1 | // |
---|
2 | // |
---|
3 | ////////////////////////////////////////////////////////////////////////////// |
---|
4 | version="$Id$"; |
---|
5 | category="Teaching"; |
---|
6 | info=" |
---|
7 | LIBRARY: findiff.lib procedures to compute finite difference schemes for |
---|
8 | linear differential equations |
---|
9 | AUTHOR: Christian Dingler |
---|
10 | |
---|
11 | NOTE: |
---|
12 | @texinfo |
---|
13 | Using @code{qepcad}/@code{qepcadsystem} from this |
---|
14 | library requires the program @code{qepcad} to be installed. |
---|
15 | You can download @code{qepcad} from |
---|
16 | @uref{http://www.usna.edu/Users/cs/qepcad/INSTALL/IQ.html} |
---|
17 | @end texinfo |
---|
18 | |
---|
19 | PROCEDURES: |
---|
20 | visualize(f); shows a scheme in index-notation |
---|
21 | u(D[,#]); gives some vector; depends on @derivatives |
---|
22 | scheme([v1,..,vn]); computes the finite difference scheme defined by v1,..,vn |
---|
23 | laxfrT(Ut,U,space); Lax-Friedrich-approximation for the time-direction |
---|
24 | laxfrX(Ux,U,space); Lax-Friedrich-approximation for the space-direction |
---|
25 | forward(U1,U2,VAR); forward-approximation |
---|
26 | backward(U1,U2,VAR); backward-approximation |
---|
27 | central1st(U1,U2,VAR); central-approximation of first order |
---|
28 | central2nd(U1,U2,VAR); central-approximation of second order |
---|
29 | trapezoid(U1,U2,VAR); trapezoid-approximation |
---|
30 | midpoint(U1,U2,VAR); midpoint-approximation |
---|
31 | pyramid(U1,U2,VAR); pyramid-approximation |
---|
32 | setinitials(variable,der[,#]); constructs and sets the basering for further computations |
---|
33 | errormap(f); performs the Fouriertransformation of a poly |
---|
34 | matrixsystem(Matrices,Approx); gives the scheme of a pde-system as one matrix |
---|
35 | timestep(M); gives the several timelevels of a scheme derived from a pde-system |
---|
36 | fouriersystem(Matrices,Approx); performs the Fouriertransformation of a matrix scheme |
---|
37 | PartitionVar(f,n); partitions a poly into the var(n)-part and the rest |
---|
38 | ComplexValue(f); computes the complex value of f, var(1) being the imaginary unit |
---|
39 | VarToPar(f); substitute var(i) by par(i) |
---|
40 | ParToVar(f); substitute par(i) by var(i) |
---|
41 | qepcad(f); ask QEPCAD for equivalent constraints to f<1 |
---|
42 | qepcadsystem(l); ask QEPCAD for equivalent constraints to all eigenvals of some matrices being <1 |
---|
43 | |
---|
44 | |
---|
45 | "; |
---|
46 | LIB "ring.lib"; |
---|
47 | LIB "general.lib"; |
---|
48 | LIB "standard.lib"; |
---|
49 | LIB "linalg.lib"; |
---|
50 | LIB "matrix.lib"; |
---|
51 | LIB "poly.lib"; |
---|
52 | LIB "teachstd.lib"; |
---|
53 | LIB "qhmoduli.lib"; |
---|
54 | /////////////////////////////////////////////////////////////////////// |
---|
55 | static proc getit(module M) |
---|
56 | { |
---|
57 | int nderiv=pos(U,@derivatives); |
---|
58 | def M2=groebner(M); |
---|
59 | module N1=gen(nderiv); |
---|
60 | def N2=intersect(M2,N1); |
---|
61 | def S=N2[1][nderiv]; |
---|
62 | return(S); |
---|
63 | } |
---|
64 | /////////////////////////////////////////////////////////////////////// |
---|
65 | proc visualize(poly f) |
---|
66 | "USAGE: visualize(f); f of type poly. |
---|
67 | RETURN: type string; translates the polynomial form of a finite difference scheme into an indexed one as often seen in literature |
---|
68 | EXAMPLE: example visualize; shows an example |
---|
69 | " |
---|
70 | { |
---|
71 | def n=size(f); |
---|
72 | string str; |
---|
73 | intvec v; |
---|
74 | if (n>0) |
---|
75 | { |
---|
76 | int i; |
---|
77 | int j; |
---|
78 | for(i=1;i<=n;i++) |
---|
79 | { |
---|
80 | intvec w=leadexp(f); |
---|
81 | for(j=1;j<=size(@variables);j++) |
---|
82 | { |
---|
83 | v[j]=w[j+1]; |
---|
84 | } |
---|
85 | if(i==1) |
---|
86 | { |
---|
87 | str=print(leadcoef(f),"%s")+"*"+"U("+print(v,"%s")+")"; |
---|
88 | } |
---|
89 | else |
---|
90 | { |
---|
91 | str=str+"+"+print(leadcoef(f),"%s")+"*"+"U("+print(v,"%s")+")"; |
---|
92 | } |
---|
93 | kill w; |
---|
94 | f=f-lead(f); |
---|
95 | } |
---|
96 | } |
---|
97 | return(str); |
---|
98 | } |
---|
99 | example |
---|
100 | { |
---|
101 | "EXAMPLE:";echo=2; |
---|
102 | list D="Ux","Ut","U"; |
---|
103 | list P="a"; |
---|
104 | list V="t","x"; |
---|
105 | setinitials(V,D,P); |
---|
106 | scheme(u(Ut)+a*u(Ux),trapezoid(Ux,U,x),backward(Ut,U,t)); |
---|
107 | visualize(_); |
---|
108 | } |
---|
109 | |
---|
110 | /////////////////////////////////// |
---|
111 | static proc imageideal() |
---|
112 | { |
---|
113 | |
---|
114 | def n=size(@variables)-1; |
---|
115 | ideal IDEAL=var(1),var(2); |
---|
116 | int j; |
---|
117 | for(j=1;j<=n;j++) |
---|
118 | { |
---|
119 | ideal II=var(2+j+n)+var(1)*var(2+2*n+j); |
---|
120 | IDEAL=IDEAL+II; |
---|
121 | kill II; |
---|
122 | } |
---|
123 | return(IDEAL); |
---|
124 | } |
---|
125 | ///////////////////////////////////// |
---|
126 | proc u(D,list #) |
---|
127 | "USAGE: u(D[,#]); D a string that occurs in the list of @derivatives, # an optional list of integers. |
---|
128 | RETURN: type vector; gives the vector, that corresponds with gen(n)*m, where m is the monomial defined by # |
---|
129 | EXAMPLE: example u; shows an example |
---|
130 | " |
---|
131 | { |
---|
132 | def n=size(#); |
---|
133 | def nv=nvars(basering)-1; |
---|
134 | int nn; |
---|
135 | if(nv<=n) |
---|
136 | { |
---|
137 | nn=nv; |
---|
138 | } |
---|
139 | else |
---|
140 | { |
---|
141 | nn=n; |
---|
142 | } |
---|
143 | int index=pos(D,@derivatives); |
---|
144 | poly g=1; |
---|
145 | if(nn>=1) |
---|
146 | { |
---|
147 | int j; |
---|
148 | for(j=1;j<=nn;j++) |
---|
149 | { |
---|
150 | int nnn; |
---|
151 | nnn=int(#[j]); |
---|
152 | g=var(1+j)**nnn*g; |
---|
153 | kill nnn; |
---|
154 | } |
---|
155 | return(gen(index)*g); |
---|
156 | } |
---|
157 | else |
---|
158 | { |
---|
159 | return(gen(index)*g); |
---|
160 | } |
---|
161 | } |
---|
162 | example |
---|
163 | { |
---|
164 | "EXAMPLE:";echo=2; |
---|
165 | list D="Ux","Uy","Ut","U"; |
---|
166 | list P="a","b"; |
---|
167 | list V="t","x","y"; |
---|
168 | setinitials(V,D,P); |
---|
169 | u(Ux); |
---|
170 | u(Ux,2,3,7); |
---|
171 | u(Uy)+u(Ut)-u(Ux); |
---|
172 | u(U)*234-dx*dt*dy*3*u(Uy); |
---|
173 | } |
---|
174 | |
---|
175 | ///////////////////////////////////////////////////////// |
---|
176 | static proc pos(string D,list L) |
---|
177 | { |
---|
178 | int j; |
---|
179 | int index=-1; |
---|
180 | def n=size(L); |
---|
181 | for(j=1;j<=n;j++) |
---|
182 | { |
---|
183 | if(D==L[j]) |
---|
184 | { |
---|
185 | index=j; |
---|
186 | } |
---|
187 | } |
---|
188 | return(index); |
---|
189 | } |
---|
190 | /////////////////////////////////// |
---|
191 | static proc re(list L) |
---|
192 | { |
---|
193 | def n=size(L); |
---|
194 | int j; |
---|
195 | for(j=1;j<=n;j++) |
---|
196 | { |
---|
197 | string s="string "+print(L[j],"%s")+"="+"nameof("+print(L[j],"%s")+")"+";"; |
---|
198 | execute(s); |
---|
199 | kill s; |
---|
200 | exportto(Top,`L[j]`); |
---|
201 | } |
---|
202 | } |
---|
203 | /////////////////////////////////////////////// |
---|
204 | proc scheme(list #) |
---|
205 | "USAGE: scheme([v1,..,vn]); v1,..,vn of type vector |
---|
206 | RETURN: type poly; performs substitutions by the means of Groebner Basis computation of the module generated by the input vectors, then intersects the intermediate result with the suitable component in order to get a finite difference scheme; |
---|
