; // the Bernstein polynomial is monic, so we are not interested in constants |
---|
2832 | for (i=2; i<=size(P[1]); i++) // we delete P[1][1] and P[2][1] |
---|
2833 | { |
---|
2834 | bs[i-1] = P[1][i]; |
---|
2835 | m[i-1] = P[2][i]; |
---|
2836 | } |
---|
2837 | // "------ b-function factorizes into ----------"; P; |
---|
2838 | //// int sP = minIntRoot(P, 1); |
---|
2839 | int sP = minIntRoot(bs,1); |
---|
2840 | dbprint(ppl,"// -4-3- minimal integer root found"); |
---|
2841 | dbprint(ppl-1, sP); |
---|
2842 | // convert factors to a list of their roots |
---|
2843 | // assume all factors are linear |
---|
2844 | //// ideal BS = normalize(P); |
---|
2845 | //// BS = subst(BS,s,0); |
---|
2846 | //// BS = -BS; |
---|
2847 | bs = normalize(bs); |
---|
2848 | bs = subst(bs,s,0); |
---|
2849 | bs = -bs; |
---|
2850 | list BS = bs,m; |
---|
2851 | // TODO: sort BS! |
---|
2852 | // ------ substitute s found in the ideal ------ |
---|
2853 | // ------- going back to @R2 and substitute -------- |
---|
2854 | setring @R2; |
---|
2855 | ideal K3 = subst(K2,s,sP); |
---|
2856 | // create the ordinary Weyl algebra and put the result into it, |
---|
2857 | // thus creating the ring @R5 |
---|
2858 | // keep: N, i,j,s, tmp, RL |
---|
2859 | setring save; |
---|
2860 | Nnew = 2*N; |
---|
2861 | // list RL = ringlist(save); // is defined earlier |
---|
2862 | kill Lord, tmp, iv; |
---|
2863 | L = 0; |
---|
2864 | list Lord, tmp; |
---|
2865 | intvec iv; |
---|
2866 | L[1] = RL[1]; L[4] = RL[4]; // char, minpoly |
---|
2867 | // check whether vars have admissible names -> done earlier |
---|
2868 | // list Name = RL[2]; |
---|
2869 | // DName is defined earlier |
---|
2870 | list NName = Name + DName; |
---|
2871 | L[2] = NName; |
---|
2872 | // dp ordering; |
---|
2873 | string s = "iv="; |
---|
2874 | for(i=1;i<=Nnew;i++) |
---|
2875 | { |
---|
2876 | s = s+"1,"; |
---|
2877 | } |
---|
2878 | s[size(s)]= ";"; |
---|
2879 | execute(s); |
---|
2880 | tmp = 0; |
---|
2881 | tmp[1] = "dp"; // string |
---|
2882 | tmp[2] = iv; //intvec |
---|
2883 | Lord[1] = tmp; |
---|
2884 | kill s; |
---|
2885 | tmp[1] = "C"; |
---|
2886 | iv = 0; |
---|
2887 | tmp[2] = iv; |
---|
2888 | Lord[2] = tmp; |
---|
2889 | tmp = 0; |
---|
2890 | L[3] = Lord; |
---|
2891 | // we are done with the list |
---|
2892 | // Add: Plural part |
---|
2893 | def @R5@ = ring(L); |
---|
2894 | setring @R5@; |
---|
2895 | matrix @D[Nnew][Nnew]; |
---|
2896 | for(i=1; i<=N; i++) |
---|
2897 | { |
---|
2898 | @D[i,N+i]=1; |
---|
2899 | } |
---|
2900 | def @R5 = nc_algebra(1,@D); |
---|
2901 | setring @R5; |
---|
2902 | kill @R5@; |
---|
2903 | dbprint(ppl,"// -5-1- the ring @R5 is ready"); |
---|
2904 | dbprint(ppl-1, @R5); |
---|
2905 | ideal K5 = imap(@R2,K3); |
---|
2906 | option(redSB); |
---|
2907 | dbprint(ppl,"// -5-2- the final cosmetic std"); |
---|
2908 | K5 = engine(K5,eng); // std does the job too |
---|
2909 | // total cleanup |
---|
2910 | kill @R; |
---|
2911 | kill @R2; |
---|
2912 | kill @R3; |
---|
2913 | //// ideal BS = imap(@R4,BS); |
---|
2914 | list BS = imap(@R4,BS); |
---|
2915 | export BS; |
---|
2916 | ideal LD = K5; |
---|
2917 | kill @R4; |
---|
2918 | export LD; |
---|
2919 | return(@R5); |
---|
2920 | } |
---|
2921 | example |
---|
2922 | { |
---|
2923 | "EXAMPLE:"; echo = 2; |
---|
2924 | ring r = 0,(x,y,z),Dp; |
---|
2925 | poly F = x^2+y^3+z^5; |
---|
2926 | printlevel = 0; |
---|
2927 | def A = annfsOT(F); |
---|
2928 | setring A; |
---|
2929 | LD; |
---|
2930 | BS; |
---|
2931 | } |
---|
2932 | |
---|
2933 | |
---|
2934 | proc SannfsOT(poly F, list #) |
---|
2935 | "USAGE: SannfsOT(f [,eng]); f a poly, eng an optional int |
---|
2936 | RETURN: ring |
---|
2937 | PURPOSE: compute the D-module structure of basering[1/f]*f^s, according to the 1st step of the algorithm by Oaku and Takayama in the ring D[s], where D is the Weyl algebra |
---|
2938 | NOTE: activate this ring with the @code{setring} command. |
---|
2939 | @* In the ring D[s], the ideal LD (which is NOT a Groebner basis) is the needed D-module structure. |
---|
2940 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
2941 | @* otherwise, and by default @code{slimgb} is used. |
---|
2942 | @* If printlevel=1, progress debug messages will be printed, |
---|
2943 | @* if printlevel>=2, all the debug messages will be printed. |
---|
2944 | EXAMPLE: example SannfsOT; shows examples |
---|
2945 | " |
---|
2946 | { |
---|
2947 | int eng = 0; |
---|
2948 | if ( size(#)>0 ) |
---|
2949 | { |
---|
2950 | if ( typeof(#[1]) == "int" ) |
---|
2951 | { |
---|
2952 | eng = int(#[1]); |
---|
2953 | } |
---|
2954 | } |
---|
2955 | // returns a list with a ring and an ideal LD in it |
---|
2956 | int ppl = printlevel-voice+2; |
---|
2957 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
2958 | def save = basering; |
---|
2959 | int N = nvars(basering); |
---|
2960 | int Nnew = 2*(N+2); |
---|
2961 | int i,j; |
---|
2962 | string s; |
---|
2963 | list RL = ringlist(basering); |
---|
2964 | list L, Lord; |
---|
2965 | list tmp; |
---|
2966 | intvec iv; |
---|
2967 | L[1] = RL[1]; // char |
---|
2968 | L[4] = RL[4]; // char, minpoly |
---|
2969 | // check whether vars have admissible names |
---|
2970 | list Name = RL[2]; |
---|
2971 | list RName; |
---|
2972 | RName[1] = "u"; |
---|
2973 | RName[2] = "v"; |
---|
2974 | RName[3] = "t"; |
---|
2975 | RName[4] = "Dt"; |
---|
2976 | for(i=1;i<=N;i++) |
---|
2977 | { |
---|
2978 | for(j=1; j<=size(RName);j++) |
---|
2979 | { |
---|
2980 | if (Name[i] == RName[j]) |
---|
2981 | { |
---|
2982 | ERROR("Variable names should not include u,v,t,Dt"); |
---|
2983 | } |
---|
2984 | } |
---|
2985 | } |
---|
2986 | // now, create the names for new vars |
---|
2987 | tmp[1] = "u"; |
---|
2988 | tmp[2] = "v"; |
---|
2989 | list UName = tmp; |
---|
2990 | list DName; |
---|
2991 | for(i=1;i<=N;i++) |
---|
2992 | { |
---|
2993 | DName[i] = "D"+Name[i]; // concat |
---|
2994 | } |
---|
2995 | tmp = 0; |
---|
2996 | tmp[1] = "t"; |
---|
2997 | tmp[2] = "Dt"; |
---|
2998 | list NName = UName + tmp + Name + DName; |
---|
2999 | L[2] = NName; |
---|
3000 | tmp = 0; |
---|
3001 | // Name, Dname will be used further |
---|
3002 | kill UName; |
---|
3003 | kill NName; |
---|
3004 | // block ord (a(1,1),dp); |
---|
3005 | tmp[1] = "a"; // string |
---|
3006 | iv = 1,1; |
---|
3007 | tmp[2] = iv; //intvec |
---|
3008 | Lord[1] = tmp; |
---|
3009 | // continue with dp 1,1,1,1... |
---|
3010 | tmp[1] = "dp"; // string |
---|
3011 | s = "iv="; |
---|
3012 | for(i=1;i<=Nnew;i++) |
---|
3013 | { |
---|
3014 | s = s+"1,"; |
---|
3015 | } |
---|
3016 | s[size(s)]= ";"; |
---|
3017 | execute(s); |
---|
3018 | tmp[2] = iv; |
---|
3019 | Lord[2] = tmp; |
---|
3020 | tmp[1] = "C"; |
---|
3021 | iv = 0; |
---|
3022 | tmp[2] = iv; |
---|
3023 | Lord[3] = tmp; |
---|
3024 | tmp = 0; |
---|
3025 | L[3] = Lord; |
---|
3026 | // we are done with the list |
---|
3027 | def @R@ = ring(L); |
---|
3028 | setring @R@; |
---|
3029 | matrix @D[Nnew][Nnew]; |
---|
3030 | @D[3,4]=1; |
---|
3031 | for(i=1; i<=N; i++) |
---|
3032 | { |
---|
3033 | @D[4+i,N+4+i]=1; |
---|
3034 | } |
---|
3035 | // @D[N+3,2*(N+2)]=1; old t,Dt stuff |
---|
3036 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
3037 | // L[6] = @D; |
---|
3038 | def @R = nc_algebra(1,@D); |
---|
3039 | setring @R; |
---|
3040 | kill @R@; |
---|
3041 | dbprint(ppl,"// -1-1- the ring @R(u,v,t,Dt,_x,_Dx) is ready"); |
---|
3042 | dbprint(ppl-1, @R); |
---|
3043 | // create the ideal I |
---|
3044 | poly F = imap(save,F); |
---|
3045 | ideal I = u*F-t,u*v-1; |
---|
3046 | poly p; |
---|
3047 | for(i=1; i<=N; i++) |
---|
3048 | { |
---|
3049 | p = u*Dt; // u*Dt |
---|
3050 | p = diff(F,var(4+i))*p; |
---|
3051 | I = I, var(N+4+i) + p; |
---|
3052 | } |
---|
3053 | // -------- the ideal I is ready ---------- |
---|
3054 | dbprint(ppl,"// -1-2- starting the elimination of u,v in @R"); |
---|
3055 | dbprint(ppl-1, I); |
---|
3056 | ideal J = engine(I,eng); |
---|
3057 | ideal K = nselect(J,1..2); |
---|
3058 | dbprint(ppl,"// -1-3- u,v are eliminated"); |
---|
3059 | dbprint(ppl-1, K); // K is without u,v |
---|
3060 | setring save; |
---|
3061 | // ------------ new ring @R2 ------------------ |
---|
3062 | // without u,v and with the elim.ord for t,Dt |
---|
3063 | // tensored with the K[s] |
---|
3064 | // keep: N, i,j,s, tmp, RL |
---|
3065 | Nnew = 2*N+2+1; |
---|
3066 | // list RL = ringlist(save); // is defined earlier |
---|
3067 | L = 0; // kill L; |
---|
3068 | kill Lord, tmp, iv, RName; |
---|
3069 | list Lord, tmp; |
---|
3070 | intvec iv; |
---|
3071 | L[1] = RL[1]; L[4] = RL[4]; // char, minpoly |
---|
3072 | // check whether vars have admissible names -> done earlier |
---|
3073 | // list Name = RL[2]; |
---|
3074 | list RName; |
---|
3075 | RName[1] = "t"; |
---|
3076 | RName[2] = "Dt"; |
---|
3077 | // now, create the names for new var (here, s only) |
---|
3078 | tmp[1] = "s"; |
---|
3079 | // DName is defined earlier |
---|
3080 | list NName = RName + Name + DName + tmp; |
---|
3081 | L[2] = NName; |
---|
3082 | tmp = 0; |
---|
3083 | // block ord (a(1,1),dp); |
---|
3084 | tmp[1] = "a"; iv = 1,1; tmp[2] = iv; //intvec |
---|
3085 | Lord[1] = tmp; |
---|
3086 | // continue with a(1,1,1,1)... |
---|
3087 | tmp[1] = "dp"; s = "iv="; |
---|
3088 | for(i=1; i<= Nnew; i++) |
---|
3089 | { |
---|
3090 | s = s+"1,"; |
---|
3091 | } |
---|
3092 | s[size(s)]= ";"; execute(s); |
---|
3093 | kill NName; |
---|
3094 | tmp[2] = iv; |
---|
3095 | Lord[2] = tmp; |
---|
3096 | // extra block for s |
---|
3097 | // tmp[1] = "dp"; iv = 1; |
---|
3098 | // s[size(s)]= ","; s = s + "1,1,1;"; execute(s); tmp[2] = iv; |
---|
3099 | // Lord[3] = tmp; |
---|
3100 | kill s; |
---|
3101 | tmp[1] = "C"; iv = 0; tmp[2] = iv; |
---|
3102 | Lord[3] = tmp; tmp = 0; |
---|
3103 | L[3] = Lord; |
---|
3104 | // we are done with the list. Now, add a Plural part |
---|
3105 | def @R2@ = ring(L); |
---|
3106 | setring @R2@; |
---|
3107 | matrix @D[Nnew][Nnew]; |
---|
3108 | @D[1,2] = 1; |
---|
3109 | for(i=1; i<=N; i++) |
---|
3110 | { |
---|
3111 | @D[2+i,2+N+i] = 1; |
---|
3112 | } |
---|
3113 | def @R2 = nc_algebra(1,@D); |
---|
3114 | setring @R2; |
---|
3115 | kill @R2@; |
---|
3116 | dbprint(ppl,"// -2-1- the ring @R2(t,Dt,_x,_Dx,s) is ready"); |
---|
3117 | dbprint(ppl-1, @R2); |
---|
3118 | ideal MM = maxideal(1); |
---|
3119 | MM = 0,0,MM; |
---|
3120 | map R01 = @R, MM; |
---|
3121 | ideal K = R01(K); |
---|
3122 | // ideal K = imap(@R,K); // names of vars are important! |
---|
3123 | poly G = t*Dt+s+1; // s is a variable here |
---|
3124 | K = NF(K,std(G)),G; |
---|
3125 | // -------- the ideal K_(@R2) is ready ---------- |
---|
3126 | dbprint(ppl,"// -2-2- starting the elimination of t,Dt in @R2"); |
---|
3127 | dbprint(ppl-1, K); |
---|
3128 | ideal M = engine(K,eng); |
---|
3129 | ideal K2 = nselect(M,1..2); |
---|
3130 | dbprint(ppl,"// -2-3- t,Dt are eliminated"); |
---|
3131 | dbprint(ppl-1, K2); |
---|
3132 | K2 = engine(K2,eng); |
---|
3133 | setring save; |
---|
3134 | // ----------- the ring @R3 ------------ |
---|
3135 | // _x, _Dx,s; elim.ord for _x,_Dx. |
---|
3136 | // keep: N, i,j,s, tmp, RL |
---|
3137 | Nnew = 2*N+1; |
---|
3138 | kill Lord, tmp, iv, RName; |
---|
3139 | list Lord, tmp; |
---|
3140 | intvec iv; |
---|
3141 | L[1] = RL[1]; |
---|
3142 | L[4] = RL[4]; // char, minpoly |
---|
3143 | // check whether vars hava admissible names -> done earlier |
---|
3144 | // now, create the names for new var |
---|
3145 | tmp[1] = "s"; |
---|
3146 | // DName is defined earlier |
---|
3147 | list NName = Name + DName + tmp; |
---|
3148 | L[2] = NName; |
---|
3149 | tmp = 0; |
---|
3150 | // block ord (dp(N),dp); |
---|
3151 | string s = "iv="; |
---|
3152 | for (i=1; i<=Nnew-1; i++) |
---|
3153 | { |
---|
3154 | s = s+"1,"; |
---|
3155 | } |
---|
3156 | s[size(s)]=";"; |
---|
3157 | execute(s); |
---|
3158 | tmp[1] = "dp"; // string |
---|
3159 | tmp[2] = iv; // intvec |
---|
3160 | Lord[1] = tmp; |
---|
3161 | // continue with dp 1,1,1,1... |
---|
3162 | tmp[1] = "dp"; // string |
---|
3163 | s[size(s)] = ","; |
---|
3164 | s = s+"1;"; |
---|
3165 | execute(s); |
---|
3166 | kill s; |
---|
3167 | kill NName; |
---|
3168 | tmp[2] = iv; |
---|
3169 | Lord[2] = tmp; |
---|
3170 | tmp[1] = "C"; iv = 0; tmp[2]=iv; |
---|
3171 | Lord[3] = tmp; tmp = 0; |
---|
3172 | L[3] = Lord; |
---|
3173 | // we are done with the list. Now add a Plural part |
---|
3174 | def @R3@ = ring(L); |
---|
3175 | setring @R3@; |
---|
3176 | matrix @D[Nnew][Nnew]; |
---|
3177 | for (i=1; i<=N; i++) |
---|
3178 | { |
---|
3179 | @D[i,N+i]=1; |
---|
3180 | } |
---|
3181 | def @R3 = nc_algebra(1,@D); |
---|
3182 | setring @R3; |
---|
3183 | kill @R3@; |
---|
3184 | dbprint(ppl,"// -3-1- the ring @R3(_x,_Dx,s) is ready"); |
---|
3185 | dbprint(ppl-1, @R3); |
---|
3186 | ideal MM = maxideal(1); |
---|
3187 | MM = 0,s,MM; |
---|
3188 | map R01 = @R2, MM; |
---|
3189 | ideal K2 = R01(K2); |
---|
3190 | // total cleanup |
---|
3191 | ideal LD = K2; |
---|
3192 | // make leadcoeffs positive |
---|
3193 | for (i=1; i<= ncols(LD); i++) |
---|
3194 | { |
---|
3195 | if (leadcoef(LD[i]) <0 ) |
---|
3196 | { |
---|
3197 | LD[i] = -LD[i]; |
---|
3198 | } |
---|
3199 | } |
---|
3200 | export LD; |
---|
3201 | kill @R; |
---|
3202 | kill @R2; |
---|
3203 | return(@R3); |
---|
3204 | } |
---|
3205 | example |
---|
3206 | { |
---|
3207 | "EXAMPLE:"; echo = 2; |
