source: git/Singular/LIB/elim.lib @ a286e70

spielwiese
Last change on this file since a286e70 was a286e70, checked in by Hans Schönemann <hannes@…>, 24 years ago
*hannes: elim uses minpoly git-svn-id: file:///usr/local/Singular/svn/trunk@4172 2c84dea3-7e68-4137-9b89-c4e89433aadc
  • Property mode set to 100644
File size: 10.5 KB
Line 
1// $Id: elim.lib,v 1.9 2000-03-01 16:28:56 Singular Exp $
2// (GMG, last modified 22.06.96)
3///////////////////////////////////////////////////////////////////////////////
4
5version="$Id: elim.lib,v 1.9 2000-03-01 16:28:56 Singular Exp $";
6info="
7LIBRARY:  elim.lib      PROCEDURES FOR ELIMINATIOM, SATURATION AND BLOWING UP
8
9PROCEDURES:
10 blowup0(j[,s1,s2]);    create presentation of blownup ring of ideal j
11 elim(id,n,m);          variable n..m eliminated from id (ideal/module)
12 elim1(id,p);           p=product of vars to be eliminated from id
13 nselect(id,n[,m]);     select generators not containing nth [..mth] variable
14 sat(id,j);             saturated quotient of ideal/module id by ideal j
15 select(id,n[,m]);      select generators containing all variables n...m
16 select1(id,n[,m]);     select generators containing one variable n...m
17           (parameters in square brackets [] are optional)
18";
19
20LIB "inout.lib";
21LIB "general.lib";
22LIB "poly.lib";
23///////////////////////////////////////////////////////////////////////////////
24
25proc blowup0 (ideal j,list #)
26"USAGE:   blowup0(j[,s1,s2]); j ideal, s1,s2 nonempty strings
27CREATE:  Create a presentation of the blowup ring of j
28RETURN:  no return value
29NOTE:    s1 and s2 are used to give names to the blownup ring and the blownup
30         ideal (default: s1=\"j\", s2=\"A\")
31         Assume R = char,x(1..n),ord is the basering of j, and s1=\"j\", s2=\"A\"
32         then the procedure creates a new ring with name Bl_jR
33         (equal to R[A,B,...])
34               Bl_jR = char,(A,B,...,x(1..n)),(dp(k),ord)
35         with k=ncols(j) new variables A,B,... and ordering wp(d1..dk) if j is
36         homogeneous with deg(j[i])=di resp. dp otherwise for these vars.
37         If k>26 or size(s2)>1, say s2=\"A()\", the new vars are A(1),...,A(k).
38         Let j_ be the kernel of the ring map Bl_jR -> R defined by A(i)->j[i],
39         x(i)->x(i), then the quotient ring Bl_jR/j_ is the blowup ring of j
40         in R (being isomorphic to R+j+j^2+...). Moreover the procedure creates
41         a std basis of j_ with name j_ in Bl_jR.
42         This proc uses 'execute' or calls a procedure using 'execute'.
43DISPLAY: printlevel >=0: explain created objects (default)
44EXAMPLE: example blowup0; shows examples
45"{
46   string bsr = nameof(basering);
47   def br = basering;
48   string cr,vr,o = charstr(br),varstr(br),ordstr(br);
49   int n,k,i = nvars(br),ncols(j),0;
50   int p = printlevel-voice+3;  // p=printlevel+1 (default: p=1)
51//---------------- create coordinate ring of blown up space -------------------
52   if( size(#)==0 ) { #[1] = "j"; #[2] = "A"; }
53   if( size(#)==1 ) { #[2] = "A"; }
54   if( k<=26 and size(#[2])==1 ) { string nv = A_Z(#[2],k)+","; }
55   else { string nv = (#[2])[1]+"(1.."+string(k)+"),"; }
56   if( is_homog(j) )
57   {
