1 | // $Header: /exports/cvsroot-2/cvsroot/Singular/LIB/finvar.lib,v 1.8 1998-04-03 22:47:02 krueger Exp $ |
---|
2 | //////////////////////////////////////////////////////////////////////////////// |
---|
3 | |
---|
4 | version="$Id: finvar.lib,v 1.8 1998-04-03 22:47:02 krueger Exp $"; |
---|
5 | info=" |
---|
6 | LIBRARY: finvar.lib LIBRARY TO CALCULATE INVARIANT RINGS & MORE |
---|
7 | (c) Agnes Eileen Heydtmann, |
---|
8 | send bugs and comments to agnes@math.uni-sb.de |
---|
9 | |
---|
10 | cyclotomic(...) cyclotomic polynomial |
---|
11 | group_reynolds(...) finite group and Reynolds operator |
---|
12 | molien(...) Molien series |
---|
13 | reynolds_molien(...) Reynolds operator and Molien series |
---|
14 | partial_molien(...) partial expansion of Molien series |
---|
15 | evaluate_reynolds(...) image under the Reynolds operator |
---|
16 | invariant_basis(...) basis of homogeneous invariants |
---|
17 | invariant_basis_reynolds(...) basis of homogeneous invariants |
---|
18 | primary_char0(...) primary invariants |
---|
19 | primary_charp(...) primary invariants |
---|
20 | primary_char0_no_molien(...) primary invariants |
---|
21 | primary_charp_no_molien(...) primary invariants |
---|
22 | primary_charp_without(...) primary invariants |
---|
23 | primary_invariants(...) primary invariants |
---|
24 | primary_char0_random(...) primary invariants |
---|
25 | primary_charp_random(...) primary invariants |
---|
26 | primary_char0_no_molien_random(...) primary invariants |
---|
27 | primary_charp_no_molien_random(...) primary invariants |
---|
28 | primary_charp_without_random(...) primary invariants |
---|
29 | primary_invariants_random(...) primary invariants |
---|
30 | power_products(...) exponents for power products |
---|
31 | secondary_char0(...) secondary invariants |
---|
32 | secondary_charp(...) secondary invariants |
---|
33 | secondary_no_molien(...) secondary invariants |
---|
34 | secondary_with_irreducible_ones_no_molien(...) |
---|
35 | secondary invariants |
---|
36 | secondary_not_cohen_macaulay(...) secondary invariants |
---|
37 | invariant_ring(...) primary and secondary invariants |
---|
38 | invariant_ring_random(...) primary and secondary invariants |
---|
39 | algebra_containment(...) answers query of algebra containment |
---|
40 | module_containment(...) answers query of module containment |
---|
41 | orbit_variety(...) ideal of the orbit variety |
---|
42 | relative_orbit_variety(...) ideal of a relative orbit variety |
---|
43 | image_of_variety(...) ideal of the image of a variety |
---|
44 | "; |
---|
45 | |
---|
46 | //////////////////////////////////////////////////////////////////////////////// |
---|
47 | LIB "matrix.lib"; |
---|
48 | LIB "elim.lib"; |
---|
49 | LIB "general.lib"; |
---|
50 | //////////////////////////////////////////////////////////////////////////////// |
---|
51 | |
---|
52 | //////////////////////////////////////////////////////////////////////////////// |
---|
53 | // Checks whether the last parameter, being a matrix, is among the previous |
---|
54 | // parameters, also being matrices |
---|
55 | //////////////////////////////////////////////////////////////////////////////// |
---|
56 | proc unique (list #) |
---|
57 | { for (int i=1;i<size(#);i=i+1) |
---|
58 | { if (#[i]==#[size(#)]) |
---|
59 | { return(0); |
---|
60 | } |
---|
61 | } |
---|
62 | return(1); |
---|
63 | } |
---|
64 | |
---|
65 | proc cyclotomic (int i) |
---|
66 | USAGE: cyclotomic(i); |
---|
67 | i: an <int> > 0 |
---|
68 | RETURNS: the i-th cyclotomic polynomial (type <poly>) as one in the first ring |
---|
69 | variable |
---|
70 | EXAMPLE: example cyclotomic; shows an example |
---|
71 | THEORY: x^i-1 is divided by the j-th cyclotomic polynomial where j takes on the |
---|
72 | value of proper divisors of i |
---|
73 | { if (i<=0) |
---|
74 | { "ERROR: the input should be > 0."; |
---|
75 | return(); |
---|
76 | } |
---|
77 | poly v1=var(1); |
---|
78 | if (i==1) |
---|
79 | { return(v1-1); // 1-st cyclotomic polynomial |
---|
80 | } |
---|
81 | poly min=v1^i-1; |
---|
82 | matrix s[1][2]; |
---|
83 | min=min/(v1-1); // dividing by the 1-st cyclotomic |
---|
84 | // polynomial |
---|
85 | int j=2; |
---|
86 | int n; |
---|
87 | poly c; |
---|
88 | int flag=1; |
---|
89 | while(2*j<=i) // there are no proper divisors of i |
---|
90 | { if ((i%j)==0) // greater than i/2 |
---|
91 | { if (flag==1) |
---|
92 | { n=j; // n stores the first proper divisor of |
---|
93 | } // i > 1 |
---|
94 | flag=0; |
---|
95 | c=cyclotomic(j); // recursive computation |
---|
96 | s=min,c; |
---|
97 | s=matrix(syz(ideal(s))); // dividing |
---|
98 | min=s[2,1]; |
---|
99 | } |
---|
100 | if (n*j==i) // the earliest possible point to break |
---|
101 | { break; |
---|
102 | } |
---|
103 | j=j+1; |
---|
104 | } |
---|
105 | min=min/leadcoef(min); // making sure that the leading |
---|
106 | return(min); // coefficient is 1 |
---|
107 | } |
---|
108 | example |
---|
109 | { echo=2; |
---|
110 | ring R=0,(x,y,z),dp; |
---|
111 | print(cyclotomic(25)); |
---|
112 | } |
---|
113 | |
---|
114 | proc group_reynolds (list #) |
---|
115 | USAGE: group_reynolds(G1,G2,...[,v]); |
---|
116 | G1,G2,...: nxn <matrices> generating a finite matrix group, v: an |
---|
117 | optional <int> |
---|
118 | ASSUME: n is the number of variables of the basering, g the number of group |
---|
119 | elements |
---|
120 | RETURN: a <list>, the first list element will be a gxn <matrix> representing |
---|
121 | the Reynolds operator if we are in the non-modular case; if the |
---|
122 | characteristic is >0, minpoly==0 and the finite group non-cyclic the |
---|
123 | second list element is an <int> giving the lowest common multiple of |
---|
124 | the matrix group elements (used in molien); in general all other list |
---|
125 | elements are nxn <matrices> listing all elements of the finite group |
---|
126 | DISPLAY: information if v does not equal 0 |
---|
127 | EXAMPLE: example group_reynolds; shows an example |
---|
128 | THEORY: The entire matrix group is generated by getting all left products of |
---|
129 | the generators with the new elements from the last run through the loop |
---|
130 | (or the generators themselves during the first run). All the ones that |
---|
131 | have been generated before are thrown out and the program terminates |
---|
132 | when there are no new elements found in one run. Additionally each time |
---|
133 | a new group element is found the corresponding ring mapping of which |
---|
134 | the Reynolds operator is made up is generated. They are stored in the |
---|
135 | rows of the first return value. |
---|
136 | { int ch=char(basering); // the existance of the Reynolds operator |
---|
137 | // is dependent on the characteristic of |
---|
138 | // the base field |
---|
139 | int gen_num; // number of generators |
---|
140 | //------------------------ making sure the input is okay --------------------- |
---|
141 | if (typeof(#[size(#)])=="int") |
---|
142 | { if (size(#)==1) |
---|
143 | { "ERROR: there are no matrices given among the parameters"; |
---|
144 | return(); |
---|
145 | } |
---|
146 | int v=#[size(#)]; |
---|
147 | gen_num=size(#)-1; |
---|
148 | } |
---|
149 | else // last parameter is not <int> |
---|
150 | { int v=0; // no information is default |
---|
151 | gen_num=size(#); |
---|
152 | } |
---|
153 | if (typeof(#[1])<>"matrix") |
---|
154 | { "ERROR: the parameters must be a list of matrices and maybe an <int>"; |
---|
155 | return(); |
---|
156 | } |
---|
157 | int n=nrows(#[1]); |
---|
158 | if (n<>nvars(basering)) |
---|
159 | { "ERROR: the number of variables of the basering needs to be the same"; |
---|
160 | " as the dimension of the matrices"; |
---|
161 | return(); |
---|
162 | } |
---|
163 | if (n<>ncols(#[1])) |
---|
164 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
165 | return(); |
---|
166 | } |
---|
167 | matrix vars=matrix(maxideal(1)); // creating an nx1-matrix containing the |
---|
168 | vars=transpose(vars); // variables of the ring - |
---|
169 | matrix REY=#[1]*vars; // calculating the first ring mapping - |
---|
170 | // REY will contain the Reynolds |
---|
171 | // operator - |
---|
172 | matrix G(1)=#[1]; // G(k) are elements of the group - |
---|
173 | if (ch<>0 && minpoly==0 && gen_num<>1) // finding out of which order the group |
---|
174 | { matrix I=diag(1,n); // element is |
---|
175 | matrix TEST=G(1); |
---|
176 | int o1=1; |
---|
177 | int o2; |
---|
178 | while (TEST<>I) |
---|
179 | { TEST=TEST*G(1); |
---|
180 | o1=o1+1; |
---|
181 | } |
---|
182 | } |
---|
183 | int i=1; |
---|
184 | // -------------- doubles among the generators should be avoided ------------- |
---|
185 | for (int j=2;j<=gen_num;j=j+1) // this loop adds the parameters to the |
---|
186 | { // group, leaving out doubles and |
---|
187 | // checking whether the parameters are |
---|
188 | // compatible with the task of the |
---|
189 | // procedure |
---|
190 | if (not(typeof(#[j])=="matrix")) |
---|
191 | { "ERROR: the parameters must be a list of matrices and maybe an <int>"; |
---|
192 | return(); |
---|
193 | } |
---|
194 | if ((n!=nrows(#[j])) or (n!=ncols(#[j]))) |
---|
195 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
196 | return(); |
---|
197 | } |
---|
198 | if (unique(G(1..i),#[j])) |
---|
199 | { i=i+1; |
---|
200 | matrix G(i)=#[j]; |
---|
201 | if (ch<>0 && minpoly==0) // finding out of which order the group |
---|
202 | { TEST=G(i); // element is |
---|
203 | o2=1; |
---|
204 | while (TEST<>I) |
---|
205 | { TEST=TEST*G(i); |
---|
206 | o2=o2+1; |
---|
207 | } |
---|
208 | o1=o1*o2/gcd(o1,o2); // lowest common multiple of the element |
---|
209 | } // orders - |
---|
210 | REY=concat(REY,#[j]*vars); // adding ring homomorphisms to REY |
---|
211 | } |
---|
212 | } |
---|
213 | int g=i; // G(1)..G(i) are generators without |
---|
214 | // doubles - g generally is the number |
---|
215 | // of elements in the group so far - |
---|
216 | j=i; // j is the number of new elements that |
---|
217 | // we use as factors |
---|
218 | int k, m, l; |
---|
219 | if (v) |
---|
220 | { ""; |
---|
221 | " Generating the entire matrix group and the Reynolds operator..."; |
---|
222 | ""; |
---|
223 | } |
---|
224 | // -------------- main loop that finds all the group elements ---------------- |
---|
225 | while (1) |
---|
226 | { l=0; // l is the number of products we get in |
---|
227 | // one going |
---|
228 | for (m=g-j+1;m<=g;m=m+1) |
---|
229 | { for (k=1;k<=i;k=k+1) |
---|
230 | { l=l+1; |
---|
231 | matrix P(l)=G(k)*G(m); // possible new element |
---|
232 | } |
---|
233 | } |
---|
234 | j=0; |
---|
235 | for (k=1;k<=l;k=k+1) |
---|
236 | { if (unique(G(1..g),P(k))) |
---|
237 | { j=j+1; // a new factor for next run |
---|
238 | g=g+1; |
---|
239 | matrix G(g)=P(k); // a new group element - |
---|
240 | if (ch<>0 && minpoly==0 && i<>1) // finding out of which order the group |
---|
241 | { TEST=G(g); // element is |
---|
242 | o2=1; |
---|
243 | while (TEST<>I) |
---|
244 | { TEST=TEST*G(g); |
---|
245 | o2=o2+1; |
---|
246 | } |
---|
247 | o1=o1*o2/gcd(o1,o2); // lowest common multiple of the element |
---|
248 | } // orders - |
---|
249 | REY=concat(REY,P(k)*vars); // adding new mapping to REY |
---|
250 | if (v) |
---|
251 | { " Group element "+string(g)+" has been found."; |
---|
252 | } |
---|
253 | } |
---|
254 | kill P(k); |
---|
255 | } |
---|
256 | if (j==0) // when we didn't add any new elements |
---|
257 | { break; // in one run through the while loop |
---|
258 | } // we are done |
---|
259 | } |
---|
260 | if (v) |
---|
261 | { if (g<=i) |
---|
262 | { " There are only "+string(g)+" group elements."; |
---|
263 | } |
---|
264 | ""; |
---|
265 | } |
---|
266 | REY=transpose(REY); // when we evaluate the Reynolds operator |
---|
267 | // later on, we actually want 1xn |
---|
268 | // matrices |
---|
269 | if (ch<>0) |
---|
270 | { if ((g%ch)==0) |
---|
271 | { if (voice==2) |
---|
272 | { "WARNING: The characteristic of the coefficient field divides the group order."; |
---|
273 | " Proceed without the Reynolds operator!"; |
---|
274 | } |
---|
275 | else |
---|
276 | { if (v) |
---|
277 | { " The characteristic of the base field divides the group order."; |
---|
278 | " We have to continue without Reynolds operator..."; |
---|
279 | ""; |
---|
280 | } |
---|
281 | } |
---|
282 | kill REY; |
---|
283 | matrix REY[1][1]=0; |
---|
284 | return(REY,G(1..g)); |
---|
285 | } |
---|
286 | if (minpoly==0) |
---|
287 | { if (i>1) |
---|
288 | { return(REY,o1,G(1..g)); |
---|
289 | } |
---|
290 | return(REY,G(1..g)); |
---|
291 | } |
---|
292 | } |
---|
293 | if (v) |
---|
294 | { " Done generating the group and the Reynolds operator."; |
---|
295 | ""; |
---|
296 | } |
---|
297 | return(REY,G(1..g)); |
---|
298 | } |
---|
299 | example |
---|
300 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
301 | echo=2; |
---|
302 | ring R=0,(x,y,z),dp; |
---|
303 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
304 | list L=group_reynolds(A); |
---|
305 | print(L[1]); |
---|
306 | print(L[2..size(L)]); |
---|
307 | } |
---|
308 | |
---|
309 | //////////////////////////////////////////////////////////////////////////////// |
---|
310 | // Returns i such that root^i==n, i.e. it heavily relies on the right input. |
---|
311 | //////////////////////////////////////////////////////////////////////////////// |
---|
312 | proc exponent(number n, number root) |
---|
313 | { int i=0; |
---|
314 | while((n/root^i)<>1) |
---|
315 | { i=i+1; |
---|
316 | } |
---|
317 | return(i); |
---|
318 | } |
---|
319 | |
---|
320 | proc molien (list #) |
---|
321 | USAGE: molien(G1,G2,...[,ringname,lcm,flags]); |
---|
322 | G1,G2,...: nxn <matrices> generating a finite matrix group, ringname: |
---|
323 | a <string> giving a name for a new ring of characteristic 0 for the |
---|
324 | Molien series in case of prime characteristic, lcm: an <int> giving the |
---|
325 | lowest common multiple of the elements' orders in case of prime |
---|
326 | characteristic, minpoly==0 and a non-cyclic group, flags: an optional |
---|
327 | <intvec> with three components: if the first element is not equal to 0 |
---|
328 | characteristic 0 is simulated, i.e. the Molien series is computed as |
---|
329 | if the base field were characteristic 0 (the user must choose a field |
---|
330 | of large prime characteristic, e.g. 32003), the second component should |
---|
331 | give the size of intervals between canceling common factors in the |
---|
332 | expansion of the Molien series, 0 (the default) means only once after |
---|
333 | generating all terms, in prime characteristic also a negative number |
---|
334 | can be given to indicate that common factors should always be canceled |
---|
335 | when the expansion is simple (the root of the extension field does not |
---|
336 | occur among the coefficients) |
---|
337 | ASSUME: n is the number of variables of the basering, G1,G2... are the group |
---|
338 | elements generated by group_reynolds(), lcm is the second return value |
---|
339 | of group_reynolds() |
---|
340 | RETURN: in case of characteristic 0 a 1x2 <matrix> giving enumerator and |
---|
341 | denominator of Molien series; in case of prime characteristic a ring |
---|
342 | with the name `ringname` of characteristic 0 is created where the same |
---|
343 | Molien series (named M) is stored |
---|
344 | DISPLAY: information if the third component of flags does not equal 0 |
---|
345 | EXAMPLE: example molien; shows an example |
---|
346 | THEORY: In characteristic 0 the terms 1/det(1-xE) for all group elements of the |
---|
347 | Molien series are computed in a straight forward way. In prime |
---|
348 | characteristic a Brauer lift is involved. The returned matrix gives |
---|
349 | enumerator and denominator of the expanded version where common factors |
---|
350 | have been canceled. |
---|
351 | { def br=basering; // the Molien series depends on the |
---|
352 | int ch=char(br); // characteristic of the coefficient |
---|
353 | // field - |
---|
354 | int g; // size of the group |
---|
355 | //---------------------- making sure the input is okay ----------------------- |
---|
356 | if (typeof(#[size(#)])=="intvec") |
---|
357 | { if (size(#[size(#)])==3) |
---|
358 | { int mol_flag=#[size(#)][1]; |
---|
359 | if (#[size(#)][2]<0 && (ch==0 or (ch<>0 && mol_flag<>0))) |
---|
360 | { "ERROR: the second component of <intvec> should be >=0" |
---|
361 | return(); |
---|
362 | } |
---|
363 | int interval=#[size(#)][2]; |
---|
364 | int v=#[size(#)][3]; |
---|
365 | } |
---|
366 | else |
---|
367 | { "ERROR: <intvec> should have three components"; |
---|
368 | return(); |
---|
369 | } |
---|
370 | if (ch<>0) |
---|
371 | { if (typeof(#[size(#)-1])=="int") |
---|
372 | { int r=#[size(#)-1]; |
---|
373 | if (typeof(#[size(#)-2])<>"string") |
---|
374 | { "ERROR: in characteristic p>0 a <string> must be given for the name of a new"; |
---|
375 | " ring where the Molien series can be stored"; |
---|
376 | return(); |
---|
377 | } |
---|
378 | else |
---|
379 | { if (#[size(#)-2]=="") |
---|
380 | { "ERROR: <string> may not be empty"; |
---|
381 | return(); |
---|
382 | } |
---|
383 | string newring=#[size(#)-2]; |
---|
384 | g=size(#)-3; |
---|
385 | } |
---|
386 | } |
---|
387 | else |
---|
388 | { if (typeof(#[size(#)-1])<>"string") |
---|
389 | { "ERROR: in characteristic p>0 a <string> must be given for the name of a new"; |
---|
390 | " ring where the Molien series can be stored"; |
---|
391 | return(); |
---|
392 | } |
---|
393 | else |
---|
394 | { if (#[size(#)-1]=="") |
---|
395 | { "ERROR: <string> may not be empty"; |
---|
396 | return(); |
---|
397 | } |
---|
398 | string newring=#[size(#)-1]; |
---|
399 | g=size(#)-2; |
---|
400 | int r=g; |
---|
401 | } |
---|
402 | } |
---|
403 | } |
---|
404 | else // then <string> ist not needed |
---|
405 | { g=size(#)-1; |
---|
406 | } |
---|
407 | } |
---|
408 | else // last parameter is not <intvec> |
---|
409 | { int v=0; // no information is default |
---|
410 | int mol_flag=0; // computing of Molien series is default |
---|
411 | int interval=0; |
---|
412 | if (ch<>0) |
---|
413 | { if (typeof(#[size(#)])=="int") |
---|
414 | { int r=#[size(#)]; |
---|
415 | if (typeof(#[size(#)-1])<>"string") |
---|
416 | { "ERROR: in characteristic p>0 a <string> must be given for the name of a new"; |
---|
417 | " ring where the Molien series can be stored"; |
---|
418 | return(); |
---|
419 | } |
---|
420 | else |
---|
421 | { if (#[size(#)-1]=="") |
---|
422 | { "ERROR: <string> may not be empty"; |
---|
423 | return(); |
---|
424 | } |
---|
425 | string newring=#[size(#)-1]; |
---|
426 | g=size(#)-2; |
---|
427 | } |
---|
428 | } |
---|
429 | else |
---|
430 | { if (typeof(#[size(#)])<>"string") |
---|
431 | { "ERROR: in characteristic p>0 a <string> must be given for the name of a new"; |
---|
432 | " ring where the Molien series can be stored"; |
---|
433 | return(); |
---|
434 | } |
---|
435 | else |
---|
436 | { if (#[size(#)]=="") |
---|
437 | { "ERROR: <string> may not be empty"; |
---|
438 | return(); |
---|
439 | } |
---|
440 | string newring=#[size(#)]; |
---|
441 | g=size(#)-1; |
---|
442 | int r=g; |
---|
443 | } |
---|
444 | } |
---|
445 | } |
---|
446 | else |
---|
447 | { g=size(#); |
---|
448 | } |
---|
449 | } |
---|
450 | if (ch<>0) |
---|
451 | { if ((g/r)*r<>g) |
---|
452 | { "ERROR: <int> should divide the group order." |
---|
453 | return(); |
---|
454 | } |
---|
455 | } |
---|
456 | if (ch<>0) |
---|
457 | { if ((g%ch)==0) |
---|
458 | { if (voice==2) |
---|
459 | { "WARNING: The characteristic of the coefficient field divides the group"; |
---|
460 | " order. Proceed without the Molien series!"; |
---|
461 | } |
---|
462 | else |
---|
463 | { if (v) |
---|
464 | { " The characteristic of the base field divides the group order."; |
---|
465 | " We have to continue without Molien series..."; |
---|
466 | ""; |
---|
467 | } |
---|
468 | } |
---|
469 | } |
---|
470 | if (minpoly<>0 && mol_flag==0) |
---|
471 | { if (voice==2) |
---|
472 | { "WARNING: It is impossible for this program to calculate the Molien series"; |
---|
473 | " for finite groups over extension fields of prime characteristic."; |
---|
474 | } |
---|
475 | else |
---|
476 | { if (v) |
---|
477 | { " Since it is impossible for this program to calculate the Molien series for"; |
---|
478 | " invariant rings over extension fields of prime characteristic, we have to"; |
---|
479 | " continue without it."; |
---|
480 | ""; |
---|
481 | } |
---|
482 | } |
---|
483 | return(); |
---|
484 | } |
---|
485 | } |
---|
486 | //---------------------------------------------------------------------------- |