---|
3208 | ring r = 0,(x,y,z),Dp; |
---|
3209 | poly F = x^3+y^3+z^3; |
---|
3210 | printlevel = 0; |
---|
3211 | def A = SannfsOT(F); |
---|
3212 | setring A; |
---|
3213 | LD; |
---|
3214 | } |
---|
3215 | |
---|
3216 | proc SannfsBM(poly F, list #) |
---|
3217 | "USAGE: SannfsBM(f [,eng]); f a poly, eng an optional int |
---|
3218 | RETURN: ring |
---|
3219 | PURPOSE: compute the D-module structure of basering[1/f]*f^s, according to the 1st step of the algorithm by Briancon and Maisonobe in the ring D[s], where D is the Weyl algebra |
---|
3220 | NOTE: activate this ring with the @code{setring} command. |
---|
3221 | @* In the ring D[s], the ideal LD (which is NOT a Groebner basis) is the needed D-module structure, |
---|
3222 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
3223 | @* otherwise, and by default @code{slimgb} is used. |
---|
3224 | @* If printlevel=1, progress debug messages will be printed, |
---|
3225 | @* if printlevel>=2, all the debug messages will be printed. |
---|
3226 | EXAMPLE: example SannfsBM; shows examples |
---|
3227 | " |
---|
3228 | { |
---|
3229 | int eng = 0; |
---|
3230 | if ( size(#)>0 ) |
---|
3231 | { |
---|
3232 | if ( typeof(#[1]) == "int" ) |
---|
3233 | { |
---|
3234 | eng = int(#[1]); |
---|
3235 | } |
---|
3236 | } |
---|
3237 | // returns a list with a ring and an ideal LD in it |
---|
3238 | int ppl = printlevel-voice+2; |
---|
3239 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
3240 | def save = basering; |
---|
3241 | int N = nvars(basering); |
---|
3242 | int Nnew = 2*N+2; |
---|
3243 | int i,j; |
---|
3244 | string s; |
---|
3245 | list RL = ringlist(basering); |
---|
3246 | list L, Lord; |
---|
3247 | list tmp; |
---|
3248 | intvec iv; |
---|
3249 | L[1] = RL[1]; // char |
---|
3250 | L[4] = RL[4]; // char, minpoly |
---|
3251 | // check whether vars have admissible names |
---|
3252 | list Name = RL[2]; |
---|
3253 | list RName; |
---|
3254 | RName[1] = "t"; |
---|
3255 | RName[2] = "s"; |
---|
3256 | for(i=1;i<=N;i++) |
---|
3257 | { |
---|
3258 | for(j=1; j<=size(RName);j++) |
---|
3259 | { |
---|
3260 | if (Name[i] == RName[j]) |
---|
3261 | { |
---|
3262 | ERROR("Variable names should not include t,s"); |
---|
3263 | } |
---|
3264 | } |
---|
3265 | } |
---|
3266 | // now, create the names for new vars |
---|
3267 | list DName; |
---|
3268 | for(i=1;i<=N;i++) |
---|
3269 | { |
---|
3270 | DName[i] = "D"+Name[i]; // concat |
---|
3271 | } |
---|
3272 | tmp[1] = "t"; |
---|
3273 | tmp[2] = "s"; |
---|
3274 | list NName = tmp + Name + DName; |
---|
3275 | L[2] = NName; |
---|
3276 | // Name, Dname will be used further |
---|
3277 | kill NName; |
---|
3278 | // block ord (lp(2),dp); |
---|
3279 | tmp[1] = "lp"; // string |
---|
3280 | iv = 1,1; |
---|
3281 | tmp[2] = iv; //intvec |
---|
3282 | Lord[1] = tmp; |
---|
3283 | // continue with dp 1,1,1,1... |
---|
3284 | tmp[1] = "dp"; // string |
---|
3285 | s = "iv="; |
---|
3286 | for(i=1;i<=Nnew;i++) |
---|
3287 | { |
---|
3288 | s = s+"1,"; |
---|
3289 | } |
---|
3290 | s[size(s)]= ";"; |
---|
3291 | execute(s); |
---|
3292 | kill s; |
---|
3293 | tmp[2] = iv; |
---|
3294 | Lord[2] = tmp; |
---|
3295 | tmp[1] = "C"; |
---|
3296 | iv = 0; |
---|
3297 | tmp[2] = iv; |
---|
3298 | Lord[3] = tmp; |
---|
3299 | tmp = 0; |
---|
3300 | L[3] = Lord; |
---|
3301 | // we are done with the list |
---|
3302 | def @R@ = ring(L); |
---|
3303 | setring @R@; |
---|
3304 | matrix @D[Nnew][Nnew]; |
---|
3305 | @D[1,2]=t; |
---|
3306 | for(i=1; i<=N; i++) |
---|
3307 | { |
---|
3308 | @D[2+i,N+2+i]=1; |
---|
3309 | } |
---|
3310 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
3311 | // L[6] = @D; |
---|
3312 | def @R = nc_algebra(1,@D); |
---|
3313 | setring @R; |
---|
3314 | kill @R@; |
---|
3315 | dbprint(ppl,"// -1-1- the ring @R(t,s,_x,_Dx) is ready"); |
---|
3316 | dbprint(ppl-1, @R); |
---|
3317 | // create the ideal I |
---|
3318 | poly F = imap(save,F); |
---|
3319 | ideal I = t*F+s; |
---|
3320 | poly p; |
---|
3321 | for(i=1; i<=N; i++) |
---|
3322 | { |
---|
3323 | p = t; // t |
---|
3324 | p = diff(F,var(2+i))*p; |
---|
3325 | I = I, var(N+2+i) + p; |
---|
3326 | } |
---|
3327 | // -------- the ideal I is ready ---------- |
---|
3328 | dbprint(ppl,"// -1-2- starting the elimination of t in @R"); |
---|
3329 | dbprint(ppl-1, I); |
---|
3330 | ideal J = engine(I,eng); |
---|
3331 | ideal K = nselect(J,1); |
---|
3332 | dbprint(ppl,"// -1-3- t is eliminated"); |
---|
3333 | dbprint(ppl-1, K); // K is without t |
---|
3334 | K = engine(K,eng); // std does the job too |
---|
3335 | // now, we must change the ordering |
---|
3336 | // and create a ring without t, Dt |
---|
3337 | // setring S; |
---|
3338 | // ----------- the ring @R3 ------------ |
---|
3339 | // _x, _Dx,s; elim.ord for _x,_Dx. |
---|
3340 | // keep: N, i,j,s, tmp, RL |
---|
3341 | Nnew = 2*N+1; |
---|
3342 | kill Lord, tmp, iv, RName; |
---|
3343 | list Lord, tmp; |
---|
3344 | intvec iv; |
---|
3345 | list L=imap(save,L); |
---|
3346 | list RL=imap(save,RL); |
---|
3347 | L[1] = RL[1]; |
---|
3348 | L[4] = RL[4]; // char, minpoly |
---|
3349 | // check whether vars hava admissible names -> done earlier |
---|
3350 | // now, create the names for new var |
---|
3351 | tmp[1] = "s"; |
---|
3352 | // DName is defined earlier |
---|
3353 | list NName = Name + DName + tmp; |
---|
3354 | L[2] = NName; |
---|
3355 | tmp = 0; |
---|
3356 | // block ord (dp(N),dp); |
---|
3357 | string s = "iv="; |
---|
3358 | for (i=1; i<=Nnew-1; i++) |
---|
3359 | { |
---|
3360 | s = s+"1,"; |
---|
3361 | } |
---|
3362 | s[size(s)]=";"; |
---|
3363 | execute(s); |
---|
3364 | tmp[1] = "dp"; // string |
---|
3365 | tmp[2] = iv; // intvec |
---|
3366 | Lord[1] = tmp; |
---|
3367 | // continue with dp 1,1,1,1... |
---|
3368 | tmp[1] = "dp"; // string |
---|
3369 | s[size(s)] = ","; |
---|
3370 | s = s+"1;"; |
---|
3371 | execute(s); |
---|
3372 | kill s; |
---|
3373 | kill NName; |
---|
3374 | tmp[2] = iv; |
---|
3375 | Lord[2] = tmp; |
---|
3376 | tmp[1] = "C"; iv = 0; tmp[2]=iv; |
---|
3377 | Lord[3] = tmp; tmp = 0; |
---|
3378 | L[3] = Lord; |
---|
3379 | // we are done with the list. Now add a Plural part |
---|
3380 | def @R2@ = ring(L); |
---|
3381 | setring @R2@; |
---|
3382 | matrix @D[Nnew][Nnew]; |
---|
3383 | for (i=1; i<=N; i++) |
---|
3384 | { |
---|
3385 | @D[i,N+i]=1; |
---|
3386 | } |
---|
3387 | def @R2 = nc_algebra(1,@D); |
---|
3388 | setring @R2; |
---|
3389 | kill @R2@; |
---|
3390 | dbprint(ppl,"// -2-1- the ring @R2(_x,_Dx,s) is ready"); |
---|
3391 | dbprint(ppl-1, @R2); |
---|
3392 | ideal MM = maxideal(1); |
---|
3393 | MM = 0,s,MM; |
---|
3394 | map R01 = @R, MM; |
---|
3395 | ideal K = R01(K); |
---|
3396 | // total cleanup |
---|
3397 | ideal LD = K; |
---|
3398 | // make leadcoeffs positive |
---|
3399 | for (i=1; i<= ncols(LD); i++) |
---|
3400 | { |
---|
3401 | if (leadcoef(LD[i]) <0 ) |
---|
3402 | { |
---|
3403 | LD[i] = -LD[i]; |
---|
3404 | } |
---|
3405 | } |
---|
3406 | export LD; |
---|
3407 | kill @R; |
---|
3408 | return(@R2); |
---|
3409 | } |
---|
3410 | example |
---|
3411 | { |
---|
3412 | "EXAMPLE:"; echo = 2; |
---|
3413 | ring r = 0,(x,y,z),Dp; |
---|
3414 | poly F = x^3+y^3+z^3; |
---|
3415 | printlevel = 0; |
---|
3416 | def A = SannfsBM(F); |
---|
3417 | setring A; |
---|
3418 | LD; |
---|
3419 | } |
---|
3420 | |
---|
3421 | proc SannfsBFCT(poly F, list #) |
---|
3422 | "USAGE: SannfsBFCT(f [,eng]); f a poly, eng an optional int |
---|
3423 | RETURN: ring |
---|
3424 | PURPOSE: compute ann f^s and Groebner basis of ann f^s+f in D[s] |
---|
3425 | NOTE: activate this ring with the @code{setring} command. |
---|
3426 | @* This procedure, unlike SannfsBM, returns a ring with the degrevlex ordering in all variables. |
---|
3427 | @* In the ring D[s], the ideal LD (which IS a Groebner basis) is the needed ideal. |
---|
3428 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
3429 | @* otherwise, and by default @code{slimgb} is used. |
---|
3430 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
3431 | @* if printlevel>=2, all the debug messages will be printed. |
---|
3432 | EXAMPLE: example SannfsBFCT; shows examples |
---|
3433 | " |
---|
3434 | { |
---|
3435 | // DEBUG INFO: ordering on the output ring = dp, engine on the sum of ideals is used |
---|
3436 | // hence it's the situation for slimgb |
---|
3437 | |
---|
3438 | int eng = 0; |
---|
3439 | if ( size(#)>0 ) |
---|
3440 | { |
---|
3441 | if ( typeof(#[1]) == "int" ) |
---|
3442 | { |
---|
3443 | eng = int(#[1]); |
---|
3444 | } |
---|
3445 | } |
---|
3446 | // returns a list with a ring and an ideal LD in it |
---|
3447 | int ppl = printlevel-voice+2; |
---|
3448 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
3449 | def save = basering; |
---|
3450 | int N = nvars(basering); |
---|
3451 | int Nnew = 2*N+2; |
---|
3452 | int i,j; |
---|
3453 | string s; |
---|
3454 | list RL = ringlist(basering); |
---|
3455 | list L, Lord; |
---|
3456 | list tmp; |
---|
3457 | intvec iv; |
---|
3458 | L[1] = RL[1]; // char |
---|
3459 | L[4] = RL[4]; // char, minpoly |
---|
3460 | // check whether vars have admissible names |
---|
3461 | list Name = RL[2]; |
---|
3462 | list RName; |
---|
3463 | RName[1] = "@t"; |
---|
3464 | RName[2] = "@s"; |
---|
3465 | for(i=1;i<=N;i++) |
---|
3466 | { |
---|
3467 | for(j=1; j<=size(RName);j++) |
---|
3468 | { |
---|
3469 | if (Name[i] == RName[j]) |
---|
3470 | { |
---|
3471 | ERROR("Variable names should not include @t,@s"); |
---|
3472 | } |
---|
3473 | } |
---|
3474 | } |
---|
3475 | // now, create the names for new vars |
---|
3476 | list DName; |
---|
3477 | for(i=1;i<=N;i++) |
---|
3478 | { |
---|
3479 | DName[i] = "D"+Name[i]; // concat |
---|
3480 | } |
---|
3481 | tmp[1] = "t"; |
---|
3482 | tmp[2] = "s"; |
---|
3483 | list NName = tmp + DName + Name ; |
---|
3484 | L[2] = NName; |
---|
3485 | // Name, Dname will be used further |
---|
3486 | kill NName; |
---|
3487 | // block ord (lp(2),dp); |
---|
3488 | tmp[1] = "lp"; // string |
---|
3489 | iv = 1,1; |
---|
3490 | tmp[2] = iv; //intvec |
---|
3491 | Lord[1] = tmp; |
---|
3492 | // continue with dp 1,1,1,1... |
---|
3493 | tmp[1] = "dp"; // string |
---|
3494 | s = "iv="; |
---|
3495 | for(i=1;i<=Nnew;i++) |
---|
3496 | { |
---|
3497 | s = s+"1,"; |
---|
3498 | } |
---|
3499 | s[size(s)]= ";"; |
---|
3500 | execute(s); |
---|
3501 | kill s; |
---|
3502 | tmp[2] = iv; |
---|
3503 | Lord[2] = tmp; |
---|
3504 | tmp[1] = "C"; |
---|
3505 | iv = 0; |
---|
3506 | tmp[2] = iv; |
---|
3507 | Lord[3] = tmp; |
---|
3508 | tmp = 0; |
---|
3509 | L[3] = Lord; |
---|
3510 | // we are done with the list |
---|
3511 | def @R@ = ring(L); |
---|
3512 | setring @R@; |
---|
3513 | matrix @D[Nnew][Nnew]; |
---|
3514 | @D[1,2]=t; |
---|
3515 | for(i=1; i<=N; i++) |
---|
3516 | { |
---|
3517 | @D[2+i,N+2+i]=-1; |
---|
3518 | } |
---|
3519 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
3520 | // L[6] = @D; |
---|
3521 | def @R = nc_algebra(1,@D); |
---|
3522 | setring @R; |
---|
3523 | kill @R@; |
---|
3524 | dbprint(ppl,"// -1-1- the ring @R(t,s,_Dx,_x) is ready"); |
---|
3525 | dbprint(ppl-1, @R); |
---|
3526 | // create the ideal I |
---|
3527 | poly F = imap(save,F); |
---|
3528 | ideal I = t*F+s; |
---|
3529 | poly p; |
---|
3530 | for(i=1; i<=N; i++) |
---|
3531 | { |
---|
3532 | p = t; // t |
---|
3533 | p = diff(F,var(N+2+i))*p; |
---|
3534 | I = I, var(2+i) + p; |
---|
3535 | } |
---|
3536 | // -------- the ideal I is ready ---------- |
---|
3537 | dbprint(ppl,"// -1-2- starting the elimination of t in @R"); |
---|
3538 | dbprint(ppl-1, I); |
---|
3539 | ideal J = engine(I,eng); |
---|
3540 | ideal K = nselect(J,1); |
---|
3541 | dbprint(ppl,"// -1-3- t is eliminated"); |
---|
3542 | dbprint(ppl-1, K); // K is without t |
---|
3543 | K = engine(K,eng); // std does the job too |
---|
3544 | // now, we must change the ordering |
---|
3545 | // and create a ring without t |
---|
3546 | // setring S; |
---|
3547 | // ----------- the ring @R3 ------------ |
---|
3548 | // _Dx,_x,s; +fast ord ! |
---|
3549 | // keep: N, i,j,s, tmp, RL |
---|
3550 | Nnew = 2*N+1; |
---|
3551 | kill Lord, tmp, iv, RName; |
---|
3552 | list Lord, tmp; |
---|
3553 | intvec iv; |
---|
3554 | list L=imap(save,L); |
---|
3555 | list RL=imap(save,RL); |
---|
3556 | L[1] = RL[1]; |
---|
3557 | L[4] = RL[4]; // char, minpoly |
---|
3558 | // check whether vars hava admissible names -> done earlier |
---|
3559 | // now, create the names for new var |
---|
3560 | tmp[1] = "s"; |
---|
3561 | // DName is defined earlier |
---|
3562 | list NName = DName + Name + tmp; |
---|
3563 | L[2] = NName; |
---|
3564 | tmp = 0; |
---|
3565 | // just dp |
---|
3566 | // block ord (dp(N),dp); |
---|
3567 | string s = "iv="; |
---|
3568 | for (i=1; i<=Nnew; i++) |
---|
3569 | { |
---|
3570 | s = s+"1,"; |
---|
3571 | } |
---|
3572 | s[size(s)]=";"; |
---|
3573 | execute(s); |
---|
3574 | tmp[1] = "dp"; // string |
---|
3575 | tmp[2] = iv; // intvec |
---|
3576 | Lord[1] = tmp; |
---|
3577 | kill s; |
---|
3578 | kill NName; |
---|
3579 | tmp[1] = "C"; |
---|
3580 | Lord[2] = tmp; tmp = 0; |
---|
3581 | L[3] = Lord; |
---|
3582 | // we are done with the list. Now add a Plural part |
---|
3583 | def @R2@ = ring(L); |
---|
3584 | setring @R2@; |
---|
3585 | matrix @D[Nnew][Nnew]; |
---|
3586 | for (i=1; i<=N; i++) |
---|
3587 | { |
---|
3588 | @D[i,N+i]=-1; |
---|
3589 | } |
---|
