1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: findifs.lib,v 1.1 2008-12-01 20:51:16 levandov Exp $"; |
---|
3 | category="Applications"; |
---|
4 | info=" |
---|
5 | LIBRARY: findifs.lib Tools for the finite difference schemes |
---|
6 | AUTHORS: Viktor Levandovskyy, levandov@risc.uni-linz.ac.at |
---|
7 | |
---|
8 | THEORY: We provide the presentation of difference operators in a polynomial, semi-factorized and a nodal form. Running @code{example discr_example;} will show how we generate finite difference schemes of linear PDE's from given approximations. |
---|
9 | |
---|
10 | PROCEDURES: |
---|
11 | decoef(P,n); decompose poly P into summands with respect to the number n |
---|
12 | difpoly2tex(S,P[,Q]); present the difference scheme in the nodal form |
---|
13 | |
---|
14 | AUXILIARY PROCEDURES: |
---|
15 | findifs_example(); containes a guided explanation of our approach |
---|
16 | exp2pt(P[,L]); convert a polynomial M into the TeX format, in nodal form |
---|
17 | mon2pt(P[,L]); convert a monomial M into the TeX format, in nodal form |
---|
18 | texcoef(n); converts the number n into TeX |
---|
19 | npar(n); search for 'n' among the parameters and returns its number |
---|
20 | magnitude(P); compute the square of the magnitude of a complex expression |
---|
21 | replace(s,what,with); replace in s all the substrings with a given string |
---|
22 | xchange(w,a,b); exchange two substrings of a string |
---|
23 | par2tex(s); convert special characters to TeX in s |
---|
24 | "; |
---|
25 | |
---|
26 | |
---|
27 | LIB "latex.lib"; |
---|
28 | LIB "poly.lib"; |
---|
29 | |
---|
30 | // 1. GLOBAL ASSUME: in the ring we have first Tx, then Tt: [FIXED, not needed anymore]! |
---|
31 | // 2. map vars other than Tx,Tt to parameters instead or just ignore them [?] |
---|
32 | // 3. clear the things with brackets |
---|
33 | // 4. todo: content resp lcmZ, gcdZ |
---|
34 | |
---|
35 | proc xchange(string where, string a, string b) |
---|
36 | "USAGE: xchange(w,a,b); w,a,b strings |
---|
37 | RETURN: string |
---|
38 | PURPOSE: exchanges substring 'a' with a substring 'b' in the string w |
---|
39 | NOTE: |
---|
40 | EXAMPLE: example xchange; shows examples |
---|
41 | "{ |
---|
42 | // replaces a<->b in where |
---|
43 | // assume they are of the same size [? seems to work] |
---|
44 | string s = "H"; |
---|
45 | string t; |
---|
46 | t = replace(where,a,s); |
---|
47 | t = replace(t,b,a); |
---|
48 | t = replace(t,s,b); |
---|
49 | return(t); |
---|
50 | } |
---|
51 | example |
---|
52 | { |
---|
53 | " EXAMPLE:"; echo=2; |
---|
54 | ring r = (0,dt,dh,A),Tt,dp; |
---|
55 | poly p = (Tt*dt+dh+1)^2+2*A; |
---|
56 | string s = texpoly("",p); |
---|
57 | s; |
---|
58 | string t = xchange(s,"dh","dt"); |
---|
59 | t; |
---|
60 | } |
---|
61 | |
---|
62 | proc par2tex(string s) |
---|
63 | "USAGE: par2tex(s); s a string |
---|
64 | RETURN: string |
---|
65 | PURPOSE: converts special characters to TeX in s |
---|
66 | NOTE: the convention is the following: Tx goes to T_x, dx to tri x (the same for t,y,z). Moreover, some parameters (theta,ro,A,V) are converted to greek letters. |
---|
67 | EXAMPLE: example par2tex; shows examples |