---|
487 | if (not(typeof(#[1])=="matrix")) |
---|
488 | { "ERROR: the parameters must be a list of matrices and maybe an <intvec>"; |
---|
489 | return(); |
---|
490 | } |
---|
491 | int n=nrows(#[1]); |
---|
492 | if (n<>nvars(br)) |
---|
493 | { "ERROR: the number of variables of the basering needs to be the same"; |
---|
494 | " as the dimension of the square matrices"; |
---|
495 | return(); |
---|
496 | } |
---|
497 | if (v && voice<>2) |
---|
498 | { ""; |
---|
499 | " Generating the Molien series..."; |
---|
500 | ""; |
---|
501 | } |
---|
502 | if (v && voice==2) |
---|
503 | { ""; |
---|
504 | } |
---|
505 | //------------- calculating Molien series in characteristic 0 ---------------- |
---|
506 | if (ch==0) // when ch==0 we can calculate the Molien |
---|
507 | { matrix I=diag(1,n); // series in any case - |
---|
508 | poly v1=maxideal(1)[1]; // the Molien series will be in terms of |
---|
509 | // the first variable of the current |
---|
510 | // ring - |
---|
511 | matrix M[1][2]; // M will contain the Molien series - |
---|
512 | M[1,1]=0; // M[1,1] will be the numerator - |
---|
513 | M[1,2]=1; // M[1,2] will be the denominator - |
---|
514 | matrix s; // will help us canceling in the |
---|
515 | // fraction |
---|
516 | poly p; // will contain the denominator of the |
---|
517 | // new term of the Molien series |
---|
518 | //------------ computing 1/det(1+xE) for all E in the group ------------------ |
---|
519 | for (int j=1;j<=g;j=j+1) |
---|
520 | { if (not(typeof(#[j])=="matrix")) |
---|
521 | { "ERROR: the parameters must be a list of matrices and maybe an <intvec>"; |
---|
522 | return(); |
---|
523 | } |
---|
524 | if ((n<>nrows(#[j])) or (n<>ncols(#[j]))) |
---|
525 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
526 | return(); |
---|
527 | } |
---|
528 | p=det(I-v1*#[j]); // denominator of new term - |
---|
529 | M[1,1]=M[1,1]*p+M[1,2]; // expanding M[1,1]/M[1,2] + 1/p |
---|
530 | M[1,2]=M[1,2]*p; |
---|
531 | if (interval<>0) // canceling common terms of denominator |
---|
532 | { if ((j/interval)*interval==j or j==g) // and enumerator - |
---|
533 | { s=matrix(syz(ideal(M))); // once gcd() is faster than syz() these |
---|
534 | M[1,1]=-s[2,1]; // three lines should be replaced by the |
---|
535 | M[1,2]=s[1,1]; // following three |
---|
536 | // p=gcd(M[1,1],M[1,2]); |
---|
537 | // M[1,1]=M[1,1]/p; |
---|
538 | // M[1,2]=M[1,2]/p; |
---|
539 | } |
---|
540 | } |
---|
541 | if (v) |
---|
542 | { " Term "+string(j)+" of the Molien series has been computed."; |
---|
543 | } |
---|
544 | } |
---|
545 | if (interval==0) // canceling common terms of denominator |
---|
546 | { // and enumerator - |
---|
547 | s=matrix(syz(ideal(M))); // once gcd() is faster than syz() these |
---|
548 | M[1,1]=-s[2,1]; // three lines should be replaced by the |
---|
549 | M[1,2]=s[1,1]; // following three |
---|
550 | // p=gcd(M[1,1],M[1,2]); |
---|
551 | // M[1,1]=M[1,1]/p; |
---|
552 | // M[1,2]=M[1,2]/p; |
---|
553 | } |
---|
554 | map slead=br,ideal(0); |
---|
555 | s=slead(M); |
---|
556 | M[1,1]=1/s[1,1]*M[1,1]; // numerator and denominator have to have |
---|
557 | M[1,2]=1/s[1,2]*M[1,2]; // a constant term of 1 |
---|
558 | if (v) |
---|
559 | { ""; |
---|
560 | " We are done calculating the Molien series."; |
---|
561 | ""; |
---|
562 | } |
---|
563 | return(M); |
---|
564 | } |
---|
565 | //---- calculating Molien series in prime characteristic with Brauer lift ---- |
---|
566 | if (ch<>0 && mol_flag==0) |
---|
567 | { if (g<>1) |
---|
568 | { matrix G(1..g)=#[1..g]; |
---|
569 | if (interval<0) |
---|
570 | { string Mstring; |
---|
571 | } |
---|
572 | //------ preparing everything for Brauer lifts into characteristic 0 --------- |
---|
573 | ring Q=0,x,dp; // we want to extend our ring as well as |
---|
574 | // the ring of rational numbers Q to |
---|
575 | // contain r-th primitive roots of unity |
---|
576 | // in order to factor characteristic |
---|
577 | // polynomials of group elements into |
---|
578 | // linear factors and lift eigenvalues to |
---|
579 | // characteristic 0 - |
---|
580 | poly minq=cyclotomic(r); // minq now contains the size-of-group-th |
---|
581 | // cyclotomic polynomial of Q, it is |
---|
582 | // irreducible there |
---|
583 | ring `newring`=(0,e),x,dp; |
---|
584 | map f=Q,ideal(e); |
---|
585 | minpoly=number(f(minq)); // e is now a r-th primitive root of |
---|
586 | // unity - |
---|
587 | kill Q, f; // no longer needed - |
---|
588 | poly p=1; // used to build the denominator of the |
---|
589 | // new term in the Molien series |
---|
590 | matrix s[1][2]; // used for canceling - |
---|
591 | matrix M[1][2]=0,1; // will contain Molien series - |
---|
592 | ring v1br=char(br),x,dp; // we calculate the r-th cyclotomic |
---|
593 | poly minp=cyclotomic(r); // polynomial of the base field and pick |
---|
594 | minp=factorize(minp)[1][2]; // an irreducible factor of it - |
---|
595 | if (deg(minp)==1) // in this case the base field contains |
---|
596 | { ring bre=char(br),x,dp; // r-th roots of unity already |
---|
597 | map f1=v1br,ideal(0); |
---|
598 | number e=-number((f1(minp))); // e is a r-th primitive root of unity |
---|
599 | } |
---|
600 | else |
---|
601 | { ring bre=(char(br),e),x,dp; |
---|
602 | map f1=v1br,ideal(e); |
---|
603 | minpoly=number(f1(minp)); // e is a r-th primitive root of unity |
---|
604 | } |
---|
605 | map f2=br,ideal(0); // we need f2 to map our group elements |
---|
606 | // to this new extension field bre |
---|
607 | matrix xI=diag(x,n); |
---|
608 | poly p; // used for the characteristic polynomial |
---|
609 | // to factor - |
---|
610 | list L; // will contain the linear factors of the |
---|
611 | ideal F; // characteristic polynomial of the group |
---|
612 | intvec C; // elements and their powers |
---|
613 | int i, j, k; |
---|
614 | // -------------- finding all the terms of the Molien series ----------------- |
---|
615 | for (i=1;i<=g;i=i+1) |
---|
616 | { setring br; |
---|
617 | if (not(typeof(#[i])=="matrix")) |
---|
618 | { "ERROR: the parameters must be a list of matrices and maybe an <intvec>"; |
---|
619 | return(); |
---|
620 | } |
---|
621 | if ((n<>nrows(#[i])) or (n<>ncols(#[i]))) |
---|
622 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
623 | return(); |
---|
624 | } |
---|
625 | setring bre; |
---|
626 | p=det(xI-f2(G(i))); // characteristic polynomial of G(i) |
---|
627 | L=factorize(p); |
---|
628 | F=L[1]; |
---|
629 | C=L[2]; |
---|
630 | for (j=2;j<=ncols(F);j=j+1) |
---|
631 | { F[j]=-1*(F[j]-x); // F[j] is now an eigenvalue of G(i), |
---|
632 | // it is a power of a primitive r-th root |
---|
633 | // of unity - |
---|
634 | k=exponent(number(F[j]),e); // F[j]==e^k |
---|
635 | setring `newring`; |
---|
636 | p=p*(1-x*(e^k))^C[j]; // building the denominator of the new |
---|
637 | setring bre; // term |
---|
638 | } |
---|
639 | // ----------- |
---|
640 | // k=0; |
---|
641 | // while(k<r) |
---|
642 | // { map f3=basering,ideal(e^k); |
---|
643 | // while (f3(p)==0) |
---|
644 | // { p=p/(x-e^k); |
---|
645 | // setring `newring`; |
---|
646 | // p=p*(1-x*(e^k)); // building the denominator of the new |
---|
647 | // setring bre; |
---|
648 | // } |
---|
649 | // kill f3; |
---|
650 | // if (p==1) |
---|
651 | // { break; |
---|
652 | // } |
---|
653 | // k=k+1; |
---|
654 | // } |
---|
655 | setring `newring`; |
---|
656 | M[1,1]=M[1,1]*p+M[1,2]; // expanding M[1,1]/M[1,2] + 1/p |
---|
657 | M[1,2]=M[1,2]*p; |
---|
658 | if (interval<0) |
---|
659 | { if (i<>g) |
---|
660 | { Mstring=string(M); |
---|
661 | for (j=1;j<=size(Mstring);j=j+1) |
---|
662 | { if (Mstring[j]=="e") |
---|
663 | { interval=0; |
---|
664 | break; |
---|
665 | } |
---|
666 | } |
---|
667 | } |
---|
668 | if (interval<>0) |
---|
669 | { s=matrix(syz(ideal(M))); // once gcd() is faster than syz() |
---|
670 | M[1,1]=-s[2,1]; // these three lines should be |
---|
671 | M[1,2]=s[1,1]; // replaced by the following three |
---|
672 | // p=gcd(M[1,1],M[1,2]); |
---|
673 | // M[1,1]=M[1,1]/p; |
---|
674 | // M[1,2]=M[1,2]/p; |
---|
675 | } |
---|
676 | else |
---|
677 | { interval=-1; |
---|
678 | } |
---|
679 | } |
---|
680 | else |
---|
681 | { if (interval<>0) // canceling common terms of denominator |
---|
682 | { if ((i/interval)*interval==i or i==g) // and enumerator |
---|
683 | { s=matrix(syz(ideal(M))); // once gcd() is faster than syz() |
---|
684 | M[1,1]=-s[2,1]; // these three lines should be |
---|
685 | M[1,2]=s[1,1]; // replaced by the following three |
---|
686 | // p=gcd(M[1,1],M[1,2]); |
---|
687 | // M[1,1]=M[1,1]/p; |
---|
688 | // M[1,2]=M[1,2]/p; |
---|
689 | } |
---|
690 | } |
---|
691 | } |
---|
692 | p=1; |
---|
693 | setring bre; |
---|
694 | if (v) |
---|
695 | { " Term "+string(i)+" of the Molien series has been computed."; |
---|
696 | } |
---|
697 | } |
---|
698 | if (v) |
---|
699 | { ""; |
---|
700 | } |
---|
701 | setring `newring`; |
---|
702 | if (interval==0) // canceling common terms of denominator |
---|
703 | { // and enumerator - |
---|
704 | s=matrix(syz(ideal(M))); // once gcd() is faster than syz() these |
---|
705 | M[1,1]=-s[2,1]; // three lines should be replaced by the |
---|
706 | M[1,2]=s[1,1]; // following three |
---|
707 | // p=gcd(M[1,1],M[1,2]); |
---|
708 | // M[1,1]=M[1,1]/p; |
---|
709 | // M[1,2]=M[1,2]/p; |
---|
710 | } |
---|
711 | map slead=`newring`,ideal(0); |
---|
712 | s=slead(M); // forcing the constant term of numerator |
---|
713 | M[1,1]=1/s[1,1]*M[1,1]; // and denominator to be 1 |
---|
714 | M[1,2]=1/s[1,2]*M[1,2]; |
---|
715 | kill slead; |
---|
716 | kill s; |
---|
717 | kill p; |
---|
718 | } |
---|
719 | else // if the group only contains an identity |
---|
720 | { ring `newring`=0,x,dp; // element, it is very easy to calculate |
---|
721 | matrix M[1][2]=1,(1-x)^n; // the Molien series |
---|
722 | } |
---|
723 | export `newring`; // we keep the ring where we computed the |
---|
724 | export M; // Molien series in such that we can |
---|
725 | setring br; // keep it |
---|
726 | if (v) |
---|
727 | { " We are done calculating the Molien series."; |
---|
728 | ""; |
---|
729 | } |
---|
730 | } |
---|
731 | else // i.e. char<>0 and mol_flag<>0, the user |
---|
732 | { // has specified that we are dealing with |
---|
733 | // a ring of large characteristic which |
---|
734 | // can be treated like a ring of |
---|
735 | // characteristic 0; we'll avoid the |
---|
736 | // Brauer lifts |
---|
737 | //----------------------- simulating characteristic 0 ------------------------ |
---|
738 | string chst=charstr(br); |
---|
739 | for (int i=1;i<=size(chst);i=i+1) |
---|
740 | { if (chst[i]==",") |
---|
741 | { break; |
---|
742 | } |
---|
743 | } |
---|
744 | //----------------- generating ring of characteristic 0 ---------------------- |
---|
745 | if (minpoly==0) |
---|
746 | { if (i>size(chst)) |
---|
747 | { execute "ring "+newring+"=0,("+varstr(br)+"),("+ordstr(br)+")"; |
---|
748 | } |
---|
749 | else |
---|
750 | { chst=chst[i..size(chst)]; |
---|
751 | execute "ring "+newring+"=(0"+chst+"),("+varstr(br)+"),("+ordstr(br)+")"; |
---|
752 | } |
---|
753 | } |
---|
754 | else |
---|
755 | { string minp=string(minpoly); |
---|
756 | minp=minp[2..size(minp)-1]; |
---|
757 | chst=chst[i..size(chst)]; |
---|
758 | execute "ring "+newring+"=(0"+chst+"),("+varstr(br)+"),("+ordstr(br)+")"; |
---|
759 | execute "minpoly="+minp; |
---|
760 | } |
---|
761 | matrix I=diag(1,n); |
---|
762 | poly v1=maxideal(1)[1]; // the Molien series will be in terms of |
---|
763 | // the first variable of the current |
---|
764 | // ring - |
---|
765 | matrix M[1][2]; // M will contain the Molien series - |
---|
766 | M[1,1]=0; // M[1,1] will be the numerator - |
---|
767 | M[1,2]=1; // M[1,2] will be the denominator - |
---|
768 | matrix s; // will help us canceling in the |
---|
769 | // fraction |
---|
770 | poly p; // will contain the denominator of the |
---|
771 | // new term of the Molien series |
---|
772 | int j; |
---|
773 | string links, rechts; |
---|
774 | //----------------- finding all terms of the Molien series ------------------- |
---|
775 | for (i=1;i<=g;i=i+1) |
---|
776 | { setring br; |
---|
777 | if (not(typeof(#[i])=="matrix")) |
---|
778 | { "ERROR: the parameters must be a list of matrices and maybe an <intvec>"; |
---|
779 | return(); |
---|
780 | } |
---|
781 | if ((n<>nrows(#[i])) or (n<>ncols(#[i]))) |
---|
782 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
783 | return(); |
---|
784 | } |
---|
785 | string stM(i)=string(#[i]); |
---|
786 | for (j=1;j<=size(stM(i));j=j+1) |
---|
787 | { if (stM(i)[j]==" |
---|
788 | ") |
---|
789 | { links=stM(i)[1..j-1]; |
---|
790 | rechts=stM(i)[j+1..size(stM(i))]; |
---|
791 | stM(i)=links+rechts; |
---|
792 | } |
---|
793 | } |
---|
794 | setring `newring`; |
---|
795 | execute "matrix G(i)["+string(n)+"]["+string(n)+"]="+stM(i); |
---|
796 | p=det(I-v1*G(i)); // denominator of new term - |
---|
797 | M[1,1]=M[1,1]*p+M[1,2]; // expanding M[1,1]/M[1,2] + 1/p |
---|
798 | M[1,2]=M[1,2]*p; |
---|
799 | if (interval<>0) // canceling common terms of denominator |
---|
800 | { if ((i/interval)*interval==i or i==g) // and enumerator |
---|
801 | { |
---|
802 | s=matrix(syz(ideal(M))); // once gcd() is faster than syz() these |
---|
803 | M[1,1]=-s[2,1]; // three lines should be replaced by the |
---|
804 | M[1,2]=s[1,1]; // following three |
---|
805 | // p=gcd(M[1,1],M[1,2]); |
---|
806 | // M[1,1]=M[1,1]/p; |
---|
807 | // M[1,2]=M[1,2]/p; |
---|
808 | } |
---|
809 | } |
---|
810 | if (v) |
---|
811 | { " Term "+string(i)+" of the Molien series has been computed."; |
---|
812 | } |
---|
813 | } |
---|
814 | if (interval==0) // canceling common terms of denominator |
---|
815 | { // and enumerator - |
---|
816 | s=matrix(syz(ideal(M))); // once gcd() is faster than syz() these |
---|
817 | M[1,1]=-s[2,1]; // three lines should be replaced by the |
---|
818 | M[1,2]=s[1,1]; // following three |
---|
819 | // p=gcd(M[1,1],M[1,2]); |
---|
820 | // M[1,1]=M[1,1]/p; |
---|
821 | // M[1,2]=M[1,2]/p; |
---|
822 | } |
---|
823 | map slead=`newring`,ideal(0); |
---|
824 | s=slead(M); |
---|
825 | M[1,1]=1/s[1,1]*M[1,1]; // numerator and denominator have to have |
---|
826 | M[1,2]=1/s[1,2]*M[1,2]; // a constant term of 1 |
---|
827 | if (v) |
---|
828 | { ""; |
---|
829 | " We are done calculating the Molien series."; |
---|
830 | ""; |
---|
831 | } |
---|
832 | kill G(1..g), s, slead, p, v1, I; |
---|
833 | export `newring`; // we keep the ring where we computed the |
---|
834 | export M; // the Molien series such that we can |
---|
835 | setring br; // keep it |
---|
836 | } |
---|
837 | } |
---|
838 | example |
---|
839 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
840 | " note the case of prime characteristic"; |
---|
841 | echo=2; |
---|
842 | ring R=0,(x,y,z),dp; |
---|
843 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
844 | list L=group_reynolds(A); |
---|
845 | matrix M=molien(L[2..size(L)]); |
---|
846 | print(M); |
---|
847 | ring S=3,(x,y,z),dp; |
---|
848 | string newring="alksdfjlaskdjf"; |
---|
849 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
850 | list L=group_reynolds(A); |
---|
851 | molien(L[2..size(L)],newring); |
---|
852 | setring alksdfjlaskdjf; |
---|
853 | print(M); |
---|
854 | setring S; |
---|
855 | kill alksdfjlaskdjf; |
---|
856 | } |
---|
857 | |
---|
858 | proc reynolds_molien (list #) |
---|
859 | USAGE: reynolds_molien(G1,G2,...[,ringname,flags]); |
---|
860 | G1,G2,...: nxn <matrices> generating a finite matrix group, ringname: |
---|
861 | a <string> giving a name for a new ring of characteristic 0 for the |
---|
862 | Molien series in case of prime characteristic, flags: an optional |
---|
863 | <intvec> with three components: if the first element is not equal to 0 |
---|
864 | characteristic 0 is simulated, i.e. the Molien series is computed as |
---|
865 | if the base field were characteristic 0 (the user must choose a field |
---|
866 | of large prime characteristic, e.g. 32003) the second component should |
---|
867 | give the size of intervals between canceling common factors in the |
---|
868 | expansion of the Molien series, 0 (the default) means only once after |
---|
869 | generating all terms, in prime characteristic also a negative number |
---|
870 | can be given to indicate that common factors should always be canceled |
---|
871 | when the expansion is simple (the root of the extension field does not |
---|
872 | occur among the coefficients) |
---|
873 | ASSUME: n is the number of variables of the basering, G1,G2... are the group |
---|
874 | elements generated by group_reynolds(), g is the size of the group |
---|
875 | RETURN: a gxn <matrix> representing the Reynolds operator is the first return |
---|
876 | value and in case of characteristic 0 a 1x2 <matrix> giving enumerator |
---|
877 | and denominator of Molien series is the second one; in case of prime |
---|
878 | characteristic a ring with the name `ringname` of characteristic 0 is |
---|
879 | created where the same Molien series (named M) is stored |
---|
880 | DISPLAY: information if the third component of flags does not equal 0 |
---|
881 | EXAMPLE: example reynolds_molien; shows an example |
---|
882 | THEORY: The entire matrix group is generated by getting all left products of |
---|
883 | the generators with the new elements from the last run through the loop |
---|
884 | (or the generators themselves during the first run). All the ones that |
---|
885 | have been generated before are thrown out and the program terminates |
---|
886 | when there are no new elements found in one run. Additionally each time |
---|
887 | a new group element is found the corresponding ring mapping of which |
---|
888 | the Reynolds operator is made up is generated. They are stored in the |
---|
889 | rows of the first return value. In characteristic 0 the terms |
---|
890 | 1/det(1-xE) is computed whenever a new element E is found. In prime |
---|
891 | characteristic a Brauer lift is involved and the terms are only |
---|
892 | computed after the entire matrix group is generated (to avoid the |
---|
893 | modular case). The returned matrix gives enumerator and denominator of |
---|
894 | the expanded version where common factors have been canceled. |
---|
895 | { def br=basering; // the Molien series depends on the |
---|
896 | int ch=char(br); // characteristic of the coefficient |
---|
897 | // field |
---|
898 | int gen_num; |
---|
899 | //------------------- making sure the input is okay -------------------------- |
---|
900 | if (typeof(#[size(#)])=="intvec") |
---|
901 | { if (size(#[size(#)])==3) |
---|
902 | { int mol_flag=#[size(#)][1]; |
---|
903 | if (#[size(#)][2]<0 && (ch==0 or (ch<>0 && mol_flag<>0))) |
---|
904 | { "ERROR: the second component of the <intvec> should be >=0"; |
---|
905 | return(); |
---|
906 | } |
---|
907 | int interval=#[size(#)][2]; |
---|
908 | int v=#[size(#)][3]; |
---|
909 | } |
---|
910 | else |
---|
911 | { "ERROR: <intvec> should have three components"; |
---|
912 | return(); |
---|
913 | } |
---|
914 | if (ch<>0) |
---|
915 | { if (typeof(#[size(#)-1])<>"string") |
---|
916 | { "ERROR: in characteristic p a <string> must be given for the name"; |
---|
917 | " of a new ring where the Molien series can be stored"; |
---|
918 | return(); |
---|
919 | } |
---|
920 | else |
---|
921 | { if (#[size(#)-1]=="") |
---|
922 | { "ERROR: <string> may not be empty"; |
---|
923 | return(); |
---|
924 | } |
---|
925 | string newring=#[size(#)-1]; |
---|
926 | gen_num=size(#)-2; |
---|
927 | } |
---|
928 | } |
---|
929 | else // then <string> ist not needed |
---|
930 | { gen_num=size(#)-1; |
---|
931 | } |
---|
932 | } |
---|
933 | else // last parameter is not <intvec> |
---|
934 | { int v=0; // no information is default |
---|
935 | int interval; |
---|
936 | int mol_flag=0; // computing of Molien series is default |
---|
937 | if (ch<>0) |
---|
938 | { if (typeof(#[size(#)])<>"string") |
---|
939 | { "ERROR: in characteristic p a <string> must be given for the name"; |
---|
940 | " of a new ring where the Molien series can be stored"; |
---|
941 | return(); |
---|
942 | } |
---|
943 | else |
---|
944 | { if (#[size(#)]=="") |
---|
945 | { "ERROR: <string> may not be empty"; |
---|
946 | return(); |
---|
947 | } |
---|
948 | string newring=#[size(#)]; |
---|
949 | gen_num=size(#)-1; |
---|
950 | } |
---|
951 | } |
---|
952 | else |
---|
953 | { gen_num=size(#); |
---|
954 | } |
---|
955 | } |
---|
956 | // ----------------- computing the terms with Brauer lift -------------------- |
---|
957 | if (ch<>0 && mol_flag==0) |