3590 | def @R2 = nc_algebra(1,@D); |
---|
3591 | setring @R2; |
---|
3592 | kill @R2@; |
---|
3593 | dbprint(ppl,"// -2-1- the ring @R2(_Dx,_x,s) is ready"); |
---|
3594 | dbprint(ppl-1, @R2); |
---|
3595 | ideal MM = maxideal(1); |
---|
3596 | MM = 0,s,MM; |
---|
3597 | map R01 = @R, MM; |
---|
3598 | ideal K = R01(K); |
---|
3599 | // total cleanup |
---|
3600 | poly F = imap(save, F); |
---|
3601 | ideal LD = K,F; |
---|
3602 | dbprint(ppl,"// -2-2- start GB computations for Ann f^s + f"); |
---|
3603 | dbprint(ppl-1, LD); |
---|
3604 | LD = engine(LD,eng); |
---|
3605 | dbprint(ppl,"// -2-3- finished GB computations for Ann f^s + f"); |
---|
3606 | dbprint(ppl-1, LD); |
---|
3607 | // make leadcoeffs positive |
---|
3608 | for (i=1; i<= ncols(LD); i++) |
---|
3609 | { |
---|
3610 | if (leadcoef(LD[i]) <0 ) |
---|
3611 | { |
---|
3612 | LD[i] = -LD[i]; |
---|
3613 | } |
---|
3614 | } |
---|
3615 | export LD; |
---|
3616 | kill @R; |
---|
3617 | return(@R2); |
---|
3618 | } |
---|
3619 | example |
---|
3620 | { |
---|
3621 | "EXAMPLE:"; echo = 2; |
---|
3622 | ring r = 0,(x,y,z,w),Dp; |
---|
3623 | poly F = x^3+y^3+z^3*w; |
---|
3624 | printlevel = 0; |
---|
3625 | def A = SannfsBFCT(F); setring A; |
---|
3626 | intvec v = 1,2,3,4,5,6,7,8; |
---|
3627 | // are there polynomials, depending on s only? |
---|
3628 | nselect(LD,v); |
---|
3629 | // a fancier example: |
---|
3630 | def R = reiffen(4,5); setring R; |
---|
3631 | v = 1,2,3,4; |
---|
3632 | RC; // the Reiffen curve in 4,5 |
---|
3633 | def B = SannfsBFCT(RC); |
---|
3634 | setring B; |
---|
3635 | // are there polynomials, depending on s only? |
---|
3636 | nselect(LD,v); |
---|
3637 | // it is not the case. Are there leading monomials in s only? |
---|
3638 | nselect(lead(LD),v); |
---|
3639 | } |
---|
3640 | |
---|
3641 | proc SannfsBFCTstd(poly F, list #) |
---|
3642 | "USAGE: SannfsBFCTstd(f [,eng]); f a poly, eng an optional int |
---|
3643 | RETURN: ring |
---|
3644 | PURPOSE: compute ann f^s and Groebner basis of ann f^s+f in D[s] |
---|
3645 | NOTE: activate this ring with the @code{setring} command. |
---|
3646 | @* This procedure, unlike SannfsBM, returns a ring with the degrevlex ordering in all variables. |
---|
3647 | @* In the ring D[s], the ideal LD (which IS a Groebner basis) is the needed ideal. |
---|
3648 | @* In this procedure @code{std} is used for Groebner basis computations. |
---|
3649 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
3650 | @* if printlevel>=2, all the debug messages will be printed. |
---|
3651 | EXAMPLE: example SannfsBFCTstd; shows examples |
---|
3652 | " |
---|
3653 | { |
---|
3654 | // DEBUG INFO: ordering on the output ring = dp, |
---|
3655 | // use std(K,F); for reusing the std property of K |
---|
3656 | |
---|
3657 | int eng = 0; |
---|
3658 | if ( size(#)>0 ) |
---|
3659 | { |
---|
3660 | if ( typeof(#[1]) == "int" ) |
---|
3661 | { |
---|
3662 | eng = int(#[1]); |
---|
3663 | } |
---|
3664 | } |
---|
3665 | // returns a list with a ring and an ideal LD in it |
---|
3666 | int ppl = printlevel-voice+2; |
---|
3667 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
3668 | def save = basering; |
---|
3669 | int N = nvars(basering); |
---|
3670 | int Nnew = 2*N+2; |
---|
3671 | int i,j; |
---|
3672 | string s; |
---|
3673 | list RL = ringlist(basering); |
---|
3674 | list L, Lord; |
---|
3675 | list tmp; |
---|
3676 | intvec iv; |
---|
3677 | L[1] = RL[1]; // char |
---|
3678 | L[4] = RL[4]; // char, minpoly |
---|
3679 | // check whether vars have admissible names |
---|
3680 | list Name = RL[2]; |
---|
3681 | list RName; |
---|
3682 | RName[1] = "@t"; |
---|
3683 | RName[2] = "@s"; |
---|
3684 | for(i=1;i<=N;i++) |
---|
3685 | { |
---|
3686 | for(j=1; j<=size(RName);j++) |
---|
3687 | { |
---|
3688 | if (Name[i] == RName[j]) |
---|
3689 | { |
---|
3690 | ERROR("Variable names should not include @t,@s"); |
---|
3691 | } |
---|
3692 | } |
---|
3693 | } |
---|
3694 | // now, create the names for new vars |
---|
3695 | list DName; |
---|
3696 | for(i=1;i<=N;i++) |
---|
3697 | { |
---|
3698 | DName[i] = "D"+Name[i]; // concat |
---|
3699 | } |
---|
3700 | tmp[1] = "t"; |
---|
3701 | tmp[2] = "s"; |
---|
3702 | list NName = tmp + DName + Name ; |
---|
3703 | L[2] = NName; |
---|
3704 | // Name, Dname will be used further |
---|
3705 | kill NName; |
---|
3706 | // block ord (lp(2),dp); |
---|
3707 | tmp[1] = "lp"; // string |
---|
3708 | iv = 1,1; |
---|
3709 | tmp[2] = iv; //intvec |
---|
3710 | Lord[1] = tmp; |
---|
3711 | // continue with dp 1,1,1,1... |
---|
3712 | tmp[1] = "dp"; // string |
---|
3713 | s = "iv="; |
---|
3714 | for(i=1;i<=Nnew;i++) |
---|
3715 | { |
---|
3716 | s = s+"1,"; |
---|
3717 | } |
---|
3718 | s[size(s)]= ";"; |
---|
3719 | execute(s); |
---|
3720 | kill s; |
---|
3721 | tmp[2] = iv; |
---|
3722 | Lord[2] = tmp; |
---|
3723 | tmp[1] = "C"; |
---|
3724 | iv = 0; |
---|
3725 | tmp[2] = iv; |
---|
3726 | Lord[3] = tmp; |
---|
3727 | tmp = 0; |
---|
3728 | L[3] = Lord; |
---|
3729 | // we are done with the list |
---|
3730 | def @R@ = ring(L); |
---|
3731 | setring @R@; |
---|
3732 | matrix @D[Nnew][Nnew]; |
---|
3733 | @D[1,2]=t; |
---|
3734 | for(i=1; i<=N; i++) |
---|
3735 | { |
---|
3736 | @D[2+i,N+2+i]=-1; |
---|
3737 | } |
---|
3738 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
3739 | // L[6] = @D; |
---|
3740 | def @R = nc_algebra(1,@D); |
---|
3741 | setring @R; |
---|
3742 | kill @R@; |
---|
3743 | dbprint(ppl,"// -1-1- the ring @R(t,s,_Dx,_x) is ready"); |
---|
3744 | dbprint(ppl-1, @R); |
---|
3745 | // create the ideal I |
---|
3746 | poly F = imap(save,F); |
---|
3747 | ideal I = t*F+s; |
---|
3748 | poly p; |
---|
3749 | for(i=1; i<=N; i++) |
---|
3750 | { |
---|
3751 | p = t; // t |
---|
3752 | p = diff(F,var(N+2+i))*p; |
---|
3753 | I = I, var(2+i) + p; |
---|
3754 | } |
---|
3755 | // -------- the ideal I is ready ---------- |
---|
3756 | dbprint(ppl,"// -1-2- starting the elimination of t in @R"); |
---|
3757 | dbprint(ppl-1, I); |
---|
3758 | ideal J = engine(I,eng); |
---|
3759 | ideal K = nselect(J,1); |
---|
3760 | dbprint(ppl,"// -1-3- t is eliminated"); |
---|
3761 | dbprint(ppl-1, K); // K is without t |
---|
3762 | K = engine(K,eng); // std does the job too |
---|
3763 | // now, we must change the ordering |
---|
3764 | // and create a ring without t |
---|
3765 | // setring S; |
---|
3766 | // ----------- the ring @R3 ------------ |
---|
3767 | // _Dx,_x,s; +fast ord ! |
---|
3768 | // keep: N, i,j,s, tmp, RL |
---|
3769 | Nnew = 2*N+1; |
---|
3770 | kill Lord, tmp, iv, RName; |
---|
3771 | list Lord, tmp; |
---|
3772 | intvec iv; |
---|
3773 | list L=imap(save,L); |
---|
3774 | list RL=imap(save,RL); |
---|
3775 | L[1] = RL[1]; |
---|
3776 | L[4] = RL[4]; // char, minpoly |
---|
3777 | // check whether vars hava admissible names -> done earlier |
---|
3778 | // now, create the names for new var |
---|
3779 | tmp[1] = "s"; |
---|
3780 | // DName is defined earlier |
---|
3781 | list NName = DName + Name + tmp; |
---|
3782 | L[2] = NName; |
---|
3783 | tmp = 0; |
---|
3784 | // just dp |
---|
3785 | // block ord (dp(N),dp); |
---|
3786 | string s = "iv="; |
---|
3787 | for (i=1; i<=Nnew; i++) |
---|
3788 | { |
---|
3789 | s = s+"1,"; |
---|
3790 | } |
---|
3791 | s[size(s)]=";"; |
---|
3792 | execute(s); |
---|
3793 | tmp[1] = "dp"; // string |
---|
3794 | tmp[2] = iv; // intvec |
---|
3795 | Lord[1] = tmp; |
---|
3796 | kill s; |
---|
3797 | kill NName; |
---|
3798 | tmp[1] = "C"; |
---|
3799 | Lord[2] = tmp; tmp = 0; |
---|
3800 | L[3] = Lord; |
---|
3801 | // we are done with the list. Now add a Plural part |
---|
3802 | def @R2@ = ring(L); |
---|
3803 | setring @R2@; |
---|
3804 | matrix @D[Nnew][Nnew]; |
---|
3805 | for (i=1; i<=N; i++) |
---|
3806 | { |
---|
3807 | @D[i,N+i]=-1; |
---|
3808 | } |
---|
3809 | def @R2 = nc_algebra(1,@D); |
---|
3810 | setring @R2; |
---|
3811 | kill @R2@; |
---|
3812 | dbprint(ppl,"// -2-1- the ring @R2(_Dx,_x,s) is ready"); |
---|
3813 | dbprint(ppl-1, @R2); |
---|
3814 | ideal MM = maxideal(1); |
---|
3815 | MM = 0,s,MM; |
---|
3816 | map R01 = @R, MM; |
---|
3817 | ideal K = R01(K); |
---|
3818 | // total cleanup |
---|
3819 | poly F = imap(save, F); |
---|
3820 | // ideal LD = K,F; |
---|
3821 | dbprint(ppl,"// -2-2- start GB computations for Ann f^s + f"); |
---|
3822 | // dbprint(ppl-1, LD); |
---|
3823 | ideal LD = std(K,F); |
---|
3824 | // LD = engine(LD,eng); |
---|
3825 | dbprint(ppl,"// -2-3- finished GB computations for Ann f^s + f"); |
---|
3826 | dbprint(ppl-1, LD); |
---|
3827 | // make leadcoeffs positive |
---|
3828 | for (i=1; i<= ncols(LD); i++) |
---|
3829 | { |
---|
3830 | if (leadcoef(LD[i]) <0 ) |
---|
3831 | { |
---|
3832 | LD[i] = -LD[i]; |
---|
3833 | } |
---|
3834 | } |
---|
3835 | export LD; |
---|
3836 | kill @R; |
---|
3837 | return(@R2); |
---|
3838 | } |
---|
3839 | example |
---|
3840 | { |
---|
3841 | "EXAMPLE:"; echo = 2; |
---|
3842 | ring r = 0,(x,y,z,w),Dp; |
---|
3843 | poly F = x^3+y^3+z^3*w; |
---|
3844 | printlevel = 0; |
---|
3845 | def A = SannfsBFCT(F); setring A; |
---|
3846 | intvec v = 1,2,3,4,5,6,7,8; |
---|
3847 | // are there polynomials, depending on s only? |
---|
3848 | nselect(LD,v); |
---|
3849 | // a fancier example: |
---|
3850 | def R = reiffen(4,5); setring R; |
---|
3851 | v = 1,2,3,4; |
---|
3852 | RC; // the Reiffen curve in 4,5 |
---|
3853 | def B = SannfsBFCT(RC); |
---|
3854 | setring B; |
---|
3855 | // are there polynomials, depending on s only? |
---|
3856 | nselect(LD,v); |
---|
3857 | // it is not the case. Are there leading monomials in s only? |
---|
3858 | nselect(lead(LD),v); |
---|
3859 | } |
---|
3860 | |
---|
3861 | // use a finer ordering |
---|
3862 | |
---|
3863 | proc SannfsLOT(poly F, list #) |
---|
3864 | "USAGE: SannfsLOT(f [,eng]); f a poly, eng an optional int |
---|
3865 | RETURN: ring |
---|
3866 | PURPOSE: compute the D-module structure of basering[1/f]*f^s, according to the Levandovskyy's modification of the algorithm by Oaku and Takayama in the ring D[s], where D is the Weyl algebra |
---|
3867 | NOTE: activate this ring with the @code{setring} command. |
---|
3868 | @* In the ring D[s], the ideal LD (which is NOT a Groebner basis) is the needed D-module structure. |
---|
3869 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
3870 | @* otherwise, and by default @code{slimgb} is used. |
---|
3871 | @* If printlevel=1, progress debug messages will be printed, |
---|
3872 | @* if printlevel>=2, all the debug messages will be printed. |
---|
3873 | EXAMPLE: example SannfsLOT; shows examples |
---|
3874 | " |
---|
3875 | { |
---|
3876 | int eng = 0; |
---|
3877 | if ( size(#)>0 ) |
---|
3878 | { |
---|
3879 | if ( typeof(#[1]) == "int" ) |
---|
3880 | { |
---|
3881 | eng = int(#[1]); |
---|
3882 | } |
---|
3883 | } |
---|
3884 | // returns a list with a ring and an ideal LD in it |
---|
3885 | int ppl = printlevel-voice+2; |
---|
3886 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
3887 | def save = basering; |
---|
3888 | int N = nvars(basering); |
---|
3889 | // int Nnew = 2*(N+2); |
---|
3890 | int Nnew = 2*(N+1)+1; //removed u,v; added s |
---|
3891 | int i,j; |
---|
3892 | string s; |
---|
3893 | list RL = ringlist(basering); |
---|
3894 | list L, Lord; |
---|
3895 | list tmp; |
---|
3896 | intvec iv; |
---|
3897 | L[1] = RL[1]; // char |
---|
3898 | L[4] = RL[4]; // char, minpoly |
---|
3899 | // check whether vars have admissible names |
---|
3900 | list Name = RL[2]; |
---|
3901 | list RName; |
---|
3902 | // RName[1] = "u"; |
---|
3903 | // RName[2] = "v"; |
---|
3904 | RName[1] = "t"; |
---|
3905 | RName[2] = "Dt"; |
---|
3906 | for(i=1;i<=N;i++) |
---|
3907 | { |
---|
3908 | for(j=1; j<=size(RName);j++) |
---|
3909 | { |
---|
3910 | if (Name[i] == RName[j]) |
---|
3911 | { |
---|
3912 | ERROR("Variable names should not include t,Dt"); |
---|
3913 | } |
---|
3914 | } |
---|
3915 | } |
---|
3916 | // now, create the names for new vars |
---|
3917 | // tmp[1] = "u"; |
---|
3918 | // tmp[2] = "v"; |
---|
3919 | // list UName = tmp; |
---|
3920 | list DName; |
---|
3921 | for(i=1;i<=N;i++) |
---|
3922 | { |
---|
3923 | DName[i] = "D"+Name[i]; // concat |
---|
3924 | } |
---|
3925 | tmp = 0; |
---|
3926 | tmp[1] = "t"; |
---|
3927 | tmp[2] = "Dt"; |
---|
3928 | list SName ; SName[1] = "s"; |
---|
3929 | // list NName = tmp + Name + DName + SName; |
---|
3930 | list NName = tmp + SName + Name + DName; |
---|
3931 | L[2] = NName; |
---|
3932 | tmp = 0; |
---|
3933 | // Name, Dname will be used further |
---|
3934 | // kill UName; |
---|
3935 | kill NName; |
---|
3936 | // block ord (a(1,1),dp); |
---|
3937 | tmp[1] = "a"; // string |
---|
3938 | iv = 1,1; |
---|
3939 | tmp[2] = iv; //intvec |
---|
3940 | Lord[1] = tmp; |
---|
3941 | // continue with a(0,0,1) |
---|
3942 | tmp[1] = "a"; // string |
---|
3943 | iv = 0,0,1; |
---|
3944 | tmp[2] = iv; //intvec |
---|
3945 | Lord[2] = tmp; |
---|
3946 | // continue with dp 1,1,1,1... |
---|
3947 | tmp[1] = "dp"; // string |
---|
3948 | s = "iv="; |
---|
3949 | for(i=1;i<=Nnew;i++) |
---|
3950 | { |
---|
3951 | s = s+"1,"; |
---|
3952 | } |
---|
3953 | s[size(s)]= ";"; |
---|
3954 | execute(s); |
---|
3955 | tmp[2] = iv; |
---|
3956 | Lord[3] = tmp; |
---|
3957 | tmp[1] = "C"; |
---|
3958 | iv = 0; |
---|
3959 | tmp[2] = iv; |
---|
3960 | Lord[4] = tmp; |
---|
3961 | tmp = 0; |
---|
3962 | L[3] = Lord; |
---|
3963 | // we are done with the list |
---|