---|
68 | "{ |
---|
69 | // s is a tex string with a poly |
---|
70 | // replace theta with \theta |
---|
71 | // A with \lambda |
---|
72 | // dt with \tri t |
---|
73 | // dh with \tri h |
---|
74 | // Tx with T_x, Ty with T_y |
---|
75 | // Tt with T_t |
---|
76 | // V with \nu |
---|
77 | // ro with \rho |
---|
78 | // dx with \tri x |
---|
79 | // dy with \tri y |
---|
80 | string t = s; |
---|
81 | t = replace(t,"Tt","T_t"); |
---|
82 | t = replace(t,"Tx","T_x"); |
---|
83 | t = replace(t,"Ty","T_y"); |
---|
84 | t = replace(t,"dt","\\tri t"); |
---|
85 | t = replace(t,"dh","\\tri h"); |
---|
86 | t = replace(t,"dx","\\tri x"); |
---|
87 | t = replace(t,"dy","\\tri y"); |
---|
88 | t = replace(t,"theta","\\theta"); |
---|
89 | t = replace(t,"A","\\lambda"); |
---|
90 | t = replace(t,"V","\\nu"); |
---|
91 | t = replace(t,"ro","\\rho"); |
---|
92 | return(t); |
---|
93 | } |
---|
94 | example |
---|
95 | { |
---|
96 | " EXAMPLE:"; echo=2; |
---|
97 | ring r = (0,dt,theta,A),Tt,dp; |
---|
98 | poly p = (Tt*dt+theta+1)^2+2*A; |
---|
99 | string s = texfactorize("",p); |
---|
100 | s; |
---|
101 | par2tex(s); |
---|
102 | string T = texfactorize("",p*(-theta*A)); |
---|
103 | par2tex(T); |
---|
104 | } |
---|
105 | |
---|
106 | proc replace(string s, string what, string with) |
---|
107 | "USAGE: replace(s,what,with); s,what,with strings |
---|
108 | RETURN: string |
---|
109 | PURPOSE: replaces in 's' all the substrings 'what' with substring 'with' |
---|
110 | NOTE: |
---|
111 | EXAMPLE: example replace; shows examples |
---|
112 | "{ |
---|
113 | // clear: replace in s, "what" with "with" |
---|
114 | int ss = size(s); |
---|
115 | int cn = find(s,what); |
---|
116 | if ( (cn==0) || (cn>ss)) |
---|
117 | { |
---|
118 | return(s); |
---|
119 | } |
---|
120 | int gn = 0; // global counter |
---|
121 | int sw = size(what); |
---|
122 | int swith = size(with); |
---|
123 | string out=""; |
---|
124 | string tmp; |
---|
125 | gn = 0; |
---|
126 | while(cn!=0) |
---|
127 | { |
---|
128 | // "cn:"; cn; |
---|
129 | // "gn"; gn; |
---|
130 | tmp = ""; |
---|
131 | if (cn>gn) |
---|
132 | { |
---|
133 | tmp = s[gn..cn-1]; |
---|
134 | } |
---|
135 | // "tmp:";tmp; |
---|
136 | // out = out+tmp+" "+with; |
---|
137 | out = out+tmp+with; |
---|
138 | // "out:";out; |
---|
139 | gn = cn + sw; |
---|
140 | if (gn>ss) |
---|
141 | { |
---|
142 | // ( (gn>ss) || ((sw>1) && (gn >= ss)) ) |
---|
143 | // no need to append smth |
---|
144 | return(out); |
---|
145 | } |
---|
146 | // if (gn == ss) |
---|
147 | // { |
---|
148 | |
---|
149 | // } |
---|
150 | cn = find(s,what,gn); |
---|
151 | } |
---|
152 | // and now, append the rest of s |
---|
153 | // out = out + " "+ s[gn..ss]; |
---|
154 | out = out + s[gn..ss]; |
---|
155 | return(out); |
---|
156 | } |
---|
157 | example |
---|
158 | { |
---|
159 | " EXAMPLE:"; echo=2; |
---|
160 | ring r = (0,dt,theta),Tt,dp; |
---|
161 | poly p = (Tt*dt+theta+1)^2+2; |
---|
162 | string s = texfactorize("",p); |
---|
163 | s; |
---|
164 | s = replace(s,"Tt","T_t"); s; |
---|
165 | s = replace(s,"dt","\\tri t"); s; |
---|
166 | s = replace(s,"theta","\\theta"); s; |
---|
167 | } |