---|
958 | { list L=group_reynolds(#[1..gen_num],v); |
---|
959 | if (L[1]==0) |
---|
960 | { if (voice==2) |
---|
961 | { "WARNING: The characteristic of the coefficient field divides the group order."; |
---|
962 | " Proceed without the Reynolds operator or the Molien series!"; |
---|
963 | return(); |
---|
964 | } |
---|
965 | if (v) |
---|
966 | { " The characteristic of the base field divides the group order."; |
---|
967 | " We have to continue without Reynolds operator or the Molien series..."; |
---|
968 | return(); |
---|
969 | } |
---|
970 | } |
---|
971 | if (minpoly<>0) |
---|
972 | { if (voice==2) |
---|
973 | { "WARNING: It is impossible for this program to calculate the Molien series"; |
---|
974 | " for finite groups over extension fields of prime characteristic."; |
---|
975 | return(L[1]); |
---|
976 | } |
---|
977 | else |
---|
978 | { if (v) |
---|
979 | { " Since it is impossible for this program to calculate the Molien series for"; |
---|
980 | " invariant rings over extension fields of prime characteristic, we have to"; |
---|
981 | " continue without it."; |
---|
982 | return(L[1]); |
---|
983 | } |
---|
984 | } |
---|
985 | } |
---|
986 | if (typeof(L[2])=="int") |
---|
987 | { molien(L[3..size(L)],newring,L[2],intvec(mol_flag,interval,v)); |
---|
988 | } |
---|
989 | else |
---|
990 | { molien(L[2..size(L)],newring,intvec(mol_flag,interval,v)); |
---|
991 | } |
---|
992 | return(L[1]); |
---|
993 | } |
---|
994 | //----------- computing Molien series in the straight forward way ------------ |
---|
995 | if (ch==0) |
---|
996 | { if (typeof(#[1])<>"matrix") |
---|
997 | { "ERROR: the parameters must be a list of matrices and maybe an <intvec>"; |
---|
998 | return(); |
---|
999 | } |
---|
1000 | int n=nrows(#[1]); |
---|
1001 | if (n<>nvars(br)) |
---|
1002 | { "ERROR: the number of variables of the basering needs to be the same"; |
---|
1003 | " as the dimension of the matrices"; |
---|
1004 | return(); |
---|
1005 | } |
---|
1006 | if (n<>ncols(#[1])) |
---|
1007 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
1008 | return(); |
---|
1009 | } |
---|
1010 | matrix vars=matrix(maxideal(1)); // creating an nx1-matrix containing the |
---|
1011 | vars=transpose(vars); // variables of the ring - |
---|
1012 | matrix A(1)=#[1]*vars; // calculating the first ring mapping - |
---|
1013 | // A(1) will contain the Reynolds |
---|
1014 | // operator - |
---|
1015 | poly v1=vars[1,1]; // the Molien series will be in terms of |
---|
1016 | // the first variable of the current |
---|
1017 | // ring |
---|
1018 | matrix I=diag(1,n); |
---|
1019 | matrix A(2)[1][2]; // A(2) will contain the Molien series - |
---|
1020 | A(2)[1,1]=1; // A(2)[1,1] will be the numerator |
---|
1021 | matrix G(1)=#[1]; // G(k) are elements of the group - |
---|
1022 | A(2)[1,2]=det(I-v1*(G(1))); // A(2)[1,2] will be the denominator - |
---|
1023 | matrix s; // will help us canceling in the |
---|
1024 | // fraction |
---|
1025 | poly p; // will contain the denominator of the |
---|
1026 | // new term of the Molien series |
---|
1027 | int i=1; |
---|
1028 | for (int j=2;j<=gen_num;j=j+1) // this loop adds the parameters to the |
---|
1029 | { // group, leaving out doubles and |
---|
1030 | // checking whether the parameters are |
---|
1031 | // compatible with the task of the |
---|
1032 | // procedure |
---|
1033 | if (not(typeof(#[j])=="matrix")) |
---|
1034 | { "ERROR: the parameters must be a list of matrices and maybe an <intvec>"; |
---|
1035 | return(); |
---|
1036 | } |
---|
1037 | if ((n!=nrows(#[j])) or (n!=ncols(#[j]))) |
---|
1038 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
1039 | return(); |
---|
1040 | } |
---|
1041 | if (unique(G(1..i),#[j])) |
---|
1042 | { i=i+1; |
---|
1043 | matrix G(i)=#[j]; |
---|
1044 | A(1)=concat(A(1),#[j]*vars); // adding ring homomorphisms to A(1) - |
---|
1045 | p=det(I-v1*#[j]); // denominator of new term - |
---|
1046 | A(2)[1,1]=A(2)[1,1]*p+A(2)[1,2]; // expanding A(2)[1,1]/A(2)[1,2] +1/p |
---|
1047 | A(2)[1,2]=A(2)[1,2]*p; |
---|
1048 | if (interval<>0) // canceling common terms of denominator |
---|
1049 | { if ((i/interval)*interval==i) // and enumerator |
---|
1050 | { |
---|
1051 | s=matrix(syz(ideal(A(2)))); // once gcd() is faster than syz() these |
---|
1052 | A(2)[1,1]=-s[2,1]; // three lines should be replaced by the |
---|
1053 | A(2)[1,2]=s[1,1]; // following three |
---|
1054 | // p=gcd(A(2)[1,1],A(2)[1,2]); |
---|
1055 | // A(2)[1,1]=A(2)[1,1]/p; |
---|
1056 | // A(2)[1,2]=A(2)[1,2]/p; |
---|
1057 | } |
---|
1058 | } |
---|
1059 | } |
---|
1060 | } |
---|
1061 | int g=i; // G(1)..G(i) are generators without |
---|
1062 | // doubles - g generally is the number |
---|
1063 | // of elements in the group so far - |
---|
1064 | j=i; // j is the number of new elements that |
---|
1065 | // we use as factors |
---|
1066 | int k, m, l; |
---|
1067 | if (v) |
---|
1068 | { ""; |
---|
1069 | " Generating the entire matrix group. Whenever a new group element is found,"; |
---|
1070 | " the coressponding ring homomorphism of the Reynolds operator and the"; |
---|
1071 | " corresponding term of the Molien series is generated."; |
---|
1072 | ""; |
---|
1073 | } |
---|
1074 | //----------- computing 1/det(I-xE) whenever a new element E is found -------- |
---|
1075 | while (1) |
---|
1076 | { l=0; // l is the number of products we get in |
---|
1077 | // one going |
---|
1078 | for (m=g-j+1;m<=g;m=m+1) |
---|
1079 | { for (k=1;k<=i;k=k+1) |
---|
1080 | { l=l+1; |
---|
1081 | matrix P(l)=G(k)*G(m); // possible new element |
---|
1082 | } |
---|
1083 | } |
---|
1084 | j=0; |
---|
1085 | for (k=1;k<=l;k=k+1) |
---|
1086 | { if (unique(G(1..g),P(k))) |
---|
1087 | { j=j+1; // a new factor for next run |
---|
1088 | g=g+1; |
---|
1089 | matrix G(g)=P(k); // a new group element - |
---|
1090 | A(1)=concat(A(1),P(k)*vars); // adding new mapping to A(1) |
---|
1091 | p=det(I-v1*P(k)); // denominator of new term |
---|
1092 | A(2)[1,1]=A(2)[1,1]*p+A(2)[1,2]; |
---|
1093 | A(2)[1,2]=A(2)[1,2]*p; // expanding A(2)[1,1]/A(2)[1,2] + 1/p - |
---|
1094 | if (interval<>0) // canceling common terms of denominator |
---|
1095 | { if ((g/interval)*interval==g) // and enumerator |
---|
1096 | { |
---|
1097 | s=matrix(syz(ideal(A(2)))); // once gcd() is faster than syz() |
---|
1098 | A(2)[1,1]=-s[2,1]; // these three lines should be replaced |
---|
1099 | A(2)[1,2]=s[1,1]; // by the following three |
---|
1100 | // p=gcd(A(2)[1,1],A(2)[1,2]); |
---|
1101 | // A(2)[1,1]=A(2)[1,1]/p; |
---|
1102 | // A(2)[1,2]=A(2)[1,2]/p; |
---|
1103 | } |
---|
1104 | } |
---|
1105 | if (v) |
---|
1106 | { " Group element "+string(g)+" has been found."; |
---|
1107 | } |
---|
1108 | } |
---|
1109 | kill P(k); |
---|
1110 | } |
---|
1111 | if (j==0) // when we didn't add any new elements |
---|
1112 | { break; // in one run through the while loop |
---|
1113 | } // we are done |
---|
1114 | } |
---|
1115 | if (v) |
---|
1116 | { if (g<=i) |
---|
1117 | { " There are only "+string(g)+" group elements."; |
---|
1118 | } |
---|
1119 | ""; |
---|
1120 | } |
---|
1121 | A(1)=transpose(A(1)); // when we evaluate the Reynolds operator |
---|
1122 | // later on, we actually want 1xn |
---|
1123 | // matrices |
---|
1124 | if (interval==0) // canceling common terms of denominator |
---|
1125 | { // and enumerator - |
---|
1126 | s=matrix(syz(ideal(A(2)))); // once gcd() is faster than syz() |
---|
1127 | A(2)[1,1]=-s[2,1]; // these three lines should be replaced |
---|
1128 | A(2)[1,2]=s[1,1]; // by the following three |
---|
1129 | // p=gcd(A(2)[1,1],A(2)[1,2]); |
---|
1130 | // A(2)[1,1]=A(2)[1,1]/p; |
---|
1131 | // A(2)[1,2]=A(2)[1,2]/p; |
---|
1132 | } |
---|
1133 | if (interval<>0) // canceling common terms of denominator |
---|
1134 | { if ((g/interval)*interval<>g) // and enumerator |
---|
1135 | { |
---|
1136 | s=matrix(syz(ideal(A(2)))); // once gcd() is faster than syz() |
---|
1137 | A(2)[1,1]=-s[2,1]; // these three lines should be replaced |
---|
1138 | A(2)[1,2]=s[1,1]; // by the following three |
---|
1139 | // p=gcd(A(2)[1,1],A(2)[1,2]); |
---|
1140 | // A(2)[1,1]=A(2)[1,1]/p; |
---|
1141 | // A(2)[1,2]=A(2)[1,2]/p; |
---|
1142 | } |
---|
1143 | } |
---|
1144 | map slead=br,ideal(0); |
---|
1145 | s=slead(A(2)); |
---|
1146 | A(2)[1,1]=1/s[1,1]*A(2)[1,1]; // numerator and denominator have to have |
---|
1147 | A(2)[1,2]=1/s[1,2]*A(2)[1,2]; // a constant term of 1 |
---|
1148 | if (v) |
---|
1149 | { " Now we are done calculating Molien series and Reynolds operator."; |
---|
1150 | ""; |
---|
1151 | } |
---|
1152 | return(A(1..2)); |
---|
1153 | } |
---|
1154 | //------------------------ simulating characteristic 0 ----------------------- |
---|
1155 | else // if ch<>0 and mol_flag<>0 |
---|
1156 | { if (typeof(#[1])<>"matrix") |
---|
1157 | { "ERROR: the parameters must be a list of matrices and maybe an <intvec>"; |
---|
1158 | return(); |
---|
1159 | } |
---|
1160 | int n=nrows(#[1]); |
---|
1161 | if (n<>nvars(br)) |
---|
1162 | { "ERROR: the number of variables of the basering needs to be the same"; |
---|
1163 | " as the dimension of the matrices"; |
---|
1164 | return(); |
---|
1165 | } |
---|
1166 | if (n<>ncols(#[1])) |
---|
1167 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
1168 | return(); |
---|
1169 | } |
---|
1170 | matrix vars=matrix(maxideal(1)); // creating an nx1-matrix containing the |
---|
1171 | vars=transpose(vars); // variables of the ring - |
---|
1172 | matrix A(1)=#[1]*vars; // calculating the first ring mapping - |
---|
1173 | // A(1) will contain the Reynolds |
---|
1174 | // operator |
---|
1175 | string chst=charstr(br); |
---|
1176 | for (int i=1;i<=size(chst);i=i+1) |
---|
1177 | { if (chst[i]==",") |
---|
1178 | { break; |
---|
1179 | } |
---|
1180 | } |
---|
1181 | if (minpoly==0) |
---|
1182 | { if (i>size(chst)) |
---|
1183 | { execute "ring "+newring+"=0,("+varstr(br)+"),("+ordstr(br)+")"; |
---|
1184 | } |
---|
1185 | else |
---|
1186 | { chst=chst[i..size(chst)]; |
---|
1187 | execute "ring "+newring+"=(0"+chst+"),("+varstr(br)+"),("+ordstr(br)+")"; |
---|
1188 | } |
---|
1189 | } |
---|
1190 | else |
---|
1191 | { string minp=string(minpoly); |
---|
1192 | minp=minp[2..size(minp)-1]; |
---|
1193 | chst=chst[i..size(chst)]; |
---|
1194 | execute "ring "+newring+"=(0"+chst+"),("+varstr(br)+"),("+ordstr(br)+")"; |
---|
1195 | execute "minpoly="+minp; |
---|
1196 | } |
---|
1197 | poly v1=var(1); // the Molien series will be in terms of |
---|
1198 | // the first variable of the current |
---|
1199 | // ring |
---|
1200 | matrix I=diag(1,n); |
---|
1201 | int o; |
---|
1202 | setring br; |
---|
1203 | matrix G(1)=#[1]; |
---|
1204 | string links, rechts; |
---|
1205 | string stM(1)=string(#[1]); |
---|
1206 | for (o=1;o<=size(stM(1));o=o+1) |
---|
1207 | { if (stM(1)[o]==" |
---|
1208 | ") |
---|
1209 | { links=stM(1)[1..o-1]; |
---|
1210 | rechts=stM(1)[o+1..size(stM(1))]; |
---|
1211 | stM(1)=links+rechts; |
---|
1212 | } |
---|
1213 | } |
---|
1214 | setring `newring`; |
---|
1215 | execute "matrix G(1)["+string(n)+"]["+string(n)+"]="+stM(1); |
---|
1216 | matrix A(2)[1][2]; // A(2) will contain the Molien series - |
---|
1217 | A(2)[1,1]=1; // A(2)[1,1] will be the numerator |
---|
1218 | A(2)[1,2]=det(I-v1*(G(1))); // A(2)[1,2] will be the denominator - |
---|
1219 | matrix s; // will help us canceling in the |
---|
1220 | // fraction |
---|
1221 | poly p; // will contain the denominator of the |
---|
1222 | // new term of the Molien series |
---|
1223 | i=1; |
---|
1224 | for (int j=2;j<=gen_num;j=j+1) // this loop adds the parameters to the |
---|
1225 | { // group, leaving out doubles and |
---|
1226 | // checking whether the parameters are |
---|
1227 | // compatible with the task of the |
---|
1228 | // procedure |
---|
1229 | setring br; |
---|
1230 | if (not(typeof(#[j])=="matrix")) |
---|
1231 | { "ERROR: the parameters must be a list of matrices and maybe an <intvec>"; |
---|
1232 | return(); |
---|
1233 | } |
---|
1234 | if ((n!=nrows(#[j])) or (n!=ncols(#[j]))) |
---|
1235 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
1236 | return(); |
---|
1237 | } |
---|
1238 | if (unique(G(1..i),#[j])) |
---|
1239 | { i=i+1; |
---|
1240 | matrix G(i)=#[j]; |
---|
1241 | A(1)=concat(A(1),G(i)*vars); // adding ring homomorphisms to A(1) |
---|
1242 | string stM(i)=string(G(i)); |
---|
1243 | for (o=1;o<=size(stM(i));o=o+1) |
---|
1244 | { if (stM(i)[o]==" |
---|
1245 | ") |
---|
1246 | { links=stM(i)[1..o-1]; |
---|
1247 | rechts=stM(i)[o+1..size(stM(i))]; |
---|
1248 | stM(i)=links+rechts; |
---|
1249 | } |
---|
1250 | } |
---|
1251 | setring `newring`; |
---|
1252 | execute "matrix G(i)["+string(n)+"]["+string(n)+"]="+stM(i); |
---|
1253 | p=det(I-v1*G(i)); // denominator of new term - |
---|
1254 | A(2)[1,1]=A(2)[1,1]*p+A(2)[1,2]; // expanding A(2)[1,1]/A(2)[1,2] +1/p |
---|
1255 | A(2)[1,2]=A(2)[1,2]*p; |
---|
1256 | if (interval<>0) // canceling common terms of denominator |
---|
1257 | { if ((i/interval)*interval==i) // and enumerator |
---|
1258 | { |
---|
1259 | s=matrix(syz(ideal(A(2)))); // once gcd() is faster than syz() these |
---|
1260 | A(2)[1,1]=-s[2,1]; // three lines should be replaced by the |
---|
1261 | A(2)[1,2]=s[1,1]; // following three |
---|
1262 | // p=gcd(A(2)[1,1],A(2)[1,2]); |
---|
1263 | // A(2)[1,1]=A(2)[1,1]/p; |
---|
1264 | // A(2)[1,2]=A(2)[1,2]/p; |
---|
1265 | } |
---|
1266 | } |
---|
1267 | setring br; |
---|
1268 | } |
---|
1269 | } |
---|
1270 | int g=i; // G(1)..G(i) are generators without |
---|
1271 | // doubles - g generally is the number |
---|
1272 | // of elements in the group so far - |
---|
1273 | j=i; // j is the number of new elements that |
---|
1274 | // we use as factors |
---|
1275 | int k, m, l; |
---|
1276 | if (v) |
---|
1277 | { ""; |
---|
1278 | " Generating the entire matrix group. Whenever a new group element is found,"; |
---|
1279 | " the coressponding ring homomorphism of the Reynolds operator and the"; |
---|
1280 | " corresponding term of the Molien series is generated."; |
---|
1281 | ""; |
---|
1282 | } |
---|
1283 | // taking all elements in a ring of characteristic 0 and computing the terms |
---|
1284 | // of the Molien series there |
---|
1285 | while (1) |
---|
1286 | { l=0; // l is the number of products we get in |
---|
1287 | // one going |
---|
1288 | for (m=g-j+1;m<=g;m=m+1) |
---|
1289 | { for (k=1;k<=i;k=k+1) |
---|
1290 | { l=l+1; |
---|
1291 | matrix P(l)=G(k)*G(m); // possible new element |
---|
1292 | } |
---|
1293 | } |
---|
1294 | j=0; |
---|
1295 | for (k=1;k<=l;k=k+1) |
---|
1296 | { if (unique(G(1..g),P(k))) |
---|
1297 | { j=j+1; // a new factor for next run |
---|
1298 | g=g+1; |
---|
1299 | matrix G(g)=P(k); // a new group element - |
---|
1300 | A(1)=concat(A(1),G(g)*vars); // adding new mapping to A(1) |
---|
1301 | string stM(g)=string(G(g)); |
---|
1302 | for (o=1;o<=size(stM(g));o=o+1) |
---|
1303 | { if (stM(g)[o]==" |
---|
1304 | ") |
---|
1305 | { links=stM(g)[1..o-1]; |
---|
1306 | rechts=stM(g)[o+1..size(stM(g))]; |
---|
1307 | stM(g)=links+rechts; |
---|
1308 | } |
---|
1309 | } |
---|
1310 | setring `newring`; |
---|
1311 | execute "matrix G(g)["+string(n)+"]["+string(n)+"]="+stM(g); |
---|
1312 | p=det(I-v1*G(g)); // denominator of new term |
---|
1313 | A(2)[1,1]=A(2)[1,1]*p+A(2)[1,2]; |
---|
1314 | A(2)[1,2]=A(2)[1,2]*p; // expanding A(2)[1,1]/A(2)[1,2] + 1/p - |
---|
1315 | if (interval<>0) // canceling common terms of denominator |
---|
1316 | { if ((g/interval)*interval==g) // and enumerator |
---|
1317 | { |
---|
1318 | s=matrix(syz(ideal(A(2)))); // once gcd() is faster than syz() |
---|
1319 | A(2)[1,1]=-s[2,1]; // these three lines should be replaced |
---|
1320 | A(2)[1,2]=s[1,1]; // by the following three |
---|
1321 | // p=gcd(A(2)[1,1],A(2)[1,2]); |
---|
1322 | // A(2)[1,1]=A(2)[1,1]/p; |
---|
1323 | // A(2)[1,2]=A(2)[1,2]/p; |
---|
1324 | } |
---|
1325 | } |
---|
1326 | if (v) |
---|
1327 | { " Group element "+string(g)+" has been found."; |
---|
1328 | } |
---|
1329 | setring br; |
---|
1330 | } |
---|
1331 | kill P(k); |
---|
1332 | } |
---|
1333 | if (j==0) // when we didn't add any new elements |
---|
1334 | { break; // in one run through the while loop |
---|
1335 | } // we are done |
---|
1336 | } |
---|
1337 | if (v) |
---|
1338 | { if (g<=i) |
---|
1339 | { " There are only "+string(g)+" group elements."; |
---|
1340 | } |
---|
1341 | ""; |
---|
1342 | } |
---|
1343 | A(1)=transpose(A(1)); // when we evaluate the Reynolds operator |
---|
1344 | // later on, we actually want 1xn |
---|
1345 | // matrices |
---|
1346 | setring `newring`; |
---|
1347 | if (interval==0) // canceling common terms of denominator |
---|
1348 | { // and enumerator - |
---|
1349 | s=matrix(syz(ideal(A(2)))); // once gcd() is faster than syz() |
---|
1350 | A(2)[1,1]=-s[2,1]; // these three lines should be replaced |
---|
1351 | A(2)[1,2]=s[1,1]; // by the following three |
---|
1352 | // p=gcd(A(2)[1,1],A(2)[1,2]); |
---|
1353 | // A(2)[1,1]=A(2)[1,1]/p; |
---|
1354 | // A(2)[1,2]=A(2)[1,2]/p; |
---|
1355 | } |
---|
1356 | if (interval<>0) // canceling common terms of denominator |
---|
1357 | { if ((g/interval)*interval<>g) // and enumerator |
---|
1358 | { |
---|
1359 | s=matrix(syz(ideal(A(2)))); // once gcd() is faster than syz() |
---|
1360 | A(2)[1,1]=-s[2,1]; // these three lines should be replaced |
---|
1361 | A(2)[1,2]=s[1,1]; // by the following three |
---|
1362 | // p=gcd(A(2)[1,1],A(2)[1,2]); |
---|
1363 | // A(2)[1,1]=A(2)[1,1]/p; |
---|
1364 | // A(2)[1,2]=A(2)[1,2]/p; |
---|
1365 | } |
---|
1366 | } |
---|
1367 | map slead=`newring`,ideal(0); |
---|
1368 | s=slead(A(2)); |
---|
1369 | A(2)[1,1]=1/s[1,1]*A(2)[1,1]; // numerator and denominator have to have |
---|
1370 | A(2)[1,2]=1/s[1,2]*A(2)[1,2]; // a constant term of 1 |
---|
1371 | if (v) |
---|
1372 | { " Now we are done calculating Molien series and Reynolds operator."; |
---|
1373 | ""; |
---|
1374 | } |
---|
1375 | matrix M=A(2); |
---|
1376 | kill G(1..g), s, slead, p, v1, I, A(2); |
---|
1377 | export `newring`; // we keep the ring where we computed the |
---|
1378 | export M; // the Molien series such that we can |
---|
1379 | setring br; // keep it |
---|
1380 | return(A(1)); |
---|
1381 | } |
---|
1382 | } |
---|
1383 | example |
---|
1384 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
1385 | " note the case of prime characteristic"; |
---|
1386 | echo=2; |
---|
1387 | ring R=0,(x,y,z),dp; |
---|
1388 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
1389 | matrix REY,M=reynolds_molien(A); |
---|
1390 | print(REY); |
---|
1391 | print(M); |
---|
1392 | ring S=3,(x,y,z),dp; |
---|
1393 | string newring="Qadjoint"; |
---|
1394 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
1395 | matrix REY=reynolds_molien(A,newring); |
---|
1396 | print(REY); |
---|
1397 | setring Qadjoint; |
---|
1398 | print(M); |
---|
1399 | setring S; |
---|
1400 | kill Qadjoint; |
---|
1401 | } |
---|
1402 | |
---|
1403 | proc partial_molien (matrix M, int n, list #) |
---|
1404 | USAGE: partial_molien(M,n[,p]); |
---|
1405 | M: a 1x2 <matrix>, n: an <int> indicating number of terms in the |
---|
1406 | expansion, p: an optional <poly> |
---|
1407 | ASSUME: M is the return value of molien or the second return value of |
---|
1408 | reynolds_molien, p ought to be the second return value of a previous |
---|
1409 | run of partial_molien and avoids recalculating known terms |
---|
1410 | RETURN: n terms (type <poly>) of the partial expansion of the Molien series |
---|
1411 | (first n if there is no third parameter given, otherwise the next n |
---|
1412 | terms depending on a previous calculation) and an intermediate result |
---|
1413 | (type <poly>) of the calculation to be used as third parameter in a next |
---|
1414 | run of partial_molien |
---|
1415 | THEORY: The following calculation is implemented: |
---|
1416 | (1+a1x+a2x^2+...+anx^n)/(1+b1x+b2x^2+...+bmx^m)=(1+(a1-b1)x+... |
---|
1417 | (1+b1x+b2x^2+...+bmx^m) |
---|
1418 | ----------------------- |
---|
1419 | (a1-b1)x+(a2-b2)x^2+... |
---|
1420 | (a1-b1)x+b1(a1-b1)x^2+... |
---|
1421 | EXAMPLE: example partial_molien; shows an example |
---|
1422 | { poly A(2); // A(2) will contain the return value of |
---|
1423 | // the intermediate result |
---|
1424 | if (char(basering)<>0) |
---|
1425 | { "ERROR: you have to change to a basering of characteristic 0, one in"; |
---|
1426 | " which the Molien series is defined"; |
---|
1427 | } |
---|
1428 | if (ncols(M)==2 && nrows(M)==1 && n>0 && size(#)<2) |
---|
1429 | { def br=basering; // keeping track of the old ring |
---|
1430 | map slead=br,ideal(0); |
---|