207 | NOTE: works only for a single pde, for the case of a system use matrixsystem |
---|
208 | EXAMPLE: example scheme; shows an example |
---|
209 | " |
---|
210 | { |
---|
211 | def N=size(#); |
---|
212 | if(N==0) |
---|
213 | { |
---|
214 | if(defined(M)==1) |
---|
215 | { |
---|
216 | kill M; |
---|
217 | module M; |
---|
218 | } |
---|
219 | else |
---|
220 | { |
---|
221 | module M; |
---|
222 | } |
---|
223 | } |
---|
224 | else |
---|
225 | { |
---|
226 | int j; |
---|
227 | if(defined(M)==1) |
---|
228 | { |
---|
229 | kill M; |
---|
230 | module M; |
---|
231 | for(j=1;j<=N;j++) |
---|
232 | { |
---|
233 | M=M+#[j]; |
---|
234 | } |
---|
235 | } |
---|
236 | else |
---|
237 | { |
---|
238 | module M; |
---|
239 | for(j=1;j<=N;j++) |
---|
240 | { |
---|
241 | M=M+#[j]; |
---|
242 | } |
---|
243 | } |
---|
244 | } |
---|
245 | def S=getit(M); |
---|
246 | matrix mat[1][1]=S; |
---|
247 | list l=timestep(mat); |
---|
248 | poly f=l[2][1,1]; |
---|
249 | return(f); |
---|
250 | } |
---|
251 | example |
---|
252 | { |
---|
253 | "EXAMPLE:";echo=2; |
---|
254 | list D="Ux","Ut","U"; |
---|
255 | list P="a"; |
---|
256 | list V="t","x"; |
---|
257 | setinitials(V,D,P); |
---|
258 | def s1=scheme(u(Ut)+a*u(Ux),backward(Ux,U,x),forward(Ut,U,t)); |
---|
259 | s1; |
---|
260 | } |
---|
261 | //////////////////////// |
---|
262 | static proc diffpar(poly ff) |
---|
263 | { |
---|
264 | def gg=print(ff,"%s"); |
---|
265 | def str="d"+gg; |
---|
266 | return(`str`); |
---|
267 | } |
---|
268 | //////////////////////// |
---|
269 | proc laxfrT(string Ut, string U, poly space) |
---|
270 | "USAGE: laxfrT(U1,U2,var); U1, U2 are the names of occuring derivatives, var is a variable in the basering; |
---|
271 | RETURN: type vector; gives a predefined approximation of the Lax-Friedrich-approximation for the derivation in the timevariable as often used in literature; |
---|
272 | NOTE: see also laxfrX,setinitials,scheme; WARNING: laxfrT is not to be interchanged with laxfrX |
---|
273 | EXAMPLE: example laxfrT; shows an example |
---|
274 | " |
---|
275 | { |
---|
276 | poly time=var(2); |
---|
277 | poly dtime=diffpar(time); |
---|
278 | poly dspace=diffpar(space); |
---|
279 | def v=dtime*space*u(Ut)-time*space*u(U)+1/2*(space**2*u(U)+u(U)); |
---|
280 | return(v); |
---|
281 | } |
---|
282 | example |
---|
283 | { |
---|
284 | "EXAMPLE:";echo=2; |
---|
285 | list D="Ux","Ut","U"; |
---|
286 | list P="a"; |
---|
287 | list V="t","x"; |
---|
288 | setinitials(V,D,P); |
---|
289 | laxfrT(Ux,U,x); |
---|
290 | } |
---|
291 | //////////////////////// |
---|
292 | proc laxfrX(string Ux, string U, poly space) |
---|
293 | "USAGE: laxfrX(U1,U2,var); U1, U2 are the names of occuring derivatives, var is a variable in the basering; |
---|
294 | RETURN: type vector; gives a predefined approximation of the Lax-Friedrich-approximation for the derivation in one of the spatial variables as often used in literature; |
---|
295 | NOTE: see also laxfrT,setinitials,scheme; WARNING: laxfrT is not to be interchanged with laxfrX |
---|
296 | EXAMPLE: example laxfrX; shows an example |
---|
297 | " |
---|
298 | { |
---|
299 | poly dspace=diffpar(space); |
---|
300 | def v=2*dspace*space*u(Ux)-(space**2-1)*u(U); |
---|
301 | return(v); |
---|
302 | } |
---|
303 | example |
---|
304 | { |
---|
305 | "EXAMPLE:";echo=2; |
---|
306 | list D="Ux","Ut","U"; |
---|
307 | list P="a"; |
---|
308 | list V="t","x"; |
---|
309 | setinitials(V,D,P); |
---|
310 | laxfrX(Ux,U,x); |
---|
311 | } |
---|
312 | //////////////////////// |
---|
313 | proc forward(string U1,string U2,poly VAR) |
---|
314 | "USAGE: forward(U1,U2,var); U1, U2 are the names of occuring derivatives, var is a variable in the basering; |
---|
315 | RETURN: type vector; gives a predefined approximation of the forward approximation as often used in literature; |
---|
316 | NOTE: see also laxfrT,setinitials,scheme; |
---|
317 | EXAMPLE: example forward; shows an example |
---|
318 | " |
---|
319 | { |
---|
320 | if(pos(U1,@derivatives)<pos(U2,@derivatives)) |
---|
321 | { |
---|
322 | def V1=U1; |
---|
323 | def V2=U2; |
---|
324 | } |
---|
325 | else |
---|
326 | { |
---|
327 | def V1=U2; |
---|
328 | def V2=U1; |
---|
329 | } |
---|
330 | def v=diffpar(VAR)*u(V1)+u(V2)-VAR*u(V2); |
---|
331 | return(v); |
---|
332 | } |
---|
333 | example |
---|
334 | { |
---|
335 | "EXAMPLE:";echo=2; |
---|
336 | list D="Ut","Ux","Uy","U"; |
---|
337 | list V="t","x","y"; |
---|
338 | list P="a","b"; |
---|
339 | setinitials(V,D,P); |
---|
340 | forward(Ux,U,x); |
---|
341 | forward(Uy,U,y); |
---|
342 | forward(Ut,U,t); |
---|
343 | } |
---|
344 | /////////////////////// |
---|
345 | proc backward(string U1,string U2,poly VAR) |
---|
346 | "USAGE: backward(U1,U2,var); U1, U2 are the names of occuring derivatives, var is a variable in the basering; |
---|
347 | RETURN: type vector; gives a predefined approximation of the backward approximation as often used in literature; |
---|
348 | NOTE: see also forward,laxfrT,setinitials,scheme; |
---|
349 | EXAMPLE: example backward; shows an example |
---|
350 | " |
---|
351 | { |
---|
352 | if(pos(U1,@derivatives)<pos(U2,@derivatives)) |
---|
353 | { |
---|
354 | def V1=U1; |
---|
355 | def V2=U2; |
---|
356 | } |
---|
357 | else |
---|
358 | { |
---|
359 | def V1=U2; |
---|
360 | def V2=U1; |
---|
361 | } |
---|
362 | def v=diffpar(VAR)*VAR*u(V1)+u(V2)-VAR*u(V2); |
---|
363 | return(v); |
---|
364 | } |
---|
365 | example |
---|
366 | { |
---|
367 | "EXAMPLE:";echo=2; |
---|
368 | list D="Ut","Ux","Uy","U"; |
---|
369 | list V="t","x","y"; |
---|
370 | list P="a","b"; |
---|
371 | setinitials(V,D,P); |
---|
372 | backward(Ux,U,x); |
---|
373 | backward(Uy,U,y); |
---|
374 | backward(Ut,U,t); |
---|
375 | } |
---|
376 | ///////////////////////////// |
---|
377 | proc central1st(string U1,string U2,poly VAR) |
---|
378 | "USAGE: central1st(U1,U2,var); U1, U2 are the names of occuring derivatives, var is a variable in the basering; |
---|
379 | RETURN: type vector; gives a predefined approximation of the first-order-central-approximation as often used in literature; |
---|
380 | NOTE: see also forward,laxfrT,setinitials,scheme; |
---|
381 | EXAMPLE: example central1st; shows an example |
---|
382 | " |
---|
383 | { |
---|
384 | if(pos(U1,@derivatives)<pos(U2,@derivatives)) |
---|
385 | { |
---|
386 | def V1=U1; |
---|
387 | def V2=U2; |
---|
388 | } |
---|
389 | else |
---|
390 | { |
---|
391 | def V1=U2; |
---|
392 | def V2=U1; |
---|
393 | } |
---|
394 | def v=2*diffpar(VAR)*VAR*u(V1)+u(V2)-VAR**2*u(V2); |
---|
395 | return(v); |
---|
396 | } |
---|
397 | example |
---|
398 | { |
---|
399 | "EXAMPLE:";echo=2; |
---|
400 | list D="Ut","Ux","Uy","U"; |
---|
401 | list V="t","x","y"; |
---|
402 | list P="a","b"; |
---|
403 | setinitials(V,D,P); |
---|
404 | central1st(Ux,U,x); |
---|
405 | central1st(Uy,U,y); |
---|
406 | } |
---|
407 | //////////////////////////////// |
---|
408 | proc central2nd(string U1,string U2,poly VAR) |
---|
409 | "USAGE: central2nd(U1,U2,var); U1, U2 are the names of occuring derivatives, var is a variable in the basering; |
---|
410 | RETURN: type vector; gives a predefined approximation of the second-order-central-approximation as often used in literature; |
---|
411 | NOTE: see also forward,laxfrT,setinitials,scheme; |
---|
412 | EXAMPLE: example central2nd; shows an example |
---|
413 | " |
---|
414 | { |
---|
415 | if(pos(U1,@derivatives)<pos(U2,@derivatives)) |
---|
416 | { |
---|
417 | def V1=U1; |
---|