---|
168 | |
---|
169 | proc exp2pt(poly P, list #) |
---|
170 | "USAGE: exp2pt(P[,L]); P poly, L an optional list of strings |
---|
171 | RETURN: string |
---|
172 | PURPOSE: convert a polynomial M into the TeX format, in nodal form |
---|
173 | ASSUME: coefficients must not be fractional |
---|
174 | NOTE: an optional list L contains a string, which will replace the default |
---|
175 | value 'u' for the discretized function |
---|
176 | EXAMPLE: example exp2pt; shows examples |
---|
177 | "{ |
---|
178 | // given poly in vars [now Tx,Tt are fixed], |
---|
179 | // create Tex expression for points of lattice |
---|
180 | // coeffs must not be fractional |
---|
181 | string varnm = "u"; |
---|
182 | if (size(#) > 0) |
---|
183 | { |
---|
184 | if (typeof(#[1])=="string") |
---|
185 | { |
---|
186 | varnm = string(#[1]); |
---|
187 | } |
---|
188 | } |
---|
189 | // varnm; |
---|
190 | string rz,mz; |
---|
191 | while (P!=0) |
---|
192 | { |
---|
193 | mz = mon2pt(P,varnm); |
---|
194 | if (mz[1]=="-") |
---|
195 | { |
---|
196 | rz = rz+mz; |
---|
197 | } |
---|
198 | else |
---|
199 | { |
---|
200 | rz = rz + "+" + mz; |
---|
201 | } |
---|
202 | P = P-lead(P); |
---|
203 | } |
---|
204 | rz = rz[2..size(rz)]; |
---|
205 | return(rz); |
---|
206 | } |
---|
207 | example |
---|
208 | { |
---|
209 | " EXAMPLE:"; echo=2; |
---|
210 | ring r = (0,dh,dt),(Tx,Tt),dp; |
---|
211 | poly M = (4*dh*Tx^2+1)*(Tt-1)^2; |
---|
212 | print(exp2pt(M)); |
---|
213 | print(exp2pt(M,"F")); |
---|
214 | } |
---|
215 | |
---|
216 | proc mon2pt(poly M, string V) |
---|
217 | "USAGE: mon2pt(M,V); M poly, V a string |
---|
218 | RETURN: string |
---|
219 | PURPOSE: convert a monomial M into the TeX format, nodal form |
---|
220 | EXAMPLE: example mon2pt; shows examples |
---|
221 | "{ |
---|
222 | // searches for Tx, then Tt |
---|
223 | // monomial to the lattice point conversion |
---|
224 | // c*X^a*Y^b --> c*U^{n+a}_{j+b} |
---|
225 | number cM = leadcoef(M); |
---|
226 | intvec e = leadexp(M); |
---|
227 | // int a = e[2]; // convention: first Tx, then Tt |
---|
228 | // int b = e[1]; |
---|
229 | int i; |
---|
230 | int a , b, c = 0,0,0; |
---|
231 | int ia,ib,ic = 0,0,0; |
---|
232 | int nv = nvars(basering); |
---|
233 | string s; |
---|
234 | for (i=1; i<=nv ; i++) |
---|
235 | { |
---|
236 | s = string(var(i)); |
---|
237 | if (s=="Tt") { a = e[i]; ia = i;} |
---|
238 | if (s=="Tx") { b = e[i]; ib = i;} |
---|
239 | if (s=="Ty") { c = e[i]; ic = i;} |
---|
240 | } |
---|
241 | // if (ia==0) {"Error:Tt not found!"; return("");} |
---|
242 | // if (ib==0) {"Error:Tx not found!"; return("");} |
---|
243 | // if (ic==0) {"Error:Ty not found!"; return("");} |
---|
244 | // string tc = texobj("",c); // why not texpoly? |
---|
245 | string tc = texcoef(cM); |
---|
246 | string rs; |
---|
247 | if (cM==-1) |
---|
248 | { |
---|
249 | rs = "-"; |
---|
250 | } |
---|
251 | if (cM^2 != 1) |
---|
252 | { |
---|
253 | // we don't need 1 or -1 as coeffs |
---|
254 | // rs = clTex(tc)+" "; |
---|
255 | // rs = par2tex(rmDol(tc))+" "; |
---|
256 | rs = par2tex(tc)+" "; |
---|
257 | } |
---|
258 | // a = 0 or b = 0 |
---|
259 | rs = rs + V +"^{n"; |