1431 | matrix s=slead(M); |
---|
1432 | if (s[1,1]<>1 || s[1,2]<>1) |
---|
1433 | { "ERROR: the constant terms of enumerator and denominator are not 1"; |
---|
1434 | return(); |
---|
1435 | } |
---|
1436 | |
---|
1437 | if (size(#)==0) |
---|
1438 | { A(2)=M[1,1]; // if a third parameter is not given, the |
---|
1439 | // intermediate result from the last run |
---|
1440 | // corresponds to the numerator - we need |
---|
1441 | } // its smallest term |
---|
1442 | else |
---|
1443 | { if (typeof(#[1])=="poly") |
---|
1444 | { A(2)=#[1]; // if a third term is given we 'start' |
---|
1445 | } // with its smallest term |
---|
1446 | else |
---|
1447 | { "ERROR: <poly> as third parameter expected"; |
---|
1448 | return(); |
---|
1449 | } |
---|
1450 | } |
---|
1451 | poly A(1)=M[1,2]; // denominator of Molien series (for now) |
---|
1452 | string mp=string(minpoly); |
---|
1453 | execute "ring R=("+charstr(br)+"),("+varstr(br)+"),ds;"; |
---|
1454 | execute "minpoly=number("+mp+");"; |
---|
1455 | poly A(1)=0; // A(1) will contain the sum of n terms - |
---|
1456 | poly min; // min will be our smallest term - |
---|
1457 | poly A(2)=fetch(br,A(2)); // fetching A(2) and M[1,2] into R |
---|
1458 | poly den=fetch(br,A(1)); |
---|
1459 | for (int i=1; i<=n; i=i+1) // getting n terms and adding them up |
---|
1460 | { min=lead(A(2)); |
---|
1461 | A(1)=A(1)+min; |
---|
1462 | A(2)=A(2)-min*den; |
---|
1463 | } |
---|
1464 | setring br; // moving A(1) and A(2) back in the |
---|
1465 | A(1)=fetch(R,A(1)); // actual ring for output |
---|
1466 | A(2)=fetch(R,A(2)); |
---|
1467 | return(A(1..2)); |
---|
1468 | } |
---|
1469 | else |
---|
1470 | { "ERROR: the first parameter has to be a 1x2-matrix, i.e. the matrix"; |
---|
1471 | " returned by the procedure 'reynolds_molien', the second one"; |
---|
1472 | " should be > 0 and there should be no more than 3 parameters;" |
---|
1473 | return(); |
---|
1474 | } |
---|
1475 | } |
---|
1476 | example |
---|
1477 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
1478 | echo=2; |
---|
1479 | ring R=0,(x,y,z),dp; |
---|
1480 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
1481 | matrix REY,M=reynolds_molien(A); |
---|
1482 | poly p(1..2); |
---|
1483 | p(1..2)=partial_molien(M,5); |
---|
1484 | p(1); |
---|
1485 | p(1..2)=partial_molien(M,5,p(2)); |
---|
1486 | p(1); |
---|
1487 | } |
---|
1488 | |
---|
1489 | proc evaluate_reynolds (matrix REY, ideal I) |
---|
1490 | USAGE: evaluate_reynolds(REY,I); |
---|
1491 | REY: a <matrix> representing the Reynolds operator, I: an arbitrary |
---|
1492 | <ideal> |
---|
1493 | ASSUME: REY is the first return value of group_reynolds() or reynolds_molien() |
---|
1494 | RETURNS: image of the polynomials defining I under the Reynolds operator |
---|
1495 | (type <ideal>) |
---|
1496 | NOTE: the characteristic of the coefficient field of the polynomial ring |
---|
1497 | should not divide the order of the finite matrix group |
---|
1498 | EXAMPLE: example evaluate_reynolds; shows an example |
---|
1499 | THEORY: REY has been constructed in such a way that each row serves as a ring |
---|
1500 | mapping of which the Reynolds operator is made up. |
---|
1501 | { def br=basering; |
---|
1502 | int n=nvars(br); |
---|
1503 | if (ncols(REY)==n) |
---|
1504 | { int m=nrows(REY); // we need m to 'cut' the ring |
---|
1505 | // homomorphisms 'out' of REY and to |
---|
1506 | // divide by the group order in the end |
---|
1507 | int num_poly=ncols(I); |
---|
1508 | matrix MI=matrix(I); |
---|
1509 | matrix MiI[1][num_poly]; |
---|
1510 | map pREY; |
---|
1511 | matrix rowREY[1][n]; |
---|
1512 | for (int i=1;i<=m;i=i+1) |
---|
1513 | { rowREY=REY[i,1..n]; |
---|
1514 | pREY=br,ideal(rowREY); // f is now the i-th ring homomorphism |
---|
1515 | MiI=pREY(MI)+MiI; |
---|
1516 | } |
---|
1517 | MiI=(1/number(m))*MiI; |
---|
1518 | return(ideal(MiI)); |
---|
1519 | } |
---|
1520 | else |
---|
1521 | { "ERROR: the number of columns in the <matrix> should be the same as the"; |
---|
1522 | " number of variables in the basering; in fact it should be first"; |
---|
1523 | " return value of group_reynolds() or reynolds_molien()."; |
---|
1524 | return(); |
---|
1525 | } |
---|
1526 | } |
---|
1527 | example |
---|
1528 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
1529 | echo=2; |
---|
1530 | ring R=0,(x,y,z),dp; |
---|
1531 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
1532 | list L=group_reynolds(A); |
---|
1533 | ideal I=x2,y2,z2; |
---|
1534 | print(evaluate_reynolds(L[1],I)); |
---|
1535 | } |
---|
1536 | |
---|
1537 | proc invariant_basis (int g,list #) |
---|
1538 | USAGE: invariant_basis(g,G1,G2,...); |
---|
1539 | g: an <int> indicating of which degree (>0) the homogeneous basis |
---|
1540 | shoud be, G1,G2,...: <matrices> generating a finite matrix group |
---|
1541 | RETURNS: the basis (type <ideal>) of the space of invariants of degree g |
---|
1542 | EXAMPLE: example invariant_basis; shows an example |
---|
1543 | THEORY: A general polynomial of degree g is generated and the generators of the |
---|
1544 | matrix group applied. The difference ought to be 0 and this way a |
---|
1545 | system of linear equations is created. It is solved by computing |
---|
1546 | syzygies. |
---|
1547 | { if (g<=0) |
---|
1548 | { "ERROR: the first parameter should be > 0"; |
---|
1549 | return(); |
---|
1550 | } |
---|
1551 | def br=basering; |
---|
1552 | ideal mon=sort(maxideal(g))[1]; // needed for constructing a general |
---|
1553 | int m=ncols(mon); // homogeneous polynomial of degree g |
---|
1554 | mon=sort(mon,intvec(m..1))[1]; |
---|
1555 | int a=size(#); |
---|
1556 | int i; |
---|
1557 | int n=nvars(br); |
---|
1558 | //---------------------- checking that the input is ok ----------------------- |
---|
1559 | for (i=1;i<=a;i=i+1) |
---|
1560 | { if (typeof(#[i])=="matrix") |
---|
1561 | { if (nrows(#[i])==n && ncols(#[i])==n) |
---|
1562 | { matrix G(i)=#[i]; |
---|
1563 | } |
---|
1564 | else |
---|
1565 | { "ERROR: the number of variables of the base ring needs to be the same"; |
---|
1566 | " as the dimension of the square matrices"; |
---|
1567 | return(); |
---|
1568 | } |
---|
1569 | } |
---|
1570 | else |
---|
1571 | { "ERROR: the last parameters should be a list of matrices"; |
---|
1572 | return(); |
---|
1573 | } |
---|
1574 | } |
---|
1575 | //---------------------------------------------------------------------------- |
---|
1576 | execute "ring T=("+charstr(br)+"),("+varstr(br)+",p(1..m)),lp;"; |
---|
1577 | // p(1..m) are the general coefficients of the general polynomial of degree g |
---|
1578 | execute "ideal vars="+varstr(br)+";"; |
---|
1579 | map f; |
---|
1580 | ideal mon=imap(br,mon); |
---|
1581 | poly P=0; |
---|
1582 | for (i=m;i>=1;i=i-1) |
---|
1583 | { P=P+p(i)*mon[i]; // P is the general polynomial |
---|
1584 | } |
---|
1585 | ideal I; // will help substituting variables in P |
---|
1586 | // by linear combinations of variables - |
---|
1587 | poly Pnew,temp; // Pnew is P with substitutions - |
---|
1588 | matrix S[m*a][m]; // will contain system of linear |
---|
1589 | // equations |
---|
1590 | int j,k; |
---|
1591 | //------------------- building the system of linear equations ---------------- |
---|
1592 | for (i=1;i<=a;i=i+1) |
---|
1593 | { I=ideal(matrix(vars)*transpose(imap(br,G(i)))); |
---|
1594 | I=I,p(1..m); |
---|
1595 | f=T,I; |
---|
1596 | Pnew=f(P); |
---|
1597 | for (j=1;j<=m;j=j+1) |
---|
1598 | { temp=P/mon[j]-Pnew/mon[j]; |
---|
1599 | for (k=1;k<=m;k=k+1) |
---|
1600 | { S[m*(i-1)+j,k]=temp/p(k); |
---|
1601 | } |
---|
1602 | } |
---|
1603 | } |
---|
1604 | //---------------------------------------------------------------------------- |
---|
1605 | setring br; |
---|
1606 | map f=T,ideal(0); |
---|
1607 | matrix S=f(S); |
---|
1608 | matrix s=matrix(syz(S)); // s contains a basis of the space of |
---|
1609 | // solutions - |
---|
1610 | ideal I=ideal(matrix(mon)*s); // I contains a basis of homogeneous |
---|
1611 | if (I[1]<>0) // invariants of degree d |
---|
1612 | { for (i=1;i<=ncols(I);i=i+1) |
---|
1613 | { I[i]=I[i]/leadcoef(I[i]); // setting leading coefficients to 1 |
---|
1614 | } |
---|
1615 | } |
---|
1616 | return(I); |
---|
1617 | } |
---|
1618 | example |
---|
1619 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
1620 | echo=2; |
---|
1621 | ring R=0,(x,y,z),dp; |
---|
1622 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
1623 | print(invariant_basis(2,A)); |
---|
1624 | } |
---|
1625 | |
---|
1626 | proc invariant_basis_reynolds (matrix REY,int d,list #) |
---|
1627 | USAGE: invariant_basis_reynolds(REY,d[,flags]); |
---|
1628 | REY: a <matrix> representing the Reynolds operator, d: an <int> |
---|
1629 | indicating of which degree (>0) the homogeneous basis shoud be, flags: |
---|
1630 | an optional <intvec> with two entries: its first component gives the |
---|
1631 | dimension of the space (default <0 meaning unknown) and its second |
---|
1632 | component is used as the number of polynomials that should be mapped |
---|
1633 | to invariants during one call of evaluate_reynolds if the dimension of |
---|
1634 | the space is unknown or the number such that number x dimension |
---|
1635 | polynomials are mapped to invariants during one call of |
---|
1636 | evaluate_reynolds |
---|
1637 | ASSUME: REY is the first return value of group_reynolds() or reynolds_molien() |
---|
1638 | and flags[1] given by partial_molien |
---|
1639 | RETURN: the basis (type <ideal>) of the space of invariants of degree d |
---|
1640 | EXAMPLE: example invariant_basis_reynolds; shows an example |
---|
1641 | THEORY: Monomials of degree d are mapped to invariants with the Reynolds |
---|
1642 | operator. A linearly independent set is generated with the help of |
---|
1643 | minbase. |
---|
1644 | { |
---|
1645 | //---------------------- checking that the input is ok ----------------------- |
---|
1646 | if (d<=0) |
---|
1647 | { " ERROR: the second parameter should be > 0"; |
---|
1648 | return(); |
---|
1649 | } |
---|
1650 | if (size(#)>1) |
---|
1651 | { " ERROR: there should be at most three parameters"; |
---|
1652 | return(); |
---|
1653 | } |
---|
1654 | if (size(#)==1) |
---|
1655 | { if (typeof(#[1])<>"intvec") |
---|
1656 | { " ERROR: the third parameter should be of type <intvec>"; |
---|
1657 | return(); |
---|
1658 | } |
---|
1659 | if (size(#[1])<>2) |
---|
1660 | { " ERROR: there should be two components in <intvec>"; |
---|
1661 | return(); |
---|
1662 | } |
---|
1663 | else |
---|
1664 | { int cd=#[1][1]; |
---|
1665 | int step_fac=#[1][2]; |
---|
1666 | } |
---|
1667 | if (step_fac<=0) |
---|
1668 | { " ERROR: the second component of <intvec> should be > 0"; |
---|
1669 | return(); |
---|
1670 | } |
---|
1671 | if (cd==0) |
---|
1672 | { return(ideal(0)); |
---|
1673 | } |
---|
1674 | } |
---|
1675 | else |
---|
1676 | { int step_fac=1; |
---|
1677 | int cd=-1; |
---|
1678 | } |
---|
1679 | if (ncols(REY)<>nvars(basering)) |
---|
1680 | { "ERROR: the number of columns in the <matrix> should be the same as the"; |
---|
1681 | " number of variables in the basering; in fact it should be first"; |
---|
1682 | " return value of group_reynolds() or reynolds_molien()."; |
---|
1683 | return(); |
---|
1684 | } |
---|
1685 | //---------------------------------------------------------------------------- |
---|
1686 | ideal mon=sort(maxideal(d))[1]; |
---|
1687 | degBound=d; |
---|
1688 | int j=ncols(mon); |
---|
1689 | mon=sort(mon,intvec(j..1))[1]; |
---|
1690 | ideal B; // will contain the basis |
---|
1691 | if (cd<0) |
---|
1692 | { if (step_fac>j) // all of mon will be mapped to |
---|
1693 | { B=evaluate_reynolds(REY,mon); // invariants at once |
---|
1694 | B=minbase(B); |
---|
1695 | degBound=0; |
---|
1696 | return(B); |
---|
1697 | } |
---|
1698 | } |
---|
1699 | else |
---|
1700 | { if (step_fac*cd>j) // all of mon will be mapped to |
---|
1701 | { B=evaluate_reynolds(REY,mon); // invariants at once |
---|
1702 | B=minbase(B); |
---|
1703 | degBound=0; |
---|
1704 | return(B); |
---|
1705 | } |
---|
1706 | } |
---|
1707 | int i,k; |
---|
1708 | int upper_bound=0; |
---|
1709 | int lower_bound=0; |
---|
1710 | ideal part_mon; // a part of mon of size step_fac*cd |
---|
1711 | while (1) |
---|
1712 | { lower_bound=upper_bound+1; |
---|
1713 | if (cd<0) |
---|
1714 | { upper_bound=upper_bound+step_fac; |
---|
1715 | } |
---|
1716 | else |
---|
1717 | { upper_bound=upper_bound+step_fac*cd; |
---|
1718 | } |
---|
1719 | if (upper_bound>j) |
---|
1720 | { upper_bound=j; |
---|
1721 | } |
---|
1722 | part_mon=mon[lower_bound..upper_bound]; |
---|
1723 | B=minbase(B+evaluate_reynolds(REY,part_mon)); |
---|
1724 | if (ncols(B)==cd or upper_bound==j) |
---|
1725 | { degBound=0; |
---|
1726 | return(B); |
---|
1727 | } |
---|
1728 | } |
---|
1729 | } |
---|
1730 | example |
---|
1731 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
1732 | echo=2; |
---|
1733 | ring R=0,(x,y,z),dp; |
---|
1734 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
1735 | intvec flags=0,1,0; |
---|
1736 | matrix REY,M=reynolds_molien(A,flags); |
---|
1737 | flags=8,6; |
---|
1738 | print(invariant_basis_reynolds(REY,6,flags)); |
---|
1739 | } |
---|
1740 | |
---|
1741 | //////////////////////////////////////////////////////////////////////////////// |
---|
1742 | // This procedure generates linearly independent invariant polynomials of degree |
---|
1743 | // d that do not reduce to 0 modulo the primary invariants. It does this by |
---|
1744 | // applying the Reynolds operator to the monomials returned by kbase(sP,d). The |
---|
1745 | // result is used when computing secondary invariants. |
---|
1746 | //////////////////////////////////////////////////////////////////////////////// |
---|
1747 | proc sort_of_invariant_basis (ideal sP,matrix REY,int d,int step_fac) |
---|
1748 | { ideal mon=kbase(sP,d); |
---|
1749 | degBound=d; |
---|
1750 | int j=ncols(mon); |
---|
1751 | int i; |
---|
1752 | mon=sort(mon,intvec(j..1))[1]; |
---|
1753 | ideal B; // will contain the "sort of basis" |
---|
1754 | if (step_fac>j) |
---|
1755 | { B=compress(evaluate_reynolds(REY,mon)); |
---|
1756 | for (i=1;i<=ncols(B);i=i+1) // those are taken our that are o mod sP |
---|
1757 | { if (reduce(B[i],sP)==0) |
---|
1758 | { B[i]=0; |
---|
1759 | } |
---|
1760 | } |
---|
1761 | B=minbase(B); // here are the linearly independent ones |
---|
1762 | degBound=0; |
---|
1763 | return(B); |
---|
1764 | } |
---|
1765 | int upper_bound=0; |
---|
1766 | int lower_bound=0; |
---|
1767 | ideal part_mon; // parts of mon |
---|
1768 | while (1) |
---|
1769 | { lower_bound=upper_bound+1; |
---|
1770 | upper_bound=upper_bound+step_fac; |
---|
1771 | if (upper_bound>j) |
---|
1772 | { upper_bound=j; |
---|
1773 | } |
---|
1774 | part_mon=mon[lower_bound..upper_bound]; |
---|
1775 | part_mon=compress(evaluate_reynolds(REY,part_mon)); |
---|
1776 | for (i=1;i<=ncols(part_mon);i=i+1) |
---|
1777 | { if (reduce(part_mon[i],sP)==0) |
---|
1778 | { part_mon[i]=0; |
---|
1779 | } |
---|
1780 | } |
---|
1781 | B=minbase(B+part_mon); // here are the linearly independent ones |
---|
1782 | if (upper_bound==j) |
---|
1783 | { degBound=0; |
---|
1784 | return(B); |
---|
1785 | } |
---|
1786 | } |
---|
1787 | } |
---|
1788 | |
---|
1789 | //////////////////////////////////////////////////////////////////////////////// |
---|
1790 | // Procedure returning the succeeding vector after vec. It is used to list |
---|
1791 | // all the vectors of Z^n with first nonzero entry 1. They are listed by |
---|
1792 | // increasing sum of the absolute value of their entries. |
---|
1793 | //////////////////////////////////////////////////////////////////////////////// |
---|
1794 | proc next_vector(intmat vec) |
---|
1795 | { int n=ncols(vec); // p: >0, n: <0, p0: >=0, n0: <=0 |
---|
1796 | for (int i=1;i<=n;i=i+1) // finding out which is the first |
---|
1797 | { if (vec[1,i]<>0) // component <>0 |
---|
1798 | { break; |
---|
1799 | } |
---|
1800 | } |
---|
1801 | intmat new[1][n]; |
---|
1802 | if (i>n) // 0,...,0 --> 1,0....,0 |
---|
1803 | { new[1,1]=1; |
---|
1804 | return(new); |
---|
1805 | } |
---|
1806 | if (i==n) // 0,...,1 --> 1,1,0,...,0 |
---|
1807 | { new[1,1..2]=1,1; |
---|
1808 | return(new); |
---|
1809 | } |
---|
1810 | if (i==n-1) |
---|
1811 | { if (vec[1,n]==0) // 0,...,0,1,0 --> 0,...,0,1 |
---|
1812 | { new[1,n]=1; |
---|
1813 | return(new); |
---|
1814 | } |
---|
1815 | if (vec[1,n]>0) // 0,..,0,1,p --> 0,...,0,1,-p |
---|
1816 | { new[1,1..n]=vec[1,1..n-1],-vec[1,n]; |
---|
1817 | return(new); |
---|
1818 | } |
---|
1819 | new[1,1..2]=1,1-vec[1,n]; // 0,..,0,1,n --> 1,1-n,0,..,0 |
---|
1820 | return(new); |
---|
1821 | } |
---|
1822 | if (i>1) |
---|
1823 | { intmat temp[1][n-i+1]=vec[1,i..n]; // 0,...,0,1,*,...,* --> 1,*,...,* |
---|
1824 | temp=next_vector(temp); |
---|
1825 | new[1,i..n]=temp[1,1..n-i+1]; |
---|
1826 | return(new); |
---|
1827 | } // case left: 1,*,...,* |
---|
1828 | for (i=2;i<=n;i=i+1) |
---|
1829 | { if (vec[1,i]>0) // make first positive negative and |
---|
1830 | { vec[1,i]=-vec[1,i]; // return |
---|
1831 | return(vec); |
---|
1832 | } |
---|
1833 | else |
---|
1834 | { vec[1,i]=-vec[1,i]; // make all negatives before positives |
---|
1835 | } // positive |
---|
1836 | } |
---|
1837 | for (i=2;i<=n-1;i=i+1) // case: 1,p,...,p after 1,n,...,n |
---|
1838 | { if (vec[1,i]>0) |
---|
1839 | { vec[1,2]=vec[1,i]-1; // shuffleing things around... |
---|
1840 | if (i>2) // same sum of absolute values of entries |
---|
1841 | { vec[1,i]=0; |
---|
1842 | } |
---|
1843 | vec[1,i+1]=vec[1,i+1]+1; |
---|
1844 | return(vec); |
---|
1845 | } |
---|
1846 | } // case left: 1,0,...,0 --> 1,1,0,...,0 |
---|
1847 | new[1,2..3]=1,vec[1,n]; // and: 1,0,...,0,1 --> 0,1,1,0,...,0 |
---|
1848 | return(new); |
---|
1849 | } |
---|
1850 | |
---|
1851 | //////////////////////////////////////////////////////////////////////////////// |
---|
1852 | // Maps integers to elements of the base field. It is only called if the base |
---|
1853 | // field is of prime characteristic. If the base field has q elements (depending |
---|
1854 | // on minpoly) 1..q is mapped to those q elements. |
---|
1855 | //////////////////////////////////////////////////////////////////////////////// |
---|
1856 | proc int_number_map (int i) |
---|
1857 | { int p=char(basering); |
---|
1858 | if (minpoly==0) // if no minpoly is given, we have p |
---|
1859 | { i=i%p; // elements in the field |
---|
1860 | return(number(i)); |
---|
1861 | } |
---|
1862 | int d=pardeg(minpoly); |
---|
1863 | if (i<0) |
---|
1864 | { int bool=1; |
---|
1865 | i=(-1)*i; |
---|
1866 | } |
---|
1867 | i=i%p^d; // base field has p^d elements - |
---|
1868 | number a=par(1); // a is the root of the minpoly - we have |
---|
1869 | number out=0; // to construct a linear combination of |
---|
1870 | int j=1; // a^k |
---|
1871 | int k; |
---|
1872 | while (1) |
---|
1873 | { if (i<p^j) // finding an upper bound on i |
---|
1874 | { for (k=0;k<j-1;k=k+1) |
---|
1875 | { out=out+((i/p^k)%p)*a^k; // finding how often p^k is contained in |
---|
1876 | } // i |
---|
1877 | out=out+(i/p^(j-1))*a^(j-1); |
---|
1878 | if (defined(bool)==voice) |
---|
1879 | { return((-1)*out); |
---|
1880 | } |
---|
1881 | return(out); |
---|
1882 | } |
---|
1883 | j=j+1; |
---|
1884 | } |
---|
1885 | } |
---|
1886 | |
---|
1887 | //////////////////////////////////////////////////////////////////////////////// |
---|
1888 | // This procedure finds dif primary invariants in degree d. It returns all |
---|
1889 | // primary invariants found so far. The coefficients lie in a field of |
---|
1890 | // characteristic 0. |
---|
1891 | //////////////////////////////////////////////////////////////////////////////// |
---|
1892 | proc search (int n,int d,ideal B,int cd,ideal P,ideal sP,int i,int dif,int dB,ideal CI) |
---|
1893 | { intmat vec[1][cd]; // the coefficients for the next |
---|
1894 | // combination - |
---|
1895 | degBound=0; |
---|
1896 | poly test_poly; // the linear combination to test |
---|
1897 | int test_dim; |
---|
1898 | intvec h; // Hilbert series |
---|
1899 | int j=i+1; |
---|
1900 | matrix tB=transpose(B); |
---|
1901 | ideal TEST; |
---|
1902 | while(j<=i+dif) |
---|
1903 | { CI=CI+ideal(var(j)^d); // homogeneous polynomial of the same |
---|
1904 | // degree as the one we're looking for is |
---|
1905 | // added |
---|
1906 | // h=hilb(std(CI),1); |
---|
1907 | dB=dB+d-1; // used as degBound |
---|
1908 | while(1) |
---|
1909 | { vec=next_vector(vec); // next vector |
---|
1910 | test_poly=(vec*tB)[1,1]; |
---|
1911 | // degBound=dB; |
---|
1912 | TEST=sP+ideal(test_poly); |
---|