58      intvec v=1;
59      for( i=1; i<=k; i=i+1) { v[i+1]=deg(j[i]); }
60      string nor = "),(wp(v),";
61   }
62   else { string nor = "),(dp(1+k),";}
63   execute("ring Bl=("+cr+"),(t,"+nv+vr+nor+o+");");
64//---------- map to new ring, eliminate and create blown up ideal -------------
65   ideal j=imap(br,j);
66   for( i=1; i<=k; i=i+1) { j[i]=var(1+i)-t*j[i]; }
67   j=eliminate(j,t);
68   v=v[2..size(v)];
69   execute("ring Bl_"+#[1]+bsr+"=("+cr+"),("+nv+vr+nor+o+");");
70   ideal `#[1]+"_"`=imap(Bl,j);
71   export basering;
72   export `#[1]+"_"`;
73   //keepring basering;
74   setring br;
75//------------------- some comments about usage and names  --------------------
76dbprint(p,"",
77"// The proc created the ring Bl_"+#[1]+bsr+" (equal to "+bsr+"["+nv[1,size(nv)-1]+"])",
78"// it contains the ideal "+#[1]+"_ , such that",
79"//             Bl_"+#[1]+bsr+"/"+#[1]+"_ is the blowup ring",
80"// show(Bl_"+#[1]+bsr+"); shows this ring.",
81"// Make Bl_"+#[1]+bsr+" the basering and see "+#[1]+"_ by typing:",
82"   setring Bl_"+#[1]+bsr+";","   "+#[1]+"_;");
83   return();
84}
85example
86{ "EXAMPLE:"; echo = 2;
87   ring R=0,(x,y),dp;
88   poly f=y2+x3; ideal j=jacob(f);
89   blowup0(j);
90   show(Bl_jR);
91   setring Bl_jR;
92   j_;"";
93   ring r=32003,(x,y,z),ds;
94   blowup0(maxideal(1),"m","T()");
95   show(Bl_mr);
96   setring Bl_mr;
97   m_;
98   kill Bl_jR, Bl_mr;
99}
100///////////////////////////////////////////////////////////////////////////////
101
102proc elim (id, int n, int m)
103"USAGE:   elim(id,n,m);  id ideal/module, n,m integers
104RETURNS: ideal/module obtained from id by eliminating variables n..m
105NOTE:    no special monomial ordering is required, result is a SB with
106         respect to ordering dp (resp. ls) if the first var not to be
107         eliminated belongs to a -p (resp. -s) blockordering
108         This proc uses 'execute' or calls a procedure using 'execute'.
109EXAMPLE: example elim; shows examples
110"
111{
112//---- get variables to be eliminated and create string for new ordering ------
113   int ii; poly vars=1;
114   for( ii=n; ii<=m; ii=ii+1 ) { vars=vars*var(ii); }
115   if( n>1 ) { poly p = 1+var(1); }
116   else { poly p = 1+var(m+1); }
117   if( ord(p)==0 ) { string ordering = "),ls;"; }
118   if( ord(p)>0 ) { string ordering = "),dp;"; }
119   string mpoly=string(minpoly);
120//-------------- create new ring and map objects to new ring ------------------
121   def br = basering;
122   string str = "ring @newr = ("+charstr(br)+"),("+varstr(br)+ordering;
123   execute(str);
124   if (mpoly!="0") { execute("minpoly="+mpoly+";"); }
125   def i = imap(br,id);
126   poly vars = imap(br,vars);
127//---------- now eliminate in new ring and map back to old ring ---------------
128   i = eliminate(i,vars);
129   setring br;
130   return(imap(@newr,i));
131}
132example
133{ "EXAMPLE:"; echo = 2;
134   ring r=0,(x,y,u,v,w),dp;
135   ideal i=x-u,y-u2,w-u3,v-x+y3;
136   elim(i,3,4);
137   module m=i*gen(1)+i*gen(2);
138   m=elim(m,3,4);show(m);
139}
140///////////////////////////////////////////////////////////////////////////////
141
142proc elim1 (id, poly vars)
143"USAGE:   elim1(id,poly); id ideal/module, poly=product of vars to be eliminated