418 | def V2=U2; |
---|
419 | } |
---|
420 | else |
---|
421 | { |
---|
422 | def V1=U2; |
---|
423 | def V2=U1; |
---|
424 | } |
---|
425 | def v=diffpar(VAR)**2*VAR*u(V1)-(VAR**2*u(V2)-2*VAR*u(V2)+u(V2)); |
---|
426 | return(v); |
---|
427 | } |
---|
428 | example |
---|
429 | { |
---|
430 | "EXAMPLE:";echo=2; |
---|
431 | list D="Uxx","Ux","Utt","Ut","U"; |
---|
432 | list P="lambda"; |
---|
433 | list V="t","x"; |
---|
434 | setinitials(V,D,P); |
---|
435 | central2nd(Uxx,U,x); |
---|
436 | central2nd(Utt,U,t); |
---|
437 | } |
---|
438 | ///////////////////////////////// |
---|
439 | proc trapezoid(string U1,string U2,poly VAR) |
---|
440 | "USAGE: trapezoid(U1,U2,var); U1, U2 are the names of occuring derivatives, var is a variable in the basering; |
---|
441 | RETURN: type vector; gives a predefined approximation of the trapezoid-approximation as often used in literature; |
---|
442 | NOTE: see also forward,laxfrT,setinitials,scheme; |
---|
443 | EXAMPLE: example trapezoid; shows an example |
---|
444 | " |
---|
445 | { |
---|
446 | if(pos(U1,@derivatives)<pos(U2,@derivatives)) |
---|
447 | { |
---|
448 | def V1=U1; |
---|
449 | def V2=U2; |
---|
450 | } |
---|
451 | else |
---|
452 | { |
---|
453 | def V1=U2; |
---|
454 | def V2=U1; |
---|
455 | } |
---|
456 | def v=1/2*diffpar(VAR)*(VAR+1)*u(V1)+(1-VAR)*u(V2); |
---|
457 | return(v); |
---|
458 | } |
---|
459 | example |
---|
460 | { |
---|
461 | "EXAMPLE:";echo=2; |
---|
462 | list D="Uxx","Ux","Utt","Ut","U"; |
---|
463 | list P="lambda"; |
---|
464 | list V="t","x"; |
---|
465 | setinitials(V,D,P); |
---|
466 | trapezoid(Uxx,Ux,x); |
---|
467 | trapezoid(Ux,U,x); |
---|
468 | } |
---|
469 | /////////////////////////////////// |
---|
470 | proc midpoint(string U1,string U2,poly VAR) |
---|
471 | "USAGE: midpoint(U1,U2,var); U1, U2 are the names of occuring derivatives, var is a variable in the basering; |
---|
472 | RETURN: type vector; gives a predefined approximation of the midpoint-approximation as often used in literature; |
---|
473 | NOTE: see also forward,laxfrT,setinitials,scheme; |
---|
474 | EXAMPLE: example midpoint; shows an example |
---|
475 | " |
---|
476 | { |
---|
477 | if(pos(U1,@derivatives)<pos(U2,@derivatives)) |
---|
478 | { |
---|
479 | def V1=U1; |
---|
480 | def V2=U2; |
---|
481 | } |
---|
482 | else |
---|
483 | { |
---|
484 | def V1=U2; |
---|
485 | def V2=U1; |
---|
486 | } |
---|
487 | def v=2*diffpar(VAR)*VAR*u(V1)+(1-VAR**2)*u(V2); |
---|
488 | return(v); |
---|
489 | } |
---|
490 | example |
---|
491 | { |
---|
492 | "EXAMPLE:";echo=2; |
---|
493 | list D="Uxx","Ux","Utt","Ut","U"; |
---|
494 | list P="lambda"; |
---|
495 | list V="t","x"; |
---|
496 | setinitials(V,D,P); |
---|
497 | midpoint(Ux,U,x); |
---|
498 | } |
---|
499 | ////////////////////////////////////// |
---|
500 | proc pyramid(string U1,string U2,poly VAR) |
---|
501 | "USAGE: pyramid(U1,U2,var); U1, U2 are the names of occuring derivatives, var is a variable in the basering; |
---|
502 | RETURN: type vector; gives a predefined approximation of the pyramid-approximation as often used in literature; |
---|
503 | NOTE: see also forward,laxfrT,setinitials,scheme; |
---|
504 | EXAMPLE: example pyramid; shows an example |
---|
505 | " |
---|
506 | { |
---|
507 | if(pos(U1,@derivatives)<pos(U2,@derivatives)) |
---|
508 | { |
---|
509 | def V1=U1; |
---|
510 | def V2=U2; |
---|
511 | } |
---|
512 | else |
---|
513 | { |
---|
514 | def V1=U2; |
---|
515 | def V2=U1; |
---|
516 | } |
---|
517 | def v=1/3*diffpar(VAR)*(VAR**2+VAR+1)*u(V1)+(VAR-VAR**3)*u(V2); |
---|
518 | return(v); |
---|
519 | } |
---|
520 | example |
---|
521 | { |
---|
522 | "EXAMPLE:";echo=2; |
---|
523 | list D="Uxx","Ux","Utt","Ut","U"; |
---|
524 | list P="lambda"; |
---|
525 | list V="t","x"; |
---|
526 | setinitials(V,D,P); |
---|
527 | pyramid(Ux,U,x); |
---|
528 | } |
---|
529 | ////////////////////////////////////////////// |
---|
530 | proc setinitials(list variable, list der,list #) |
---|
531 | "USAGE: setinitials(V,D[,P]); V,D,P are lists with strings as elements |
---|
532 | RETURN: no return value: sets the dependence order of the occuring derivatives, constructs the suitable ring to compute in containing user chosen parameters, sets new basering |
---|
533 | NOTE: P is optional, used to introduce some additional parameters into the ring. The SINE and COSINE values needed for the fouriertransformation are symbolically introduced under the names string(c)+nameof(variable), i.e. if x is any spatial variable then cx:=cosine(dx*ksi), when regarding the fouriertransform after ksi (for sine respectively). Artificial parameters I,T,Px,Py are introduced for the later eigenvalue analysis -> variables can be transformed into parameters of similar name |
---|
534 | EXAMPLE: example setinitials; shows an example |
---|
535 | " |
---|
536 | { |
---|
537 | def LV=variable; |
---|
538 | def @variables=variable; |
---|
539 | def @derivatives=der; |
---|
540 | exportto(Top,@variables); |
---|
541 | exportto(Top,@derivatives); |
---|
542 | re(der); |
---|
543 | int j; |
---|
544 | string dvar="d"+print(LV[1],"%s"); |
---|
545 | dvar=dvar+","+"d"+print(LV[2],"%s"); |
---|
546 | string pvar="P"+print(LV[2],"%s"); |
---|
547 | string COS="C"+print(LV[2],"%s"); |
---|
548 | string SIN="S"+print(LV[2],"%s"); |
---|
549 | for(j=3;j<=size(LV);j++) |
---|
550 | { |
---|
551 | dvar=dvar+","+"d"+print(LV[j],"%s"); |
---|
552 | pvar=pvar+","+"P"+print(LV[j],"%s"); |
---|
553 | COS=COS+","+"C"+print(LV[j],"%s"); |
---|
554 | SIN=SIN+","+"S"+print(LV[j],"%s"); |
---|
555 | } |
---|
556 | string scf="(0,"+"I,"+"T,"+pvar+","+COS+","+SIN+","+print(#,"%s")+","+dvar+")"; //coefficient_field |
---|
557 | string svars="(i"; |
---|
558 | kill j; |
---|
559 | int j; |
---|
560 | for(j=1;j<=size(LV);j++) |
---|
561 | { |
---|
562 | svars=svars+","+print(LV[j],"%s"); |
---|
563 | } |
---|
564 | string cosine; |
---|
565 | string sine; |
---|
566 | kill j; |
---|
567 | int j; |
---|
568 | cosine="c"+print(LV[2],"%s"); |
---|
569 | sine="s"+print(LV[2],"%s"); |
---|
570 | for(j=3;j<=size(LV);j++) |
---|
571 | { |
---|
572 | cosine=cosine+","+"c"+print(LV[j],"%s"); |
---|
573 | sine=sine+","+"s"+print(LV[j],"%s"); |
---|
574 | } |
---|
575 | kill j; |
---|
576 | string strvar=cosine+","+sine+")"; |
---|
577 | svars=svars+","+strvar; ////variables |
---|
578 | string sord="(c,lp)"; ////ordering |
---|
579 | string sring="ring Q="+scf+","+svars+","+sord+";"; |
---|
580 | execute(sring); |
---|
581 | ideal Id=i**2+1; |
---|
582 | int j; |
---|
583 | for(j=1;j<=size(LV)-1;j++) |
---|
584 | { |
---|
585 | ideal II=var(2+j+size(LV)-1)**2+var(2+j+2*(size(LV)-1))**2-1; |
---|
586 | Id=Id+II; |
---|
587 | kill II; |
---|
588 | } |
---|
589 | if(defined(basering)==1) |
---|
590 | { |
---|
591 | kill basering; |
---|
592 | } |
---|
593 | qring R=std(Id); |
---|
594 | setring R; |
---|
595 | export(R); |
---|
596 | exportto(Top,basering); |
---|
597 | } |
---|
598 | example |
---|
599 | { |
---|
600 | "EXAMPLE:"; echo = 2; |
---|
601 | list D="Ut","Ux","Uy","U"; |
---|
602 | list V="t","x","y"; |
---|
603 | list P="alpha","beta","gamma"; |
---|
604 | setinitials(V,D,P);////does not show the ring, since there is no output |
---|
605 | basering;///does show the ring |
---|
606 | } |
---|
607 | //////////////////////////// |
---|
608 | proc errormap(poly f) |
---|
609 | "USAGE: errormap(f); f of type poly |
---|
610 | RETURN: type poly; performs the fouriertransformation of a single polynomial |
---|