1913 | attrib(TEST,"isSB",1); |
---|
1914 | test_dim=dim(TEST); |
---|
1915 | // degBound=0; |
---|
1916 | if (n-test_dim==j) // the dimension has been lowered by one |
---|
1917 | { sP=TEST; |
---|
1918 | break; |
---|
1919 | } |
---|
1920 | // degBound=dB; |
---|
1921 | TEST=std(sP+ideal(test_poly)); // should soon be replaced by next line |
---|
1922 | // TEST=std(sP,test_poly,h); // Hilbert driven std-calculation |
---|
1923 | test_dim=dim(TEST); |
---|
1924 | // degBound=0; |
---|
1925 | if (n-test_dim==j) // the dimension has been lowered by one |
---|
1926 | { sP=TEST; |
---|
1927 | break; |
---|
1928 | } |
---|
1929 | } |
---|
1930 | P[j]=test_poly; // test_poly ist added to primary |
---|
1931 | j=j+1; // invariants |
---|
1932 | } |
---|
1933 | return(P,sP,CI,dB); |
---|
1934 | } |
---|
1935 | |
---|
1936 | //////////////////////////////////////////////////////////////////////////////// |
---|
1937 | // This procedure finds at most dif primary invariants in degree d. It returns |
---|
1938 | // all primary invariants found so far. The coefficients lie in the field of |
---|
1939 | // characteristic p>0. |
---|
1940 | //////////////////////////////////////////////////////////////////////////////// |
---|
1941 | proc p_search (int n,int d,ideal B,int cd,ideal P,ideal sP,int i,int dif,int dB,ideal CI) |
---|
1942 | { def br=basering; |
---|
1943 | degBound=0; |
---|
1944 | matrix vec(1)[1][cd]; // starting with 0-vector - |
---|
1945 | intmat new[1][cd]; // the coefficients for the next |
---|
1946 | // combination - |
---|
1947 | matrix pnew[1][cd]; // new needs to be mapped into br - |
---|
1948 | int counter=1; // counts the vectors |
---|
1949 | int j; |
---|
1950 | int p=char(br); |
---|
1951 | if (minpoly<>0) |
---|
1952 | { int ext_deg=pardeg(minpoly); // field has p^d elements |
---|
1953 | } |
---|
1954 | else |
---|
1955 | { int ext_deg=1; // field has p^d elements |
---|
1956 | } |
---|
1957 | poly test_poly; // the linear combination to test |
---|
1958 | int test_dim; |
---|
1959 | ring R=0,x,dp; // just to calculate next variable |
---|
1960 | // bound - |
---|
1961 | number bound=(number(p)^(ext_deg*cd)-1)/(number(p)^ext_deg-1)+1; // this is |
---|
1962 | // how many linearly independent vectors |
---|
1963 | // of size cd exist having entries in the |
---|
1964 | // base field of br |
---|
1965 | setring br; |
---|
1966 | intvec h; // Hilbert series |
---|
1967 | int k=i+1; |
---|
1968 | matrix tB=transpose(B); |
---|
1969 | ideal TEST; |
---|
1970 | while (k<=i+dif) |
---|
1971 | { CI=CI+ideal(var(k)^d); // homogeneous polynomial of the same |
---|
1972 | // degree as the one we're looking for is |
---|
1973 | // added |
---|
1974 | // h=hilb(std(CI),1); |
---|
1975 | dB=dB+d-1; // used as degBound |
---|
1976 | setring R; |
---|
1977 | while (number(counter)<>bound) // otherwise, we are done |
---|
1978 | { setring br; |
---|
1979 | new=next_vector(new); |
---|
1980 | for (j=1;j<=cd;j=j+1) |
---|
1981 | { pnew[1,j]=int_number_map(new[1,j]); // mapping an integer into br |
---|
1982 | } |
---|
1983 | if (unique(vec(1..counter),pnew)) // checking whether we tried pnew before |
---|
1984 | { counter=counter+1; |
---|
1985 | matrix vec(counter)=pnew; // keeping track of the ones we tried - |
---|
1986 | test_poly=(vec(counter)*tB)[1,1]; // linear combination - |
---|
1987 | // degBound=dB; |
---|
1988 | TEST=sP+ideal(test_poly); |
---|
1989 | attrib(TEST,"isSB",1); |
---|
1990 | test_dim=dim(TEST); |
---|
1991 | // degBound=0; |
---|
1992 | if (n-test_dim==k) // the dimension has been lowered by one |
---|
1993 | { sP=TEST; |
---|
1994 | setring R; |
---|
1995 | break; |
---|
1996 | } |
---|
1997 | // degBound=dB; |
---|
1998 | TEST=std(sP+ideal(test_poly)); // should soon to be replaced by next |
---|
1999 | // line |
---|
2000 | // TEST=std(sP,test_poly,h); // Hilbert driven std-calculation |
---|
2001 | test_dim=dim(TEST); |
---|
2002 | // degBound=0; |
---|
2003 | if (n-test_dim==k) // the dimension has been lowered by one |
---|
2004 | { sP=TEST; |
---|
2005 | setring R; |
---|
2006 | break; |
---|
2007 | } |
---|
2008 | } |
---|
2009 | setring R; |
---|
2010 | } |
---|
2011 | if (number(counter)<=bound) |
---|
2012 | { setring br; |
---|
2013 | P[k]=test_poly; // test_poly ist added to primary |
---|
2014 | } // invariants |
---|
2015 | else |
---|
2016 | { setring br; |
---|
2017 | CI=CI[1..size(CI)-1]; |
---|
2018 | return(P,sP,CI,dB-d+1); |
---|
2019 | } |
---|
2020 | k=k+1; |
---|
2021 | } |
---|
2022 | return(P,sP,CI,dB); |
---|
2023 | } |
---|
2024 | |
---|
2025 | proc primary_char0 (matrix REY,matrix M,list #) |
---|
2026 | USAGE: primary_char0(REY,M[,v]); |
---|
2027 | REY: a <matrix> representing the Reynolds operator, M: a 1x2 <matrix> |
---|
2028 | representing the Molien series, v: an optional <int> |
---|
2029 | ASSUME: REY is the first return value of group_reynolds or reynolds_molien and |
---|
2030 | M the one of molien or the second one of reynolds_molien |
---|
2031 | DISPLAY: information about the various stages of the programme if v does not |
---|
2032 | equal 0 |
---|
2033 | RETURN: primary invariants (type <matrix>) of the invariant ring |
---|
2034 | EXAMPLE: example primary_char0; shows an example |
---|
2035 | THEORY: Bases of homogeneous invariants are generated successively and those |
---|
2036 | are chosen as primary invariants that lower the dimension of the ideal |
---|
2037 | generated by the previously found invariants (see paper "Generating a |
---|
2038 | Noetherian Normalization of the Invariant Ring of a Finite Group" by |
---|
2039 | Decker, Heydtmann, Schreyer (1997) to appear in JSC). |
---|
2040 | { degBound=0; |
---|
2041 | if (char(basering)<>0) |
---|
2042 | { "ERROR: primary_char0 should only be used with rings of characteristic 0."; |
---|
2043 | return(); |
---|
2044 | } |
---|
2045 | //----------------- checking input and setting verbose mode ------------------ |
---|
2046 | if (size(#)>1) |
---|
2047 | { "ERROR: primary_char0 can only have three parameters."; |
---|
2048 | return(); |
---|
2049 | } |
---|
2050 | if (size(#)==1) |
---|
2051 | { if (typeof(#[1])<>"int") |
---|
2052 | { "ERROR: The third parameter should be of type <int>."; |
---|
2053 | return(); |
---|
2054 | } |
---|
2055 | else |
---|
2056 | { int v=#[1]; |
---|
2057 | } |
---|
2058 | } |
---|
2059 | else |
---|
2060 | { int v=0; |
---|
2061 | } |
---|
2062 | int n=nvars(basering); // n is the number of variables, as well |
---|
2063 | // as the size of the matrices, as well |
---|
2064 | // as the number of primary invariants, |
---|
2065 | // we should get |
---|
2066 | if (ncols(REY)<>n) |
---|
2067 | { "ERROR: First parameter ought to be the Reynolds operator." |
---|
2068 | return(); |
---|
2069 | } |
---|
2070 | if (ncols(M)<>2 or nrows(M)<>1) |
---|
2071 | { "ERROR: Second parameter ought to be the Molien series." |
---|
2072 | return(); |
---|
2073 | } |
---|
2074 | //---------------------------------------------------------------------------- |
---|
2075 | if (v && voice<>2) |
---|
2076 | { " We can start looking for primary invariants..."; |
---|
2077 | ""; |
---|
2078 | } |
---|
2079 | if (v && voice==2) |
---|
2080 | { ""; |
---|
2081 | } |
---|
2082 | //------------------------- initializing variables --------------------------- |
---|
2083 | int dB; |
---|
2084 | poly p(1..2); // p(1) will be used for single terms of |
---|
2085 | // the partial expansion, p(2) to store |
---|
2086 | p(1..2)=partial_molien(M,1); // the intermediate result - |
---|
2087 | poly v1=var(1); // we need v1 to split off coefficients |
---|
2088 | // in the partial expansion of M (which |
---|
2089 | // is in terms of the first variable) - |
---|
2090 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
2091 | // space of invariants of degree d, |
---|
2092 | // newdim: dimension the ideal generated |
---|
2093 | // the primary invariants plus basis |
---|
2094 | // elements, dif=n-i-newdim, i.e. the |
---|
2095 | // number of new primary invairants that |
---|
2096 | // should be added in this degree - |
---|
2097 | ideal P,Pplus,sPplus,CI,B; // P: will contain primary invariants, |
---|
2098 | // Pplus: P+B, CI: a complete |
---|
2099 | // intersection with the same Hilbert |
---|
2100 | // function as P |
---|
2101 | ideal sP=std(P); |
---|
2102 | dB=1; // used as degree bound |
---|
2103 | int i=0; |
---|
2104 | //-------------- loop that searches for primary invariants ------------------ |
---|
2105 | while(1) // repeat until n primary invariants are |
---|
2106 | { // found - |
---|
2107 | p(1..2)=partial_molien(M,1,p(2)); // next term of the partial expansion - |
---|
2108 | d=deg(p(1)); // degree where we'll search - |
---|
2109 | cd=int(coef(p(1),v1)[2,1]); // dimension of the homogeneous space of |
---|
2110 | // inviarants of degree d |
---|
2111 | if (v) |
---|
2112 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
2113 | } |
---|
2114 | B=invariant_basis_reynolds(REY,d,intvec(cd,6)); // basis of invariants of |
---|
2115 | // degree d |
---|
2116 | if (B[1]<>0) |
---|
2117 | { Pplus=P+B; |
---|
2118 | sPplus=std(Pplus); |
---|
2119 | newdim=dim(sPplus); |
---|
2120 | dif=n-i-newdim; |
---|
2121 | } |
---|
2122 | else |
---|
2123 | { dif=0; |
---|
2124 | } |
---|
2125 | if (dif<>0) // we have to find dif new primary |
---|
2126 | { // invariants |
---|
2127 | if (cd<>dif) |
---|
2128 | { P,sP,CI,dB=search(n,d,B,cd,P,sP,i,dif,dB,CI); // searching for dif invariants |
---|
2129 | } // i.e. we can take all of B |
---|
2130 | else |
---|
2131 | { for(j=i+1;j>i+dif;j=j+1) |
---|
2132 | { CI=CI+ideal(var(j)^d); |
---|
2133 | } |
---|
2134 | dB=dB+dif*(d-1); |
---|
2135 | P=Pplus; |
---|
2136 | sP=sPplus; |
---|
2137 | } |
---|
2138 | if (v) |
---|
2139 | { for (j=1;j<=dif;j=j+1) |
---|
2140 | { " We find: "+string(P[i+j]); |
---|
2141 | } |
---|
2142 | } |
---|
2143 | i=i+dif; |
---|
2144 | if (i==n) // found all primary invariants |
---|
2145 | { if (v) |
---|
2146 | { ""; |
---|
2147 | " We found all primary invariants."; |
---|
2148 | ""; |
---|
2149 | } |
---|
2150 | return(matrix(P)); |
---|
2151 | } |
---|
2152 | } // done with degree d |
---|
2153 | } |
---|
2154 | } |
---|
2155 | example |
---|
2156 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
2157 | echo=2; |
---|
2158 | ring R=0,(x,y,z),dp; |
---|
2159 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
2160 | matrix REY,M=reynolds_molien(A); |
---|
2161 | matrix P=primary_char0(REY,M); |
---|
2162 | print(P); |
---|
2163 | } |
---|
2164 | |
---|
2165 | proc primary_charp (matrix REY,string ring_name,list #) |
---|
2166 | USAGE: primary_charp(REY,ringname[,v]); |
---|
2167 | REY: a <matrix> representing the Reynolds operator, ringname: a |
---|
2168 | <string> giving the name of a ring where the Molien series is stored, |
---|
2169 | v: an optional <int> |
---|
2170 | ASSUME: REY is the first return value of group_reynolds or reynolds_molien and |
---|
2171 | ringname gives the name of a ring of characteristic 0 that has been |
---|
2172 | created by molien or reynolds_molien |
---|
2173 | DISPLAY: information about the various stages of the programme if v does not |
---|
2174 | equal 0 |
---|
2175 | RETURN: primary invariants (type <matrix>) of the invariant ring |
---|
2176 | EXAMPLE: example primary_charp; shows an example |
---|
2177 | THEORY: Bases of homogeneous invariants are generated successively and those |
---|
2178 | are chosen as primary invariants that lower the dimension of the ideal |
---|
2179 | generated by the previously found invariants (see paper "Generating a |
---|
2180 | Noetherian Normalization of the Invariant Ring of a Finite Group" by |
---|
2181 | Decker, Heydtmann, Schreyer (1997) to appear in JSC). |
---|
2182 | { degBound=0; |
---|
2183 | // ---------------- checking input and setting verbose mode ------------------- |
---|
2184 | if (char(basering)==0) |
---|
2185 | { "ERROR: primary_charp should only be used with rings of characteristic p>0."; |
---|
2186 | return(); |
---|
2187 | } |
---|
2188 | if (size(#)>1) |
---|
2189 | { "ERROR: primary_charp can only have three parameters."; |
---|
2190 | return(); |
---|
2191 | } |
---|
2192 | if (size(#)==1) |
---|
2193 | { if (typeof(#[1])<>"int") |
---|
2194 | { "ERROR: The third parameter should be of type <int>."; |
---|
2195 | return(); |
---|
2196 | } |
---|
2197 | else |
---|
2198 | { int v=#[1]; |
---|
2199 | } |
---|
2200 | } |
---|
2201 | else |
---|
2202 | { int v=0; |
---|
2203 | } |
---|
2204 | def br=basering; |
---|
2205 | int n=nvars(br); // n is the number of variables, as well |
---|
2206 | // as the size of the matrices, as well |
---|
2207 | // as the number of primary invariants, |
---|
2208 | // we should get |
---|
2209 | if (ncols(REY)<>n) |
---|
2210 | { "ERROR: First parameter ought to be the Reynolds operator." |
---|
2211 | return(); |
---|
2212 | } |
---|
2213 | if (typeof(`ring_name`)<>"ring") |
---|
2214 | { "ERROR: Second parameter ought to the name of a ring where the Molien"; |
---|
2215 | " is stored."; |
---|
2216 | return(); |
---|
2217 | } |
---|
2218 | //---------------------------------------------------------------------------- |
---|
2219 | if (v && voice<>2) |
---|
2220 | { " We can start looking for primary invariants..."; |
---|
2221 | ""; |
---|
2222 | } |
---|
2223 | if (v && voice==2) |
---|
2224 | { ""; |
---|
2225 | } |
---|
2226 | //----------------------- initializing variables ----------------------------- |
---|
2227 | int dB; |
---|
2228 | setring `ring_name`; // the Molien series is stores here - |
---|
2229 | poly p(1..2); // p(1) will be used for single terms of |
---|
2230 | // the partial expansion, p(2) to store |
---|
2231 | p(1..2)=partial_molien(M,1); // the intermediate result - |
---|
2232 | poly v1=var(1); // we need v1 to split off coefficients |
---|
2233 | // in the partial expansion of M (which |
---|
2234 | // is in terms of the first variable) |
---|
2235 | setring br; |
---|
2236 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
2237 | // space of invariants of degree d, |
---|
2238 | // newdim: dimension the ideal generated |
---|
2239 | // the primary invariants plus basis |
---|
2240 | // elements, dif=n-i-newdim, i.e. the |
---|
2241 | // number of new primary invairants that |
---|
2242 | // should be added in this degree - |
---|
2243 | ideal P,Pplus,sPplus,CI,B; // P: will contain primary invariants, |
---|
2244 | // Pplus: P+B, CI: a complete |
---|
2245 | // intersection with the same Hilbert |
---|
2246 | // function as P |
---|
2247 | ideal sP=std(P); |
---|
2248 | dB=1; // used as degree bound |
---|
2249 | int i=0; |
---|
2250 | //---------------- loop that searches for primary invariants ----------------- |
---|
2251 | while(1) // repeat until n primary invariants are |
---|
2252 | { // found |
---|
2253 | setring `ring_name`; |
---|
2254 | p(1..2)=partial_molien(M,1,p(2)); // next term of the partial expansion - |
---|
2255 | d=deg(p(1)); // degree where we'll search - |
---|
2256 | cd=int(coef(p(1),v1)[2,1]); // dimension of the homogeneous space of |
---|
2257 | // inviarants of degree d |
---|
2258 | setring br; |
---|
2259 | if (v) |
---|
2260 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
2261 | } |
---|
2262 | B=invariant_basis_reynolds(REY,d,intvec(cd,6)); // basis of invariants of |
---|
2263 | // degree d |
---|
2264 | if (B[1]<>0) |
---|
2265 | { Pplus=P+B; |
---|
2266 | sPplus=std(Pplus); |
---|
2267 | newdim=dim(sPplus); |
---|
2268 | dif=n-i-newdim; |
---|
2269 | } |
---|
2270 | else |
---|
2271 | { dif=0; |
---|
2272 | } |
---|
2273 | if (dif<>0) // we have to find dif new primary |
---|
2274 | { // invariants |
---|
2275 | if (cd<>dif) |
---|
2276 | { P,sP,CI,dB=p_search(n,d,B,cd,P,sP,i,dif,dB,CI); |
---|
2277 | } |
---|
2278 | else // i.e. we can take all of B |
---|
2279 | { for(j=i+1;j>i+dif;j=j+1) |
---|
2280 | { CI=CI+ideal(var(j)^d); |
---|
2281 | } |
---|
2282 | dB=dB+dif*(d-1); |
---|
2283 | P=Pplus; |
---|
2284 | sP=sPplus; |
---|
2285 | } |
---|
2286 | if (v) |
---|
2287 | { for (j=1;j<=size(P)-i;j=j+1) |
---|
2288 | { " We find: "+string(P[i+j]); |
---|
2289 | } |
---|
2290 | } |
---|
2291 | i=size(P); |
---|
2292 | if (i==n) // found all primary invariants |
---|
2293 | { if (v) |
---|
2294 | { ""; |
---|
2295 | " We found all primary invariants."; |
---|
2296 | ""; |
---|
2297 | } |
---|
2298 | return(matrix(P)); |
---|
2299 | } |
---|
2300 | } // done with degree d |
---|
2301 | } |
---|
2302 | } |
---|
2303 | example |
---|
2304 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7 (changed into"; |
---|
2305 | " characteristic 3)"; |
---|
2306 | echo=2; |
---|
2307 | ring R=3,(x,y,z),dp; |
---|
2308 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
2309 | list L=group_reynolds(A); |
---|
2310 | string newring="alskdfj"; |
---|
2311 | molien(L[2..size(L)],newring); |
---|
2312 | matrix P=primary_charp(L[1],newring); |
---|
2313 | kill `newring`; |
---|
2314 | print(P); |
---|
2315 | } |
---|
2316 | |
---|
2317 | proc primary_char0_no_molien (matrix REY, list #) |
---|
2318 | USAGE: primary_char0_no_molien(REY[,v]); |
---|
2319 | REY: a <matrix> representing the Reynolds operator, v: an optional |
---|
2320 | <int> |
---|
2321 | ASSUME: REY is the first return value of group_reynolds or reynolds_molien |
---|
2322 | DISPLAY: information about the various stages of the programme if v does not |
---|
2323 | equal 0 |
---|
2324 | RETURN: primary invariants (type <matrix>) of the invariant ring and an |
---|
2325 | <intvec> listing some of the degrees where no non-trivial homogeneous |
---|
2326 | invariants are to be found |
---|
2327 | EXAMPLE: example primary_char0_no_molien; shows an example |
---|
2328 | THEORY: Bases of homogeneous invariants are generated successively and those |
---|
2329 | are chosen as primary invariants that lower the dimension of the ideal |
---|
2330 | generated by the previously found invariants (see paper "Generating a |
---|
2331 | Noetherian Normalization of the Invariant Ring of a Finite Group" by |
---|
2332 | Decker, Heydtmann, Schreyer (1997) to appear in JSC). |
---|
2333 | { degBound=0; |
---|
2334 | //-------------- checking input and setting verbose mode --------------------- |
---|
2335 | if (char(basering)<>0) |
---|
2336 | { "ERROR: primary_char0_no_molien should only be used with rings of"; |
---|
2337 | " characteristic 0."; |
---|
2338 | return(); |
---|
2339 | } |
---|
2340 | if (size(#)>1) |
---|
2341 | { "ERROR: primary_char0_no_molien can only have two parameters."; |
---|
2342 | return(); |
---|
2343 | } |
---|
2344 | if (size(#)==1) |
---|
2345 | { if (typeof(#[1])<>"int") |
---|
2346 | { "ERROR: The second parameter should be of type <int>."; |
---|
2347 | return(); |
---|
2348 | } |
---|
2349 | else |
---|
2350 | { int v=#[1]; |
---|
2351 | } |
---|
2352 | } |
---|
2353 | else |
---|
2354 | { int v=0; |
---|
2355 | } |
---|
2356 | int n=nvars(basering); // n is the number of variables, as well |
---|
2357 | // as the size of the matrices, as well |
---|
2358 | // as the number of primary invariants, |
---|
2359 | // we should get |
---|
2360 | if (ncols(REY)<>n) |
---|
2361 | { "ERROR: First parameter ought to be the Reynolds operator." |
---|
2362 | return(); |
---|
2363 | } |
---|
2364 | //---------------------------------------------------------------------------- |
---|
2365 | if (v && voice<>2) |
---|
2366 | { " We can start looking for primary invariants..."; |
---|
2367 | ""; |
---|
2368 | } |
---|
2369 | if (v && voice==2) |
---|
2370 | { ""; |
---|
2371 | } |
---|
2372 | //----------------------- initializing variables ----------------------------- |
---|
2373 | int dB; |
---|
2374 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
2375 | // space of invariants of degree d, |
---|
2376 | // newdim: dimension the ideal generated |
---|
2377 | // the primary invariants plus basis |
---|
2378 | // elements, dif=n-i-newdim, i.e. the |
---|
2379 | // number of new primary invairants that |
---|
2380 | // should be added in this degree - |
---|
2381 | ideal P,Pplus,CI,B; // P: will contain primary invariants, |
---|
2382 | // Pplus: P+B, CI: a complete |
---|
2383 | // intersection with the same Hilbert |
---|
2384 | // function as P |
---|
2385 | ideal sP=std(P); |
---|
2386 | dB=1; // used as degree bound - |
---|
2387 | d=0; // initializing |
---|
2388 | int i=0; |
---|
2389 | intvec deg_vector; |
---|
2390 | //------------------ loop that searches for primary invariants --------------- |
---|
2391 | while(1) // repeat until n primary invariants are |
---|
2392 | { // found - |
---|
2393 | d=d+1; // degree where we'll search |
---|
2394 | if (v) |