---|
260 | if (a!=0) |
---|
261 | { |
---|
262 | rs = rs +"+"+string(a); |
---|
263 | } |
---|
264 | rs = rs +"}_{j"; |
---|
265 | if (b!=0) |
---|
266 | { |
---|
267 | rs = rs +"+"+string(b); |
---|
268 | } |
---|
269 | if (c!=0) |
---|
270 | { |
---|
271 | rs = rs + ",k+"; |
---|
272 | rs = rs + string(c); |
---|
273 | } |
---|
274 | rs = rs +"}"; |
---|
275 | return(rs); |
---|
276 | } |
---|
277 | example |
---|
278 | { |
---|
279 | "EXAMPLE:"; echo=2; |
---|
280 | ring r = (0,dh,dt),(Tx,Tt),dp; |
---|
281 | poly M = (4*dh^2-dt)*Tx^3*Tt; |
---|
282 | print(mon2pt(M,"u")); |
---|
283 | poly N = ((dh-dt)/(dh+dt))*Tx^2*Tt^2; |
---|
284 | print(mon2pt(N,"f")); |
---|
285 | ring r2 = (0,dh,dt),(Tx,Ty,Tt),dp; |
---|
286 | poly M = (4*dh^2-dt)*Tx^3*Ty^2*Tt; |
---|
287 | print(mon2pt(M,"u")); |
---|
288 | } |
---|
289 | |
---|
290 | proc npar(number n) |
---|
291 | "USAGE: npar(n); n a number |
---|
292 | RETURN: int |
---|
293 | PURPOSE: searches for 'n' among the parameters and returns its number |
---|
294 | EXAMPLE: example npar; shows examples |
---|
295 | "{ |
---|
296 | // searches for n amongst parameters |
---|
297 | // and returns its number |
---|
298 | int i,j=0,0; |
---|
299 | list L = ringlist(basering); |
---|
300 | list M = L[1][2]; // pars |
---|
301 | string sn = string(n); |
---|
302 | sn = sn[2..size(sn)-1]; |
---|
303 | for (i=1; i<=size(M);i++) |
---|
304 | { |
---|
305 | if (M[i] == sn) |
---|
306 | { |
---|
307 | j = i; |
---|
308 | } |
---|
309 | } |
---|
310 | if (j==0) |
---|
311 | { |
---|
312 | "Incorrect parameter"; |
---|
313 | } |
---|
314 | return(j); |
---|
315 | } |
---|
316 | example |
---|
317 | { |
---|
318 | "EXAMPLE:"; echo=2; |
---|
319 | ring r = (0,dh,dt,theta,A),t,dp; |
---|
320 | npar(dh); |
---|
321 | number T = theta; |
---|
322 | npar(T); |
---|
323 | npar(dh^2); |
---|
324 | } |
---|
325 | |
---|
326 | proc decoef(poly P, number n) |
---|
327 | "USAGE: decoef(P,n); P a poly, n a number |
---|
328 | RETURN: ideal |
---|
329 | PURPOSE: decompose poly P into summands with respect |
---|
330 | to the presence of a number n in the coefficients |
---|
331 | NOTE: n is usually a parameter with no power |
---|
332 | EXAMPLE: example decoef; shows examples |
---|
333 | "{ |
---|
334 | // decomposes poly into summands |
---|
335 | // wrt the presence of a number n in coeffs |
---|
336 | // returns ideal |
---|
337 | def br = basering; |
---|
338 | int i,j=0,0; |
---|
339 | int pos = npar(n); |
---|
340 | if ((pos==0) || (P==0)) |
---|
341 | { |
---|
342 | return(0); |
---|
343 | } |
---|
344 | pos = pos + nvars(basering); |
---|
345 | // map all pars except to vars, provided no things are in denominator |
---|
346 | number con = content(P); |
---|
347 | con = numerator(con); |
---|
348 | P = cleardenom(P); //destroys content! |
---|
349 | P = con*P; // restore the numerator part of the content |
---|
350 | list M = ringlist(basering); |
---|
351 | list L = M[1..4]; |
---|
352 | list Pars = L[1][2]; |
---|
353 | list Vars = L[2] + Pars; |
---|
354 | L[1] = L[1][1]; // characteristic |
---|
355 | L[2] = Vars; |
---|
356 | // for non-comm things: don't need nc but graded algebra |
---|