3964 | def @R@ = ring(L); |
---|
3965 | setring @R@; |
---|
3966 | matrix @D[Nnew][Nnew]; |
---|
3967 | @D[1,2]=1; |
---|
3968 | for(i=1; i<=N; i++) |
---|
3969 | { |
---|
3970 | @D[3+i,N+3+i]=1; |
---|
3971 | } |
---|
3972 | // ADD [s,t]=-t, [s,Dt]=Dt |
---|
3973 | @D[1,3] = -var(1); |
---|
3974 | @D[2,3] = var(2); |
---|
3975 | // @D[N+3,2*(N+2)]=1; old t,Dt stuff |
---|
3976 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
3977 | // L[6] = @D; |
---|
3978 | def @R = nc_algebra(1,@D); |
---|
3979 | setring @R; |
---|
3980 | kill @R@; |
---|
3981 | dbprint(ppl,"// -1-1- the ring @R(t,Dt,s,_x,_Dx) is ready"); |
---|
3982 | dbprint(ppl-1, @R); |
---|
3983 | // create the ideal I |
---|
3984 | poly F = imap(save,F); |
---|
3985 | // ideal I = u*F-t,u*v-1; |
---|
3986 | ideal I = F-t; |
---|
3987 | poly p; |
---|
3988 | for(i=1; i<=N; i++) |
---|
3989 | { |
---|
3990 | // p = u*Dt; // u*Dt |
---|
3991 | p = Dt; |
---|
3992 | p = diff(F,var(3+i))*p; |
---|
3993 | I = I, var(N+3+i) + p; |
---|
3994 | } |
---|
3995 | // I = I, var(1)*var(2) + var(Nnew) +1; // reduce it with t-f!!! |
---|
3996 | // t*Dt + s +1 reduced with t-f gives f*Dt + s |
---|
3997 | I = I, F*var(2) + var(3); |
---|
3998 | // -------- the ideal I is ready ---------- |
---|
3999 | dbprint(ppl,"// -1-2- starting the elimination of t,Dt in @R"); |
---|
4000 | dbprint(ppl-1, I); |
---|
4001 | ideal J = engine(I,eng); |
---|
4002 | ideal K = nselect(J,1..2); |
---|
4003 | dbprint(ppl,"// -1-3- t,Dt are eliminated"); |
---|
4004 | dbprint(ppl-1, K); // K is without t, Dt |
---|
4005 | K = engine(K,eng); // std does the job too |
---|
4006 | // now, we must change the ordering |
---|
4007 | // and create a ring without t, Dt |
---|
4008 | setring save; |
---|
4009 | // ----------- the ring @R3 ------------ |
---|
4010 | // _x, _Dx,s; elim.ord for _x,_Dx. |
---|
4011 | // keep: N, i,j,s, tmp, RL |
---|
4012 | Nnew = 2*N+1; |
---|
4013 | kill Lord, tmp, iv, RName; |
---|
4014 | list Lord, tmp; |
---|
4015 | intvec iv; |
---|
4016 | L[1] = RL[1]; |
---|
4017 | L[4] = RL[4]; // char, minpoly |
---|
4018 | // check whether vars hava admissible names -> done earlier |
---|
4019 | // now, create the names for new var |
---|
4020 | tmp[1] = "s"; |
---|
4021 | // DName is defined earlier |
---|
4022 | list NName = Name + DName + tmp; |
---|
4023 | L[2] = NName; |
---|
4024 | tmp = 0; |
---|
4025 | // block ord (dp(N),dp); |
---|
4026 | // string s is already defined |
---|
4027 | s = "iv="; |
---|
4028 | for (i=1; i<=Nnew-1; i++) |
---|
4029 | { |
---|
4030 | s = s+"1,"; |
---|
4031 | } |
---|
4032 | s[size(s)]=";"; |
---|
4033 | execute(s); |
---|
4034 | tmp[1] = "dp"; // string |
---|
4035 | tmp[2] = iv; // intvec |
---|
4036 | Lord[1] = tmp; |
---|
4037 | // continue with dp 1,1,1,1... |
---|
4038 | tmp[1] = "dp"; // string |
---|
4039 | s[size(s)] = ","; |
---|
4040 | s = s+"1;"; |
---|
4041 | execute(s); |
---|
4042 | kill s; |
---|
4043 | kill NName; |
---|
4044 | tmp[2] = iv; |
---|
4045 | Lord[2] = tmp; |
---|
4046 | tmp[1] = "C"; iv = 0; tmp[2]=iv; |
---|
4047 | Lord[3] = tmp; tmp = 0; |
---|
4048 | L[3] = Lord; |
---|
4049 | // we are done with the list. Now add a Plural part |
---|
4050 | def @R2@ = ring(L); |
---|
4051 | setring @R2@; |
---|
4052 | matrix @D[Nnew][Nnew]; |
---|
4053 | for (i=1; i<=N; i++) |
---|
4054 | { |
---|
4055 | @D[i,N+i]=1; |
---|
4056 | } |
---|
4057 | def @R2 = nc_algebra(1,@D); |
---|
4058 | setring @R2; |
---|
4059 | kill @R2@; |
---|
4060 | dbprint(ppl,"// -2-1- the ring @R2(_x,_Dx,s) is ready"); |
---|
4061 | dbprint(ppl-1, @R2); |
---|
4062 | ideal MM = maxideal(1); |
---|
4063 | // MM = 0,s,MM; |
---|
4064 | MM = 0,0,s,MM[1..size(MM)-1]; |
---|
4065 | map R01 = @R, MM; |
---|
4066 | ideal K = R01(K); |
---|
4067 | // total cleanup |
---|
4068 | ideal LD = K; |
---|
4069 | // make leadcoeffs positive |
---|
4070 | for (i=1; i<= ncols(LD); i++) |
---|
4071 | { |
---|
4072 | if (leadcoef(LD[i]) <0 ) |
---|
4073 | { |
---|
4074 | LD[i] = -LD[i]; |
---|
4075 | } |
---|
4076 | } |
---|
4077 | export LD; |
---|
4078 | kill @R; |
---|
4079 | return(@R2); |
---|
4080 | } |
---|
4081 | example |
---|
4082 | { |
---|
4083 | "EXAMPLE:"; echo = 2; |
---|
4084 | ring r = 0,(x,y,z),Dp; |
---|
4085 | poly F = x^3+y^3+z^3; |
---|
4086 | printlevel = 0; |
---|
4087 | def A = SannfsLOT(F); |
---|
4088 | setring A; |
---|
4089 | LD; |
---|
4090 | } |
---|
4091 | |
---|
4092 | /* |
---|
4093 | proc SannfsLOTold(poly F, list #) |
---|
4094 | "USAGE: SannfsLOT(f [,eng]); f a poly, eng an optional int |
---|
4095 | RETURN: ring |
---|
4096 | PURPOSE: compute the D-module structure of basering[1/f]*f^s, according to the Levandovskyy's modification of the algorithm by Oaku and Takayama in the ring D[s], where D is the Weyl algebra |
---|
4097 | NOTE: activate this ring with the @code{setring} command. |
---|
4098 | @* In the ring D[s], the ideal LD (which is NOT a Groebner basis) is the needed D-module structure. |
---|
4099 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
4100 | @* otherwise, and by default @code{slimgb} is used. |
---|
4101 | @* If printlevel=1, progress debug messages will be printed, |
---|
4102 | @* if printlevel>=2, all the debug messages will be printed. |
---|
4103 | EXAMPLE: example SannfsLOT; shows examples |
---|
4104 | " |
---|
4105 | { |
---|
4106 | int eng = 0; |
---|
4107 | if ( size(#)>0 ) |
---|
4108 | { |
---|
4109 | if ( typeof(#[1]) == "int" ) |
---|
4110 | { |
---|
4111 | eng = int(#[1]); |
---|
4112 | } |
---|
4113 | } |
---|
4114 | // returns a list with a ring and an ideal LD in it |
---|
4115 | int ppl = printlevel-voice+2; |
---|
4116 | // printf("plevel :%s, voice: %s",printlevel,voice); |
---|
4117 | def save = basering; |
---|
4118 | int N = nvars(basering); |
---|
4119 | // int Nnew = 2*(N+2); |
---|
4120 | int Nnew = 2*(N+1)+1; //removed u,v; added s |
---|
4121 | int i,j; |
---|
4122 | string s; |
---|
4123 | list RL = ringlist(basering); |
---|
4124 | list L, Lord; |
---|
4125 | list tmp; |
---|
4126 | intvec iv; |
---|
4127 | L[1] = RL[1]; // char |
---|
4128 | L[4] = RL[4]; // char, minpoly |
---|
4129 | // check whether vars have admissible names |
---|
4130 | list Name = RL[2]; |
---|
4131 | list RName; |
---|
4132 | // RName[1] = "u"; |
---|
4133 | // RName[2] = "v"; |
---|
4134 | RName[1] = "t"; |
---|
4135 | RName[2] = "Dt"; |
---|
4136 | for(i=1;i<=N;i++) |
---|
4137 | { |
---|
4138 | for(j=1; j<=size(RName);j++) |
---|
4139 | { |
---|
4140 | if (Name[i] == RName[j]) |
---|
4141 | { |
---|
4142 | ERROR("Variable names should not include t,Dt"); |
---|
4143 | } |
---|
4144 | } |
---|
4145 | } |
---|
4146 | // now, create the names for new vars |
---|
4147 | // tmp[1] = "u"; |
---|
4148 | // tmp[2] = "v"; |
---|
4149 | // list UName = tmp; |
---|
4150 | list DName; |
---|
4151 | for(i=1;i<=N;i++) |
---|
4152 | { |
---|
4153 | DName[i] = "D"+Name[i]; // concat |
---|
4154 | } |
---|
4155 | tmp = 0; |
---|
4156 | tmp[1] = "t"; |
---|
4157 | tmp[2] = "Dt"; |
---|
4158 | list SName ; SName[1] = "s"; |
---|
4159 | // list NName = UName + tmp + Name + DName; |
---|
4160 | list NName = tmp + Name + DName + SName; |
---|
4161 | L[2] = NName; |
---|
4162 | tmp = 0; |
---|
4163 | // Name, Dname will be used further |
---|
4164 | // kill UName; |
---|
4165 | kill NName; |
---|
4166 | // block ord (a(1,1),dp); |
---|
4167 | tmp[1] = "a"; // string |
---|
4168 | iv = 1,1; |
---|
4169 | tmp[2] = iv; //intvec |
---|
4170 | Lord[1] = tmp; |
---|
4171 | // continue with dp 1,1,1,1... |
---|
4172 | tmp[1] = "dp"; // string |
---|
4173 | s = "iv="; |
---|
4174 | for(i=1;i<=Nnew;i++) |
---|
4175 | { |
---|
4176 | s = s+"1,"; |
---|
4177 | } |
---|
4178 | s[size(s)]= ";"; |
---|
4179 | execute(s); |
---|
4180 | tmp[2] = iv; |
---|
4181 | Lord[2] = tmp; |
---|
4182 | tmp[1] = "C"; |
---|
4183 | iv = 0; |
---|
4184 | tmp[2] = iv; |
---|
4185 | Lord[3] = tmp; |
---|
4186 | tmp = 0; |
---|
4187 | L[3] = Lord; |
---|
4188 | // we are done with the list |
---|
4189 | def @R@ = ring(L); |
---|
4190 | setring @R@; |
---|
4191 | matrix @D[Nnew][Nnew]; |
---|
4192 | @D[1,2]=1; |
---|
4193 | for(i=1; i<=N; i++) |
---|
4194 | { |
---|
4195 | @D[2+i,N+2+i]=1; |
---|
4196 | } |
---|
4197 | // ADD [s,t]=-t, [s,Dt]=Dt |
---|
4198 | @D[1,Nnew] = -var(1); |
---|
4199 | @D[2,Nnew] = var(2); |
---|
4200 | // @D[N+3,2*(N+2)]=1; old t,Dt stuff |
---|
4201 | // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
4202 | // L[6] = @D; |
---|
4203 | def @R = nc_algebra(1,@D); |
---|
4204 | setring @R; |
---|
4205 | kill @R@; |
---|
4206 | dbprint(ppl,"// -1-1- the ring @R(t,Dt,_x,_Dx,s) is ready"); |
---|
4207 | dbprint(ppl-1, @R); |
---|
4208 | // create the ideal I |
---|
4209 | poly F = imap(save,F); |
---|
4210 | // ideal I = u*F-t,u*v-1; |
---|
4211 | ideal I = F-t; |
---|
4212 | poly p; |
---|
4213 | for(i=1; i<=N; i++) |
---|
4214 | { |
---|
4215 | // p = u*Dt; // u*Dt |
---|
4216 | p = Dt; |
---|
4217 | p = diff(F,var(2+i))*p; |
---|
4218 | I = I, var(N+2+i) + p; |
---|
4219 | } |
---|
4220 | // I = I, var(1)*var(2) + var(Nnew) +1; // reduce it with t-f!!! |
---|
4221 | // t*Dt + s +1 reduced with t-f gives f*Dt + s |
---|
4222 | I = I, F*var(2) + var(Nnew); |
---|
4223 | // -------- the ideal I is ready ---------- |
---|
4224 | dbprint(ppl,"// -1-2- starting the elimination of t,Dt in @R"); |
---|
4225 | dbprint(ppl-1, I); |
---|
4226 | ideal J = engine(I,eng); |
---|
4227 | ideal K = nselect(J,1..2); |
---|
4228 | dbprint(ppl,"// -1-3- t,Dt are eliminated"); |
---|
4229 | dbprint(ppl-1, K); // K is without t, Dt |
---|
4230 | K = engine(K,eng); // std does the job too |
---|
4231 | // now, we must change the ordering |
---|
4232 | // and create a ring without t, Dt |
---|
4233 | setring save; |
---|
4234 | // ----------- the ring @R3 ------------ |
---|
4235 | // _x, _Dx,s; elim.ord for _x,_Dx. |
---|
4236 | // keep: N, i,j,s, tmp, RL |
---|
4237 | Nnew = 2*N+1; |
---|
4238 | kill Lord, tmp, iv, RName; |
---|
4239 | list Lord, tmp; |
---|
4240 | intvec iv; |
---|
4241 | L[1] = RL[1]; |
---|
4242 | L[4] = RL[4]; // char, minpoly |
---|
4243 | // check whether vars hava admissible names -> done earlier |
---|
4244 | // now, create the names for new var |
---|
4245 | tmp[1] = "s"; |
---|
4246 | // DName is defined earlier |
---|
4247 | list NName = Name + DName + tmp; |
---|
4248 | L[2] = NName; |
---|
4249 | tmp = 0; |
---|
4250 | // block ord (dp(N),dp); |
---|
4251 | // string s is already defined |
---|
4252 | s = "iv="; |
---|
4253 | for (i=1; i<=Nnew-1; i++) |
---|
4254 | { |
---|
4255 | s = s+"1,"; |
---|
4256 | } |
---|
4257 | s[size(s)]=";"; |
---|
4258 | execute(s); |
---|
4259 | tmp[1] = "dp"; // string |
---|
4260 | tmp[2] = iv; // intvec |
---|
4261 | Lord[1] = tmp; |
---|
4262 | // continue with dp 1,1,1,1... |
---|
4263 | tmp[1] = "dp"; // string |
---|
4264 | s[size(s)] = ","; |
---|
4265 | s = s+"1;"; |
---|
4266 | execute(s); |
---|
4267 | kill s; |
---|
4268 | kill NName; |
---|
4269 | tmp[2] = iv; |
---|
4270 | Lord[2] = tmp; |
---|
4271 | tmp[1] = "C"; iv = 0; tmp[2]=iv; |
---|
4272 | Lord[3] = tmp; tmp = 0; |
---|
4273 | L[3] = Lord; |
---|
4274 | // we are done with the list. Now add a Plural part |
---|
4275 | def @R2@ = ring(L); |
---|
4276 | setring @R2@; |
---|
4277 | matrix @D[Nnew][Nnew]; |
---|
4278 | for (i=1; i<=N; i++) |
---|
4279 | { |
---|
4280 | @D[i,N+i]=1; |
---|
4281 | } |
---|
4282 | def @R2 = nc_algebra(1,@D); |
---|
4283 | setring @R2; |
---|
4284 | kill @R2@; |
---|
4285 | dbprint(ppl,"// -2-1- the ring @R2(_x,_Dx,s) is ready"); |
---|
4286 | dbprint(ppl-1, @R2); |
---|
4287 | ideal MM = maxideal(1); |
---|
4288 | MM = 0,s,MM; |
---|
4289 | map R01 = @R, MM; |
---|
4290 | ideal K = R01(K); |
---|
4291 | // total cleanup |
---|
4292 | ideal LD = K; |
---|
4293 | // make leadcoeffs positive |
---|
4294 | for (i=1; i<= ncols(LD); i++) |
---|
4295 | { |
---|
4296 | if (leadcoef(LD[i]) <0 ) |
---|
4297 | { |
---|
4298 | LD[i] = -LD[i]; |
---|
4299 | } |
---|
4300 | } |
---|
4301 | export LD; |
---|
4302 | kill @R; |
---|
4303 | return(@R2); |
---|
4304 | } |
---|
4305 | example |
---|
4306 | { |
---|
4307 | "EXAMPLE:"; echo = 2; |
---|
4308 | ring r = 0,(x,y,z),Dp; |
---|
4309 | poly F = x^3+y^3+z^3; |
---|
4310 | printlevel = 0; |
---|
4311 | def A = SannfsLOTold(F); |
---|
4312 | setring A; |
---|
4313 | LD; |
---|
4314 | } |
---|
4315 | |
---|
4316 | */ |
---|
4317 | |
---|
4318 | proc annfsLOT(poly F, list #) |
---|
4319 | "USAGE: annfsLOT(F [,eng]); F a poly, eng an optional int |
---|
4320 | RETURN: ring |
---|
4321 | PURPOSE: compute the D-module structure of basering[1/f]*f^s, according to the Levandovskyy's modification of the algorithm by Oaku and Takayama |
---|
4322 | NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
4323 | @* - the ideal LD (which is a Groebner basis) is the needed D-module structure, |
---|
4324 | @* which is obtained by substituting the minimal integer root of a Bernstein |
---|
4325 | @* polynomial into the s-parametric ideal; |
---|
4326 | @* - the list BS contains the roots with multiplicities of a Bernstein polynomial of f. |
---|
4327 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
4328 | @* otherwise and by default @code{slimgb} is used. |
---|
4329 | @* If printlevel=1, progress debug messages will be printed, |
---|
4330 | @* if printlevel>=2, all the debug messages will be printed. |
---|
4331 | EXAMPLE: example annfsLOT; shows examples |