144RETURN:  ideal/module obtained from id by eliminating vars occuring in poly
145NOTE:    no special monomial ordering is required, result is a SB with
146         respect to ordering dp (resp. ls) if the first var not to be
147         eliminated belongs to a -p (resp. -s) blockordering
148         This proc uses 'execute' or calls a procedure using 'execute'.
149EXAMPLE: example elim1; shows examples
150"
151{
152//---- get variables to be eliminated and create string for new ordering ------
153   int ii;
154   for( ii=1; ii<=nvars(basering); ii=ii+1 )
155   {
156      if( vars/var(ii)==0 ) { poly p = 1+var(ii); break;}
157   }
158   if( ord(p)==0 ) { string ordering = "),ls;"; }
159   if( ord(p)>0 ) { string ordering = "),dp;"; }
160//-------------- create new ring and map objects to new ring ------------------
161   def br = basering;
162   string str = "ring @newr = ("+charstr(br)+"),("+varstr(br)+ordering;
163   execute(str);
164   def id = fetch(br,id);
165   poly vars = fetch(br,vars);
166//---------- now eliminate in new ring and map back to old ring ---------------
167   id = eliminate(id,vars);
168   setring br;
169   return(imap(@newr,id));
170}
171example
172{ "EXAMPLE:"; echo = 2;
173   ring r=0,(x,y,t,s,z),dp;
174   ideal i=x-t,y-t2,z-t3,s-x+y3;
175   elim1(i,ts);
176   module m=i*gen(1)+i*gen(2);
177   m=elim1(m,st); show(m);
178}
179///////////////////////////////////////////////////////////////////////////////
180
181proc nselect (id, int n, list#)
182"USAGE:   nselect(id,n[,m]); id a module or ideal, n, m integers
183RETURN:  generators of id not containing the variable n [up to m]
184EXAMPLE: example nselect; shows examples
185"{
186   int j,k;
187   if( size(#)==0 ) { #[1]=n; }
188   for( k=1; k<=ncols(id); k=k+1 )
189   {  for( j=n; j<=#[1]; j=j+1 )
190      {  if( size(id[k]/var(j))!=0) { id[k]=0; break; }
191      }
192   }
193   return(simplify(id,2));
194}
195example
196{ "EXAMPLE:"; echo = 2;
197   ring r=0,(x,y,t,s,z),(c,dp);
198   ideal i=x-y,y-z2,z-t3,s-x+y3;
199   nselect(i,3);
200   module m=i*(gen(1)+gen(2));
201   show(m);
202   show(nselect(m,3,4));
203}
204///////////////////////////////////////////////////////////////////////////////
205
206proc sat (id, ideal j)
207"USAGE:   sat(id,j);  id=ideal/module, j=ideal
208RETURN:  list of an ideal/module [1] and an integer [2]:
209         [1] = saturation of id with respect to j (= union_(k=1...) of id:j^k)
210         [2] = saturation exponent (= min( k | id:j^k = id:j^(k+1) ))
211NOTE:    [1] is a standard basis in the basering
212DISPLAY: saturation exponent during computation if printlevel >=1
213EXAMPLE: example sat; shows an example
214"{
215   int ii,kk;
216   def i=id;
217   id=std(id);
218   int p = printlevel-voice+3;  // p=printlevel+1 (default: p=1)
219   while( ii<=size(i) )
220   {
221      dbprint(p-1,"// compute quotient "+string(kk+1));
222      i=quotient(id,j);
223      for( ii=1; ii<=size(i); ii=ii+1 )
224      {
225         if( reduce(i[ii],id,1)!=0 ) break;
226      }
227      id=std(i); kk=kk+1;
228   }
229   dbprint(p-1,"// saturation becomes stable after "+string(kk-1)+" iteration(s)","");
230   list L = id,kk-1;
231   return (L);
232}
233example
234{ "EXAMPLE:"; echo = 2;
235   int p      = printlevel;
236   ring r     = 2,(x,y,z),dp;
237   poly F     = x5+y5+(x-y)^2*xyz;
238   ideal j    = jacob(F);
239   sat(j,maxideal(1));
240   printlevel = 2;
241   sat(j,maxideal(2));
242   printlevel = p;
243}
244///////////////////////////////////////////////////////////////////////////////
245
246proc select (id, int n, list#)
247"USAGE:   select(id,n[,m]); id ideal/module, n, m integers
248RETURN:  generators of id containing the variable n [all variables up to m]
249NOTE:    use 'select1' for selecting generators containing at least one of the
250         variables between n and m
251EXAMPLE: example select; shows examples
252"{
253   if( size(#)==0 ) { #[1]=n; }
254   int j,k;
255   for( k=1; k<=ncols(id); k=k+1 )
256   {  for( j=n; j<=#[1]; j=j+1 )
257      {   if( size(id[k]/var(j))==0) { id[k]=0; break; }
258      }
259   }
260   return(simplify(id,2));
261}
262example
263{ "EXAMPLE:"; echo = 2;
264   ring r=0,(x,y,t,s,z),(c,dp);
265   ideal i=x-y,y-z2,z-t3,s-x+y3;
266   ideal j=select(i,1);
267   j;
268   module m=i*(gen(1)+gen(2));
269   m;
270   select(m,1,2);
271}
272///////////////////////////////////////////////////////////////////////////////
273
274proc select1 (id, int n, list#)
275"USAGE:   select(id,n[,m]); id ideal/module, n, m integers
276RETURN:  generators of id containing the variable n
277         [at least one of the variables up to m]
278NOTE:    use 'select' for selecting generators containing all the
279         variables between n and m
280EXAMPLE: example select1; shows examples
281"{
282   if( size(#)==0 ) { #[1]=n; }
283   int j,k;
284   execute (typeof(id)+" I;");
285   for( k=1; k<=ncols(id); k=k+1 )
286   {  for( j=n; j<=#[1]; j=j+1 )
287      {   
288         if( size(subst(id[k],var(j),0)) != size(id[k]) )
289         { I=I,id[k]; break; }
290      }
291   }
292   return(simplify(I,2));
293}
294example
295{ "EXAMPLE:"; echo = 2;
296   ring r=0,(x,y,t,s,z),(c,dp);
297   ideal i=x-y,y-z2,z-t3,s-x+y3;
298   ideal j=select1(i,1);
299   j;
300   module m=i*(gen(1)+gen(2));
301   m;
302   select1(m,1,2);
303}
304///////////////////////////////////////////////////////////////////////////////
Note: See TracBrowser for help on using the repository browser.