357 | // list templ; |
---|
358 | // L[5] = templ; |
---|
359 | // L[6] = templ; |
---|
360 | def @R = ring(L); |
---|
361 | setring @R; |
---|
362 | poly P = imap(br,P); |
---|
363 | poly P0 = subst(P,var(pos),0); |
---|
364 | poly P1 = P - P0; |
---|
365 | ideal I = P0,P1; |
---|
366 | setring br; |
---|
367 | ideal I = imap(@R,I); |
---|
368 | kill @R; |
---|
369 | // check: P0+P1==P |
---|
370 | poly Q = I[1]+I[2]; |
---|
371 | if (P!=Q) |
---|
372 | { |
---|
373 | "Warning: problem in decoef"; |
---|
374 | } |
---|
375 | return(I); |
---|
376 | // substract the pure part from orig and check if n is remained there |
---|
377 | } |
---|
378 | example |
---|
379 | { |
---|
380 | " EXAMPLE:"; echo=2; |
---|
381 | ring r = (0,dh,dt),(Tx,Tt),dp; |
---|
382 | poly P = (4*dh^2-dt)*Tx^3*Tt + dt*dh*Tt^2 + dh*Tt; |
---|
383 | decoef(P,dt); |
---|
384 | decoef(P,dh); |
---|
385 | } |
---|
386 | |
---|
387 | proc texcoef(number n) |
---|
388 | "USAGE: texcoef(n); n a number |
---|
389 | RETURN: string |
---|
390 | PURPOSE: converts the number n into TeX format |
---|
391 | NOTE: if n is a polynomial, texcoef adds extra brackets. |
---|
392 | @* Performs some space substitutions |
---|
393 | EXAMPLE: example texcoef; shows examples |
---|
394 | "{ |
---|
395 | // makes tex from n |
---|
396 | // and uses substitutions |
---|
397 | // if n is a polynomial, adds brackets |
---|
398 | number D = denominator(n); |
---|
399 | int DenIsOne = 0; |
---|
400 | if ( D==number(1) ) |
---|
401 | { |
---|
402 | DenIsOne = 1; |
---|
403 | } |
---|
404 | string sd = texpoly("",D); |
---|
405 | sd = rmDol(sd); |
---|
406 | sd = par2tex(sd); |
---|
407 | number N = numerator(n); |
---|
408 | string sn = texpoly("",N); |
---|
409 | sn = rmDol(sn); |
---|
410 | sn = par2tex(sn); |
---|
411 | string sout=""; |
---|
412 | int i; |
---|
413 | int NisPoly = 0; |
---|
414 | if (DenIsOne) |
---|
415 | { |
---|
416 | sout = sn; |
---|
417 | for(i=1; i<=size(sout); i++) |
---|
418 | { |
---|
419 | if ( (sout[i]=="+") || (sout[i]=="-") ) |
---|
420 | { |
---|
421 | NisPoly = 1; |
---|
422 | } |
---|
423 | } |
---|
424 | if (NisPoly) |
---|
425 | { |
---|
426 | sout = "("+sout+")"; |
---|
427 | } |
---|
428 | } |
---|
429 | else |
---|
430 | { |
---|
431 | sout = "\\frac{"+sn+"}{"+sd+"}"; |
---|
432 | } |
---|
433 | return(sout); |
---|
434 | } |
---|
435 | example |
---|
436 | { |
---|
437 | " EXAMPLE:"; echo=2; |
---|
438 | ring r = (0,dh,dt),(Tx,Tt),dp; |
---|
439 | number n1,n2,n3 = dt/(4*dh^2-dt),(dt+dh)^2, 1/dh; |
---|
440 | n1; texcoef(n1); |
---|
441 | n2; texcoef(n2); |
---|
442 | n3; texcoef(n3); |
---|
443 | } |
---|
444 | |
---|
445 | static proc rmDol(string s) |
---|
446 | { |
---|
447 | // removes $s and _no_ (s on appearance |
---|
448 | int i = size(s); |
---|
449 | if (s[1] == "$") { s = s[2..i]; i--;} |
---|
450 | if (s[1] == "(") { s = s[2..i]; i--;} |
---|
451 | if (s[i] == "$") { s = s[1..i-1]; i--;} |
---|
452 | if (s[i] == ")") { s = s[1..i-1];} |
---|
453 | return(s); |
---|
454 | } |
---|
455 | |
---|
456 | proc difpoly2tex(ideal S, list P, list #) |
---|
457 | "USAGE: difpoly2tex(S,P[,Q]); S an ideal, P and optional Q are lists |
---|