---|
4332 | " |
---|
4333 | { |
---|
4334 | int eng = 0; |
---|
4335 | if ( size(#)>0 ) |
---|
4336 | { |
---|
4337 | if ( typeof(#[1]) == "int" ) |
---|
4338 | { |
---|
4339 | eng = int(#[1]); |
---|
4340 | } |
---|
4341 | } |
---|
4342 | printlevel=printlevel+1; |
---|
4343 | def save = basering; |
---|
4344 | def @A = SannfsLOT(F,eng); |
---|
4345 | setring @A; |
---|
4346 | poly F = imap(save,F); |
---|
4347 | def B = annfs0(LD,F,eng); |
---|
4348 | return(B); |
---|
4349 | } |
---|
4350 | example |
---|
4351 | { |
---|
4352 | "EXAMPLE:"; echo = 2; |
---|
4353 | ring r = 0,(x,y,z),Dp; |
---|
4354 | poly F = z*x^2+y^3; |
---|
4355 | printlevel = 0; |
---|
4356 | def A = annfsLOT(F); |
---|
4357 | setring A; |
---|
4358 | LD; |
---|
4359 | BS; |
---|
4360 | } |
---|
4361 | |
---|
4362 | proc annfs0(ideal I, poly F, list #) |
---|
4363 | "USAGE: annfs0(I, F [,eng]); I an ideal, F a poly, eng an optional int |
---|
4364 | RETURN: ring |
---|
4365 | PURPOSE: compute the annihilator ideal of f^s in the Weyl Algebra, based on the |
---|
4366 | output of Sannfs-like procedure |
---|
4367 | NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
4368 | @* - the ideal LD (which is a Groebner basis) is the annihilator of f^s, |
---|
4369 | @* - the list BS contains the roots with multiplicities of a Bernstein polynomial of f. |
---|
4370 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
4371 | @* otherwise and by default @code{slimgb} is used. |
---|
4372 | @* If printlevel=1, progress debug messages will be printed, |
---|
4373 | @* if printlevel>=2, all the debug messages will be printed. |
---|
4374 | EXAMPLE: example annfs0; shows examples |
---|
4375 | " |
---|
4376 | { |
---|
4377 | int eng = 0; |
---|
4378 | if ( size(#)>0 ) |
---|
4379 | { |
---|
4380 | if ( typeof(#[1]) == "int" ) |
---|
4381 | { |
---|
4382 | eng = int(#[1]); |
---|
4383 | } |
---|
4384 | } |
---|
4385 | def @R2 = basering; |
---|
4386 | // we're in D_n[s], where the elim ord for s is set |
---|
4387 | ideal J = NF(I,std(F)); |
---|
4388 | // make leadcoeffs positive |
---|
4389 | int i; |
---|
4390 | for (i=1; i<= ncols(J); i++) |
---|
4391 | { |
---|
4392 | if (leadcoef(J[i]) <0 ) |
---|
4393 | { |
---|
4394 | J[i] = -J[i]; |
---|
4395 | } |
---|
4396 | } |
---|
4397 | J = J,F; |
---|
4398 | ideal M = engine(J,eng); |
---|
4399 | int Nnew = nvars(@R2); |
---|
4400 | ideal K2 = nselect(M,1..Nnew-1); |
---|
4401 | int ppl = printlevel-voice+2; |
---|
4402 | dbprint(ppl,"// -1-1- _x,_Dx are eliminated in basering"); |
---|
4403 | dbprint(ppl-1, K2); |
---|
4404 | // the ring @R3 and the search for minimal negative int s |
---|
4405 | ring @R3 = 0,s,dp; |
---|
4406 | dbprint(ppl,"// -2-1- the ring @R3 i.e. K[s] is ready"); |
---|
4407 | ideal K3 = imap(@R2,K2); |
---|
4408 | poly p = K3[1]; |
---|
4409 | dbprint(ppl,"// -2-2- factorization"); |
---|
4410 | // ideal P = factorize(p,1); //without constants and multiplicities |
---|
4411 | // "--------- b-function factorizes into ---------"; P; |
---|
4412 | // convert factors to the list of their roots with mults |
---|
4413 | // assume all factors are linear |
---|
4414 | // ideal BS = normalize(P); |
---|
4415 | // BS = subst(BS,s,0); |
---|
4416 | // BS = -BS; |
---|
4417 | list P = factorize(p); //with constants and multiplicities |
---|
4418 | ideal bs; intvec m; //the Bernstein polynomial is monic, so we are not interested in constants |
---|
4419 | for (i=2; i<= size(P[1]); i++) //we delete P[1][1] and P[2][1] |
---|
4420 | { |
---|
4421 | bs[i-1] = P[1][i]; |
---|
4422 | m[i-1] = P[2][i]; |
---|
4423 | } |
---|
4424 | int sP = minIntRoot(bs,1); |
---|
4425 | bs = normalize(bs); |
---|
4426 | bs = -subst(bs,s,0); |
---|
4427 | dbprint(ppl,"// -2-3- minimal integer root found"); |
---|
4428 | dbprint(ppl-1, sP); |
---|
4429 | //TODO: sort BS! |
---|
4430 | // --------- substitute s found in the ideal --------- |
---|
4431 | // --------- going back to @R and substitute --------- |
---|
4432 | setring @R2; |
---|
4433 | K2 = subst(I,s,sP); |
---|
4434 | // create the ordinary Weyl algebra and put the result into it, |
---|
4435 | // thus creating the ring @R5 |
---|
4436 | // keep: N, i,j,s, tmp, RL |
---|
4437 | Nnew = Nnew - 1; // former 2*N; |
---|
4438 | // list RL = ringlist(save); // is defined earlier |
---|
4439 | // kill Lord, tmp, iv; |
---|
4440 | list L = 0; |
---|
4441 | list Lord, tmp; |
---|
4442 | intvec iv; |
---|
4443 | list RL = ringlist(basering); |
---|
4444 | L[1] = RL[1]; |
---|
4445 | L[4] = RL[4]; //char, minpoly |
---|
4446 | // check whether vars have admissible names -> done earlier |
---|
4447 | // list Name = RL[2]M |
---|
4448 | // DName is defined earlier |
---|
4449 | list NName; // = RL[2]; // skip the last var 's' |
---|
4450 | for (i=1; i<=Nnew; i++) |
---|
4451 | { |
---|
4452 | NName[i] = RL[2][i]; |
---|
4453 | } |
---|
4454 | L[2] = NName; |
---|
4455 | // dp ordering; |
---|
4456 | string s = "iv="; |
---|
4457 | for (i=1; i<=Nnew; i++) |
---|
4458 | { |
---|
4459 | s = s+"1,"; |
---|
4460 | } |
---|
4461 | s[size(s)] = ";"; |
---|
4462 | execute(s); |
---|
4463 | tmp = 0; |
---|
4464 | tmp[1] = "dp"; // string |
---|
4465 | tmp[2] = iv; // intvec |
---|
4466 | Lord[1] = tmp; |
---|
4467 | kill s; |
---|
4468 | tmp[1] = "C"; |
---|
4469 | iv = 0; |
---|
4470 | tmp[2] = iv; |
---|
4471 | Lord[2] = tmp; |
---|
4472 | tmp = 0; |
---|
4473 | L[3] = Lord; |
---|
4474 | // we are done with the list |
---|
4475 | // Add: Plural part |
---|
4476 | def @R4@ = ring(L); |
---|
4477 | setring @R4@; |
---|
4478 | int N = Nnew/2; |
---|
4479 | matrix @D[Nnew][Nnew]; |
---|
4480 | for (i=1; i<=N; i++) |
---|
4481 | { |
---|
4482 | @D[i,N+i]=1; |
---|
4483 | } |
---|
4484 | def @R4 = nc_algebra(1,@D); |
---|
4485 | setring @R4; |
---|
4486 | kill @R4@; |
---|
4487 | dbprint(ppl,"// -3-1- the ring @R4 is ready"); |
---|
4488 | dbprint(ppl-1, @R4); |
---|
4489 | ideal K4 = imap(@R2,K2); |
---|
4490 | option(redSB); |
---|
4491 | dbprint(ppl,"// -3-2- the final cosmetic std"); |
---|
4492 | K4 = engine(K4,eng); // std does the job too |
---|
4493 | // total cleanup |
---|
4494 | ideal bs = imap(@R3,bs); |
---|
4495 | kill @R3; |
---|
4496 | list BS = bs,m; |
---|
4497 | export BS; |
---|
4498 | ideal LD = K4; |
---|
4499 | export LD; |
---|
4500 | return(@R4); |
---|
4501 | } |
---|
4502 | example |
---|
4503 | { "EXAMPLE:"; echo = 2; |
---|
4504 | ring r = 0,(x,y,z),Dp; |
---|
4505 | poly F = x^3+y^3+z^3; |
---|
4506 | printlevel = 0; |
---|
4507 | def A = SannfsBM(F); setring A; |
---|
4508 | // alternatively, one can use SannfsOT or SannfsLOT |
---|
4509 | LD; |
---|
4510 | poly F = imap(r,F); |
---|
4511 | def B = annfs0(LD,F); setring B; |
---|
4512 | LD; |
---|
4513 | BS; |
---|
4514 | } |
---|
4515 | |
---|
4516 | // proc annfsgms(poly F, list #) |
---|
4517 | // "USAGE: annfsgms(f [,eng]); f a poly, eng an optional int |
---|
4518 | // ASSUME: f has an isolated critical point at 0 |
---|
4519 | // RETURN: ring |
---|
4520 | // PURPOSE: compute the D-module structure of basering[1/f]*f^s |
---|
4521 | // NOTE: activate this ring with the @code{setring} command. In this ring, |
---|
4522 | // @* - the ideal LD is the needed D-mod structure, |
---|
4523 | // @* - the ideal BS is the list of roots of a Bernstein polynomial of f. |
---|
4524 | // @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
4525 | // @* otherwise (and by default) @code{slimgb} is used. |
---|
4526 | // @* If printlevel=1, progress debug messages will be printed, |
---|
4527 | // @* if printlevel>=2, all the debug messages will be printed. |
---|
4528 | // EXAMPLE: example annfsgms; shows examples |
---|
4529 | // " |
---|
4530 | // { |
---|
4531 | // LIB "gmssing.lib"; |
---|
4532 | // int eng = 0; |
---|
4533 | // if ( size(#)>0 ) |
---|
4534 | // { |
---|
4535 | // if ( typeof(#[1]) == "int" ) |
---|
4536 | // { |
---|
4537 | // eng = int(#[1]); |
---|
4538 | // } |
---|
4539 | // } |
---|
4540 | // int ppl = printlevel-voice+2; |
---|
4541 | // // returns a ring with the ideal LD in it |
---|
4542 | // def save = basering; |
---|
4543 | // // compute the Bernstein poly from gmssing.lib |
---|
4544 | // list RL = ringlist(basering); |
---|
4545 | // // in the descr. of the ordering, replace "p" by "s" |
---|
4546 | // list NL = convloc(RL); |
---|
4547 | // // create a ring with the ordering, converted to local |
---|
4548 | // def @LR = ring(NL); |
---|
4549 | // setring @LR; |
---|
4550 | // poly F = imap(save, F); |
---|
4551 | // ideal B = bernstein(F)[1]; |
---|
4552 | // // since B may not contain (s+1) [following gmssing.lib] |
---|
4553 | // // add it! |
---|
4554 | // B = B,-1; |
---|
4555 | // B = simplify(B,2+4); // erase zero and repeated entries |
---|
4556 | // // find the minimal integer value |
---|
4557 | // int S = minIntRoot(B,0); |
---|
4558 | // dbprint(ppl,"// -0- minimal integer root found"); |
---|
4559 | // dbprint(ppl-1,S); |
---|
4560 | // setring save; |
---|
4561 | // int N = nvars(basering); |
---|
4562 | // int Nnew = 2*(N+2); |
---|
4563 | // int i,j; |
---|
4564 | // string s; |
---|
4565 | // // list RL = ringlist(basering); |
---|
4566 | // list L, Lord; |
---|
4567 | // list tmp; |
---|
4568 | // intvec iv; |
---|
4569 | // L[1] = RL[1]; // char |
---|
4570 | // L[4] = RL[4]; // char, minpoly |
---|
4571 | // // check whether vars have admissible names |
---|
4572 | // list Name = RL[2]; |
---|
4573 | // list RName; |
---|
4574 | // RName[1] = "u"; |
---|
4575 | // RName[2] = "v"; |
---|
4576 | // RName[3] = "t"; |
---|
4577 | // RName[4] = "Dt"; |
---|
4578 | // for(i=1;i<=N;i++) |
---|
4579 | // { |
---|
4580 | // for(j=1; j<=size(RName);j++) |
---|
4581 | // { |
---|
4582 | // if (Name[i] == RName[j]) |
---|
4583 | // { |
---|
4584 | // ERROR("Variable names should not include u,v,t,Dt"); |
---|
4585 | // } |
---|
4586 | // } |
---|
4587 | // } |
---|
4588 | // // now, create the names for new vars |
---|
4589 | // // tmp[1] = "u"; tmp[2] = "v"; tmp[3] = "t"; tmp[4] = "Dt"; |
---|
4590 | // list UName = RName; |
---|
4591 | // list DName; |
---|
4592 | // for(i=1;i<=N;i++) |
---|
4593 | // { |
---|
4594 | // DName[i] = "D"+Name[i]; // concat |
---|
4595 | // } |
---|
4596 | // list NName = UName + Name + DName; |
---|
4597 | // L[2] = NName; |
---|
4598 | // tmp = 0; |
---|
4599 | // // Name, Dname will be used further |
---|
4600 | // kill UName; |
---|
4601 | // kill NName; |
---|
4602 | // // block ord (a(1,1),dp); |
---|
4603 | // tmp[1] = "a"; // string |
---|
4604 | // iv = 1,1; |
---|
4605 | // tmp[2] = iv; //intvec |
---|
4606 | // Lord[1] = tmp; |
---|
4607 | // // continue with dp 1,1,1,1... |
---|
4608 | // tmp[1] = "dp"; // string |
---|
4609 | // s = "iv="; |
---|
4610 | // for(i=1; i<=Nnew; i++) // need really all vars! |
---|
4611 | // { |
---|
4612 | // s = s+"1,"; |
---|
4613 | // } |
---|
4614 | // s[size(s)]= ";"; |
---|
4615 | // execute(s); |
---|
4616 | // tmp[2] = iv; |
---|
4617 | // Lord[2] = tmp; |
---|
4618 | // tmp[1] = "C"; |
---|
4619 | // iv = 0; |
---|
4620 | // tmp[2] = iv; |
---|
4621 | // Lord[3] = tmp; |
---|
4622 | // tmp = 0; |
---|
4623 | // L[3] = Lord; |
---|
4624 | // // we are done with the list |
---|
4625 | // def @R = ring(L); |
---|
4626 | // setring @R; |
---|
4627 | // matrix @D[Nnew][Nnew]; |
---|
4628 | // @D[3,4] = 1; // t,Dt |
---|
4629 | // for(i=1; i<=N; i++) |
---|
4630 | // { |
---|
4631 | // @D[4+i,4+N+i]=1; |
---|
4632 | // } |
---|
4633 | // // L[5] = matrix(UpOneMatrix(Nnew)); |
---|
4634 | // // L[6] = @D; |
---|
4635 | // nc_algebra(1,@D); |
---|
4636 | // dbprint(ppl,"// -1-1- the ring @R is ready"); |
---|
4637 | // dbprint(ppl-1,@R); |
---|
4638 | // // create the ideal |
---|
4639 | // poly F = imap(save,F); |
---|
4640 | // ideal I = u*F-t,u*v-1; |
---|
4641 | // poly p; |
---|
4642 | // for(i=1; i<=N; i++) |
---|
4643 | // { |
---|
4644 | // p = u*Dt; // u*Dt |
---|
4645 | // p = diff(F,var(4+i))*p; |
---|
4646 | // I = I, var(N+4+i) + p; // Dx, Dy |
---|
4647 | // } |
---|
4648 | // // add the relations between t,Dt and s |
---|
4649 | // // I = I, t*Dt+1+S; |
---|
4650 | // // -------- the ideal I is ready ---------- |
---|
4651 | // dbprint(ppl,"// -1-2- starting the elimination of u,v in @R"); |
---|
4652 | // ideal J = engine(I,eng); |
---|
4653 | // ideal K = nselect(J,1..2); |
---|
4654 | // dbprint(ppl,"// -1-3- u,v are eliminated in @R"); |
---|
4655 | // dbprint(ppl-1,K); // without u,v: not yet our answer |
---|
4656 | // //----- create a ring with elim.ord for t,Dt ------- |
---|
4657 | // setring save; |
---|
4658 | // // ------------ new ring @R2 ------------------ |
---|
4659 | // // without u,v and with the elim.ord for t,Dt |
---|
4660 | // // keep: N, i,j,s, tmp, RL |
---|
4661 | // Nnew = 2*N+2; |
---|
4662 | // // list RL = ringlist(save); // is defined earlier |
---|
4663 | // kill Lord,tmp,iv, RName; |
---|
4664 | // L = 0; |
---|
4665 | // list Lord, tmp; |
---|
4666 | // intvec iv; |
---|
4667 | // L[1] = RL[1]; // char |
---|
4668 | // L[4] = RL[4]; // char, minpoly |
---|
4669 | // // check whether vars have admissible names -> done earlier |
---|
4670 | // // list Name = RL[2]; |
---|
4671 | // list RName; |
---|
4672 | // RName[1] = "t"; |
---|
4673 | // RName[2] = "Dt"; |
---|
4674 | // // DName is defined earlier |
---|
4675 | // list NName = RName + Name + DName; |
---|
4676 | // L[2] = NName; |
---|
4677 | // tmp = 0; |