611 | EXAMPLE: example errormap; shows an example |
---|
612 | " |
---|
613 | { |
---|
614 | ideal Id=imageideal(); |
---|
615 | map phi=R,Id; |
---|
616 | def g=phi(f); |
---|
617 | g=reduce(g,std(0)); |
---|
618 | return(g); |
---|
619 | } |
---|
620 | example |
---|
621 | { |
---|
622 | "EXAMPLE";echo=2; |
---|
623 | list D="Ux","Ut","U"; |
---|
624 | list P="a"; |
---|
625 | list V="t","x"; |
---|
626 | setinitials(V,D,P); |
---|
627 | scheme(u(Ut)+a*u(Ux),central1st(Ux,U,x),backward(Ut,U,t)); |
---|
628 | errormap(_); |
---|
629 | } |
---|
630 | ///////////////////////////////////// |
---|
631 | static proc stepmatrix(int n, poly f) |
---|
632 | { |
---|
633 | int spavars=size(@variables)-1; |
---|
634 | int range=n*spavars; |
---|
635 | if(f==0) |
---|
636 | { |
---|
637 | return(unitmat(range)); |
---|
638 | } |
---|
639 | matrix M[range][range]; |
---|
640 | int length=size(f); |
---|
641 | intvec max=maxexp(f); |
---|
642 | int i; |
---|
643 | intvec shiftback; |
---|
644 | intvec vzero; |
---|
645 | intvec vmax; |
---|
646 | intvec shiftforward; |
---|
647 | for(i=1;i<=size(max);i++) |
---|
648 | { |
---|
649 | shiftback[i]=int(floor(max[i]/2)); |
---|
650 | vzero[i]=0; |
---|
651 | vmax[i]=n-1; |
---|
652 | shiftforward[i]=0; |
---|
653 | } |
---|
654 | kill i; |
---|
655 | int i; |
---|
656 | for(i=1;i<=range;i++) |
---|
657 | { |
---|
658 | poly g=f; |
---|
659 | } |
---|
660 | kill i; |
---|
661 | } |
---|
662 | ////////////////////////////////////// |
---|
663 | static proc floor(n) |
---|
664 | { |
---|
665 | number h1=numerator(n); |
---|
666 | number h2=denominator(n); |
---|
667 | return((h1- (h1 mod h2))/h2); |
---|
668 | } |
---|
669 | ///////////////////////////////////// |
---|
670 | static proc maxexp(poly f) |
---|
671 | { |
---|
672 | int length=size(f); |
---|
673 | poly g=f; |
---|
674 | intvec v; |
---|
675 | int i; |
---|
676 | for(i=1;i<size(@variables);i++) |
---|
677 | { |
---|
678 | v[i]=leadexp(g)[i+2]; |
---|
679 | } |
---|
680 | while(g!=0) |
---|
681 | { |
---|
682 | int j; |
---|
683 | for(j=1;j<size(@variables);j++) |
---|
684 | { |
---|
685 | v[j]=maximal(leadexp(g)[j+2],v[j]); |
---|
686 | g=g-lead(g); |
---|
687 | } |
---|
688 | kill j; |
---|
689 | } |
---|
690 | return(v); |
---|
691 | } |
---|
692 | //////////////////////////////////// |
---|
693 | static proc maximal(int n1,int n2) |
---|
694 | { |
---|
695 | if(n1>n2) |
---|
696 | { |
---|
697 | return(n1); |
---|
698 | } |
---|
699 | else |
---|
700 | { |
---|
701 | return(n2); |
---|
702 | } |
---|
703 | } |
---|
704 | //////////////////////////////////// |
---|
705 | static proc minimal(int n1, int n2) |
---|
706 | { |
---|
707 | return(-maximal(-n1,-n2)); |
---|
708 | } |
---|
709 | //////////////////////////////////// |
---|
710 | static proc MatrixEntry(int n, intvec v) |
---|
711 | { |
---|
712 | int j; |
---|
713 | int entry; |
---|
714 | int spavar=size(@variables)-1; |
---|
715 | for(j=1;j<=spavar;j++) |
---|
716 | { |
---|
717 | entry=entry+v[j]*n**(spavar-j); |
---|
718 | } |
---|
719 | entry=entry+1; |
---|
720 | return(entry); |
---|
721 | } |
---|
722 | ////////////////////////////////// |
---|
723 | static proc CompareVec(intvec ToTest, intvec Reference)//1 if ToTest>=Reference, 0 else |
---|
724 | { |
---|
725 | int i; |
---|
726 | for(i=1;i<=size(@variables)-1;i++) |
---|
727 | { |
---|
728 | if(ToTest[i+2]<Reference[i]) |
---|
729 | { |
---|
730 | return(0); |
---|
731 | } |
---|
732 | } |
---|
733 | return(1); |
---|
734 | } |
---|
735 | ///////////////////////////////// |
---|
736 | static proc MaxVecZero(intvec ToTest, intvec Reference) //KGV, size=size(input) |
---|
737 | { |
---|
738 | int length=size(ToTest); |
---|
739 | int i; |
---|
740 | intvec Maximum; |
---|
741 | for(i=1;i<=length;i++) |
---|
742 | { |
---|
743 | Maximum[i]=maximal(ToTest[i],Reference[i]); |
---|
744 | } |
---|
745 | return(Maximum); |
---|
746 | } |
---|
747 | ////////////////////////////////// |
---|
748 | proc matrixsystem(list Matrices,list Approx) |
---|
749 | "USAGE: matrixsytem(M,A); where the M=Mt,M1,..,Mn is a list with square matrices of the same dimension as entries, and A=At,A1,..,An gives the corresponding approximations for the several variables (t,x1,..,xn) as vector. Intended to solve Mt*U_t + M1*U_x1+..+Mn*U_xn=0 as a linear sytem of partial differential equations numerically by a finite difference scheme; |
---|
750 | RETURN: type matrix; gives back the matrices B1,B2 that represent the finite difference scheme, partitioned into different time levels in the form: B1*U(t=N)=B2*U(t<N), where N is the maximal occurring degree (timelevel) of t. |
---|
751 | EXAMPLE: example matrixsystem; shows an example |
---|
752 | " |
---|
753 | { |
---|
754 | if(size(Matrices)>size(@variables) or size(Matrices)!=size(Approx)) |
---|
755 | { |
---|
756 | ERROR("Check number of variables: it must hold #(matrices)<= #(spatial variables)+1 !!! "); |
---|
757 | } |
---|
758 | if(size(Matrices)!=size(Approx)) |
---|
759 | { |
---|
760 | ERROR("Every variable needs EXACTLY ONE approximation rule, i.e. #(first argument) =#(second argument) ! "); |
---|
761 | } |
---|
762 | ideal Mon=leadmonomial(Approx[1]); |
---|
763 | int N=size(Matrices); |
---|
764 | int i; |
---|
765 | for(i=2;i<=N;i++) |
---|
766 | { |
---|
767 | Mon=Mon,leadmonomial(Approx[i]); |
---|
768 | } |
---|
769 | kill i; |
---|
770 | poly LCM=lcm(Mon); |
---|
771 | matrix M[nrows(Matrices[1])][ncols(Matrices[1])]; |
---|
772 | int i; |
---|
773 | for(i=1;i<=size(Matrices);i++) |
---|
774 | { |
---|
775 | M=M+(LCM/leadmonomial(Approx[i]))*normalize(Approx[i])[size(@derivatives)]*Matrices[i]; |
---|
776 | } |
---|
777 | kill i; |
---|
778 | return(M); |
---|
779 | } |
---|
780 | example |
---|
781 | { |
---|
782 | "EXAMPLE:";echo=2; |
---|
783 | list D="Ut","Ux","Uy","U"; |
---|
784 | list V="t","x","y"; |
---|
785 | list P="a","b"; |
---|
786 | setinitials(V,D,P); |
---|
787 | list Mat=unitmat(2),unitmat(2); |
---|
788 | list Appr=forward(Ut,U,t),forward(Ux,U,x); |
---|
789 | matrixsystem(Mat,Appr); |
---|
790 | } |
---|
791 | ////////////////////////////////// |
---|
792 | proc timestep(matrix M) |
---|
793 | "USAGE: timestep(M); M a square matrix with polynomials over the basering as entries; |
---|
794 | RETURN: type list; gives two matrices M1,M2 that are the splitting of M with respect to the degree of the variable t in the entries, where the first list-entry M1 consists of the polynomials of the highest timelevel and M2 of the lower levels in the form: M=0 => M1=M2, i.e. M1-M2=M |
---|
795 | NOTE: intended to be used for the finite-difference-scheme-construction and partition into the several time steps |
---|
796 | EXAMPLE: example timestep; shows an example |
---|
797 | " |
---|
798 | { |
---|
799 | int N=nrows(M); |
---|
800 | int i; |
---|
801 | int maxdegT; |
---|
802 | for(i=1;i<=N;i++) |
---|
803 | { |
---|
804 | int j; |
---|
805 | for(j=1;j<=N;j++) |
---|
806 | { |
---|
807 | poly f=M[i,j]; |
---|
808 | int k; |
---|
809 | for(k=1;k<=size(f);k++) |
---|
810 | { |
---|
811 | if(leadexp(M[i,j])[2]>maxdegT) |
---|
812 | { |
---|
813 | maxdegT=leadexp(M[i,j])[2]; |
---|
814 | } |
---|
815 | f=f-lead(f); |
---|
816 | } |
---|
817 | kill f; |
---|
818 | kill k; |
---|
819 | } |
---|
820 | kill j; |
---|
821 | } |
---|
822 | kill i; |
---|
823 | matrix highT[nrows(M)][nrows(M)]; |
---|
824 | vector leftside=0; |
---|
825 | int GenIndex=0; |
---|
826 | int i; |
---|
827 | for(i=1;i<=N;i++) |
---|
828 | { |
---|