458 | RETURN: string |
---|
459 | PURPOSE: present the difference scheme in the nodal form |
---|
460 | ASSUME: ideal S is the result of 'decoef' procedure |
---|
461 | NOTE: a list P may be empty or may contain parameters, which will not |
---|
462 | appear in denominators |
---|
463 | @* an optional list Q represents the part of the scheme, depending |
---|
464 | on other function, than the major part |
---|
465 | EXAMPLE: example difpoly2tex; shows examples |
---|
466 | " |
---|
467 | { |
---|
468 | // S = sum s_i = orig diff poly or |
---|
469 | // the result of decoef |
---|
470 | // P = list of pars (numbers) not to be divided with, may be empty |
---|
471 | // # is an optional list of polys, repr. the part dep. on "f", not on "u" |
---|
472 | // S = simplify(S,2); // destroys the leadcoef |
---|
473 | // rescan S and remove 0s from it |
---|
474 | int i; |
---|
475 | ideal T; |
---|
476 | int ss = ncols(S); |
---|
477 | int j=1; |
---|
478 | for(i=1; i<=ss; i++) |
---|
479 | { |
---|
480 | if (S[i]!=0) |
---|
481 | { |
---|
482 | T[j]=S[i]; |
---|
483 | j++; |
---|
484 | } |
---|
485 | } |
---|
486 | S = T; |
---|
487 | ss = j-1; |
---|
488 | int GotF = 1; |
---|
489 | list F; |
---|
490 | if (size(#)>0) |
---|
491 | { |
---|
492 | F = #; |
---|
493 | if ( (size(F)==1) && (F[1]==0) ) |
---|
494 | { |
---|
495 | GotF = 0; |
---|
496 | } |
---|
497 | } |
---|
498 | else |
---|
499 | { |
---|
500 | GotF = 0; |
---|
501 | } |
---|
502 | int sf = size(F); |
---|
503 | |
---|
504 | ideal SC; |
---|
505 | int sp = size(P); |
---|
506 | intvec np; |
---|
507 | int GotP = 1; |
---|
508 | if (sp==0) |
---|
509 | { |
---|
510 | GotP = 0; |
---|
511 | } |
---|
512 | if (sp==1) |
---|
513 | { |
---|
514 | if (P[1]==0) |
---|
515 | { |
---|
516 | GotP = 0; |
---|
517 | } |
---|
518 | } |
---|
519 | if (GotP) |
---|
520 | { |
---|
521 | for (i=1; i<=sp; i++) |
---|
522 | { |
---|
523 | np[i] = npar(P[i])+ nvars(basering); |
---|
524 | } |
---|
525 | } |
---|
526 | for (i=1; i<=ss; i++) |
---|
527 | { |
---|
528 | SC[i] = leadcoef(S[i]); |
---|
529 | } |
---|
530 | if (GotF) |
---|
531 | { |
---|
532 | for (i=1; i<=sf; i++) |
---|
533 | { |
---|
534 | SC[ss+i] = leadcoef(F[i]); |
---|
535 | } |
---|
536 | } |
---|
537 | def br = basering; |
---|
538 | // map all pars except to vars, provided no things are in denominator |
---|
539 | list M = ringlist(basering); |
---|
540 | list L = M[1..4]; // erase nc part |
---|
541 | list Pars = L[1][2]; |
---|
542 | list Vars = L[2] + Pars; |
---|
543 | L[1] = L[1][1]; // characteristic |
---|
544 | L[2] = Vars; |
---|
545 | |
---|
546 | def @R = ring(L); |
---|
547 | setring @R; |
---|
548 | ideal SC = imap(br,SC); |
---|
549 | if (GotP) |
---|
550 | { |
---|
551 | for (i=1; i<=sp; i++) |
---|
552 | { |
---|
553 | SC = subst(SC,var(np[i]),1); |
---|
554 | } |
---|
555 | } |
---|
556 | poly q=1; |
---|
557 | q = lcm(q,SC); |
---|
558 | setring br; |
---|
559 | poly q = imap(@R,q); |
---|
560 | number lq = leadcoef(q); |
---|
561 | // lq; |
---|
562 | number tmp; |
---|
563 | string sout=""; |
---|
564 | string vname = "u"; |
---|
565 | for (i=1; i<=ss; i++) |
---|
566 | { |
---|