---|
4678 | // // block ord (a(1,1),dp); |
---|
4679 | // tmp[1] = "a"; // string |
---|
4680 | // iv = 1,1; |
---|
4681 | // tmp[2] = iv; //intvec |
---|
4682 | // Lord[1] = tmp; |
---|
4683 | // // continue with dp 1,1,1,1... |
---|
4684 | // tmp[1] = "dp"; // string |
---|
4685 | // s = "iv="; |
---|
4686 | // for(i=1;i<=Nnew;i++) |
---|
4687 | // { |
---|
4688 | // s = s+"1,"; |
---|
4689 | // } |
---|
4690 | // s[size(s)]= ";"; |
---|
4691 | // execute(s); |
---|
4692 | // kill s; |
---|
4693 | // kill NName; |
---|
4694 | // tmp[2] = iv; |
---|
4695 | // Lord[2] = tmp; |
---|
4696 | // tmp[1] = "C"; |
---|
4697 | // iv = 0; |
---|
4698 | // tmp[2] = iv; |
---|
4699 | // Lord[3] = tmp; |
---|
4700 | // tmp = 0; |
---|
4701 | // L[3] = Lord; |
---|
4702 | // // we are done with the list |
---|
4703 | // // Add: Plural part |
---|
4704 | // def @R2 = ring(L); |
---|
4705 | // setring @R2; |
---|
4706 | // matrix @D[Nnew][Nnew]; |
---|
4707 | // @D[1,2]=1; |
---|
4708 | // for(i=1; i<=N; i++) |
---|
4709 | // { |
---|
4710 | // @D[2+i,2+N+i]=1; |
---|
4711 | // } |
---|
4712 | // nc_algebra(1,@D); |
---|
4713 | // dbprint(ppl,"// -2-1- the ring @R2 is ready"); |
---|
4714 | // dbprint(ppl-1,@R2); |
---|
4715 | // ideal MM = maxideal(1); |
---|
4716 | // MM = 0,0,MM; |
---|
4717 | // map R01 = @R, MM; |
---|
4718 | // ideal K2 = R01(K); |
---|
4719 | // // add the relations between t,Dt and s |
---|
4720 | // // K2 = K2, t*Dt+1+S; |
---|
4721 | // poly G = t*Dt+S+1; |
---|
4722 | // K2 = NF(K2,std(G)),G; |
---|
4723 | // dbprint(ppl,"// -2-2- starting elimination for t,Dt in @R2"); |
---|
4724 | // ideal J = engine(K2,eng); |
---|
4725 | // ideal K = nselect(J,1..2); |
---|
4726 | // dbprint(ppl,"// -2-3- t,Dt are eliminated"); |
---|
4727 | // dbprint(ppl-1,K); |
---|
4728 | // // "------- produce a final result --------"; |
---|
4729 | // // ----- create the ordinary Weyl algebra and put |
---|
4730 | // // ----- the result into it |
---|
4731 | // // ------ create the ring @R5 |
---|
4732 | // // keep: N, i,j,s, tmp, RL |
---|
4733 | // setring save; |
---|
4734 | // Nnew = 2*N; |
---|
4735 | // // list RL = ringlist(save); // is defined earlier |
---|
4736 | // kill Lord, tmp, iv; |
---|
4737 | // // kill L; |
---|
4738 | // L = 0; |
---|
4739 | // list Lord, tmp; |
---|
4740 | // intvec iv; |
---|
4741 | // L[1] = RL[1]; // char |
---|
4742 | // L[4] = RL[4]; // char, minpoly |
---|
4743 | // // check whether vars have admissible names -> done earlier |
---|
4744 | // // list Name = RL[2]; |
---|
4745 | // // DName is defined earlier |
---|
4746 | // list NName = Name + DName; |
---|
4747 | // L[2] = NName; |
---|
4748 | // // dp ordering; |
---|
4749 | // string s = "iv="; |
---|
4750 | // for(i=1;i<=2*N;i++) |
---|
4751 | // { |
---|
4752 | // s = s+"1,"; |
---|
4753 | // } |
---|
4754 | // s[size(s)]= ";"; |
---|
4755 | // execute(s); |
---|
4756 | // tmp = 0; |
---|
4757 | // tmp[1] = "dp"; // string |
---|
4758 | // tmp[2] = iv; //intvec |
---|
4759 | // Lord[1] = tmp; |
---|
4760 | // kill s; |
---|
4761 | // tmp[1] = "C"; |
---|
4762 | // iv = 0; |
---|
4763 | // tmp[2] = iv; |
---|
4764 | // Lord[2] = tmp; |
---|
4765 | // tmp = 0; |
---|
4766 | // L[3] = Lord; |
---|
4767 | // // we are done with the list |
---|
4768 | // // Add: Plural part |
---|
4769 | // def @R5 = ring(L); |
---|
4770 | // setring @R5; |
---|
4771 | // matrix @D[Nnew][Nnew]; |
---|
4772 | // for(i=1; i<=N; i++) |
---|
4773 | // { |
---|
4774 | // @D[i,N+i]=1; |
---|
4775 | // } |
---|
4776 | // nc_algebra(1,@D); |
---|
4777 | // dbprint(ppl,"// -3-1- the ring @R5 is ready"); |
---|
4778 | // dbprint(ppl-1,@R5); |
---|
4779 | // ideal K5 = imap(@R2,K); |
---|
4780 | // option(redSB); |
---|
4781 | // dbprint(ppl,"// -3-2- the final cosmetic std"); |
---|
4782 | // K5 = engine(K5,eng); // std does the job too |
---|
4783 | // // total cleanup |
---|
4784 | // kill @R; |
---|
4785 | // kill @R2; |
---|
4786 | // ideal LD = K5; |
---|
4787 | // ideal BS = imap(@LR,B); |
---|
4788 | // kill @LR; |
---|
4789 | // export BS; |
---|
4790 | // export LD; |
---|
4791 | // return(@R5); |
---|
4792 | // } |
---|
4793 | // example |
---|
4794 | // { |
---|
4795 | // "EXAMPLE:"; echo = 2; |
---|
4796 | // ring r = 0,(x,y,z),Dp; |
---|
4797 | // poly F = x^2+y^3+z^5; |
---|
4798 | // def A = annfsgms(F); |
---|
4799 | // setring A; |
---|
4800 | // LD; |
---|
4801 | // print(matrix(BS)); |
---|
4802 | // } |
---|
4803 | |
---|
4804 | |
---|
4805 | proc convloc(list @NL) |
---|
4806 | "USAGE: convloc(L); L a list |
---|
4807 | RETURN: list |
---|
4808 | PURPOSE: convert a ringlist L into another ringlist, |
---|
4809 | where all the 'p' orderings are replaced with the 's' orderings. |
---|
4810 | ASSUME: L is a result of a ringlist command |
---|
4811 | EXAMPLE: example convloc; shows examples |
---|
4812 | " |
---|
4813 | { |
---|
4814 | list NL = @NL; |
---|
4815 | // given a ringlist, returns a new ringlist, |
---|
4816 | // where all the p-orderings are replaced with s-ord's |
---|
4817 | int i,j,k,found; |
---|
4818 | int nblocks = size(NL[3]); |
---|
4819 | for(i=1; i<=nblocks; i++) |
---|
4820 | { |
---|
4821 | for(j=1; j<=size(NL[3][i]); j++) |
---|
4822 | { |
---|
4823 | if (typeof(NL[3][i][j]) == "string" ) |
---|
4824 | { |
---|
4825 | found = 0; |
---|
4826 | for (k=1; k<=size(NL[3][i][j]); k++) |
---|
4827 | { |
---|
4828 | if (NL[3][i][j][k]=="p") |
---|
4829 | { |
---|
4830 | NL[3][i][j][k]="s"; |
---|
4831 | found = 1; |
---|
4832 | // printf("replaced at %s,%s,%s",i,j,k); |
---|
4833 | } |
---|
4834 | } |
---|
4835 | } |
---|
4836 | } |
---|
4837 | } |
---|
4838 | return(NL); |
---|
4839 | } |
---|
4840 | example |
---|
4841 | { |
---|
4842 | "EXAMPLE:"; echo = 2; |
---|
4843 | ring r = 0,(x,y,z),(Dp(2),dp(1)); |
---|
4844 | list L = ringlist(r); |
---|
4845 | list N = convloc(L); |
---|
4846 | def rs = ring(N); |
---|
4847 | setring rs; |
---|
4848 | rs; |
---|
4849 | } |
---|
4850 | |
---|
4851 | proc annfspecial(ideal I, poly F, int mir, number n) |
---|
4852 | "USAGE: annfspecial(I,F,mir,n); I an ideal, F a poly, int mir, number n |
---|
4853 | RETURN: ideal |
---|
4854 | PURPOSE: compute the annihilator ideal of F^n in the Weyl Algebra for a rational number n |
---|
4855 | ASSUME: the basering contains 's' as a variable |
---|
4856 | NOTE: We assume that the basering is D[s], |
---|
4857 | @* ideal I is the Ann F^s in D[s] (obtained with e.g. SannfsBM, SannfsLOT, SannfsOT) |
---|
4858 | @* integer 'mir' is the minimal integer root of the Bernstein polynomial of F |
---|
4859 | @* and the number n is rational. |
---|
4860 | @* We compute the real annihilator for any rational value of n (both generic and exceptional). |
---|
4861 | @* The implementation goes along the lines of Saito-Sturmfels-Takayama, Alg. 5.3.15 |
---|
4862 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
4863 | @* if printlevel>=2, all the debug messages will be printed. |
---|
4864 | EXAMPLE: example annfspecial; shows examples |
---|
4865 | " |
---|
4866 | { |
---|
4867 | int ppl = printlevel-voice+2; |
---|
4868 | // int mir = minIntRoot(L[1],0); |
---|
4869 | int ns = varnum("s"); |
---|
4870 | if (!ns) |
---|
4871 | { |
---|
4872 | ERROR("Variable s expected in the ideal AnnFs"); |
---|
4873 | } |
---|
4874 | int d; |
---|
4875 | ideal P = subst(I,var(ns),n); |
---|
4876 | if (denominator(n) == 1) |
---|
4877 | { |
---|
4878 | // n is fraction-free |
---|
4879 | d = int(numerator(n)); |
---|
4880 | if ( (!d) && (n!=0)) |
---|
4881 | { |
---|
4882 | ERROR("no parametric special values are allowed"); |
---|
4883 | } |
---|
4884 | d = d - mir; |
---|
4885 | if (d>0) |
---|
4886 | { |
---|
4887 | dbprint(ppl,"// -1-1- starting syzygy computations"); |
---|
4888 | matrix J[1][1] = F^d; |
---|
4889 | dbprint(ppl-1,"// -1-1-1- of the polynomial ideal"); |
---|
4890 | dbprint(ppl-1,J); |
---|
4891 | matrix K[1][size(I)] = subst(I,var(ns),mir); |
---|
4892 | dbprint(ppl-1,"// -1-1-2- modulo ideal:"); |
---|
4893 | dbprint(ppl-1, K); |
---|
4894 | module M = modulo(J,K); |
---|
4895 | dbprint(ppl-1,"// -1-1-3- getting the result:"); |
---|
4896 | dbprint(ppl-1, M); |
---|
4897 | P = P, ideal(M); |
---|
4898 | dbprint(ppl,"// -1-2- finished syzygy computations"); |
---|
4899 | } |
---|
4900 | else |
---|
4901 | { |
---|
4902 | dbprint(ppl,"// -1-1- d<=0, no syzygy computations needed"); |
---|
4903 | dbprint(ppl-1,"// -1-2- for d ="); |
---|
4904 | dbprint(ppl-1, d); |
---|
4905 | } |
---|
4906 | } |
---|
4907 | // also the else case: d<=0 or n is not an integer |
---|
4908 | dbprint(ppl,"// -2-1- starting final Groebner basis"); |
---|
4909 | P = groebner(P); |
---|
4910 | dbprint(ppl,"// -2-2- finished final Groebner basis"); |
---|
4911 | return(P); |
---|
4912 | } |
---|
4913 | example |
---|
4914 | { |
---|
4915 | "EXAMPLE:"; echo = 2; |
---|
4916 | ring r = 0,(x,y),dp; |
---|
4917 | poly F = x3-y2; |
---|
4918 | def B = annfs(F); setring B; |
---|
4919 | minIntRoot(BS[1],0); |
---|
4920 | // So, the minimal integer root is -1 |
---|
4921 | setring r; |
---|
4922 | def A = SannfsBM(F); |
---|
4923 | setring A; |
---|
4924 | poly F = x3-y2; |
---|
4925 | annfspecial(LD,F,-1,3/4); // generic root |
---|
4926 | annfspecial(LD,F,-1,-2); // integer but still generic root |
---|
4927 | annfspecial(LD,F,-1,1); // exceptional root |
---|
4928 | } |
---|
4929 | |
---|
4930 | /* |
---|
4931 | //static proc new_ex_annfspecial() |
---|
4932 | { |
---|
4933 | //another example for annfspecial: x3+y3+z3 |
---|
4934 | ring r = 0,(x,y,z),dp; |
---|
4935 | poly F = x3+y3+z3; |
---|
4936 | def B = annfs(F); setring B; |
---|
4937 | minIntRoot(BS[1],0); |
---|
4938 | // So, the minimal integer root is -1 |
---|
4939 | setring r; |
---|
4940 | def A = SannfsBM(F); |
---|
4941 | setring A; |
---|
4942 | poly F = x3+y3+z3; |
---|
4943 | annfspecial(LD,F,-1,3/4); // generic root |
---|
4944 | annfspecial(LD,F,-1,-2); // integer but still generic root |
---|
4945 | annfspecial(LD,F,-1,1); // exceptional root |
---|
4946 | } |
---|
4947 | */ |
---|
4948 | |
---|
4949 | proc minIntRoot(ideal P, int fact) |
---|
4950 | "USAGE: minIntRoot(P, fact); P an ideal, fact an int |
---|
4951 | RETURN: int |
---|
4952 | PURPOSE: minimal integer root of a maximal ideal P |
---|
4953 | NOTE: if fact==1, P is the result of some 'factorize' call, |
---|
4954 | @* else P is treated as the result of bernstein::gmssing.lib |
---|
4955 | @* in both cases without constants and multiplicities |
---|
4956 | EXAMPLE: example minIntRoot; shows examples |
---|
4957 | " |
---|
4958 | { |
---|
4959 | // ideal P = factorize(p,1); |
---|
4960 | // or ideal P = bernstein(F)[1]; |
---|
4961 | intvec vP; |
---|
4962 | number nP; |
---|
4963 | int i; |
---|
4964 | if ( fact ) |
---|
4965 | { |
---|
4966 | // the result comes from "factorize" |
---|
4967 | P = normalize(P); // now leadcoef = 1 |
---|
4968 | // TODO: hunt for units and kill then !!! |
---|
4969 | P = lead(P)-P; |
---|
4970 | // nP = leadcoef(P[i]-lead(P[i])); // for 1 var only, extract the coeff |
---|
4971 | } |
---|
4972 | else |
---|
4973 | { |
---|
4974 | // bernstein deletes -1 usually |
---|
4975 | P = P, -1; |
---|
4976 | } |
---|
4977 | // for both situations: |
---|
4978 | // now we have an ideal of fractions of type "number" |
---|
4979 | int sP = size(P); |
---|
4980 | for(i=1; i<=sP; i++) |
---|
4981 | { |
---|
4982 | nP = leadcoef(P[i]); |
---|
4983 | if ( (nP - int(nP)) == 0 ) |
---|
4984 | { |
---|
4985 | vP = vP,int(nP); |
---|
4986 | } |
---|
4987 | } |
---|
4988 | if ( size(vP)>=2 ) |
---|
4989 | { |
---|
4990 | vP = vP[2..size(vP)]; |
---|
4991 | } |
---|
4992 | sP = -Max(-vP); |
---|
4993 | if (sP == 0) |
---|
4994 | { |
---|
4995 | "Warning: zero root!"; |
---|
4996 | } |
---|
4997 | return(sP); |
---|
4998 | } |
---|
4999 | example |
---|
5000 | { |
---|
5001 | "EXAMPLE:"; echo = 2; |
---|
5002 | ring r = 0,(x,y),ds; |
---|
5003 | poly f1 = x*y*(x+y); |
---|
5004 | ideal I1 = bernstein(f1)[1]; // a local Bernstein poly |
---|
5005 | minIntRoot(I1,0); |
---|
5006 | poly f2 = x2-y3; |
---|
5007 | ideal I2 = bernstein(f2)[1]; |
---|
5008 | minIntRoot(I2,0); |
---|
5009 | // now we illustrate the behaviour of factorize |
---|
5010 | // together with a global ordering |
---|
5011 | ring r2 = 0,x,dp; |
---|
5012 | poly f3 = 9*(x+2/3)*(x+1)*(x+4/3); //global b-poly of f1=x*y*(x+y) |
---|
5013 | ideal I3 = factorize(f3,1); |
---|
5014 | minIntRoot(I3,1); |
---|
5015 | // and a more interesting situation |
---|
5016 | ring s = 0,(x,y,z),ds; |
---|
5017 | poly f = x3 + y3 + z3; |
---|
5018 | ideal I = bernstein(f)[1]; |
---|
5019 | minIntRoot(I,0); |
---|
5020 | } |
---|
5021 | |
---|
5022 | proc isHolonomic(def M) |
---|
5023 | "USAGE: isHolonomic(M); M an ideal/module/matrix |
---|
5024 | RETURN: int, 1 if M is holonomic and 0 otherwise |
---|
5025 | ASSUME: basering is a Weyl algebra |
---|
5026 | PURPOSE: check the modules for the property of holonomy |
---|
5027 | NOTE: M is holonomic, if 2*dim(M) = dim(R), where R is a |
---|
5028 | ground ring; dim stays for Gelfand-Kirillov dimension |
---|
5029 | EXAMPLE: example isHolonomic; shows examples |
---|
5030 | " |
---|
5031 | { |
---|
5032 | if ( (typeof(M) != "ideal") && (typeof(M) != "module") && (typeof(M) != "matrix") ) |
---|
5033 | { |
---|
5034 | // print(typeof(M)); |
---|
5035 | ERROR("an argument of type ideal/module/matrix expected"); |
---|
5036 | } |