---|
2395 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
2396 | } |
---|
2397 | B=invariant_basis_reynolds(REY,d,intvec(-1,6)); // basis of invariants of |
---|
2398 | // degree d |
---|
2399 | if (B[1]<>0) |
---|
2400 | { Pplus=P+B; |
---|
2401 | newdim=dim(std(Pplus)); |
---|
2402 | dif=n-i-newdim; |
---|
2403 | } |
---|
2404 | else |
---|
2405 | { dif=0; |
---|
2406 | deg_vector=deg_vector,d; |
---|
2407 | } |
---|
2408 | if (dif<>0) // we have to find dif new primary |
---|
2409 | { // invariants |
---|
2410 | cd=size(B); |
---|
2411 | if (cd<>dif) |
---|
2412 | { P,sP,CI,dB=search(n,d,B,cd,P,sP,i,dif,dB,CI); |
---|
2413 | } |
---|
2414 | else // i.e. we can take all of B |
---|
2415 | { for(j=i+1;j<=i+dif;j=j+1) |
---|
2416 | { CI=CI+ideal(var(j)^d); |
---|
2417 | } |
---|
2418 | dB=dB+dif*(d-1); |
---|
2419 | P=Pplus; |
---|
2420 | sP=std(P); |
---|
2421 | } |
---|
2422 | if (v) |
---|
2423 | { for (j=1;j<=dif;j=j+1) |
---|
2424 | { " We find: "+string(P[i+j]); |
---|
2425 | } |
---|
2426 | } |
---|
2427 | i=i+dif; |
---|
2428 | if (i==n) // found all primary invariants |
---|
2429 | { if (v) |
---|
2430 | { ""; |
---|
2431 | " We found all primary invariants."; |
---|
2432 | ""; |
---|
2433 | } |
---|
2434 | if (deg_vector==0) |
---|
2435 | { return(matrix(P)); |
---|
2436 | } |
---|
2437 | else |
---|
2438 | { return(matrix(P),compress(deg_vector)); |
---|
2439 | } |
---|
2440 | } |
---|
2441 | } // done with degree d |
---|
2442 | else |
---|
2443 | { if (v) |
---|
2444 | { " None here..."; |
---|
2445 | } |
---|
2446 | } |
---|
2447 | } |
---|
2448 | } |
---|
2449 | example |
---|
2450 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
2451 | echo=2; |
---|
2452 | ring R=0,(x,y,z),dp; |
---|
2453 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
2454 | list L=group_reynolds(A); |
---|
2455 | list l=primary_char0_no_molien(L[1]); |
---|
2456 | print(l[1]); |
---|
2457 | } |
---|
2458 | |
---|
2459 | proc primary_charp_no_molien (matrix REY, list #) |
---|
2460 | USAGE: primary_charp_no_molien(REY[,v]); |
---|
2461 | REY: a <matrix> representing the Reynolds operator, v: an optional |
---|
2462 | <int> |
---|
2463 | ASSUME: REY is the first return value of group_reynolds or reynolds_molien |
---|
2464 | DISPLAY: information about the various stages of the programme if v does not |
---|
2465 | equal 0 |
---|
2466 | RETURN: primary invariants (type <matrix>) of the invariant ring and an |
---|
2467 | <intvec> listing some of the degrees where no non-trivial homogeneous |
---|
2468 | invariants are to be found |
---|
2469 | EXAMPLE: example primary_charp_no_molien; shows an example |
---|
2470 | THEORY: Bases of homogeneous invariants are generated successively and those |
---|
2471 | are chosen as primary invariants that lower the dimension of the ideal |
---|
2472 | generated by the previously found invariants (see paper "Generating a |
---|
2473 | Noetherian Normalization of the Invariant Ring of a Finite Group" by |
---|
2474 | Decker, Heydtmann, Schreyer (1997) to appear in JSC). |
---|
2475 | { degBound=0; |
---|
2476 | //----------------- checking input and setting verbose mode ------------------ |
---|
2477 | if (char(basering)==0) |
---|
2478 | { "ERROR: primary_charp_no_molien should only be used with rings of"; |
---|
2479 | " characteristic p>0."; |
---|
2480 | return(); |
---|
2481 | } |
---|
2482 | if (size(#)>1) |
---|
2483 | { "ERROR: primary_charp_no_molien can only have two parameters."; |
---|
2484 | return(); |
---|
2485 | } |
---|
2486 | if (size(#)==1) |
---|
2487 | { if (typeof(#[1])<>"int") |
---|
2488 | { "ERROR: The second parameter should be of type <int>."; |
---|
2489 | return(); |
---|
2490 | } |
---|
2491 | else |
---|
2492 | { int v=#[1]; |
---|
2493 | } |
---|
2494 | } |
---|
2495 | else |
---|
2496 | { int v=0; |
---|
2497 | } |
---|
2498 | int n=nvars(basering); // n is the number of variables, as well |
---|
2499 | // as the size of the matrices, as well |
---|
2500 | // as the number of primary invariants, |
---|
2501 | // we should get |
---|
2502 | if (ncols(REY)<>n) |
---|
2503 | { "ERROR: First parameter ought to be the Reynolds operator." |
---|
2504 | return(); |
---|
2505 | } |
---|
2506 | //---------------------------------------------------------------------------- |
---|
2507 | if (v && voice<>2) |
---|
2508 | { " We can start looking for primary invariants..."; |
---|
2509 | ""; |
---|
2510 | } |
---|
2511 | if (v && voice==2) |
---|
2512 | { ""; |
---|
2513 | } |
---|
2514 | //-------------------- initializing variables -------------------------------- |
---|
2515 | int dB; |
---|
2516 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
2517 | // space of invariants of degree d, |
---|
2518 | // newdim: dimension the ideal generated |
---|
2519 | // the primary invariants plus basis |
---|
2520 | // elements, dif=n-i-newdim, i.e. the |
---|
2521 | // number of new primary invairants that |
---|
2522 | // should be added in this degree - |
---|
2523 | ideal P,Pplus,sPplus,CI,B; // P: will contain primary invariants, |
---|
2524 | // Pplus: P+B, CI: a complete |
---|
2525 | // intersection with the same Hilbert |
---|
2526 | // function as P |
---|
2527 | ideal sP=std(P); |
---|
2528 | dB=1; // used as degree bound - |
---|
2529 | d=0; // initializing |
---|
2530 | int i=0; |
---|
2531 | intvec deg_vector; |
---|
2532 | //------------------ loop that searches for primary invariants --------------- |
---|
2533 | while(1) // repeat until n primary invariants are |
---|
2534 | { // found - |
---|
2535 | d=d+1; // degree where we'll search |
---|
2536 | if (v) |
---|
2537 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
2538 | } |
---|
2539 | B=invariant_basis_reynolds(REY,d,intvec(-1,6)); // basis of invariants of |
---|
2540 | // degree d |
---|
2541 | if (B[1]<>0) |
---|
2542 | { Pplus=P+B; |
---|
2543 | sPplus=std(Pplus); |
---|
2544 | newdim=dim(sPplus); |
---|
2545 | dif=n-i-newdim; |
---|
2546 | } |
---|
2547 | else |
---|
2548 | { dif=0; |
---|
2549 | deg_vector=deg_vector,d; |
---|
2550 | } |
---|
2551 | if (dif<>0) // we have to find dif new primary |
---|
2552 | { // invariants |
---|
2553 | cd=size(B); |
---|
2554 | if (cd<>dif) |
---|
2555 | { P,sP,CI,dB=p_search(n,d,B,cd,P,sP,i,dif,dB,CI); |
---|
2556 | } |
---|
2557 | else // i.e. we can take all of B |
---|
2558 | { for(j=i+1;j<=i+dif;j=j+1) |
---|
2559 | { CI=CI+ideal(var(j)^d); |
---|
2560 | } |
---|
2561 | dB=dB+dif*(d-1); |
---|
2562 | P=Pplus; |
---|
2563 | sP=sPplus; |
---|
2564 | } |
---|
2565 | if (v) |
---|
2566 | { for (j=1;j<=size(P)-i;j=j+1) |
---|
2567 | { " We find: "+string(P[i+j]); |
---|
2568 | } |
---|
2569 | } |
---|
2570 | i=size(P); |
---|
2571 | if (i==n) // found all primary invariants |
---|
2572 | { if (v) |
---|
2573 | { ""; |
---|
2574 | " We found all primary invariants."; |
---|
2575 | ""; |
---|
2576 | } |
---|
2577 | if (deg_vector==0) |
---|
2578 | { return(matrix(P)); |
---|
2579 | } |
---|
2580 | else |
---|
2581 | { return(matrix(P),compress(deg_vector)); |
---|
2582 | } |
---|
2583 | } |
---|
2584 | } // done with degree d |
---|
2585 | else |
---|
2586 | { if (v) |
---|
2587 | { " None here..."; |
---|
2588 | } |
---|
2589 | } |
---|
2590 | } |
---|
2591 | } |
---|
2592 | example |
---|
2593 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7 (changed into"; |
---|
2594 | " characteristic 3)"; |
---|
2595 | echo=2; |
---|
2596 | ring R=3,(x,y,z),dp; |
---|
2597 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
2598 | list L=group_reynolds(A); |
---|
2599 | list l=primary_charp_no_molien(L[1]); |
---|
2600 | print(l[1]); |
---|
2601 | } |
---|
2602 | |
---|
2603 | proc primary_charp_without (list #) |
---|
2604 | USAGE: primary_charp_without(G1,G2,...[,v]); |
---|
2605 | G1,G2,...: <matrices> generating a finite matrix group, v: an optional |
---|
2606 | <int> |
---|
2607 | DISPLAY: information about the various stages of the programme if v does not |
---|
2608 | equal 0 |
---|
2609 | RETURN: primary invariants (type <matrix>) of the invariant ring |
---|
2610 | EXAMPLE: example primary_charp_without; shows an example |
---|
2611 | THEORY: Bases of homogeneous invariants are generated successively and those |
---|
2612 | are chosen as primary invariants that lower the dimension of the ideal |
---|
2613 | generated by the previously found invariants (see paper "Generating a |
---|
2614 | Noetherian Normalization of the Invariant Ring of a Finite Group" by |
---|
2615 | Decker, Heydtmann, Schreyer (1997) to appear in JSC). No Reynolds |
---|
2616 | operator or Molien series is used. |
---|
2617 | { degBound=0; |
---|
2618 | //--------------------- checking input and setting verbose mode -------------- |
---|
2619 | if (char(basering)==0) |
---|
2620 | { "ERROR: primary_charp_without should only be used with rings of"; |
---|
2621 | " characteristic 0."; |
---|
2622 | return(); |
---|
2623 | } |
---|
2624 | if (size(#)==0) |
---|
2625 | { "ERROR: There are no parameters."; |
---|
2626 | return(); |
---|
2627 | } |
---|
2628 | if (typeof(#[size(#)])=="int") |
---|
2629 | { int v=#[size(#)]; |
---|
2630 | int gen_num=size(#)-1; |
---|
2631 | if (gen_num==0) |
---|
2632 | { "ERROR: There are no generators of a finite matrix group given."; |
---|
2633 | return(); |
---|
2634 | } |
---|
2635 | } |
---|
2636 | else |
---|
2637 | { int v=0; |
---|
2638 | int gen_num=size(#); |
---|
2639 | } |
---|
2640 | int n=nvars(basering); // n is the number of variables, as well |
---|
2641 | // as the size of the matrices, as well |
---|
2642 | // as the number of primary invariants, |
---|
2643 | // we should get |
---|
2644 | for (int i=1;i<=gen_num;i=i+1) |
---|
2645 | { if (typeof(#[i])=="matrix") |
---|
2646 | { if (nrows(#[i])<>n or ncols(#[i])<>n) |
---|
2647 | { "ERROR: The number of variables of the base ring needs to be the same"; |
---|
2648 | " as the dimension of the square matrices"; |
---|
2649 | return(); |
---|
2650 | } |
---|
2651 | } |
---|
2652 | else |
---|
2653 | { "ERROR: The first parameters should be a list of matrices"; |
---|
2654 | return(); |
---|
2655 | } |
---|
2656 | } |
---|
2657 | //---------------------------------------------------------------------------- |
---|
2658 | if (v && voice==2) |
---|
2659 | { ""; |
---|
2660 | } |
---|
2661 | //---------------------------- initializing variables ------------------------ |
---|
2662 | int dB; |
---|
2663 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
2664 | // space of invariants of degree d, |
---|
2665 | // newdim: dimension the ideal generated |
---|
2666 | // the primary invariants plus basis |
---|
2667 | // elements, dif=n-i-newdim, i.e. the |
---|
2668 | // number of new primary invairants that |
---|
2669 | // should be added in this degree - |
---|
2670 | ideal P,Pplus,sPplus,CI,B; // P: will contain primary invariants, |
---|
2671 | // Pplus: P+B, CI: a complete |
---|
2672 | // intersection with the same Hilbert |
---|
2673 | // function as P |
---|
2674 | ideal sP=std(P); |
---|
2675 | dB=1; // used as degree bound - |
---|
2676 | d=0; // initializing |
---|
2677 | i=0; |
---|
2678 | intvec deg_vector; |
---|
2679 | //-------------------- loop that searches for primary invariants ------------- |
---|
2680 | while(1) // repeat until n primary invariants are |
---|
2681 | { // found - |
---|
2682 | d=d+1; // degree where we'll search |
---|
2683 | if (v) |
---|
2684 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
2685 | } |
---|
2686 | B=invariant_basis(d,#[1..gen_num]); // basis of invariants of degree d |
---|
2687 | if (B[1]<>0) |
---|
2688 | { Pplus=P+B; |
---|
2689 | sPplus=std(Pplus); |
---|
2690 | newdim=dim(sPplus); |
---|
2691 | dif=n-i-newdim; |
---|
2692 | } |
---|
2693 | else |
---|
2694 | { dif=0; |
---|
2695 | deg_vector=deg_vector,d; |
---|
2696 | } |
---|
2697 | if (dif<>0) // we have to find dif new primary |
---|
2698 | { // invariants |
---|
2699 | cd=size(B); |
---|
2700 | if (cd<>dif) |
---|
2701 | { P,sP,CI,dB=p_search(n,d,B,cd,P,sP,i,dif,dB,CI); |
---|
2702 | } |
---|
2703 | else // i.e. we can take all of B |
---|
2704 | { for(j=i+1;j<=i+dif;j=j+1) |
---|
2705 | { CI=CI+ideal(var(j)^d); |
---|
2706 | } |
---|
2707 | dB=dB+dif*(d-1); |
---|
2708 | P=Pplus; |
---|
2709 | sP=sPplus; |
---|
2710 | } |
---|
2711 | if (v) |
---|
2712 | { for (j=1;j<=size(P)-i;j=j+1) |
---|
2713 | { " We find: "+string(P[i+j]); |
---|
2714 | } |
---|
2715 | } |
---|
2716 | i=size(P); |
---|
2717 | if (i==n) // found all primary invariants |
---|
2718 | { if (v) |
---|
2719 | { ""; |
---|
2720 | " We found all primary invariants."; |
---|
2721 | ""; |
---|
2722 | } |
---|
2723 | return(matrix(P)); |
---|
2724 | } |
---|
2725 | } // done with degree d |
---|
2726 | else |
---|
2727 | { if (v) |
---|
2728 | { " None here..."; |
---|
2729 | } |
---|
2730 | } |
---|
2731 | } |
---|
2732 | } |
---|
2733 | example |
---|
2734 | { echo=2; |
---|
2735 | ring R=2,(x,y,z),dp; |
---|
2736 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
2737 | matrix P=primary_charp_without(A); |
---|
2738 | print(P); |
---|
2739 | } |
---|
2740 | |
---|
2741 | proc primary_invariants (list #) |
---|
2742 | USAGE: primary_invariants(G1,G2,...[,flags]); |
---|
2743 | G1,G2,...: <matrices> generating a finite matrix group, flags: an |
---|
2744 | optional <intvec> with three entries, if the first one equals 0 (also |
---|
2745 | the default), the programme attempts to compute the Molien series and |
---|
2746 | Reynolds operator, if it equals 1, the programme is told that the |
---|
2747 | Molien series should not be computed, if it equals -1 characteristic 0 |
---|
2748 | is simulated, i.e. the Molien series is computed as if the base field |
---|
2749 | were characteristic 0 (the user must choose a field of large prime |
---|
2750 | characteristic, e.g. 32003) and if the first one is anything else, it |
---|
2751 | means that the characteristic of the base field divides the group |
---|
2752 | order, the second component should give the size of intervals between |
---|
2753 | canceling common factors in the expansion of the Molien series, 0 (the |
---|
2754 | default) means only once after generating all terms, in prime |
---|
2755 | characteristic also a negative number can be given to indicate that |
---|
2756 | common factors should always be canceled when the expansion is simple |
---|
2757 | (the root of the extension field does not occur among the coefficients) |
---|
2758 | DISPLAY: information about the various stages of the programme if the third |
---|
2759 | flag does not equal 0 |
---|
2760 | RETURN: primary invariants (type <matrix>) of the invariant ring and if |
---|
2761 | computable Reynolds operator (type <matrix>) and Molien series (type |
---|
2762 | <matrix>), if the first flag is 1 and we are in the non-modular case |
---|
2763 | then an <intvec> is returned giving some of the degrees where no |
---|
2764 | non-trivial homogeneous invariants can be found |
---|
2765 | EXAMPLE: example primary_invariants; shows an example |
---|
2766 | THEORY: Bases of homogeneous invariants are generated successively and those |
---|
2767 | are chosen as primary invariants that lower the dimension of the ideal |
---|
2768 | generated by the previously found invariants (see paper "Generating a |
---|
2769 | Noetherian Normalization of the Invariant Ring of a Finite Group" by |
---|
2770 | Decker, Heydtmann, Schreyer (1997) to appear in JSC). |
---|
2771 | { |
---|
2772 | // ----------------- checking input and setting flags ------------------------ |
---|
2773 | if (size(#)==0) |
---|
2774 | { "ERROR: There are no parameters."; |
---|
2775 | return(); |
---|
2776 | } |
---|
2777 | int ch=char(basering); // the algorithms depend very much on the |
---|
2778 | // characteristic of the ground field |
---|
2779 | int n=nvars(basering); // n is the number of variables, as well |
---|
2780 | // as the size of the matrices, as well |
---|
2781 | // as the number of primary invariants, |
---|
2782 | // we should get |
---|
2783 | int gen_num; |
---|
2784 | int mol_flag,v; |
---|
2785 | if (typeof(#[size(#)])=="intvec") |
---|
2786 | { if (size(#[size(#)])<>3) |
---|
2787 | { "ERROR: <intvec> should have three entries."; |
---|
2788 | return(); |
---|
2789 | } |
---|
2790 | gen_num=size(#)-1; |
---|
2791 | mol_flag=#[size(#)][1]; |
---|
2792 | if (#[size(#)][2]<0 && (ch==0 or (ch<>0 && mol_flag==-1))) |
---|
2793 | { "ERROR: the second component of <intvec> should be >=0"; |
---|
2794 | return(); |
---|
2795 | } |
---|
2796 | int interval=#[size(#)][2]; |
---|
2797 | v=#[size(#)][3]; |
---|
2798 | if (gen_num==0) |
---|
2799 | { "ERROR: There are no generators of a finite matrix group given."; |
---|
2800 | return(); |
---|
2801 | } |
---|
2802 | } |
---|
2803 | else |
---|
2804 | { gen_num=size(#); |
---|
2805 | mol_flag=0; |
---|
2806 | int interval=0; |
---|
2807 | v=0; |
---|
2808 | } |
---|
2809 | for (int i=1;i<=gen_num;i=i+1) |
---|
2810 | { if (typeof(#[i])=="matrix") |
---|
2811 | { if (nrows(#[i])<>n or ncols(#[i])<>n) |
---|
2812 | { "ERROR: The number of variables of the base ring needs to be the same"; |
---|
2813 | " as the dimension of the square matrices"; |
---|
2814 | return(); |
---|
2815 | } |
---|
2816 | } |
---|
2817 | else |
---|
2818 | { "ERROR: The first parameters should be a list of matrices"; |
---|
2819 | return(); |
---|
2820 | } |
---|
2821 | } |
---|
2822 | //---------------------------------------------------------------------------- |
---|
2823 | if (mol_flag==0) |
---|
2824 | { if (ch==0) |
---|
2825 | { matrix REY,M=reynolds_molien(#[1..gen_num],intvec(mol_flag,interval,v)); |
---|
2826 | // one will contain Reynolds operator and |
---|
2827 | // the other enumerator and denominator |
---|
2828 | // of Molien series |
---|
2829 | matrix P=primary_char0(REY,M,v); |
---|
2830 | return(P,REY,M); |
---|
2831 | } |
---|
2832 | else |
---|
2833 | { list L=group_reynolds(#[1..gen_num],v); |
---|
2834 | if (L[1]<>0) // testing whether we are in the modular |
---|
2835 | { string newring="aksldfalkdsflkj"; // case |
---|
2836 | if (minpoly==0) |
---|
2837 | { if (v) |
---|
2838 | { " We are dealing with the non-modular case."; |
---|
2839 | } |
---|
2840 | if (typeof(L[2])=="int") |
---|
2841 | { molien(L[3..size(L)],newring,L[2],intvec(mol_flag,interval,v)); |
---|
2842 | } |
---|
2843 | else |
---|
2844 | { molien(L[2..size(L)],newring,intvec(mol_flag,interval,v)); |
---|
2845 | } |
---|
2846 | matrix P=primary_charp(L[1],newring,v); |
---|
2847 | return(P,L[1],newring); |
---|
2848 | } |
---|
2849 | else |
---|
2850 | { if (v) |
---|
2851 | { " Since it is impossible for this programme to calculate the Molien series for"; |
---|
2852 | " invariant rings over extension fields of prime characteristic, we have to"; |
---|
2853 | " continue without it."; |
---|
2854 | ""; |
---|
2855 | |
---|
2856 | } |
---|
2857 | list l=primary_charp_no_molien(L[1],v); |
---|
2858 | if (size(l)==2) |
---|
2859 | { return(l[1],L[1],l[2]); |
---|
2860 | } |
---|
2861 | else |
---|
2862 | { return(l[1],L[1]); |
---|
2863 | } |
---|
2864 | } |
---|
2865 | } |
---|
2866 | else // the modular case |
---|
2867 | { if (v) |
---|
2868 | { " There is also no Molien series, we can make use of..."; |
---|
2869 | ""; |
---|
2870 | " We can start looking for primary invariants..."; |
---|
2871 | ""; |
---|
2872 | } |
---|
2873 | return(primary_charp_without(#[1..gen_num],v)); |
---|
2874 | } |
---|
2875 | } |
---|
2876 | } |
---|
2877 | if (mol_flag==1) // the user wants no calculation of the |
---|
2878 | { list L=group_reynolds(#[1..gen_num],v); // Molien series |
---|
2879 | if (ch==0) |
---|
2880 | { list l=primary_char0_no_molien(L[1],v); |
---|
2881 | if (size(l)==2) |
---|
2882 | { return(l[1],L[1],l[2]); |
---|
2883 | } |
---|
2884 | else |
---|
2885 | { return(l[1],L[1]); |
---|
2886 | } |
---|
2887 | } |
---|
2888 | else |
---|
2889 | { if (L[1]<>0) // testing whether we are in the modular |
---|
2890 | { list l=primary_charp_no_molien(L[1],v); // case |
---|
2891 | if (size(l)==2) |
---|
2892 | { return(l[1],L[1],l[2]); |
---|
2893 | } |
---|
2894 | else |
---|
2895 | { return(l[1],L[1]); |
---|
2896 | } |
---|
2897 | } |
---|
2898 | else // the modular case |
---|
2899 | { if (v) |
---|
2900 | { " We can start looking for primary invariants..."; |
---|
2901 | ""; |
---|
2902 | } |
---|
2903 | return(primary_charp_without(#[1..gen_num],v)); |
---|
2904 | } |
---|
2905 | } |
---|
2906 | } |
---|
2907 | if (mol_flag==-1) |
---|
2908 | { if (ch==0) |
---|
2909 | { "ERROR: Characteristic 0 can only be simulated in characteristic p>>0."; |
---|
2910 | return(); |
---|
2911 | } |
---|