567 | tmp = leadcoef(S[i]); |
---|
568 | S[i] = S[i]/tmp; |
---|
569 | tmp = tmp/lq; |
---|
570 | sout = sout +"+ "+texcoef(tmp)+"\\cdot ("+exp2pt(S[i])+")"; |
---|
571 | } |
---|
572 | if (GotF) |
---|
573 | { |
---|
574 | vname = "p"; //"f"; |
---|
575 | for (i=1; i<=sf; i++) |
---|
576 | { |
---|
577 | tmp = leadcoef(F[i]); |
---|
578 | F[i] = F[i]/tmp; |
---|
579 | tmp = tmp/lq; |
---|
580 | sout = sout +"+ "+texcoef(tmp)+"\\cdot ("+exp2pt(F[i],vname)+")"; |
---|
581 | } |
---|
582 | } |
---|
583 | sout = sout[3..size(sout)]; //rm first + |
---|
584 | return(sout); |
---|
585 | } |
---|
586 | example |
---|
587 | { |
---|
588 | "EXAMPLE:"; echo=2; |
---|
589 | ring r = (0,dh,dt,V),(Tx,Tt),dp; |
---|
590 | poly M = (4*dh*Tx+dt)^2*(Tt-1) + V*Tt*Tx; |
---|
591 | ideal I = decoef(M,dt); |
---|
592 | list L; L[1] = V; |
---|
593 | difpoly2tex(I,L); |
---|
594 | poly G = V*dh^2*(Tt-Tx)^2; |
---|
595 | difpoly2tex(I,L,G); |
---|
596 | } |
---|
597 | |
---|
598 | |
---|
599 | proc magnitude(poly P) |
---|
600 | "USAGE: magnitude(P); P a poly |
---|
601 | RETURN: poly |
---|
602 | PURPOSE: compute the square of the magnitude of a complex expression |
---|
603 | ASSUME: i is the variable of a basering |
---|
604 | EXAMPLE: example magnitude; shows examples |
---|
605 | " |
---|
606 | { |
---|
607 | // check whether i is present among the vars TODO |
---|
608 | // assume i^2+1=0; |
---|
609 | poly re = subst(P,i,0); |
---|
610 | poly im = (P - re)/i; |
---|
611 | return(re^2+im^2); |
---|
612 | } |
---|
613 | example |
---|
614 | { |
---|
615 | "EXAMPLE:"; echo=2; |
---|
616 | ring r = (0,d),(g,i,sin,cos),dp; |
---|
617 | poly P = d*i*sin - g*cos +d^2; |
---|
618 | magnitude(P); |
---|
619 | } |
---|
620 | |
---|
621 | |
---|
622 | static proc clTex(string s) |
---|
623 | // removes beginning and ending $'s |
---|
624 | { |
---|
625 | string t; |
---|
626 | if (size(s)>2) |
---|
627 | { |
---|
628 | // why -3? |
---|
629 | t = s[2..(size(s)-3)]; |
---|
630 | } |
---|
631 | return(t); |
---|
632 | } |
---|
633 | |
---|
634 | static proc ElimModComp(module M, int num) |
---|
635 | { |
---|
636 | // experimental, todo |
---|
637 | // check whether a curr.ord is elim-comp |
---|
638 | string s = ordstr(basering); |
---|
639 | int ns = size(s); |
---|
640 | // s[ns] = "c", "C"; |
---|
641 | if (s[1]="c") |
---|
642 | { |
---|
643 | // num last components |
---|
644 | } |
---|
645 | if (s[1]="C") |
---|
646 | { |
---|
647 | // num first components |
---|
648 | } |
---|
649 | } |
---|
650 | |
---|
651 | |
---|
652 | static proc simfrac(poly up, poly down) |
---|
653 | { |
---|
654 | // simplifies a fraction up/down |
---|
655 | // into the form up/down = RT[1] + RT[2]/down |
---|
656 | list LL = division(up,down); |
---|
657 | list RT; |
---|
658 | RT[1] = LL[1][1,1]; // integer part |
---|
659 | RT[2] = L[2][1]; // new numerator |
---|
660 | return(RT); |
---|
661 | } |
---|
662 | |
---|
663 | proc findifs_example() |
---|
664 | "USAGE: findifs_example(); |
---|
665 | RETURN: nothing (demo) |
---|
666 | PURPOSE: demonstration of our approach and this library |
---|
667 | EXAMPLE: example findifs_example; shows examples |
---|
668 | " |
---|