---|
5037 | if (attrib(M,"isSB")!=1) |
---|
5038 | { |
---|
5039 | M = std(M); |
---|
5040 | } |
---|
5041 | int dimR = gkdim(std(0)); |
---|
5042 | int dimM = gkdim(M); |
---|
5043 | return( (dimR==2*dimM) ); |
---|
5044 | } |
---|
5045 | example |
---|
5046 | { |
---|
5047 | "EXAMPLE:"; echo = 2; |
---|
5048 | ring R = 0,(x,y),dp; |
---|
5049 | poly F = x*y*(x+y); |
---|
5050 | def A = annfsBM(F,0); |
---|
5051 | setring A; |
---|
5052 | LD; |
---|
5053 | isHolonomic(LD); |
---|
5054 | ideal I = std(LD[1]); |
---|
5055 | I; |
---|
5056 | isHolonomic(I); |
---|
5057 | } |
---|
5058 | |
---|
5059 | proc reiffen(int p, int q) |
---|
5060 | "USAGE: reiffen(p, q); int p, int q |
---|
5061 | RETURN: ring |
---|
5062 | PURPOSE: set up the polynomial, describing a Reiffen curve |
---|
5063 | NOTE: activate this ring with the @code{setring} command and find the |
---|
5064 | curve as a polynomial RC |
---|
5065 | @* a Reiffen curve is defined as F = x^p + y^q + xy^{q-1}, q >= p+1 >= 5 |
---|
5066 | ASSUME: q >= p+1 >= 5. Otherwise an error message is returned |
---|
5067 | EXAMPLE: example reiffen; shows examples |
---|
5068 | " |
---|
5069 | { |
---|
5070 | // a Reiffen curve is defined as |
---|
5071 | // F = x^p + y^q +x*y^{q-1}, q \geq p+1 \geq 5 |
---|
5072 | |
---|
5073 | if ( (p<4) || (q<5) || (q-p<1) ) |
---|
5074 | { |
---|
5075 | ERROR("Some of conditions p>=4, q>=5 or q>=p+1 is not satisfied!"); |
---|
5076 | } |
---|
5077 | ring @r = 0,(x,y),dp; |
---|
5078 | poly RC = y^q +x^p + x*y^(q-1); |
---|
5079 | export RC; |
---|
5080 | return(@r); |
---|
5081 | } |
---|
5082 | example |
---|
5083 | { |
---|
5084 | "EXAMPLE:"; echo = 2; |
---|
5085 | def r = reiffen(4,5); |
---|
5086 | setring r; |
---|
5087 | RC; |
---|
5088 | } |
---|
5089 | |
---|
5090 | proc arrange(int p) |
---|
5091 | "USAGE: arrange(p); int p |
---|
5092 | RETURN: ring |
---|
5093 | PURPOSE: set up the polynomial, describing a hyperplane arrangement |
---|
5094 | NOTE: must be executed in a ring |
---|
5095 | ASSUME: basering is present |
---|
5096 | EXAMPLE: example arrange; shows examples |
---|
5097 | " |
---|
5098 | { |
---|
5099 | int UseBasering = 0 ; |
---|
5100 | if (p<2) |
---|
5101 | { |
---|
5102 | ERROR("p>=2 is required!"); |
---|
5103 | } |
---|
5104 | if ( nameof(basering)!="basering" ) |
---|
5105 | { |
---|
5106 | if (p > nvars(basering)) |
---|
5107 | { |
---|
5108 | ERROR("too big p"); |
---|
5109 | } |
---|
5110 | else |
---|
5111 | { |
---|
5112 | def @r = basering; |
---|
5113 | UseBasering = 1; |
---|
5114 | } |
---|
5115 | } |
---|
5116 | else |
---|
5117 | { |
---|
5118 | // no basering found |
---|
5119 | ERROR("no basering found!"); |
---|
5120 | // ring @r = 0,(x(1..p)),dp; |
---|
5121 | } |
---|
5122 | int i,j,sI; |
---|
5123 | poly q = 1; |
---|
5124 | list ar; |
---|
5125 | ideal tmp; |
---|
5126 | tmp = ideal(var(1)); |
---|
5127 | ar[1] = tmp; |
---|
5128 | for (i = 2; i<=p; i++) |
---|
5129 | { |
---|
5130 | // add i-nary sums to the product |
---|
5131 | ar = indAR(ar,i); |
---|
5132 | } |
---|
5133 | for (i = 1; i<=p; i++) |
---|
5134 | { |
---|
5135 | tmp = ar[i]; sI = size(tmp); |
---|
5136 | for (j = 1; j<=sI; j++) |
---|
5137 | { |
---|
5138 | q = q*tmp[j]; |
---|
5139 | } |
---|
5140 | } |
---|
5141 | if (UseBasering) |
---|
5142 | { |
---|
5143 | return(q); |
---|
5144 | } |
---|
5145 | // poly AR = q; export AR; |
---|
5146 | // return(@r); |
---|
5147 | } |
---|
5148 | example |
---|
5149 | { |
---|
5150 | "EXAMPLE:"; echo = 2; |
---|
5151 | ring X = 0,(x,y,z,t),dp; |
---|
5152 | poly q = arrange(3); |
---|
5153 | factorize(q,1); |
---|
5154 | } |
---|
5155 | |
---|
5156 | proc checkRoot(poly F, number a, list #) |
---|
5157 | "USAGE: checkRoot(f,alpha [,S,eng]); f a poly, alpha a number, S a string , eng an optional int |
---|
5158 | RETURN: int |
---|
5159 | PURPOSE: check whether a rational is a root of the global Bernstein polynomial of f (and compute its multiplicity) |
---|
5160 | with the algorithm given in S and with the Groebner basis engine given in eng |
---|
5161 | NOTE: The annihilator of f^s in D[s] is needed and it is computed according to the algorithm by Briancon and Maisonobe |
---|
5162 | @* The value of a string S can be |
---|
5163 | @* 'alg1' (default) - for the algorithm 1 of J. Martin-Morales (unpublished) |
---|
5164 | @* 'alg2' - for the algorithm 2 of J. Martin-Morales (unpublished) |
---|
5165 | @* The output of type int is: |
---|
5166 | @* 'alg1': 1 if -alpha is a root of the global Bernstein polynomial and 0 otherwise |
---|
5167 | @* 'alg2': the multiplicity of -alpha as a root of the global Bernstein polynomial of f. |
---|
5168 | @* (If -alpha is not a root, the output is 0) |
---|
5169 | @* If eng <>0, @code{std} is used for Groebner basis computations, |
---|
5170 | @* otherwise (and by default) @code{slimgb} is used. |
---|
5171 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
5172 | @* if printlevel>=2, all the debug messages will be printed. |
---|
5173 | EXAMPLE: example checkRoot; shows examples |
---|
5174 | " |
---|
5175 | { |
---|
5176 | int eng = 0; |
---|
5177 | int chs = 0; // choice |
---|
5178 | string algo = "alg1"; |
---|
5179 | string st; |
---|
5180 | if ( size(#)>0 ) |
---|
5181 | { |
---|
5182 | if ( typeof(#[1]) == "string" ) |
---|
5183 | { |
---|
5184 | st = string(#[1]); |
---|
5185 | if ( (st == "alg1") || (st == "ALG1") || (st == "Alg1") ||(st == "aLG1")) |
---|
5186 | { |
---|
5187 | algo = "alg1"; |
---|
5188 | chs = 1; |
---|
5189 | } |
---|
5190 | if ( (st == "alg2") || (st == "ALG2") || (st == "Alg2") || (st == "aLG2")) |
---|
5191 | { |
---|
5192 | algo = "alg2"; |
---|
5193 | chs = 1; |
---|
5194 | } |
---|
5195 | if (chs != 1) |
---|
5196 | { |
---|
5197 | // incorrect value of S |
---|
5198 | print("Incorrect algorithm given, proceed with the default alg1 of J. MartÃn-Morales"); |
---|
5199 | algo = "alg1"; |
---|
5200 | } |
---|
5201 | // second arg |
---|
5202 | if (size(#)>1) |
---|
5203 | { |
---|
5204 | // exists 2nd arg |
---|
5205 | if ( typeof(#[2]) == "int" ) |
---|
5206 | { |
---|
5207 | // the case: given alg, given engine |
---|
5208 | eng = int(#[2]); |
---|
5209 | } |
---|
5210 | else |
---|
5211 | { |
---|
5212 | eng = 0; |
---|
5213 | } |
---|
5214 | } |
---|
5215 | else |
---|
5216 | { |
---|
5217 | // no second arg |
---|
5218 | eng = 0; |
---|
5219 | } |
---|
5220 | } |
---|
5221 | else |
---|
5222 | { |
---|
5223 | if ( typeof(#[1]) == "int" ) |
---|
5224 | { |
---|
5225 | // the case: default alg, engine |
---|
5226 | eng = int(#[1]); |
---|
5227 | // algo = "alg1"; //is already set |
---|
5228 | } |
---|
5229 | else |
---|
5230 | { |
---|
5231 | // incorr. 1st arg |
---|
5232 | algo = "alg1"; |
---|
5233 | } |
---|
5234 | } |
---|
5235 | } |
---|
5236 | // size(#)=0, i.e. there is no algorithm and no engine given |
---|
5237 | // eng = 0; algo = "alg1"; //are already set |
---|
5238 | // int ppl = printlevel-voice+2; |
---|
5239 | printlevel=printlevel+1; |
---|
5240 | def save = basering; |
---|
5241 | def @A = SannfsBM(F); |
---|
5242 | setring @A; |
---|
5243 | poly F = imap(save,F); |
---|
5244 | number a = imap(save,a); |
---|
5245 | if ( algo=="alg1") |
---|
5246 | { |
---|
5247 | int output = checkRoot1(LD,F,a,eng); |
---|
5248 | } |
---|
5249 | else |
---|
5250 | { |
---|
5251 | if ( algo=="alg2") |
---|
5252 | { |
---|
5253 | int output = checkRoot2(LD,F,a,eng); |
---|
5254 | } |
---|
5255 | } |
---|
5256 | printlevel=printlevel-1; |
---|
5257 | return(output); |
---|
5258 | } |
---|
5259 | example |
---|
5260 | { |
---|
5261 | "EXAMPLE:"; echo = 2; |
---|
5262 | printlevel=0; |
---|
5263 | ring r = 0,(x,y),Dp; |
---|
5264 | poly F = x^4+y^5+x*y^4; |
---|
5265 | checkRoot(F,11/20); // -11/20 is a root of bf |
---|
5266 | poly G = x*y; |
---|
5267 | checkRoot(G,1,"alg2"); // -1 is a root of bg with multiplicity 2 |
---|
5268 | } |
---|
5269 | |
---|
5270 | proc checkRoot1(ideal I, poly F, number a, list #) |
---|
5271 | "USAGE: checkRoot1(I,f,alpha [,eng]); I an ideal, f a poly, alpha a number, eng an optional int |
---|
5272 | ASSUME: I is the annihilator of f^s in D[s], f is a polynomial in K[_x] |
---|
5273 | RETURN: int, 1 if -alpha is a root of the global Bernstein polynomial of f and 0 otherwise |
---|
5274 | PURPOSE: check whether a rational is a root of the global Bernstein polynomial of f |
---|
5275 | NOTE: If eng <>0, @code{std} is used for Groebner basis computations, |
---|
5276 | @* otherwise (and by default) @code{slimgb} is used. |
---|
5277 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
5278 | @* if printlevel>=2, all the debug messages will be printed. |
---|
5279 | EXAMPLE: example checkRoot1; shows examples |
---|
5280 | " |
---|
5281 | { |
---|
5282 | int eng = 0; |
---|
5283 | if ( size(#)>0 ) |
---|
5284 | { |
---|
5285 | if ( typeof(#[1]) == "int" ) |
---|
5286 | { |
---|
5287 | eng = int(#[1]); |
---|
5288 | } |
---|
5289 | } |
---|
5290 | int ppl = printlevel-voice+2; |
---|
5291 | dbprint(ppl,"// -0-1- starting the procedure checkRoot1"); |
---|
5292 | def save = basering; |
---|
5293 | int N = nvars(basering); |
---|
5294 | int Nnew = N-1; |
---|
5295 | int n = Nnew / 2; |
---|
5296 | int i; |
---|
5297 | string s; |
---|
5298 | list RL = ringlist(basering); |
---|
5299 | list L, Lord; |
---|
5300 | list tmp; |
---|
5301 | intvec iv; |
---|
5302 | L[1] = RL[1]; // char |
---|
5303 | L[4] = RL[4]; // char, minpoly |
---|
5304 | // check whether basering is D[s]=K(_x,_Dx,s) |
---|
5305 | list Name = RL[2]; |
---|
5306 | // for (i=1; i<=n; i++) |
---|
5307 | // { |
---|
5308 | // if ( bracket(var(i+n),var(i))!=1 ) |
---|
5309 | // { |
---|
5310 | // ERROR("basering should be D[s]=K(_x,_Dx,s)"); |
---|
5311 | // } |
---|
5312 | // } |
---|
5313 | if ( Name[N]!="s" ) |
---|
5314 | { |
---|
5315 | ERROR("the last variable of basering should be s"); |
---|
5316 | } |
---|
5317 | // now, create the new vars |
---|
5318 | list NName; |
---|
5319 | for (i=1; i<=Nnew; i++) |
---|
5320 | { |
---|
5321 | NName[i] = Name[i]; |
---|
5322 | } |
---|
5323 | L[2] = NName; |
---|
5324 | kill Name,NName; |
---|
5325 | // block ord (dp); |
---|
5326 | tmp[1] = "dp"; // string |
---|
5327 | s = "iv="; |
---|
5328 | for (i=1; i<=Nnew; i++) |
---|
5329 | { |
---|
5330 | s = s+"1,"; |
---|
5331 | } |
---|
5332 | s[size(s)]=";"; |
---|
5333 | execute(s); |
---|
5334 | kill s; |
---|
5335 | tmp[2] = iv; |
---|
5336 | Lord[1] = tmp; |
---|
5337 | tmp[1] = "C"; |
---|
5338 | iv = 0; |
---|
5339 | tmp[2] = iv; |
---|
5340 | Lord[2] = tmp; |
---|
5341 | tmp = 0; |
---|
5342 | L[3] = Lord; |
---|
5343 | // we are done with the list |
---|
5344 | def @R@ = ring(L); |
---|
5345 | setring @R@; |
---|
5346 | matrix @D[Nnew][Nnew]; |
---|
5347 | for (i=1; i<=n; i++) |
---|
5348 | { |
---|
5349 | @D[i,i+n]=1; |
---|
5350 | } |
---|
5351 | def @R = nc_algebra(1,@D); |
---|
5352 | setring @R; |
---|
5353 | kill @R@; |
---|
5354 | dbprint(ppl,"// -1-1- the ring @R(_x,_Dx) is ready"); |
---|
5355 | dbprint(ppl-1, S); |
---|
5356 | // create the ideal K = ann_D[s](f^s)_{s=-alpha} + < f > |
---|
5357 | setring save; |
---|
5358 | ideal K = subst(I,s,-a); |
---|
5359 | dbprint(ppl,"// -1-2- the variable s has been substituted by "+string(-a)); |
---|
5360 | dbprint(ppl-1, K); |
---|
5361 | K = NF(K,std(F)); |
---|
5362 | // make leadcoeffs positive |
---|
5363 | for (i=1; i<=ncols(K); i++) |
---|
5364 | { |
---|
5365 | if ( leadcoef(K[i])<0 ) |
---|
5366 | { |
---|
5367 | K[i] = -K[i]; |
---|
5368 | } |
---|
5369 | } |
---|
5370 | K = K,F; |
---|
5371 | // ------------ the ideal K is ready ------------ |
---|
5372 | setring @R; |
---|
5373 | ideal K = imap(save,K); |
---|
5374 | dbprint(ppl,"// -1-3- starting the computation of a Groebner basis of K in @R"); |
---|
5375 | dbprint(ppl-1, K); |
---|
5376 | ideal G = engine(K,eng); |
---|
5377 | dbprint(ppl,"// -1-4- the Groebner basis has been computed"); |
---|
5378 | dbprint(ppl-1, G); |
---|
5379 | return(G[1]!=1); |
---|
5380 | } |
---|
5381 | example |
---|
5382 | { |
---|
5383 | "EXAMPLE:"; echo = 2; |
---|
5384 | ring r = 0,(x,y),Dp; |
---|
5385 | poly F = x^4+y^5+x*y^4; |
---|
5386 | printlevel = 0; |
---|
5387 | def A = Sannfs(F); |
---|
5388 | setring A; |
---|
5389 | poly F = imap(r,F); |
---|
5390 | checkRoot1(LD,F,31/20); // -31/20 is not a root of bs |
---|
5391 | checkRoot1(LD,F,11/20); // -11/20 is a root of bs |
---|
5392 | } |
---|
5393 | |
---|
5394 | proc checkRoot2 (ideal I, poly F, number a, list #) |
---|
5395 | "USAGE: checkRoot2(I,f,alpha [,eng]); I an ideal, f a poly, alpha a number, eng an optional int |
---|
5396 | ASSUME: I is the annihilator of f^s in D[s], f is a polynomial in K[_x] |
---|
5397 | RETURN: int, the multiplicity of -alpha as a root of the global Bernstein polynomial of f. If -alpha is not a root, the output is 0 |
---|
5398 | PURPOSE: check whether a rational is a root of the global Bernstein polynomial of f and compute its multiplicity from the known Ann F^s in D[s] |
---|
5399 | NOTE: If eng <>0, @code{std} is used for Groebner basis computations, |
---|
5400 | @* otherwise (and by default) @code{slimgb} is used. |
---|
5401 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
5402 | @* if printlevel>=2, all the debug messages will be printed. |
---|
5403 | EXAMPLE: example checkRoot2; shows examples |
---|
5404 | " |
---|
5405 | { |
---|
5406 | int eng = 0; |
---|
5407 | if ( size(#)>0 ) |