829 | int j; |
---|
830 | for(j=1;j<=N;j++) |
---|
831 | { |
---|
832 | poly f=M[i,j]; |
---|
833 | int k; |
---|
834 | for(k=1;k<=size(f)+1;k++) |
---|
835 | { |
---|
836 | if(leadexp(f)[2]==maxdegT) |
---|
837 | { |
---|
838 | GenIndex++; |
---|
839 | highT[i,j]=highT[i,j]+lead(f); |
---|
840 | leftside=leftside+highT[i,j]*gen(GenIndex); |
---|
841 | } |
---|
842 | f=f-lead(f); |
---|
843 | } |
---|
844 | kill k; |
---|
845 | kill f; |
---|
846 | } |
---|
847 | kill j; |
---|
848 | } |
---|
849 | kill i; |
---|
850 | matrix tUpper=highT; |
---|
851 | matrix tLower=-1*(M-tUpper); |
---|
852 | tUpper=tUpper/content(leftside); |
---|
853 | tLower=tLower/content(leftside); |
---|
854 | list L=tUpper,tLower; |
---|
855 | return(L); |
---|
856 | } |
---|
857 | example |
---|
858 | { |
---|
859 | "EXAMPLE:"echo=2; |
---|
860 | list D="Ut","Ux","Uy","U"; |
---|
861 | list V="t","x","y"; |
---|
862 | list P="a","b"; |
---|
863 | setinitials(V,D,P); |
---|
864 | list Mat=unitmat(2),unitmat(2); |
---|
865 | list Apr=forward(Ut,U,t),forward(Ux,U,x); |
---|
866 | matrixsystem(Mat,Apr); |
---|
867 | timestep(_); |
---|
868 | } |
---|
869 | ////////////////////////////////// |
---|
870 | proc fouriersystem(list Matrices, list Approx) |
---|
871 | "USAGE: fouriersystem(M,A); M a list of matrices, A a list of approximations; |
---|
872 | RETURN: type list; each entry is some matrix obtained by performing the substitution of the single approximations into the system of pde's, partitioning the equation into the several timesteps and fouriertransforming these parts |
---|
873 | EXAMPLE: example fouriersystem; shows an example |
---|
874 | " |
---|
875 | { |
---|
876 | matrix M=matrixsystem(Matrices,Approx); |
---|
877 | matrix T1=timestep(M)[1]; |
---|
878 | matrix T0=timestep(M)[2]; |
---|
879 | int i; |
---|
880 | for(i=1;i<=nrows(M);i++) |
---|
881 | { |
---|
882 | int j; |
---|
883 | for(j=1;j<=nrows(M);j++) |
---|
884 | { |
---|
885 | T1[i,j]=errormap(T1[i,j]); |
---|
886 | T1[i,j]=VarToPar(T1[i,j]); |
---|
887 | T0[i,j]=errormap(T0[i,j]); |
---|
888 | T0[i,j]=VarToPar(T0[i,j]); |
---|
889 | } |
---|
890 | kill j; |
---|
891 | } |
---|
892 | kill i; |
---|
893 | ideal EV1=eigenvals(T1)[1]; |
---|
894 | ideal EV0=eigenvals(T0)[1]; |
---|
895 | list L=list(T1,T0),list(EV1,EV0); |
---|
896 | def N1=size(EV1); |
---|
897 | def N0=size(EV0); |
---|
898 | list CV1; |
---|
899 | list CV0; |
---|
900 | int i; |
---|
901 | for(i=1;i<=N1;i++) |
---|
902 | { |
---|
903 | CV1[i]=VarToPar(EV1[i]); |
---|
904 | if(content(CV1[i])==CV1[i]) |
---|
905 | { |
---|
906 | CV1[i]=content(CV1[i]); |
---|
907 | CV1[i]=VarToPar(ComplexValue(numerator(CV1[i])))/VarToPar(ComplexValue(denominator(CV1[i]))); |
---|
908 | } |
---|
909 | } |
---|
910 | kill i; |
---|
911 | int i; |
---|
912 | for(i=1;i<=N0;i++) |
---|
913 | { |
---|
914 | CV0[i]=VarToPar(EV0[i]); |
---|
915 | if(content(CV0[i])==CV0[i]) |
---|
916 | { |
---|
917 | CV0[i]=content(CV0[i]); |
---|
918 | CV0[i]=VarToPar(ComplexValue(numerator(CV0[i])))/VarToPar(ComplexValue(denominator(CV0[i]))); |
---|
919 | } |
---|
920 | } |
---|
921 | kill i; |
---|
922 | list CV=list(CV1,CV0); |
---|
923 | L=L,CV; |
---|
924 | return(L); |
---|
925 | } |
---|
926 | example |
---|
927 | { |
---|
928 | "EXAMPLE:"; echo = 2; |
---|
929 | list D="Ut","Ux","Uy","U"; |
---|
930 | list V="t","x","y"; |
---|
931 | list P="a","b"; |
---|
932 | setinitials(V,D,P); |
---|
933 | matrix M[2][2]=0,-a,-a,0; |
---|
934 | list Mat=unitmat(2),M; |
---|
935 | list Appr=forward(Ut,U,t),trapezoid(Ux,U,x); |
---|
936 | def s=fouriersystem(Mat,Appr);s; |
---|
937 | } |
---|
938 | ////////////////////////////////// |
---|
939 | proc PartitionVar(poly f,int n) |
---|
940 | "USAGE: PartitionVar(f); f a poly in the basering; |
---|
941 | RETURN: type poly; gives back a list L=f1,f2 obtained by the partition of f into two parts f1,f2 with deg_var_n(f1) >0 deg_var_n(f2)=0 |
---|
942 | EXAMPLE: example PartitionVar; shows an example |
---|
943 | " |
---|
944 | { |
---|
945 | if(n>=nvars(basering)) |
---|
946 | { |
---|
947 | ERROR("this variable does not exist in the current basering"); |
---|
948 | } |
---|
949 | int i; |
---|
950 | poly partition=0; |
---|
951 | poly g=f; |
---|
952 | for(i=1;i<=size(f);i++) |
---|
953 | { |
---|
954 | if(leadexp(g)[n]!=0) |
---|
955 | { |
---|
956 | partition=partition+lead(g); |
---|
957 | } |
---|
958 | g=g-lead(g); |
---|
959 | } |
---|
960 | list L=partition,f-partition; |
---|
961 | return(L); |
---|
962 | } |
---|
963 | example |
---|
964 | { |
---|
965 | "EXAMPLE:"; echo = 2; |
---|
966 | list D="Ut","Ux","Uy","U"; |
---|
967 | list V="t","x","y"; |
---|
968 | list P="a","b"; |
---|
969 | setinitials(V,D,P);////does not show the ring, since there is no output |
---|
970 | basering;///does show the ring |
---|
971 | poly f=t**3*cx**2-cy**2*dt+i**3*sx; |
---|
972 | PartitionVar(f,1); ////i is the first variable |
---|
973 | } |
---|
974 | ////////////////////////////////// |
---|
975 | proc ComplexValue(poly f) |
---|
976 | "USAGE: ComplexValue(f); f a poly in the basering; |
---|
977 | RETURN: type poly; gives back the formal complex-value of f, where var(1) is redarded as the imaginary unit. Does only make sence, if the proc <setinitials> is executed before -> nvars <= npars |
---|
978 | EXAMPLE: example ComplexValue; shows an example |
---|
979 | " |
---|
980 | { |
---|
981 | poly g=ParToVar(f); |
---|
982 | def L=PartitionVar(g,1); |
---|
983 | poly f1=subst(L[1],var(1),1); |
---|
984 | poly f2=L[2]; |
---|
985 | poly result=reduce(f1**2+f2**2,std(0)); |
---|
986 | return(result); |
---|
987 | } |
---|
988 | example |
---|
989 | { |
---|
990 | "EXAMPLE:"; echo = 2; |
---|
991 | list D="Ut","Ux","Uy","U"; |
---|
992 | list V="t","x","y"; |
---|
993 | list P="a","b"; |
---|
994 | setinitials(V,D,P);////does not show the ring, as there is no output |
---|
995 | basering;///does show the ring |
---|
996 | poly f=t**3*cx**2-cy**2*dt+i**3*sx; |
---|
997 | f; |
---|
998 | VarToPar(f); |
---|
999 | } |
---|
1000 | ////////////////////////////////// |
---|
1001 | proc VarToPar(poly f) |
---|
1002 | "USAGE: VarToPar(f); f a poly in the basering; |
---|
1003 | RETURN: type poly; gives back the poly obtained by substituting var(i) by par(i), for all variables. Does only make sence, if the proc <setinitials> is executed before -> nvars <= npars; |
---|
1004 | EXAMPLE: example VarToPar; shows an example |
---|
1005 | " |
---|
1006 | { |
---|
1007 | int N=nvars(basering); |
---|
1008 | int i; |
---|
1009 | def g=f; |
---|
1010 | for(i=1;i<=N;i++) |
---|
1011 | { |
---|
1012 | g=subst(g,var(i),par(i)); |
---|
1013 | } |
---|
1014 | return(g); |
---|
1015 | } |
---|
1016 | example |
---|
1017 | { |
---|
1018 | "EXAMPLE:"; echo = 2; |
---|
1019 | list D="Ut","Ux","Uy","U"; |
---|
1020 | list V="t","x","y"; |
---|
1021 | list P="a","b"; |
---|
1022 | setinitials(V,D,P);////does not show the ring, as there is no output |
---|
1023 | basering;///does show the ring |
---|
1024 | poly f=t**3*cx**2-cy**2*dt+i**3*sx; |
---|
1025 | f; |
---|
1026 | VarToPar(f); |
---|
1027 | } |
---|
1028 | ///////////////////////////////////// |
---|
1029 | proc ParToVar(poly f) |
---|
1030 | "USAGE: ParToVar(f); f a poly in the basering; |
---|
1031 | RETURN: type poly; gives back the poly obtained by substituting par(i) by var(i), for the first nvars(basering parameters. Does only make sence, if setinitials is executed before -> nvars <= npars. Is the opposite action to VarToPar, see example ParToVar; |