2912 | list L=group_reynolds(#[1..gen_num],v); |
---|
2913 | string newring="aksldfalkdsflkj"; |
---|
2914 | molien(L[2..size(L)],newring,intvec(1,interval,v)); |
---|
2915 | matrix P=primary_charp(L[1],newring,v); |
---|
2916 | return(P,L[1],newring); |
---|
2917 | } |
---|
2918 | else // the user specified that the |
---|
2919 | { if (ch==0) // characteristic divides the group order |
---|
2920 | { "ERROR: The characteristic cannot divide the group order when it is 0."; |
---|
2921 | return(); |
---|
2922 | } |
---|
2923 | if (v) |
---|
2924 | { ""; |
---|
2925 | } |
---|
2926 | return(primary_charp_without(#[1..gen_num],v)); |
---|
2927 | } |
---|
2928 | } |
---|
2929 | example |
---|
2930 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
2931 | echo=2; |
---|
2932 | ring R=0,(x,y,z),dp; |
---|
2933 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
2934 | list L=primary_invariants(A); |
---|
2935 | print(L[1]); |
---|
2936 | } |
---|
2937 | |
---|
2938 | //////////////////////////////////////////////////////////////////////////////// |
---|
2939 | // This procedure finds dif primary invariants in degree d. It returns all |
---|
2940 | // primary invariants found so far. The coefficients lie in a field of |
---|
2941 | // characteristic 0. |
---|
2942 | //////////////////////////////////////////////////////////////////////////////// |
---|
2943 | proc search_random (int n,int d,ideal B,int cd,ideal P,int i,int dif,int dB,ideal CI,int max) |
---|
2944 | { string answer; |
---|
2945 | degBound=0; |
---|
2946 | int j,k,test_dim,flag; |
---|
2947 | matrix test_matrix[1][dif]; // the linear combination to test |
---|
2948 | intvec h; // Hilbert series |
---|
2949 | for (j=i+1;j<=i+dif;j=j+1) |
---|
2950 | { CI=CI+ideal(var(j)^d); // homogeneous polynomial of the same |
---|
2951 | // degree as the one we're looking for |
---|
2952 | // is added |
---|
2953 | } |
---|
2954 | ideal TEST; |
---|
2955 | // h=hilb(std(CI),1); |
---|
2956 | dB=dB+dif*(d-1); // used as degBound |
---|
2957 | while (1) |
---|
2958 | { test_matrix=matrix(B)*random(max,cd,dif); |
---|
2959 | // degBound=dB; |
---|
2960 | TEST=P+ideal(test_matrix); |
---|
2961 | attrib(TEST,"isSB",1); |
---|
2962 | test_dim=dim(TEST); |
---|
2963 | // degBound=0; |
---|
2964 | if (n-test_dim==i+dif) |
---|
2965 | { break; |
---|
2966 | } |
---|
2967 | // degBound=dB; |
---|
2968 | test_dim=dim(std(TEST)); |
---|
2969 | // test_dim=dim(std(TEST,h)); // Hilbert driven std-calculation |
---|
2970 | // degBound=0; |
---|
2971 | if (n-test_dim==i+dif) |
---|
2972 | { break; |
---|
2973 | } |
---|
2974 | else |
---|
2975 | { "HELP: The "+string(dif)+" random combination(s) of the "+string(cd)+" basis elements with"; |
---|
2976 | " coefficients in the range from -"+string(max)+" to "+string(max)+" did not lower the"; |
---|
2977 | " dimension by "+string(dif)+". You can abort, try again or give a new range:"; |
---|
2978 | answer=""; |
---|
2979 | while (answer<>"n |
---|
2980 | " && answer<>"y |
---|
2981 | ") |
---|
2982 | { " Do you want to abort (y/n)?"; |
---|
2983 | answer=read(""); |
---|
2984 | } |
---|
2985 | if (answer=="y |
---|
2986 | ") |
---|
2987 | { flag=1; |
---|
2988 | break; |
---|
2989 | } |
---|
2990 | answer=""; |
---|
2991 | while (answer<>"n |
---|
2992 | " && answer<>"y |
---|
2993 | ") |
---|
2994 | { " Do you want to try again (y/n)?"; |
---|
2995 | answer=read(""); |
---|
2996 | } |
---|
2997 | if (answer=="n |
---|
2998 | ") |
---|
2999 | { flag=1; |
---|
3000 | while (flag) |
---|
3001 | { " Give a new <int> > "+string(max)+" that bounds the range of coefficients:"; |
---|
3002 | answer=read(""); |
---|
3003 | for (j=1;j<=size(answer)-1;j=j+1) |
---|
3004 | { for (k=0;k<=9;k=k+1) |
---|
3005 | { if (answer[j]==string(k)) |
---|
3006 | { break; |
---|
3007 | } |
---|
3008 | } |
---|
3009 | if (k>9) |
---|
3010 | { flag=1; |
---|
3011 | break; |
---|
3012 | } |
---|
3013 | flag=0; |
---|
3014 | } |
---|
3015 | if (not(flag)) |
---|
3016 | { execute "test_dim="+string(answer[1..size(answer)]); |
---|
3017 | if (test_dim<=max) |
---|
3018 | { flag=1; |
---|
3019 | } |
---|
3020 | else |
---|
3021 | { max=test_dim; |
---|
3022 | } |
---|
3023 | } |
---|
3024 | } |
---|
3025 | } |
---|
3026 | } |
---|
3027 | } |
---|
3028 | if (not(flag)) |
---|
3029 | { P[(i+1)..(i+dif)]=test_matrix[1,1..dif]; |
---|
3030 | } |
---|
3031 | return(P,CI,dB); |
---|
3032 | } |
---|
3033 | |
---|
3034 | //////////////////////////////////////////////////////////////////////////////// |
---|
3035 | // This procedure finds at most dif primary invariants in degree d. It returns |
---|
3036 | // all primary invariants found so far. The coefficients lie in the field of |
---|
3037 | // characteristic p>0. |
---|
3038 | //////////////////////////////////////////////////////////////////////////////// |
---|
3039 | proc p_search_random (int n,int d,ideal B,int cd,ideal P,int i,int dif,int dB,ideal CI,int max) |
---|
3040 | { string answer; |
---|
3041 | degBound=0; |
---|
3042 | int j,k,test_dim,flag; |
---|
3043 | matrix test_matrix[1][dif]; // the linear combination to test |
---|
3044 | intvec h; // Hilbert series |
---|
3045 | ideal TEST; |
---|
3046 | while (dif>0) |
---|
3047 | { for (j=i+1;j<=i+dif;j=j+1) |
---|
3048 | { CI=CI+ideal(var(j)^d); // homogeneous polynomial of the same |
---|
3049 | // degree as the one we're looking for |
---|
3050 | // is added |
---|
3051 | } |
---|
3052 | // h=hilb(std(CI),1); |
---|
3053 | dB=dB+dif*(d-1); // used as degBound |
---|
3054 | test_matrix=matrix(B)*random(max,cd,dif); |
---|
3055 | // degBound=dB; |
---|
3056 | TEST=P+ideal(test_matrix); |
---|
3057 | attrib(TEST,"isSB",1); |
---|
3058 | test_dim=dim(TEST); |
---|
3059 | // degBound=0; |
---|
3060 | if (n-test_dim==i+dif) |
---|
3061 | { break; |
---|
3062 | } |
---|
3063 | // degBound=dB; |
---|
3064 | test_dim=dim(std(TEST)); |
---|
3065 | // test_dim=dim(std(TEST,h)); // Hilbert driven std-calculation |
---|
3066 | // degBound=0; |
---|
3067 | if (n-test_dim==i+dif) |
---|
3068 | { break; |
---|
3069 | } |
---|
3070 | else |
---|
3071 | { "HELP: The "+string(dif)+" random combination(s) of the "+string(cd)+" basis elements with"; |
---|
3072 | " coefficients in the range from -"+string(max)+" to "+string(max)+" did not lower the"; |
---|
3073 | " dimension by "+string(dif)+". You can abort, try again, lower the number of"; |
---|
3074 | " combinations searched for by 1 or give a larger coefficient range:"; |
---|
3075 | answer=""; |
---|
3076 | while (answer<>"n |
---|
3077 | " && answer<>"y |
---|
3078 | ") |
---|
3079 | { " Do you want to abort (y/n)?"; |
---|
3080 | answer=read(""); |
---|
3081 | } |
---|
3082 | if (answer=="y |
---|
3083 | ") |
---|
3084 | { flag=1; |
---|
3085 | break; |
---|
3086 | } |
---|
3087 | answer=""; |
---|
3088 | while (answer<>"n |
---|
3089 | " && answer<>"y |
---|
3090 | ") |
---|
3091 | { " Do you want to try again (y/n)?"; |
---|
3092 | answer=read(""); |
---|
3093 | } |
---|
3094 | if (answer=="n |
---|
3095 | ") |
---|
3096 | { answer=""; |
---|
3097 | while (answer<>"n |
---|
3098 | " && answer<>"y |
---|
3099 | ") |
---|
3100 | { " Do you want to lower the number of combinations by 1 (y/n)?"; |
---|
3101 | answer=read(""); |
---|
3102 | } |
---|
3103 | if (answer=="y |
---|
3104 | ") |
---|
3105 | { dif=dif-1; |
---|
3106 | } |
---|
3107 | else |
---|
3108 | { flag=1; |
---|
3109 | while (flag) |
---|
3110 | { " Give a new <int> > "+string(max)+" that bounds the range of coefficients:"; |
---|
3111 | answer=read(""); |
---|
3112 | for (j=1;j<=size(answer)-1;j=j+1) |
---|
3113 | { for (k=0;k<=9;k=k+1) |
---|
3114 | { if (answer[j]==string(k)) |
---|
3115 | { break; |
---|
3116 | } |
---|
3117 | } |
---|
3118 | if (k>9) |
---|
3119 | { flag=1; |
---|
3120 | break; |
---|
3121 | } |
---|
3122 | flag=0; |
---|
3123 | } |
---|
3124 | if (not(flag)) |
---|
3125 | { execute "test_dim="+string(answer[1..size(answer)]); |
---|
3126 | if (test_dim<=max) |
---|
3127 | { flag=1; |
---|
3128 | } |
---|
3129 | else |
---|
3130 | { max=test_dim; |
---|
3131 | } |
---|
3132 | } |
---|
3133 | } |
---|
3134 | } |
---|
3135 | } |
---|
3136 | } |
---|
3137 | CI=CI[1..i]; |
---|
3138 | dB=dB-dif*(d-1); |
---|
3139 | } |
---|
3140 | if (dif && not(flag)) |
---|
3141 | { P[(i+1)..(i+dif)]=test_matrix[1,1..dif]; |
---|
3142 | } |
---|
3143 | if (dif && flag) |
---|
3144 | { P[n+1]=0; |
---|
3145 | } |
---|
3146 | return(P,CI,dB); |
---|
3147 | } |
---|
3148 | |
---|
3149 | proc primary_char0_random (matrix REY,matrix M,int max,list #) |
---|
3150 | USAGE: primary_char0_random(REY,M,r[,v]); |
---|
3151 | REY: a <matrix> representing the Reynolds operator, M: a 1x2 <matrix> |
---|
3152 | representing the Molien series, r: an <int> where -|r| to |r| is the |
---|
3153 | range of coefficients of the random combinations of bases elements, |
---|
3154 | v: an optional <int> |
---|
3155 | ASSUME: REY is the first return value of group_reynolds or reynolds_molien and |
---|
3156 | M the one of molien or the second one of reynolds_molien |
---|
3157 | DISPLAY: information about the various stages of the programme if v does not |
---|
3158 | equal 0 |
---|
3159 | RETURN: primary invariants (type <matrix>) of the invariant ring |
---|
3160 | EXAMPLE: example primary_char0_random; shows an example |
---|
3161 | THEORY: Bases of homogeneous invariants are generated successively and random |
---|
3162 | linear combinations are chosen as primary invariants that lower the |
---|
3163 | dimension of the ideal generated by the previously found invariants |
---|
3164 | (see paper "Generating a Noetherian Normalization of the Invariant Ring |
---|
3165 | of a Finite Group" by Decker, Heydtmann, Schreyer (1997) to appear in |
---|
3166 | JSC). |
---|
3167 | { degBound=0; |
---|
3168 | if (char(basering)<>0) |
---|
3169 | { "ERROR: primary_char0_random should only be used with rings of"; |
---|
3170 | " characteristic 0."; |
---|
3171 | return(); |
---|
3172 | } |
---|
3173 | //----------------- checking input and setting verbose mode ------------------ |
---|
3174 | if (size(#)>1) |
---|
3175 | { "ERROR: primary_char0_random can only have four parameters."; |
---|
3176 | return(); |
---|
3177 | } |
---|
3178 | if (size(#)==1) |
---|
3179 | { if (typeof(#[1])<>"int") |
---|
3180 | { "ERROR: The fourth parameter should be of type <int>."; |
---|
3181 | return(); |
---|
3182 | } |
---|
3183 | else |
---|
3184 | { int v=#[1]; |
---|
3185 | } |
---|
3186 | } |
---|
3187 | else |
---|
3188 | { int v=0; |
---|
3189 | } |
---|
3190 | int n=nvars(basering); // n is the number of variables, as well |
---|
3191 | // as the size of the matrices, as well |
---|
3192 | // as the number of primary invariants, |
---|
3193 | // we should get |
---|
3194 | if (ncols(REY)<>n) |
---|
3195 | { "ERROR: First parameter ought to be the Reynolds operator." |
---|
3196 | return(); |
---|
3197 | } |
---|
3198 | if (ncols(M)<>2 or nrows(M)<>1) |
---|
3199 | { "ERROR: Second parameter ought to be the Molien series." |
---|
3200 | return(); |
---|
3201 | } |
---|
3202 | //---------------------------------------------------------------------------- |
---|
3203 | if (v && voice<>2) |
---|
3204 | { " We can start looking for primary invariants..."; |
---|
3205 | ""; |
---|
3206 | } |
---|
3207 | if (v && voice==2) |
---|
3208 | { ""; |
---|
3209 | } |
---|
3210 | //------------------------- initializing variables --------------------------- |
---|
3211 | int dB; |
---|
3212 | poly p(1..2); // p(1) will be used for single terms of |
---|
3213 | // the partial expansion, p(2) to store |
---|
3214 | p(1..2)=partial_molien(M,1); // the intermediate result - |
---|
3215 | poly v1=var(1); // we need v1 to split off coefficients |
---|
3216 | // in the partial expansion of M (which |
---|
3217 | // is in terms of the first variable) - |
---|
3218 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
3219 | // space of invariants of degree d, |
---|
3220 | // newdim: dimension the ideal generated |
---|
3221 | // the primary invariants plus basis |
---|
3222 | // elements, dif=n-i-newdim, i.e. the |
---|
3223 | // number of new primary invairants that |
---|
3224 | // should be added in this degree - |
---|
3225 | ideal P,Pplus,CI,B; // P: will contain primary invariants, |
---|
3226 | // Pplus: P+B,CI: a complete |
---|
3227 | // intersection with the same Hilbert |
---|
3228 | // function as P - |
---|
3229 | dB=1; // used as degree bound |
---|
3230 | int i=0; |
---|
3231 | //-------------- loop that searches for primary invariants ------------------ |
---|
3232 | while(1) // repeat until n primary invariants are |
---|
3233 | { // found - |
---|
3234 | p(1..2)=partial_molien(M,1,p(2)); // next term of the partial expansion - |
---|
3235 | d=deg(p(1)); // degree where we'll search - |
---|
3236 | cd=int(coef(p(1),v1)[2,1]); // dimension of the homogeneous space of |
---|
3237 | // inviarants of degree d |
---|
3238 | if (v) |
---|
3239 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
3240 | } |
---|
3241 | B=invariant_basis_reynolds(REY,d,intvec(cd,6)); // basis of invariants of |
---|
3242 | // degree d |
---|
3243 | if (B[1]<>0) |
---|
3244 | { Pplus=P+B; |
---|
3245 | newdim=dim(std(Pplus)); |
---|
3246 | dif=n-i-newdim; |
---|
3247 | } |
---|
3248 | else |
---|
3249 | { dif=0; |
---|
3250 | } |
---|
3251 | if (dif<>0) // we have to find dif new primary |
---|
3252 | { // invariants |
---|
3253 | if (cd<>dif) |
---|
3254 | { P,CI,dB=search_random(n,d,B,cd,P,i,dif,dB,CI,max); // searching for |
---|
3255 | } // dif invariants - |
---|
3256 | else // i.e. we can take all of B |
---|
3257 | { for(j=i+1;j>i+dif;j=j+1) |
---|
3258 | { CI=CI+ideal(var(j)^d); |
---|
3259 | } |
---|
3260 | dB=dB+dif*(d-1); |
---|
3261 | P=Pplus; |
---|
3262 | } |
---|
3263 | if (ncols(P)==i) |
---|
3264 | { "WARNING: The return value is not a set of primary invariants, but"; |
---|
3265 | " polynomials qualifying as the first "+string(i)+" primary invariants."; |
---|
3266 | return(matrix(P)); |
---|
3267 | } |
---|
3268 | if (v) |
---|
3269 | { for (j=1;j<=dif;j=j+1) |
---|
3270 | { " We find: "+string(P[i+j]); |
---|
3271 | } |
---|
3272 | } |
---|
3273 | i=i+dif; |
---|
3274 | if (i==n) // found all primary invariants |
---|
3275 | { if (v) |
---|
3276 | { ""; |
---|
3277 | " We found all primary invariants."; |
---|
3278 | ""; |
---|
3279 | } |
---|
3280 | return(matrix(P)); |
---|
3281 | } |
---|
3282 | } // done with degree d |
---|
3283 | } |
---|
3284 | } |
---|
3285 | example |
---|
3286 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
3287 | echo=2; |
---|
3288 | ring R=0,(x,y,z),dp; |
---|
3289 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
3290 | matrix REY,M=reynolds_molien(A); |
---|
3291 | matrix P=primary_char0_random(REY,M,1); |
---|
3292 | print(P); |
---|
3293 | } |
---|
3294 | |
---|
3295 | proc primary_charp_random (matrix REY,string ring_name,int max,list #) |
---|
3296 | USAGE: primary_charp_random(REY,ringname,r[,v]); |
---|
3297 | REY: a <matrix> representing the Reynolds operator, ringname: a |
---|
3298 | <string> giving the name of a ring where the Molien series is stored, |
---|
3299 | r: an <int> where -|r| to |r| is the range of coefficients of the |
---|
3300 | random combinations of bases elements, v: an optional <int> |
---|
3301 | ASSUME: REY is the first return value of group_reynolds or reynolds_molien and |
---|
3302 | ringname gives the name of a ring of characteristic 0 that has been |
---|
3303 | created by molien or reynolds_molien |
---|
3304 | DISPLAY: information about the various stages of the programme if v does not |
---|
3305 | equal 0 |
---|
3306 | RETURN: primary invariants (type <matrix>) of the invariant ring |
---|
3307 | EXAMPLE: example primary_charp_random; shows an example |
---|
3308 | THEORY: Bases of homogeneous invariants are generated successively and random |
---|
3309 | linear combinations are chosen as primary invariants that lower the |
---|
3310 | dimension of the ideal generated by the previously found invariants |
---|
3311 | (see paper "Generating a Noetherian Normalization of the Invariant Ring |
---|
3312 | of a Finite Group" by Decker, Heydtmann, Schreyer (1997) to appear in |
---|
3313 | JSC). |
---|
3314 | { degBound=0; |
---|
3315 | // ---------------- checking input and setting verbose mode ------------------ |
---|
3316 | if (char(basering)==0) |
---|
3317 | { "ERROR: primary_charp_random should only be used with rings of"; |
---|
3318 | " characteristic p>0."; |
---|
3319 | return(); |
---|
3320 | } |
---|
3321 | if (size(#)>1) |
---|
3322 | { "ERROR: primary_charp_random can only have four parameters."; |
---|
3323 | return(); |
---|
3324 | } |
---|
3325 | if (size(#)==1) |
---|
3326 | { if (typeof(#[1])<>"int") |
---|
3327 | { "ERROR: The fourth parameter should be of type <int>."; |
---|
3328 | return(); |
---|
3329 | } |
---|
3330 | else |
---|
3331 | { int v=#[1]; |
---|
3332 | } |
---|
3333 | } |
---|
3334 | else |
---|
3335 | { int v=0; |
---|
3336 | } |
---|
3337 | def br=basering; |
---|
3338 | int n=nvars(br); // n is the number of variables, as well |
---|
3339 | // as the size of the matrices, as well |
---|
3340 | // as the number of primary invariants, |
---|
3341 | // we should get |
---|
3342 | if (ncols(REY)<>n) |
---|
3343 | { "ERROR: First parameter ought to be the Reynolds operator." |
---|
3344 | return(); |
---|
3345 | } |
---|
3346 | if (typeof(`ring_name`)<>"ring") |
---|
3347 | { "ERROR: Second parameter ought to the name of a ring where the Molien"; |
---|
3348 | " is stored."; |
---|
3349 | return(); |
---|
3350 | } |
---|
3351 | //---------------------------------------------------------------------------- |
---|
3352 | if (v && voice<>2) |
---|
3353 | { " We can start looking for primary invariants..."; |
---|
3354 | ""; |
---|
3355 | } |
---|
3356 | if (v && voice==2) |
---|
3357 | { ""; |
---|
3358 | } |
---|
3359 | //----------------------- initializing variables ----------------------------- |
---|
3360 | int dB; |
---|
3361 | setring `ring_name`; // the Molien series is stores here - |
---|
3362 | poly p(1..2); // p(1) will be used for single terms of |
---|
3363 | // the partial expansion, p(2) to store |
---|
3364 | p(1..2)=partial_molien(M,1); // the intermediate result - |
---|
3365 | poly v1=var(1); // we need v1 to split off coefficients |
---|
3366 | // in the partial expansion of M (which |
---|
3367 | // is in terms of the first variable) |
---|
3368 | setring br; |
---|
3369 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
3370 | // space of invariants of degree d, |
---|
3371 | // newdim: dimension the ideal generated |
---|
3372 | // the primary invariants plus basis |
---|
3373 | // elements, dif=n-i-newdim, i.e. the |
---|
3374 | // number of new primary invairants that |
---|
3375 | // should be added in this degree - |
---|
3376 | ideal P,Pplus,CI,B; // P: will contain primary invariants, |
---|
3377 | // Pplus: P+B, CI: a complete |
---|
3378 | // intersection with the same Hilbert |
---|
3379 | // function as P - |
---|
3380 | dB=1; // used as degree bound |
---|
3381 | int i=0; |
---|
3382 | //---------------- loop that searches for primary invariants ----------------- |
---|
3383 | while(1) // repeat until n primary invariants are |
---|
3384 | { // found |
---|
3385 | setring `ring_name`; |
---|
3386 | p(1..2)=partial_molien(M,1,p(2)); // next term of the partial expansion - |
---|
3387 | d=deg(p(1)); // degree where we'll search - |
---|
3388 | cd=int(coef(p(1),v1)[2,1]); // dimension of the homogeneous space of |
---|
3389 | // inviarants of degree d |
---|
3390 | setring br; |
---|
3391 | if (v) |
---|
3392 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
3393 | } |
---|
3394 | B=invariant_basis_reynolds(REY,d,intvec(cd,6)); // basis of invariants of |
---|
3395 | // degree d |
---|
3396 | if (B[1]<>0) |
---|
3397 | { Pplus=P+B; |
---|
3398 | newdim=dim(std(Pplus)); |
---|
3399 | dif=n-i-newdim; |
---|
3400 | } |
---|
3401 | else |
---|
3402 | { dif=0; |
---|
3403 | } |
---|
3404 | if (dif<>0) // we have to find dif new primary |
---|
3405 | { // invariants |
---|
3406 | if (cd<>dif) |
---|
3407 | { P,CI,dB=p_search_random(n,d,B,cd,P,i,dif,dB,CI,max); |
---|
3408 | } |
---|
3409 | else // i.e. we can take all of B |
---|
3410 | { for(j=i+1;j>i+dif;j=j+1) |
---|
3411 | { CI=CI+ideal(var(j)^d); |
---|
3412 | } |
---|
3413 | dB=dB+dif*(d-1); |
---|
3414 | P=Pplus; |
---|
3415 | } |
---|
3416 | if (ncols(P)==n+1) |
---|
3417 | { "WARNING: The first return value is not a set of primary invariants,"; |
---|
3418 | " but polynomials qualifying as the first "+string(i)+" primary invariants."; |