---|
5408 | { |
---|
5409 | if ( typeof(#[1]) == "int" ) |
---|
5410 | { |
---|
5411 | eng = int(#[1]); |
---|
5412 | } |
---|
5413 | } |
---|
5414 | int ppl = printlevel-voice+2; |
---|
5415 | dbprint(ppl,"// -0-1- starting the procedure checkRoot2"); |
---|
5416 | def save = basering; |
---|
5417 | int N = nvars(basering); |
---|
5418 | int n = (N-1) / 2; |
---|
5419 | int i; |
---|
5420 | string s; |
---|
5421 | list RL = ringlist(basering); |
---|
5422 | list L, Lord; |
---|
5423 | list tmp; |
---|
5424 | intvec iv; |
---|
5425 | L[1] = RL[1]; // char |
---|
5426 | L[4] = RL[4]; // char, minpoly |
---|
5427 | // check whether basering is D[s]=K(_x,_Dx,s) |
---|
5428 | list Name = RL[2]; |
---|
5429 | for (i=1; i<=n; i++) |
---|
5430 | { |
---|
5431 | if ( bracket(var(i+n),var(i))!=1 ) |
---|
5432 | { |
---|
5433 | ERROR("basering should be D[s]=K(_x,_Dx,s)"); |
---|
5434 | } |
---|
5435 | } |
---|
5436 | if ( Name[N]!="s" ) |
---|
5437 | { |
---|
5438 | ERROR("the last variable of basering should be s"); |
---|
5439 | } |
---|
5440 | // now, create the new vars |
---|
5441 | L[2] = Name; |
---|
5442 | kill Name; |
---|
5443 | // block ord (dp); |
---|
5444 | tmp[1] = "dp"; // string |
---|
5445 | s = "iv="; |
---|
5446 | for (i=1; i<=N; i++) |
---|
5447 | { |
---|
5448 | s = s+"1,"; |
---|
5449 | } |
---|
5450 | s[size(s)]=";"; |
---|
5451 | execute(s); |
---|
5452 | kill s; |
---|
5453 | tmp[2] = iv; |
---|
5454 | Lord[1] = tmp; |
---|
5455 | tmp[1] = "C"; |
---|
5456 | iv = 0; |
---|
5457 | tmp[2] = iv; |
---|
5458 | Lord[2] = tmp; |
---|
5459 | tmp = 0; |
---|
5460 | L[3] = Lord; |
---|
5461 | // we are done with the list |
---|
5462 | def @R@ = ring(L); |
---|
5463 | setring @R@; |
---|
5464 | matrix @D[N][N]; |
---|
5465 | for (i=1; i<=n; i++) |
---|
5466 | { |
---|
5467 | @D[i,i+n]=1; |
---|
5468 | } |
---|
5469 | def @R = nc_algebra(1,@D); |
---|
5470 | setring @R; |
---|
5471 | kill @R@; |
---|
5472 | dbprint(ppl,"// -1-1- the ring @R(_x,_Dx,s) is ready"); |
---|
5473 | dbprint(ppl-1, @R); |
---|
5474 | // now, continue with the algorithm |
---|
5475 | ideal I = imap(save,I); |
---|
5476 | poly F = imap(save,F); |
---|
5477 | number a = imap(save,a); |
---|
5478 | ideal II = NF(I,std(F)); |
---|
5479 | // make leadcoeffs positive |
---|
5480 | for (i=1; i<=ncols(II); i++) |
---|
5481 | { |
---|
5482 | if ( leadcoef(II[i])<0 ) |
---|
5483 | { |
---|
5484 | II[i] = -II[i]; |
---|
5485 | } |
---|
5486 | } |
---|
5487 | ideal J,G; |
---|
5488 | int m; // the output (multiplicity) |
---|
5489 | dbprint(ppl,"// -2- starting the bucle"); |
---|
5490 | for (i=0; i<=n; i++) // the multiplicity has to be <= n |
---|
5491 | { |
---|
5492 | // create the ideal Ji = ann_D[s](f^s) + < f, (s+alpha)^{i+1} > |
---|
5493 | // (s+alpha)^i in Ji <==> -alpha is a root with multiplicity >= i |
---|
5494 | J = II,F,(s+a)^(i+1); |
---|
5495 | // ------------ the ideal Ji is ready ----------- |
---|
5496 | dbprint(ppl,"// -2-"+string(i+1)+"-1- starting the computation of a Groebner basis of J"+string(i)+" in @R"); |
---|
5497 | dbprint(ppl-1, J); |
---|
5498 | G = engine(J,eng); |
---|
5499 | dbprint(ppl,"// -2-"+string(i+1)+"-2- the Groebner basis has been computed"); |
---|
5500 | dbprint(ppl-1, G); |
---|
5501 | if ( NF((s+a)^i,G)==0 ) |
---|
5502 | { |
---|
5503 | dbprint(ppl,"// -2-"+string(i+1)+"-3- the number "+string(-a)+" has not multiplicity "+string(i+1)); |
---|
5504 | m = i; |
---|
5505 | break; |
---|
5506 | } |
---|
5507 | dbprint(ppl,"// -2-"+string(i+1)+"-3- the number "+string(-a)+" has multiplicity at least "+string(i+1)); |
---|
5508 | } |
---|
5509 | dbprint(ppl,"// -3- the bucle has finished"); |
---|
5510 | return(m); |
---|
5511 | } |
---|
5512 | example |
---|
5513 | { |
---|
5514 | "EXAMPLE:"; echo = 2; |
---|
5515 | ring r = 0,(x,y,z),Dp; |
---|
5516 | poly F = x*y*z; |
---|
5517 | printlevel = 0; |
---|
5518 | def A = Sannfs(F); |
---|
5519 | setring A; |
---|
5520 | poly F = imap(r,F); |
---|
5521 | checkRoot2(LD,F,1); // -1 is a root of bs with multiplicity 3 |
---|
5522 | checkRoot2(LD,F,1/3); // -1/3 is not a root |
---|
5523 | } |
---|
5524 | |
---|
5525 | proc checkFactor(ideal I, poly F, poly q, list #) |
---|
5526 | "USAGE: checkFactor(I,f,qs [,eng]); I an ideal, f a poly, qs a poly, eng an optional int |
---|
5527 | ASSUME: I is the output of Sannfs, SannfsBM, SannfsLOT or SannfsOT, |
---|
5528 | f is a polynomial in K[_x], qs is a polynomial in K[s] |
---|
5529 | RETURN: int, 1 if qs is a factor of the global Bernstein polynomial of f and 0 otherwise |
---|
5530 | PURPOSE: check whether a rational is a root of the global Bernstein polynomial of f and compute its multiplicity from the known Ann F^s in D[s] |
---|
5531 | NOTE: If eng <>0, @code{std} is used for Groebner basis computations, |
---|
5532 | @* otherwise (and by default) @code{slimgb} is used. |
---|
5533 | DISPLAY: If printlevel=1, progress debug messages will be printed, |
---|
5534 | @* if printlevel>=2, all the debug messages will be printed. |
---|
5535 | EXAMPLE: example checkFactor; shows examples |
---|
5536 | " |
---|
5537 | { |
---|
5538 | int eng = 0; |
---|
5539 | if ( size(#)>0 ) |
---|
5540 | { |
---|
5541 | if ( typeof(#[1]) == "int" ) |
---|
5542 | { |
---|
5543 | eng = int(#[1]); |
---|
5544 | } |
---|
5545 | } |
---|
5546 | int ppl = printlevel-voice+2; |
---|
5547 | def @R2 = basering; |
---|
5548 | int N = nvars(@R2); |
---|
5549 | int i; |
---|
5550 | // we're in D_n[s], where the elim ord for s is set |
---|
5551 | dbprint(ppl,"// -0-1- starting the procedure checkFactor"); |
---|
5552 | dbprint(ppl,"// -1-1- the ring @R2(_x,_Dx,s) is ready"); |
---|
5553 | dbprint(ppl-1, @R2); |
---|
5554 | // create the ideal J = ann_D[s](f^s) + < f,q > |
---|
5555 | ideal J = NF(I,std(F)); |
---|
5556 | // make leadcoeffs positive |
---|
5557 | for (i=1; i<=ncols(J); i++) |
---|
5558 | { |
---|
5559 | if ( leadcoef(J[i])<0 ) |
---|
5560 | { |
---|
5561 | J[i] = -J[i]; |
---|
5562 | } |
---|
5563 | } |
---|
5564 | J = J,F,q; |
---|
5565 | // ------------ the ideal J is ready ----------- |
---|
5566 | dbprint(ppl,"// -1-2- starting the elimination of _x,_Dx in @R2"); |
---|
5567 | dbprint(ppl-1, J); |
---|
5568 | ideal G = engine(J,eng); |
---|
5569 | ideal K = nselect(G,1..N-1); |
---|
5570 | kill J,G; |
---|
5571 | dbprint(ppl,"// -1-3- _x,_Dx are eliminated"); |
---|
5572 | dbprint(ppl-1, K); |
---|
5573 | //q is a factor of bs iff K = < q > |
---|
5574 | //K = normalize(K); |
---|
5575 | //q = normalize(q); |
---|
5576 | //return( (K[1]==q) ); |
---|
5577 | return( NF(K[1],std(q))==0 ); |
---|
5578 | } |
---|
5579 | example |
---|
5580 | { |
---|
5581 | "EXAMPLE:"; echo = 2; |
---|
5582 | ring r = 0,(x,y),Dp; |
---|
5583 | poly F = x^4+y^5+x*y^4; |
---|
5584 | printlevel = 0; |
---|
5585 | def A = Sannfs(F); |
---|
5586 | setring A; |
---|
5587 | poly F = imap(r,F); |
---|
5588 | checkFactor(LD,F,20*s+31); // -31/20 is not a root of bs |
---|
5589 | checkFactor(LD,F,20*s+11); // -11/20 is a root of bs |
---|
5590 | checkFactor(LD,F,(20*s+11)^2); // the multiplicity of -11/20 is 1 |
---|
5591 | } |
---|
5592 | |
---|
5593 | proc varnum(string s) |
---|
5594 | "USAGE: varnum(s); string s |
---|
5595 | RETURN: int |
---|
5596 | PURPOSE: returns the number of the variable with the name s |
---|
5597 | among the variables of basering or 0 if there is no such variable |
---|
5598 | EXAMPLE: example varnum; shows examples |
---|
5599 | " |
---|
5600 | { |
---|
5601 | int i; |
---|
5602 | for (i=1; i<= nvars(basering); i++) |
---|
5603 | { |
---|
5604 | if ( string(var(i)) == s ) |
---|
5605 | { |
---|
5606 | return(i); |
---|
5607 | } |
---|
5608 | } |
---|
5609 | return(0); |
---|
5610 | } |
---|
5611 | example |
---|
5612 | { |
---|
5613 | "EXAMPLE:"; echo = 2; |
---|
5614 | ring X = 0,(x,y1,z(0),tTa),dp; |
---|
5615 | varnum("z(0)"); |
---|
5616 | varnum("tTa"); |
---|
5617 | varnum("xyz"); |
---|
5618 | } |
---|
5619 | |
---|
5620 | static proc indAR(list L, int n) |
---|
5621 | "USAGE: indAR(L,n); list L, int n |
---|
5622 | RETURN: list |
---|
5623 | PURPOSE: computes arrangement inductively, using L and var(n) as the |
---|
5624 | next variable |
---|
5625 | ASSUME: L has a structure of an arrangement |
---|
5626 | EXAMPLE: example indAR; shows examples |
---|
5627 | " |
---|
5628 | { |
---|
5629 | if ( (n<2) || (n>nvars(basering)) ) |
---|
5630 | { |
---|
5631 | ERROR("incorrect n"); |
---|
5632 | } |
---|
5633 | int sl = size(L); |
---|
5634 | list K; |
---|
5635 | ideal tmp; |
---|
5636 | poly @t = L[sl][1] + var(n); //1 elt |
---|
5637 | K[sl+1] = ideal(@t); |
---|
5638 | tmp = L[1]+var(n); |
---|
5639 | K[1] = tmp; tmp = 0; |
---|
5640 | int i,j,sI; |
---|
5641 | ideal I; |
---|
5642 | for(i=sl; i>=2; i--) |
---|
5643 | { |
---|
5644 | I = L[i-1]; sI = size(I); |
---|
5645 | for(j=1; j<=sI; j++) |
---|
5646 | { |
---|
5647 | I[j] = I[j] + var(n); |
---|
5648 | } |
---|
5649 | tmp = L[i],I; |
---|
5650 | K[i] = tmp; |
---|
5651 | I = 0; tmp = 0; |
---|
5652 | } |
---|
5653 | kill I; kill tmp; |
---|
5654 | return(K); |
---|
5655 | } |
---|
5656 | example |
---|
5657 | { |
---|
5658 | "EXAMPLE:"; echo = 2; |
---|
5659 | ring r = 0,(x,y,z,t,v),dp; |
---|
5660 | list L; |
---|
5661 | L[1] = ideal(x); |
---|
5662 | list K = indAR(L,2); |
---|
5663 | K; |
---|
5664 | list M = indAR(K,3); |
---|
5665 | M; |
---|
5666 | M = indAR(M,4); |
---|
5667 | M; |
---|
5668 | } |
---|
5669 | |
---|
5670 | /// ****** EXAMPLES ************ |
---|
5671 | |
---|
5672 | /* |
---|
5673 | |
---|
5674 | //static proc exCheckGenericity() |
---|
5675 | { |
---|
5676 | LIB "control.lib"; |
---|
5677 | ring r = (0,a,b,c),x,dp; |
---|
5678 | poly p = (x-a)*(x-b)*(x-c); |
---|
5679 | def A = annfsBM(p); |
---|
5680 | setring A; |
---|
5681 | ideal J = slimgb(LD); |
---|
5682 | matrix T = lift(LD,J); |
---|
5683 | T = normalize(T); |
---|
5684 | genericity(T); |
---|
5685 | // Ann =x^3*Dx+3*x^2*t*Dt+(-a-b-c)*x^2*Dx+(-2*a-2*b-2*c)*x*t*Dt+3*x^2+(a*b+a*c+b*c)*x*Dx+(a*b+a*c+b*c)*t*Dt+(-2*a-2*b-2*c)*x+(-a*b*c)*Dx+(a*b+a*c+b*c) |
---|
5686 | // genericity: g = a2-ab-ac+b2-bc+c2 =0 |
---|
5687 | // g = (a -(b+c)/2)^2 + (3/4)*(b-c)^2; |
---|
5688 | // g ==0 <=> a=b=c |
---|
5689 | // indeed, Ann = (x-a)^2*(x*Dx+3*t*Dt+(-a)*Dx+3) |
---|
5690 | // -------------------------------------------- |
---|
5691 | // BUT a direct computation shows |
---|
5692 | // when a=b=c, |
---|
5693 | // Ann = x*Dx+3*t*Dt+(-a)*Dx+3 |
---|
5694 | } |
---|
5695 | |
---|
5696 | //static proc exOT_17() |
---|
5697 | { |
---|
5698 | // Oaku-Takayama, p.208 |
---|
5699 | ring R = 0,(x,y),dp; |
---|
5700 | poly F = x^3-y^2; // x^2+x*y+y^2; |
---|
5701 | option(prot); |
---|
5702 | option(mem); |
---|
5703 | // option(redSB); |
---|
5704 | def A = annfsOT(F,0); |
---|
5705 | setring A; |
---|
5706 | LD; |
---|
5707 | gkdim(LD); // a holonomic check |
---|
5708 | // poly F = x^3-y^2; // = x^7 - y^5; // x^3-y^4; // x^5 - y^4; |
---|
5709 | } |
---|
5710 | |
---|
5711 | //static proc exOT_16() |
---|
5712 | { |
---|
5713 | // Oaku-Takayama, p.208 |
---|
5714 | ring R = 0,(x),dp; |
---|
5715 | poly F = x*(1-x); |
---|
5716 | option(prot); |
---|
5717 | option(mem); |
---|
5718 | // option(redSB); |
---|
5719 | def A = annfsOT(F,0); |
---|
5720 | setring A; |
---|
5721 | LD; |
---|
5722 | gkdim(LD); // a holonomic check |
---|
5723 | } |
---|
5724 | |
---|
5725 | //static proc ex_bcheck() |
---|
5726 | { |
---|
5727 | ring R = 0,(x,y),dp; |
---|
5728 | poly F = x*y*(x+y); |
---|
5729 | option(prot); |
---|
5730 | option(mem); |
---|
5731 | int eng = 0; |
---|
5732 | // option(redSB); |
---|
5733 | def A = annfsOT(F,eng); |
---|
5734 | setring A; |
---|
5735 | LD; |
---|
5736 | } |
---|
5737 | |
---|
5738 | //static proc ex_bcheck2() |
---|
5739 | { |
---|
5740 | ring R = 0,(x,y),dp; |
---|
5741 | poly F = x*y*(x+y); |
---|
5742 | int eng = 0; |
---|
5743 | def A = annfsBM(F,eng); |
---|
5744 | setring A; |
---|
5745 | LD; |
---|
5746 | } |
---|
5747 | |
---|
5748 | //static proc ex_BMI() |
---|
5749 | { |
---|
5750 | // a hard example |
---|
5751 | ring r = 0,(x,y),Dp; |
---|
5752 | poly F1 = (x2-y3)*(x3-y2); |
---|
5753 | poly F2 = (x2-y3)*(xy4+y5+x4); |
---|
5754 | ideal F = F1,F2; |
---|
5755 | def A = annfsBMI(F); |
---|
5756 | setring A; |
---|
5757 | LD; |
---|
5758 | BS; |
---|
5759 | } |
---|
5760 | |
---|
5761 | //static proc ex2_BMI() |
---|
5762 | { |
---|
5763 | // this example was believed to be intractable in 2005 by Gago-Vargas, Castro and Ucha |
---|
5764 | ring r = 0,(x,y),Dp; |
---|
5765 | option(prot); |
---|
5766 | option(mem); |
---|
5767 | ideal F = x2+y3,x3+y2; |
---|
5768 | printlevel = 2; |
---|
5769 | def A = annfsBMI(F); |
---|
5770 | setring A; |
---|
5771 | LD; |
---|
5772 | BS; |
---|
5773 | } |
---|
5774 | |
---|
5775 | //static proc ex_operatorBM() |
---|
5776 | { |
---|
5777 | ring r = 0,(x,y,z,w),Dp; |
---|
5778 | poly F = x^3+y^3+z^2*w; |
---|
5779 | printlevel = 0; |
---|
5780 | def A = operatorBM(F); |
---|
5781 | setring A; |
---|
5782 | F; // the original polynomial itself |
---|
5783 | LD; // generic annihilator |
---|
5784 | LD0; // annihilator |
---|
5785 | bs; // normalized Bernstein poly |
---|
5786 | BS; // root and multiplicities of the Bernstein poly |
---|
5787 | PS; // the operator, s.t. PS*F^{s+1} = bs*F^s mod LD |
---|
5788 | reduce(PS*F-bs,LD); // check the property of PS |
---|
5789 | } |
---|
5790 | |
---|
5791 | */ |
---|