---|
1032 | EXAMPLE: example ParToVar; shows an example |
---|
1033 | " |
---|
1034 | { |
---|
1035 | int N=nvars(basering); |
---|
1036 | int i; |
---|
1037 | number g=number(VarToPar(f)); |
---|
1038 | number denom=denominator(g); |
---|
1039 | g=denom*g; |
---|
1040 | def gg=subst(g,par(1),var(1)); |
---|
1041 | for(i=2;i<=N;i++) |
---|
1042 | { |
---|
1043 | gg=subst(gg,par(i),var(i)); |
---|
1044 | } |
---|
1045 | return(gg/denom); |
---|
1046 | } |
---|
1047 | example |
---|
1048 | { |
---|
1049 | "EXAMPLE:"; echo = 2; |
---|
1050 | list D="Ut","Ux","Uy","U"; |
---|
1051 | list V="t","x","y"; |
---|
1052 | list P="a","b"; |
---|
1053 | setinitials(V,D,P);////does not show the ring, as there is no output |
---|
1054 | basering;///does show the ring |
---|
1055 | poly f=t**3*cx**2-cy**2*dt+i**3*sx/dt*dx; |
---|
1056 | f; |
---|
1057 | def g=VarToPar(f); |
---|
1058 | g; |
---|
1059 | def h=ParToVar(g); |
---|
1060 | h==f; |
---|
1061 | } |
---|
1062 | ///////////////////////////////////////// |
---|
1063 | proc qepcad(poly f) |
---|
1064 | "USAGE: qepcad(f); f a poly in the basering; |
---|
1065 | RETURN: type list; gives back some constraints that are equivalent to f<1 (computed by QEPCAD); |
---|
1066 | EXAMPLE: example qepcad; shows an example |
---|
1067 | " |
---|
1068 | { |
---|
1069 | system("sh","rm QEPCAD-out"); |
---|
1070 | system("sh","rm QEPCAD-in"); |
---|
1071 | if(denominator(content(f))==1) |
---|
1072 | { |
---|
1073 | poly g=f-1; |
---|
1074 | } |
---|
1075 | else |
---|
1076 | { |
---|
1077 | if(f==content(f)) |
---|
1078 | { |
---|
1079 | poly g=f*denominator(content(f))-1*denominator(content(f)); |
---|
1080 | g=ParToVar(g); |
---|
1081 | g=reduce(g,std(0)); |
---|
1082 | } |
---|
1083 | else |
---|
1084 | { |
---|
1085 | poly g=cleardenom(f)-1/content(f); |
---|
1086 | g=ParToVar(g); |
---|
1087 | g=reduce(g,std(0)); |
---|
1088 | } |
---|
1089 | } |
---|
1090 | string in="QEPCAD-in"; |
---|
1091 | string out="QEPCAD-out"; |
---|
1092 | link l1=in; |
---|
1093 | link l2=out; |
---|
1094 | string s1="[trial]"; //description |
---|
1095 | string s2=varlist(); //the variables |
---|
1096 | string s3=nfreevars(); //number of free variables |
---|
1097 | string s4=aquantor()+"["+writepoly(g)+rel()+"]."; //the input prenex formula |
---|
1098 | string s5=projection(); |
---|
1099 | string s6=projection(); |
---|
1100 | string s7=choice(); |
---|
1101 | string s8=solution(); |
---|
1102 | write(l1,s1,s2,s3,s4,s5,s6,s7,s8); |
---|
1103 | system("sh","$qepcad < QEPCAD-in | ${qe}/bin/qepcadfilter.pl > QEPCAD-out"); |
---|
1104 | string output=read(out); |
---|
1105 | print(output,"%s"); |
---|
1106 | if(size(output)==0) |
---|
1107 | { |
---|
1108 | return("Try manually"); //maybe too few cells |
---|
1109 | } |
---|
1110 | if(find(output,"FALSE")!=0) |
---|
1111 | { |
---|
1112 | return("FALSE"); |
---|
1113 | } |
---|
1114 | if(find(output,"WARNING")!=0) |
---|
1115 | { |
---|
1116 | return("WARNING! Try manually"); |
---|
1117 | } |
---|
1118 | else |
---|
1119 | { |
---|
1120 | string strpolys=findthepoly(output); |
---|
1121 | list lpolys=listpolynew(strpolys); |
---|
1122 | return(lpolys); |
---|
1123 | } |
---|
1124 | system("sh","rm QEPCAD-out"); |
---|
1125 | system("sh","rm QEPCAD-in"); |
---|
1126 | |
---|
1127 | } |
---|
1128 | example |
---|
1129 | { |
---|
1130 | "EXAMPLE:"; echo = 2; |
---|
1131 | list D="Ux","Ut","U"; |
---|
1132 | list P="a"; |
---|
1133 | list V="t","x"; |
---|
1134 | setinitials(V,D,P); |
---|
1135 | def s1=scheme(u(Ut)+a*u(Ux),laxfrX(Ux,U,x),laxfrT(Ut,U,x)); |
---|
1136 | s1; |
---|
1137 | def s2=errormap(s1); |
---|
1138 | s2; |
---|
1139 | def s3=ComplexValue(s2);s3; |
---|
1140 | qepcad(s3); |
---|
1141 | } |
---|
1142 | /////////////////////////////////////////// |
---|
1143 | proc qepcadsystem(list l) |
---|
1144 | "USAGE: qepcadsytem(f); l a list; |
---|
1145 | RETURN: type list; gives back some constraints that are equivalent to the eigenvalues of the matrices in the list l being < 1 (computed by QEPCAD); |
---|
1146 | EXAMPLE: example qepcadsystem; shows an example |
---|
1147 | " |
---|
1148 | { |
---|
1149 | system("sh","rm QEPCAD-out"); |
---|
1150 | system("sh","rm QEPCAD-in"); |
---|
1151 | string in="QEPCAD-in"; |
---|
1152 | string out="QEPCAD-out"; |
---|
1153 | link l1=in; |
---|
1154 | link l2=out; |
---|
1155 | string s1="[trial]"; //description |
---|
1156 | string s2=varlist(); //the variables |
---|
1157 | string s3=nfreevars(); //number of free variables |
---|
1158 | string thepolys; |
---|
1159 | int n2=size(l[2]); |
---|
1160 | int count; |
---|
1161 | int i; |
---|
1162 | list lpolys; |
---|
1163 | int j; |
---|
1164 | for(j=1;j<=n2;j++) |
---|
1165 | { |
---|
1166 | count++; |
---|
1167 | poly g2=ParToVar(l[2][j]); |
---|
1168 | if(denominator(content(g2))==1) |
---|
1169 | { |
---|
1170 | lpolys[count]=writepoly(ParToVar(reduce(g2-1,std(0))))+rel(); |
---|
1171 | } |
---|
1172 | else |
---|
1173 | { |
---|
1174 | if(g2==content(g2)) |
---|
1175 | { |
---|
1176 | g2=g2*denominator(content(g2))-1*denominator(content(g2)); |
---|
1177 | g2=ParToVar(g2); |
---|
1178 | g2=reduce(g2,std(0)); |
---|
1179 | lpolys[count]=writepoly(g2)+rel(); |
---|
1180 | } |
---|
1181 | else |
---|
1182 | { |
---|
1183 | lpolys[count]=writepoly(reduce(ParToVar(cleardenom(g2)-1/content(g2)),std(0)))+rel(); |
---|
1184 | } |
---|
1185 | } |
---|
1186 | kill g2; |
---|
1187 | } |
---|
1188 | kill j; |
---|
1189 | int k; |
---|
1190 | for(k=1;k<=size(lpolys);k++) |
---|
1191 | { |
---|
1192 | thepolys=thepolys+lpolys[k]; |
---|
1193 | if(k<size(lpolys)) |
---|
1194 | { |
---|
1195 | thepolys=thepolys+print(" /","s%")+print("\\ ","s%"); |
---|
1196 | } |
---|
1197 | } |
---|
1198 | string s4=aquantor()+"["+thepolys+"]."; //the input prenex formula |
---|
1199 | string s5=projection(); |
---|
1200 | string s6=projection(); |
---|
1201 | string s7=choice(); |
---|
1202 | string s8=solution(); |
---|
1203 | write(l1,s1,s2,s3,s4,s5,s6,s7,s8); |
---|
1204 | system("sh","$qepcad < QEPCAD-in | ${qe}/bin/qepcadfilter.pl > QEPCAD-out"); |
---|
1205 | string output=read(out); |
---|
1206 | print(output,"%s"); |
---|
1207 | if(size(output)==0) |
---|
1208 | { |
---|
1209 | return("Try manually"); //maybe too few cells |
---|
1210 | } |
---|
1211 | if(find(output,"FALSE")!=0) |
---|
1212 | { |
---|
1213 | return("FALSE"); |
---|
1214 | } |
---|
1215 | if(find(output,"WARNING")!=0) |
---|
1216 | { |
---|
1217 | return("WARNING! Try manually"); |
---|
1218 | } |
---|
1219 | else |
---|
1220 | { |
---|
1221 | string strpolys=findthepoly(output); |
---|
1222 | list llpolys=listpolynew(strpolys); |
---|
1223 | return(llpolys); |
---|
1224 | } |
---|
1225 | system("sh","rm QEPCAD-out"); |
---|
1226 | system("sh","rm QEPCAD-in"); |
---|
1227 | } |
---|
1228 | example |
---|
1229 | { |
---|
1230 | "EXAMPLE:"; echo = 2; |
---|
1231 | list D="Ut","Ux","Uy","U"; |
---|
1232 | list V="t","x","y"; |
---|
1233 | list P="a","b"; |
---|
1234 | setinitials(V,D,P); |
---|
1235 | matrix M[2][2]=0,-a,-a,0; |
---|
1236 | list Mat=unitmat(2),M; |
---|
1237 | list Appr=forward(Ut,U,t),forward(Ux,U,x); |
---|
1238 | //matrixsystem(Mat,Appr); |
---|
1239 | //timestep(_); |
---|
1240 | fouriersystem(Mat,Appr); |
---|
1241 | qepcadsystem(_[2]); |
---|
1242 | } |
---|
1243 | /////////////////////////////////////////// |
---|
1244 | static proc substbracketstar(string s) |
---|
1245 | { |
---|
1246 | int i; |
---|
1247 | int k; |
---|