669 | { |
---|
670 | |
---|
671 | "* Equation: u_tt - A^2 u_xx -B^2 u_yy = 0; A,B are constants"; |
---|
672 | "* we employ three central differences"; |
---|
673 | "* the vector we act on is (u_xx, u_yy, u_tt, u)^T"; |
---|
674 | "* Set up the ring: "; |
---|
675 | "ring r = (0,A,B,dt,dx,dy),(Tx,Ty,Tt),(c,dp);"; |
---|
676 | ring r = (0,A,B,dt,dx,dy),(Tx,Ty,Tt),(c,dp); |
---|
677 | "* Set up the matrix with equation and approximations: "; |
---|
678 | "matrix M[4][4] ="; |
---|
679 | " // direct equation:"; |
---|
680 | " -A^2, -B^2, 1, 0,"; |
---|
681 | " // central difference u_tt"; |
---|
682 | " 0, 0, -dt^2*Tt, (Tt-1)^2,"; |
---|
683 | " // central difference u_xx"; |
---|
684 | " -dx^2*Tx, 0, 0, (Tx-1)^2,"; |
---|
685 | " // central difference u_yy"; |
---|
686 | " 0, -dy^2*Ty, 0, (Ty-1)^2;"; |
---|
687 | matrix M[4][4] = |
---|
688 | // direct equation: |
---|
689 | -A^2, -B^2, 1, 0, |
---|
690 | // central difference u_tt |
---|
691 | 0, 0, -dt^2*Tt, (Tt-1)^2, |
---|
692 | // central difference u_xx |
---|
693 | -dx^2*Tx, 0, 0, (Tx-1)^2, |
---|
694 | // central difference u_yy |
---|
695 | 0, -dy^2*Ty, 0, (Ty-1)^2; |
---|
696 | //========================================= |
---|
697 | // CHECK THE CORRECTNESS OF EQUATIONS AS INPUT: |
---|
698 | ring rX = (0,A,B,dt,dx,dy,Tx,Ty,Tt),(Uxx, Uyy,Utt, U),(c,Dp); |
---|
699 | matrix M = imap(r,M); |
---|
700 | vector X = [Uxx, Uyy, Utt, U]; |
---|
701 | "* Print the differential form of equations: "; |
---|
702 | print(M*X); |
---|
703 | // END CHECK |
---|
704 | //========================================= |
---|
705 | setring r; |
---|
706 | "* Perform the elimination of module components:"; |
---|
707 | " module R = transpose(M);"; |
---|
708 | " module S = std(R);"; |
---|
709 | " poly p = S[4,1];" ; |
---|
710 | module R = transpose(M); |
---|
711 | module S = std(R); |
---|
712 | poly p = S[4,1]; // by elimination of module components |
---|
713 | list L; L[1]=A;L[2] = B; |
---|
714 | ideal I = decoef(p,dt); // make splitting wrt the appearance of dt |
---|
715 | "* Create the nodal of the scheme in TeX format: "; |
---|
716 | " ideal I = decoef(p,dt);"; |
---|
717 | " difpoly2tex(I,L);"; |
---|
718 | difpoly2tex(I,L); // the nodal form of the scheme in TeX |
---|
719 | "* Preparations for the semi-factorized form: "; |
---|
720 | poly pi1 = subst(I[2],B,0); |
---|
721 | poly pi2 = I[2] - pi1; |
---|
722 | " poly pi1 = subst(I[2],B,0);"; |
---|
723 | " poly pi2 = I[2] - pi1;"; |
---|
724 | "* Show the semi-factorized form of the scheme: 1st summand"; |
---|
725 | " factorize(I[1]); "; |
---|
726 | factorize(I[1]); // semi-factorized form of the scheme: 1st summand |
---|
727 | "* Show the semi-factorized form of the scheme: 2nd summand"; |
---|
728 | " factorize(pi1);"; |
---|
729 | factorize(pi1); // semi-factorized form of the scheme: 2nd summand |
---|
730 | "* Show the semi-factorized form of the scheme: 3rd summand"; |
---|
731 | " factorize(pi1);"; |
---|
732 | factorize(pi2); // semi-factorized form of the scheme: 3rd summand |
---|
733 | } |
---|
734 | example |
---|
735 | { |
---|
736 | "EXAMPLE:"; echo=1; |
---|
737 | findifs_example(); |
---|
738 | } |
---|