1248 | int index=1; |
---|
1249 | string finish=s; |
---|
1250 | for(k=1;k<=size(s);k++) |
---|
1251 | { |
---|
1252 | if(finish[1]=="(" or finish[1]=="*" or finish[1]==" ") |
---|
1253 | { |
---|
1254 | kill finish; |
---|
1255 | index=index+1; |
---|
1256 | string finish=s[index..size(s)]; |
---|
1257 | } |
---|
1258 | } |
---|
1259 | for(i=1;i<=size(finish);i++) |
---|
1260 | { |
---|
1261 | if(finish[i]=="*" or finish[i]=="(" or finish[i]== ")") |
---|
1262 | { |
---|
1263 | finish[i]=" "; |
---|
1264 | } |
---|
1265 | } |
---|
1266 | return(finish); |
---|
1267 | } |
---|
1268 | |
---|
1269 | //////////////////////////////////// |
---|
1270 | static proc distribution(string SUM, string MON) |
---|
1271 | { |
---|
1272 | string sum=substbracketstar(SUM); |
---|
1273 | string mon=substbracketstar(MON); |
---|
1274 | string result; |
---|
1275 | list signs; |
---|
1276 | list p; |
---|
1277 | int i; |
---|
1278 | int j; |
---|
1279 | int init; |
---|
1280 | for(i=2;i<=size(sum);i++) |
---|
1281 | { |
---|
1282 | if(sum[i]=="+" or sum[i]=="-") |
---|
1283 | { |
---|
1284 | j++; |
---|
1285 | p[j]=i; |
---|
1286 | } |
---|
1287 | } |
---|
1288 | if(j==0) |
---|
1289 | { |
---|
1290 | if(sum[1]!="-") |
---|
1291 | { |
---|
1292 | result=sum+" "+" "+mon; |
---|
1293 | result="+"+" "+result; |
---|
1294 | } |
---|
1295 | else |
---|
1296 | { |
---|
1297 | result=sum+" "+mon; |
---|
1298 | } |
---|
1299 | } |
---|
1300 | else |
---|
1301 | { |
---|
1302 | int l; |
---|
1303 | int anfang; |
---|
1304 | if(sum[1]=="-") |
---|
1305 | { |
---|
1306 | result="-"+" "+result; |
---|
1307 | anfang=2; |
---|
1308 | } |
---|
1309 | else |
---|
1310 | { |
---|
1311 | result="+"+" "+result; |
---|
1312 | if(sum[1]=="+") |
---|
1313 | { |
---|
1314 | anfang=2; |
---|
1315 | } |
---|
1316 | else |
---|
1317 | { |
---|
1318 | anfang=1; |
---|
1319 | } |
---|
1320 | } |
---|
1321 | for(l=1;l<=j;l++) |
---|
1322 | { |
---|
1323 | string a; |
---|
1324 | int k; |
---|
1325 | for(k=anfang;k<=p[l]-1;k++) |
---|
1326 | { |
---|
1327 | a=a+sum[k]; |
---|
1328 | } |
---|
1329 | result=result+" "+a+" "+mon+" "+sum[p[l]]; |
---|
1330 | anfang=p[l]+1; |
---|
1331 | kill a; |
---|
1332 | kill k; |
---|
1333 | } |
---|
1334 | if(p[j]<size(sum)) |
---|
1335 | { |
---|
1336 | int kk; |
---|
1337 | string aa; |
---|
1338 | for(kk=anfang;kk<=size(sum);kk++) |
---|
1339 | { |
---|
1340 | aa=aa+sum[kk]; |
---|
1341 | } |
---|
1342 | result=result+" "+aa+" "+mon; |
---|
1343 | kill aa; |
---|
1344 | kill kk; |
---|
1345 | } |
---|
1346 | else |
---|
1347 | { |
---|
1348 | int kkk; |
---|
1349 | string aaa; |
---|
1350 | for(kkk=anfang;kkk<size(sum);kkk++) |
---|
1351 | { |
---|
1352 | aaa=aaa+sum[kkk]; |
---|
1353 | } |
---|
1354 | result=result+" "+aaa+" "+mon; |
---|
1355 | kill aaa; |
---|
1356 | kill kkk; |
---|
1357 | } |
---|
1358 | } |
---|
1359 | return(result); |
---|
1360 | } |
---|
1361 | ///////////////////////////////////////////////////////////////// |
---|
1362 | static proc writepoly(poly f) |
---|
1363 | { |
---|
1364 | poly g=f; |
---|
1365 | string lc; |
---|
1366 | string lm; |
---|
1367 | string strpoly; |
---|
1368 | string intermediate; |
---|
1369 | int n=size(f); |
---|
1370 | int i; |
---|
1371 | for(i=1;i<=n;i++) |
---|
1372 | { |
---|
1373 | |
---|
1374 | lc=substbracketstar(string(leadcoef(g))); |
---|
1375 | lm=substbracketstar(string(leadmonom(g))); |
---|
1376 | intermediate=distribution(lc,lm); |
---|
1377 | strpoly=strpoly+" "+intermediate; |
---|
1378 | g=g-lead(g); |
---|
1379 | } |
---|
1380 | return(strpoly); |
---|
1381 | } |
---|
1382 | /////////////////////////////////////////////////////////////// |
---|
1383 | static proc varlist() |
---|
1384 | { |
---|
1385 | poly p1=par(2+size(@variables)); |
---|
1386 | p1=ParToVar(p1); |
---|
1387 | string name=print(p1,"%s"); |
---|
1388 | string p="("+name+","; |
---|
1389 | int i; |
---|
1390 | for(i=3+size(@variables);i<=npars(basering);i++) |
---|
1391 | { |
---|
1392 | p1=ParToVar(par(i)); |
---|
1393 | name=substbracketstar(print(p1,"%s")); |
---|
1394 | p=p+name+","; |
---|
1395 | } |
---|
1396 | p1=ParToVar(par(2)); |
---|
1397 | name=print(p1,"%s"); |
---|
1398 | p=p+name+")"; |
---|
1399 | return(p); |
---|
1400 | } |
---|
1401 | /////////////////////////////////////////////////////// |
---|
1402 | static proc normalization() |
---|
1403 | { |
---|
1404 | int n1=npars(basering)-size(@variables); |
---|
1405 | int n2=npars(basering)-n1; |
---|
1406 | string assumption="assume["+" "+substbracketstar(print(par(n1+1),"%s"))+" >0"; |
---|
1407 | int i; |
---|
1408 | for(i=2;i<=n2;i++) |
---|
1409 | { |
---|
1410 | string s=" /\\"+" "+substbracketstar(print(par(n1+i),"%s"))+" >0"; |
---|
1411 | assumption=assumption+" "+s; |
---|
1412 | kill s; |
---|
1413 | } |
---|
1414 | assumption=assumption+" ]"+newline+"go"; |
---|
1415 | return(assumption); |
---|
1416 | } |
---|
1417 | /////////////////////////////////////////////////////// |
---|
1418 | static proc projection() |
---|
1419 | { |
---|
1420 | string s="go"; |
---|
1421 | return(s); |
---|
1422 | } |
---|
1423 | /////////////////////////////////////////////////////// |
---|
1424 | static proc choice() |
---|
1425 | { |
---|
1426 | string s="go"; |
---|
1427 | return(s); |
---|
1428 | } |
---|
1429 | /////////////////////////////////////////////////////// |
---|
1430 | static proc solution() |
---|
1431 | { |
---|
1432 | string s="go"; |
---|
1433 | return(s); |
---|
1434 | } |
---|
1435 | /////////////////////////////////////////////////////// |
---|
1436 | static proc nfreevars() |
---|
1437 | { |
---|
1438 | int n=npars(basering)-size(@variables)-1; |
---|
1439 | string no=print(n,"%s"); |
---|
1440 | return(no); |
---|
1441 | } |
---|
1442 | ///////////////////////////////////////////////////////// |
---|
1443 | static proc aquantor() |
---|
1444 | { |
---|
1445 | string s="(A "+print(var(2),"%s")+")"; |
---|
1446 | return(s); |
---|
1447 | } |
---|
1448 | //////////////////////////////////////////////////////// |
---|
1449 | static proc rel() |
---|
1450 | { |
---|
1451 | return("<0"); |
---|
1452 | } |
---|
1453 | ///////////////////////////////////////////////////////// |
---|
1454 | static proc rm() |
---|
1455 | { |
---|
1456 | system("sh","rm dummy"); |
---|
1457 | system("sh","rm QEPCAD-in."); |
---|
1458 | } |
---|
1459 | //////////////////////////////////////////////////////// |
---|
1460 | static proc findthepoly(string word) |
---|
1461 | { |
---|
1462 | int init=1; |
---|
1463 | int index=find(word,newline); |
---|
1464 | if(index==size(word) or index== 0) |
---|
1465 | { |
---|
1466 | return(word); |
---|
1467 | } |
---|
1468 | else |
---|
1469 | { |
---|
1470 | while(index<size(word)) |
---|
1471 | { |
---|
1472 | init=index; |
---|
1473 | index=find(word,newline,index+1); |
---|
1474 | } |
---|
1475 | } |
---|
1476 | string thepoly=word[(init+1)..(size(word)-1)]; |
---|
1477 | return(thepoly); |
---|
1478 | } |
---|
1479 | ////////////////////////////////////////////////// |
---|
1480 | static proc listpolynew(string thepoly) |
---|
1481 | { |
---|
1482 | string p=thepoly; |
---|
1483 | intvec v; |
---|
1484 | p=TestAndDelete(p,"[")[1]; |
---|
1485 | p=TestAndDelete(p,"]")[1]; //remove the brackets |
---|
1486 | string AND="/"+"\\"; |
---|
1487 | string OR="\\"+"/"; |
---|
1488 | list thesigns=AND,OR,"~","<==>","==>","<==";///these can occur in QEPCAD |
---|
1489 | int i; |
---|
1490 | for(i=1;i<=size(thesigns);i++) |
---|
1491 | { |
---|
1492 | list l=TestAndDelete(p,thesigns[i]); |
---|
1493 | p=l[1]; |
---|
1494 | v=addintvec(v,l[2]); |
---|
1495 | kill l; |
---|
1496 | } |
---|
1497 | intvec w=rightorder(v); |
---|
1498 | int N=size(v); |
---|
1499 | list lstrings; |
---|
1500 | if(size(w)==1 and w[1]==0) |
---|
1501 | { |
---|
1502 | N=0; |
---|
1503 | lstrings[1]=p; |
---|
1504 | } |
---|
1505 | else |
---|
1506 | { |
---|
1507 | string s1=p[1..w[1]-1]; |
---|
1508 | lstrings[1]=s1; |
---|
1509 | int j; |
---|
1510 | for(j=1;j<N;j++) |
---|
1511 | { |
---|
1512 | string s2=p[w[j]..w[j+1]-1]; |
---|
1513 | lstrings[j+1]=s2; |
---|
1514 | kill s2; |
---|
1515 | } |
---|
1516 | string s3=p[w[N]..size(p)]; |
---|
1517 | lstrings[N+1]=s3; |
---|
1518 | } |
---|
1519 | list cutstrings; |
---|
1520 | int k; |
---|
1521 | list Id; |
---|
1522 | for(k=1;k<=N+1;k++) |
---|
1523 | { |
---|
1524 | cutstrings[k]=cutoffrel(lstrings[k]); |
---|
1525 | Id[k]=translatenew(cutstrings[k]); |
---|
1526 | } |
---|
1527 | return(Id); |
---|
1528 | |
---|
1529 | |
---|
1530 | } |
---|
1531 | ///////////////////////////////////////////////// |
---|
1532 | static proc translatenew(string word) |
---|
1533 | { |
---|
1534 | int n=size(word); |
---|
1535 | string subword=word[1..n]; |
---|
1536 | string strpoly="poly f="; |
---|
1537 | list linterim; |
---|
1538 | int i; |
---|
1539 | for(i=1;i<=n;i++) |
---|
1540 | { |
---|
1541 | if(i<n and subword[i]==" " and subword[i+1]!="+" and subword[i+1]!="-" and subword[i+1]!=" " and subword[i-1]!="+" and subword[i-1]!="-" and subword[i-1]!=" " and i>1) |
---|
1542 | { |
---|
1543 | linterim[i]="*"; |
---|
1544 | } |
---|
1545 | else |
---|
1546 | { |
---|
1547 | linterim[i]=word[i]; |
---|
1548 | } |
---|
1549 | strpoly=strpoly+print(linterim[i],"%s"); |
---|
1550 | } |
---|
1551 | strpoly=strpoly+";"; |
---|
1552 | execute(strpoly); |
---|
1553 | return(f); |
---|
1554 | } |
---|
1555 | ////////////////////////////////////////////////// |
---|
1556 | static proc rightorder(intvec v) |
---|
1557 | ////////////orders the entries of an intvec from small to bigger |
---|
1558 | { |
---|
1559 | list ldown=intveclist(v); |
---|
1560 | list lup; |
---|
1561 | intvec v1; |
---|
1562 | int counter; |
---|
1563 | int min; |
---|
1564 | int i; |
---|
1565 | for(i=1;i<=size(v);i++) |
---|
1566 | { |
---|
1567 | min=Min(listintvec(ldown)); |
---|
1568 | lup[i]=min; |
---|
1569 | counter=listfind(ldown,min); |
---|
1570 | ldown=delete(ldown,counter); |
---|
1571 | } |
---|
1572 | intvec result=listintvec(lup); |
---|
1573 | return(result); |
---|
1574 | } |
---|
1575 | ///////////////////////////////////////////////// |
---|
1576 | static proc listfind(list l, int n) |
---|
1577 | //////gives the position of n in l, 0 if not found |
---|
1578 | { |
---|
1579 | int i; |
---|
1580 | intvec counter; |
---|
1581 | int j=1; |
---|
1582 | for(i=1;i<=size(l);i++) |
---|
1583 | { |
---|
1584 | if(n==l[i]) |
---|
1585 | { |
---|
1586 | counter[j]=i; |
---|
1587 | j++; |
---|
1588 | } |
---|
1589 | } |
---|
1590 | int result=Min(counter); |
---|
1591 | return(result); |
---|
1592 | } |
---|
1593 | ////////////////////////////////////////////////// |
---|
1594 | static proc cutoffrel(string str) |
---|
1595 | /////////cut off the relations "/=,<= etc." from output-string |
---|
1596 | { |
---|
1597 | list rels="<=",">=","<",">","/=","="; //these are all of qepcad's relations |
---|
1598 | int i; |
---|
1599 | list l; |
---|
1600 | for(i=1;i<=size(rels);i++) |
---|
1601 | { |
---|
1602 | l[i]=find(str,rels[i]); |
---|
1603 | } |
---|
1604 | intvec v=listintvec(l); |
---|
1605 | v=addintvec(v,v); |
---|
1606 | int position=Min(v); |
---|
1607 | string result; |
---|
1608 | if(position==0) |
---|
1609 | { |
---|
1610 | result=str; |
---|
1611 | } |
---|
1612 | else |
---|
1613 | { |
---|
1614 | result=str[1..position-1]; |
---|
1615 | } |
---|
1616 | return(result); |
---|
1617 | } |
---|
1618 | ////////////////////////////////////////////////// |
---|
1619 | static proc addintvec(intvec v1, intvec v2) |
---|
1620 | ///////concatenates two intvecs and deletes occurring zeroentries, output intvec |
---|
1621 | { |
---|
1622 | list lresult; |
---|
1623 | int i; |
---|
1624 | list l1; |
---|
1625 | list l2; |
---|
1626 | for(i=1;i<=size(v1);i++) |
---|
1627 | { |
---|
1628 | l1[i]=v1[i]; |
---|
1629 | } |
---|
1630 | kill i; |
---|
1631 | int k; |
---|
1632 | for(k=1;k<=size(v2);k++) |
---|
1633 | { |
---|
1634 | l2[k]=v2[k]; |
---|
1635 | } |
---|
1636 | lresult=l1+l2; |
---|
1637 | intvec result; |
---|
1638 | int j; |
---|
1639 | int counter=1; |
---|
1640 | for(j=1;j<=size(lresult);j++) |
---|
1641 | { |
---|
1642 | if(lresult[j]!=0) |
---|
1643 | { |
---|
1644 | result[counter]=lresult[j]; |
---|
1645 | counter++; |
---|
1646 | } |
---|
1647 | } |
---|
1648 | return(result); |
---|
1649 | |
---|
1650 | } |
---|
1651 | ///////////////////////////////////////////////// |
---|
1652 | static proc intveclist(intvec v) |
---|
1653 | //////returns the intvec as list |
---|
1654 | { |
---|
1655 | list l; |
---|
1656 | int i; |
---|
1657 | for(i=size(v);i>=1;i--) |
---|
1658 | { |
---|
1659 | l[i]=v[i]; |
---|
1660 | } |
---|
1661 | return(l); |
---|
1662 | } |
---|
1663 | ////////////////////////////////////////////////// |
---|
1664 | static proc listintvec(list l) |
---|
1665 | //////////returns the list as intvec: only integer-entries allowed |
---|
1666 | { |
---|
1667 | intvec v; |
---|
1668 | int i; |
---|
1669 | for(i=size(l);i>=1;i--) |
---|
1670 | { |
---|
1671 | v[i]=l[i]; |
---|
1672 | } |
---|
1673 | return(v); |
---|
1674 | } |
---|
1675 | ////////////////////////////////////////////////// |
---|
1676 | static proc TestAndDelete(string str, string booleansign) |
---|
1677 | { |
---|
1678 | int decide=find(str,booleansign); |
---|
1679 | intvec v; |
---|
1680 | v[1]=decide; |
---|
1681 | while(decide!=0 and decide<size(str))//if booleansign ist not contained in str |
---|
1682 | { |
---|
1683 | int n=size(v); |
---|
1684 | decide=find(str,booleansign,decide+1); |
---|
1685 | if(decide!=0) |
---|
1686 | { |
---|
1687 | v[n+1]=decide; |
---|
1688 | } |
---|
1689 | kill n; |
---|
1690 | } |
---|
1691 | if(size(v)==1 and v[1]==0)/////i.e. booleansign NOT in str |
---|
1692 | { |
---|
1693 | list result=str,v; |
---|
1694 | return(result); |
---|
1695 | } |
---|
1696 | else |
---|
1697 | { |
---|
1698 | list l; |
---|
1699 | string p; |
---|
1700 | int i; |
---|
1701 | int j; |
---|
1702 | for(i=1;i<=size(str);i++)///copy the string str into l |
---|
1703 | { |
---|
1704 | l[i]=str[i]; |
---|
1705 | } |
---|
1706 | kill i; |
---|
1707 | for(j=1;j<=size(v);j++)///replace booleansign by empty char |
---|
1708 | { |
---|
1709 | int k; |
---|
1710 | for(k=0;k<=size(booleansign)-1;k++) |
---|
1711 | { |
---|
1712 | l[v[j]+k]=" "; |
---|
1713 | } |
---|
1714 | kill k; |
---|
1715 | } |
---|
1716 | int s; |
---|
1717 | for(s=1;s<=size(l);s++)///copy back |
---|
1718 | { |
---|
1719 | p=p+string(l[s]); |
---|
1720 | } |
---|
1721 | kill s; |
---|
1722 | kill l; |
---|
1723 | list result=p,v; |
---|
1724 | return(result); |
---|
1725 | } |
---|
1726 | } |
---|
1727 | ////////////////////////////////////////////////// |
---|
1728 | static proc nchoice(int n1,int n2) |
---|
1729 | { |
---|
1730 | int N2=maximal(n1,n2); |
---|
1731 | int N1=minimal(n1,n2); |
---|
1732 | if(N1==0) |
---|
1733 | { |
---|
1734 | return(N2); |
---|
1735 | } |
---|
1736 | else |
---|
1737 | { |
---|
1738 | return(N1); |
---|
1739 | } |
---|
1740 | } |
---|