---|
3419 | return(matrix(P)); |
---|
3420 | } |
---|
3421 | if (v) |
---|
3422 | { for (j=1;j<=size(P)-i;j=j+1) |
---|
3423 | { " We find: "+string(P[i+j]); |
---|
3424 | } |
---|
3425 | } |
---|
3426 | i=size(P); |
---|
3427 | if (i==n) // found all primary invariants |
---|
3428 | { if (v) |
---|
3429 | { ""; |
---|
3430 | " We found all primary invariants."; |
---|
3431 | ""; |
---|
3432 | } |
---|
3433 | return(matrix(P)); |
---|
3434 | } |
---|
3435 | } // done with degree d |
---|
3436 | } |
---|
3437 | } |
---|
3438 | example |
---|
3439 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7 (changed into"; |
---|
3440 | " characteristic 3)"; |
---|
3441 | echo=2; |
---|
3442 | ring R=3,(x,y,z),dp; |
---|
3443 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
3444 | list L=group_reynolds(A); |
---|
3445 | string newring="alskdfj"; |
---|
3446 | molien(L[2..size(L)],newring); |
---|
3447 | matrix P=primary_charp_random(L[1],newring,1); |
---|
3448 | kill `newring`; |
---|
3449 | print(P); |
---|
3450 | } |
---|
3451 | |
---|
3452 | proc primary_char0_no_molien_random (matrix REY, int max, list #) |
---|
3453 | USAGE: primary_char0_no_molien_random(REY,r[,v]); |
---|
3454 | REY: a <matrix> representing the Reynolds operator, r: an <int> where |
---|
3455 | -|r| to |r| is the range of coefficients of the random combinations of |
---|
3456 | bases elements, v: an optional <int> |
---|
3457 | ASSUME: REY is the first return value of group_reynolds or reynolds_molien |
---|
3458 | DISPLAY: information about the various stages of the programme if v does not |
---|
3459 | equal 0 |
---|
3460 | RETURN: primary invariants (type <matrix>) of the invariant ring and an |
---|
3461 | <intvec> listing some of the degrees where no non-trivial homogeneous |
---|
3462 | invariants are to be found |
---|
3463 | EXAMPLE: example primary_char0_no_molien_random; shows an example |
---|
3464 | THEORY: Bases of homogeneous invariants are generated successively and random |
---|
3465 | linear combinations are chosen as primary invariants that lower the |
---|
3466 | dimension of the ideal generated by the previously found invariants |
---|
3467 | (see paper "Generating a Noetherian Normalization of the Invariant Ring |
---|
3468 | of a Finite Group" by Decker, Heydtmann, Schreyer (1997) to appear in |
---|
3469 | JSC). |
---|
3470 | { degBound=0; |
---|
3471 | //-------------- checking input and setting verbose mode --------------------- |
---|
3472 | if (char(basering)<>0) |
---|
3473 | { "ERROR: primary_char0_no_molien_random should only be used with rings of"; |
---|
3474 | " characteristic 0."; |
---|
3475 | return(); |
---|
3476 | } |
---|
3477 | if (size(#)>1) |
---|
3478 | { "ERROR: primary_char0_no_molien_random can only have three parameters."; |
---|
3479 | return(); |
---|
3480 | } |
---|
3481 | if (size(#)==1) |
---|
3482 | { if (typeof(#[1])<>"int") |
---|
3483 | { "ERROR: The third parameter should be of type <int>."; |
---|
3484 | return(); |
---|
3485 | } |
---|
3486 | else |
---|
3487 | { int v=#[1]; |
---|
3488 | } |
---|
3489 | } |
---|
3490 | else |
---|
3491 | { int v=0; |
---|
3492 | } |
---|
3493 | int n=nvars(basering); // n is the number of variables, as well |
---|
3494 | // as the size of the matrices, as well |
---|
3495 | // as the number of primary invariants, |
---|
3496 | // we should get |
---|
3497 | if (ncols(REY)<>n) |
---|
3498 | { "ERROR: First parameter ought to be the Reynolds operator." |
---|
3499 | return(); |
---|
3500 | } |
---|
3501 | //---------------------------------------------------------------------------- |
---|
3502 | if (v && voice<>2) |
---|
3503 | { " We can start looking for primary invariants..."; |
---|
3504 | ""; |
---|
3505 | } |
---|
3506 | if (v && voice==2) |
---|
3507 | { ""; |
---|
3508 | } |
---|
3509 | //----------------------- initializing variables ----------------------------- |
---|
3510 | int dB; |
---|
3511 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
3512 | // space of invariants of degree d, |
---|
3513 | // newdim: dimension the ideal generated |
---|
3514 | // the primary invariants plus basis |
---|
3515 | // elements, dif=n-i-newdim, i.e. the |
---|
3516 | // number of new primary invairants that |
---|
3517 | // should be added in this degree - |
---|
3518 | ideal P,Pplus,CI,B; // P: will contain primary invariants, |
---|
3519 | // Pplus: P+B, CI: a complete |
---|
3520 | // intersection with the same Hilbert |
---|
3521 | // function as P - |
---|
3522 | dB=1; // used as degree bound - |
---|
3523 | d=0; // initializing |
---|
3524 | int i=0; |
---|
3525 | intvec deg_vector; |
---|
3526 | //------------------ loop that searches for primary invariants --------------- |
---|
3527 | while(1) // repeat until n primary invariants are |
---|
3528 | { // found - |
---|
3529 | d=d+1; // degree where we'll search |
---|
3530 | if (v) |
---|
3531 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
3532 | } |
---|
3533 | B=invariant_basis_reynolds(REY,d,intvec(-1,6)); // basis of invariants of |
---|
3534 | // degree d |
---|
3535 | if (B[1]<>0) |
---|
3536 | { Pplus=P+B; |
---|
3537 | newdim=dim(std(Pplus)); |
---|
3538 | dif=n-i-newdim; |
---|
3539 | } |
---|
3540 | else |
---|
3541 | { dif=0; |
---|
3542 | deg_vector=deg_vector,d; |
---|
3543 | } |
---|
3544 | if (dif<>0) // we have to find dif new primary |
---|
3545 | { // invariants |
---|
3546 | cd=size(B); |
---|
3547 | if (cd<>dif) |
---|
3548 | { P,CI,dB=search_random(n,d,B,cd,P,i,dif,dB,CI,max); |
---|
3549 | } |
---|
3550 | else // i.e. we can take all of B |
---|
3551 | { for(j=i+1;j<=i+dif;j=j+1) |
---|
3552 | { CI=CI+ideal(var(j)^d); |
---|
3553 | } |
---|
3554 | dB=dB+dif*(d-1); |
---|
3555 | P=Pplus; |
---|
3556 | } |
---|
3557 | if (ncols(P)==i) |
---|
3558 | { "WARNING: The first return value is not a set of primary invariants,"; |
---|
3559 | " but polynomials qualifying as the first "+string(i)+" primary invariants."; |
---|
3560 | return(matrix(P)); |
---|
3561 | } |
---|
3562 | if (v) |
---|
3563 | { for (j=1;j<=dif;j=j+1) |
---|
3564 | { " We find: "+string(P[i+j]); |
---|
3565 | } |
---|
3566 | } |
---|
3567 | i=i+dif; |
---|
3568 | if (i==n) // found all primary invariants |
---|
3569 | { if (v) |
---|
3570 | { ""; |
---|
3571 | " We found all primary invariants."; |
---|
3572 | ""; |
---|
3573 | } |
---|
3574 | if (deg_vector==0) |
---|
3575 | { return(matrix(P)); |
---|
3576 | } |
---|
3577 | else |
---|
3578 | { return(matrix(P),compress(deg_vector)); |
---|
3579 | } |
---|
3580 | } |
---|
3581 | } // done with degree d |
---|
3582 | else |
---|
3583 | { if (v) |
---|
3584 | { " None here..."; |
---|
3585 | } |
---|
3586 | } |
---|
3587 | } |
---|
3588 | } |
---|
3589 | example |
---|
3590 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
3591 | echo=2; |
---|
3592 | ring R=0,(x,y,z),dp; |
---|
3593 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
3594 | list L=group_reynolds(A); |
---|
3595 | list l=primary_char0_no_molien_random(L[1],1); |
---|
3596 | print(l[1]); |
---|
3597 | } |
---|
3598 | |
---|
3599 | proc primary_charp_no_molien_random (matrix REY, int max, list #) |
---|
3600 | USAGE: primary_charp_no_molien_random(REY,r[,v]); |
---|
3601 | REY: a <matrix> representing the Reynolds operator, r: an <int> where |
---|
3602 | -|r| to |r| is the range of coefficients of the random combinations of |
---|
3603 | bases elements, v: an optional <int> |
---|
3604 | ASSUME: REY is the first return value of group_reynolds or reynolds_molien |
---|
3605 | DISPLAY: information about the various stages of the programme if v does not |
---|
3606 | equal 0 |
---|
3607 | RETURN: primary invariants (type <matrix>) of the invariant ring and an |
---|
3608 | <intvec> listing some of the degrees where no non-trivial homogeneous |
---|
3609 | invariants are to be found |
---|
3610 | EXAMPLE: example primary_charp_no_molien_random; shows an example |
---|
3611 | THEORY: Bases of homogeneous invariants are generated successively and random |
---|
3612 | linear combinations are chosen as primary invariants that lower the |
---|
3613 | dimension of the ideal generated by the previously found invariants |
---|
3614 | (see paper "Generating a Noetherian Normalization of the Invariant Ring |
---|
3615 | of a Finite Group" by Decker, Heydtmann, Schreyer (1997) to appear in |
---|
3616 | JSC). |
---|
3617 | { degBound=0; |
---|
3618 | //----------------- checking input and setting verbose mode ------------------ |
---|
3619 | if (char(basering)==0) |
---|
3620 | { "ERROR: primary_charp_no_molien_random should only be used with rings of"; |
---|
3621 | " characteristic p>0."; |
---|
3622 | return(); |
---|
3623 | } |
---|
3624 | if (size(#)>1) |
---|
3625 | { "ERROR: primary_charp_no_molien_random can only have three parameters."; |
---|
3626 | return(); |
---|
3627 | } |
---|
3628 | if (size(#)==1) |
---|
3629 | { if (typeof(#[1])<>"int") |
---|
3630 | { "ERROR: The third parameter should be of type <int>."; |
---|
3631 | return(); |
---|
3632 | } |
---|
3633 | else |
---|
3634 | { int v=#[1]; |
---|
3635 | } |
---|
3636 | } |
---|
3637 | else |
---|
3638 | { int v=0; |
---|
3639 | } |
---|
3640 | int n=nvars(basering); // n is the number of variables, as well |
---|
3641 | // as the size of the matrices, as well |
---|
3642 | // as the number of primary invariants, |
---|
3643 | // we should get |
---|
3644 | if (ncols(REY)<>n) |
---|
3645 | { "ERROR: First parameter ought to be the Reynolds operator." |
---|
3646 | return(); |
---|
3647 | } |
---|
3648 | //---------------------------------------------------------------------------- |
---|
3649 | if (v && voice<>2) |
---|
3650 | { " We can start looking for primary invariants..."; |
---|
3651 | ""; |
---|
3652 | } |
---|
3653 | if (v && voice==2) |
---|
3654 | { ""; |
---|
3655 | } |
---|
3656 | //-------------------- initializing variables -------------------------------- |
---|
3657 | int dB; |
---|
3658 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
3659 | // space of invariants of degree d, |
---|
3660 | // newdim: dimension the ideal generated |
---|
3661 | // the primary invariants plus basis |
---|
3662 | // elements, dif=n-i-newdim, i.e. the |
---|
3663 | // number of new primary invairants that |
---|
3664 | // should be added in this degree - |
---|
3665 | ideal P,Pplus,CI,B; // P: will contain primary invariants, |
---|
3666 | // Pplus: P+B, CI: a complete |
---|
3667 | // intersection with the same Hilbert |
---|
3668 | // function as P - |
---|
3669 | dB=1; // used as degree bound - |
---|
3670 | d=0; // initializing |
---|
3671 | int i=0; |
---|
3672 | intvec deg_vector; |
---|
3673 | //------------------ loop that searches for primary invariants --------------- |
---|
3674 | while(1) // repeat until n primary invariants are |
---|
3675 | { // found - |
---|
3676 | d=d+1; // degree where we'll search |
---|
3677 | if (v) |
---|
3678 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
3679 | } |
---|
3680 | B=invariant_basis_reynolds(REY,d,intvec(-1,6)); // basis of invariants of |
---|
3681 | // degree d |
---|
3682 | if (B[1]<>0) |
---|
3683 | { Pplus=P+B; |
---|
3684 | newdim=dim(std(Pplus)); |
---|
3685 | dif=n-i-newdim; |
---|
3686 | } |
---|
3687 | else |
---|
3688 | { dif=0; |
---|
3689 | deg_vector=deg_vector,d; |
---|
3690 | } |
---|
3691 | if (dif<>0) // we have to find dif new primary |
---|
3692 | { // invariants |
---|
3693 | cd=size(B); |
---|
3694 | if (cd<>dif) |
---|
3695 | { P,CI,dB=p_search_random(n,d,B,cd,P,i,dif,dB,CI,max); |
---|
3696 | } |
---|
3697 | else // i.e. we can take all of B |
---|
3698 | { for(j=i+1;j<=i+dif;j=j+1) |
---|
3699 | { CI=CI+ideal(var(j)^d); |
---|
3700 | } |
---|
3701 | dB=dB+dif*(d-1); |
---|
3702 | P=Pplus; |
---|
3703 | } |
---|
3704 | if (ncols(P)==n+1) |
---|
3705 | { "WARNING: The first return value is not a set of primary invariants,"; |
---|
3706 | " but polynomials qualifying as the first "+string(i)+" primary invariants."; |
---|
3707 | return(matrix(P)); |
---|
3708 | } |
---|
3709 | if (v) |
---|
3710 | { for (j=1;j<=size(P)-i;j=j+1) |
---|
3711 | { " We find: "+string(P[i+j]); |
---|
3712 | } |
---|
3713 | } |
---|
3714 | i=size(P); |
---|
3715 | if (i==n) // found all primary invariants |
---|
3716 | { if (v) |
---|
3717 | { ""; |
---|
3718 | " We found all primary invariants."; |
---|
3719 | ""; |
---|
3720 | } |
---|
3721 | if (deg_vector==0) |
---|
3722 | { return(matrix(P)); |
---|
3723 | } |
---|
3724 | else |
---|
3725 | { return(matrix(P),compress(deg_vector)); |
---|
3726 | } |
---|
3727 | } |
---|
3728 | } // done with degree d |
---|
3729 | else |
---|
3730 | { if (v) |
---|
3731 | { " None here..."; |
---|
3732 | } |
---|
3733 | } |
---|
3734 | } |
---|
3735 | } |
---|
3736 | example |
---|
3737 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7 (changed into"; |
---|
3738 | " characteristic 3)"; |
---|
3739 | echo=2; |
---|
3740 | ring R=3,(x,y,z),dp; |
---|
3741 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
3742 | list L=group_reynolds(A); |
---|
3743 | list l=primary_charp_no_molien_random(L[1],1); |
---|
3744 | print(l[1]); |
---|
3745 | } |
---|
3746 | |
---|
3747 | proc primary_charp_without_random (list #) |
---|
3748 | USAGE: primary_charp_without_random(G1,G2,...,r[,v]); |
---|
3749 | G1,G2,...: <matrices> generating a finite matrix group, r: an <int> |
---|
3750 | where -|r| to |r| is the range of coefficients of the random |
---|
3751 | combinations of bases elements, v: an optional <int> |
---|
3752 | DISPLAY: information about the various stages of the programme if v does not |
---|
3753 | equal 0 |
---|
3754 | RETURN: primary invariants (type <matrix>) of the invariant ring |
---|
3755 | EXAMPLE: example primary_charp_without_random; shows an example |
---|
3756 | THEORY: Bases of homogeneous invariants are generated successively and random |
---|
3757 | linear combinations are chosen as primary invariants that lower the |
---|
3758 | dimension of the ideal generated by the previously found invariants |
---|
3759 | (see paper "Generating a Noetherian Normalization of the Invariant Ring |
---|
3760 | of a Finite Group" by Decker, Heydtmann, Schreyer (1997) to appear in |
---|
3761 | JSC). No Reynolds operator or Molien series is used. |
---|
3762 | { degBound=0; |
---|
3763 | //--------------------- checking input and setting verbose mode -------------- |
---|
3764 | if (char(basering)==0) |
---|
3765 | { "ERROR: primary_charp_without_random should only be used with rings of"; |
---|
3766 | " characteristic 0."; |
---|
3767 | return(); |
---|
3768 | } |
---|
3769 | if (size(#)<2) |
---|
3770 | { "ERROR: There are too few parameters."; |
---|
3771 | return(); |
---|
3772 | } |
---|
3773 | if (typeof(#[size(#)])=="int" && typeof(#[size(#)-1])=="int") |
---|
3774 | { int v=#[size(#)]; |
---|
3775 | int max=#[size(#)-1]; |
---|
3776 | int gen_num=size(#)-2; |
---|
3777 | if (gen_num==0) |
---|
3778 | { "ERROR: There are no generators of a finite matrix group given."; |
---|
3779 | return(); |
---|
3780 | } |
---|
3781 | } |
---|
3782 | else |
---|
3783 | { if (typeof(#[size(#)])=="int") |
---|
3784 | { int max=#[size(#)]; |
---|
3785 | int v=0; |
---|
3786 | int gen_num=size(#)-1; |
---|
3787 | } |
---|
3788 | else |
---|
3789 | { "ERROR: The last parameter should be an <int>."; |
---|
3790 | return(); |
---|
3791 | } |
---|
3792 | } |
---|
3793 | int n=nvars(basering); // n is the number of variables, as well |
---|
3794 | // as the size of the matrices, as well |
---|
3795 | // as the number of primary invariants, |
---|
3796 | // we should get |
---|
3797 | for (int i=1;i<=gen_num;i=i+1) |
---|
3798 | { if (typeof(#[i])=="matrix") |
---|
3799 | { if (nrows(#[i])<>n or ncols(#[i])<>n) |
---|
3800 | { "ERROR: The number of variables of the base ring needs to be the same"; |
---|
3801 | " as the dimension of the square matrices"; |
---|
3802 | return(); |
---|
3803 | } |
---|
3804 | } |
---|
3805 | else |
---|
3806 | { "ERROR: The first parameters should be a list of matrices"; |
---|
3807 | return(); |
---|
3808 | } |
---|
3809 | } |
---|
3810 | //---------------------------------------------------------------------------- |
---|
3811 | if (v && voice==2) |
---|
3812 | { ""; |
---|
3813 | } |
---|
3814 | //---------------------------- initializing variables ------------------------ |
---|
3815 | int dB; |
---|
3816 | int j,d,cd,newdim,dif; // d: current degree, cd: dimension of |
---|
3817 | // space of invariants of degree d, |
---|
3818 | // newdim: dimension the ideal generated |
---|
3819 | // the primary invariants plus basis |
---|
3820 | // elements, dif=n-i-newdim, i.e. the |
---|
3821 | // number of new primary invairants that |
---|
3822 | // should be added in this degree - |
---|
3823 | ideal P,Pplus,CI,B; // P: will contain primary invariants, |
---|
3824 | // Pplus: P+B, CI: a complete |
---|
3825 | // intersection with the same Hilbert |
---|
3826 | // function as P - |
---|
3827 | dB=1; // used as degree bound - |
---|
3828 | d=0; // initializing |
---|
3829 | i=0; |
---|
3830 | intvec deg_vector; |
---|
3831 | //-------------------- loop that searches for primary invariants ------------- |
---|
3832 | while(1) // repeat until n primary invariants are |
---|
3833 | { // found - |
---|
3834 | d=d+1; // degree where we'll search |
---|
3835 | if (v) |
---|
3836 | { " Computing primary invariants in degree "+string(d)+":"; |
---|
3837 | } |
---|
3838 | B=invariant_basis(d,#[1..gen_num]); // basis of invariants of degree d |
---|
3839 | if (B[1]<>0) |
---|
3840 | { Pplus=P+B; |
---|
3841 | newdim=dim(std(Pplus)); |
---|
3842 | dif=n-i-newdim; |
---|
3843 | } |
---|
3844 | else |
---|
3845 | { dif=0; |
---|
3846 | deg_vector=deg_vector,d; |
---|
3847 | } |
---|
3848 | if (dif<>0) // we have to find dif new primary |
---|
3849 | { // invariants |
---|
3850 | cd=size(B); |
---|
3851 | if (cd<>dif) |
---|
3852 | { P,CI,dB=p_search_random(n,d,B,cd,P,i,dif,dB,CI,max); |
---|
3853 | } |
---|
3854 | else // i.e. we can take all of B |
---|
3855 | { for(j=i+1;j<=i+dif;j=j+1) |
---|
3856 | { CI=CI+ideal(var(j)^d); |
---|
3857 | } |
---|
3858 | dB=dB+dif*(d-1); |
---|
3859 | P=Pplus; |
---|
3860 | } |
---|
3861 | if (ncols(P)==n+1) |
---|
3862 | { "WARNING: The first return value is not a set of primary invariants,"; |
---|
3863 | " but polynomials qualifying as the first "+string(i)+" primary invariants."; |
---|
3864 | return(matrix(P)); |
---|
3865 | } |
---|
3866 | if (v) |
---|
3867 | { for (j=1;j<=size(P)-i;j=j+1) |
---|
3868 | { " We find: "+string(P[i+j]); |
---|
3869 | } |
---|
3870 | } |
---|
3871 | i=size(P); |
---|
3872 | if (i==n) // found all primary invariants |
---|
3873 | { if (v) |
---|
3874 | { ""; |
---|
3875 | " We found all primary invariants."; |
---|
3876 | ""; |
---|
3877 | } |
---|
3878 | return(matrix(P)); |
---|
3879 | } |
---|
3880 | } // done with degree d |
---|
3881 | else |
---|
3882 | { if (v) |
---|
3883 | { " None here..."; |
---|
3884 | } |
---|
3885 | } |
---|
3886 | } |
---|
3887 | } |
---|
3888 | example |
---|
3889 | { echo=2; |
---|
3890 | ring R=2,(x,y,z),dp; |
---|
3891 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
3892 | matrix P=primary_charp_without_random(A,1); |
---|
3893 | print(P); |
---|
3894 | } |
---|
3895 | |
---|
3896 | proc primary_invariants_random (list #) |
---|
3897 | USAGE: primary_invariants_random(G1,G2,...,r[,flags]); |
---|
3898 | G1,G2,...: <matrices> generating a finite matrix group, r: an <int> |
---|
3899 | where -|r| to |r| is the range of coefficients of the random |
---|
3900 | combinations of bases elements, flags: an optional <intvec> with three |
---|
3901 | entries, if the first one equals 0 (also the default), the programme |
---|
3902 | attempts to compute the Molien series and Reynolds operator, if it |
---|
3903 | equals 1, the programme is told that the Molien series should not be |
---|
3904 | computed, if it equals -1 characteristic 0 is simulated, i.e. the |
---|
3905 | Molien series is computed as if the base field were characteristic 0 |
---|
3906 | (the user must choose a field of large prime characteristic, e.g. |
---|
3907 | 32003) and if the first one is anything else, it means that the |
---|
3908 | characteristic of the base field divides the group order, the second |
---|
3909 | component should give the size of intervals between canceling common |
---|
3910 | factors in the expansion of the Molien series, 0 (the default) means |
---|
3911 | only once after generating all terms, in prime characteristic also a |
---|
3912 | negative number can be given to indicate that common factors should |
---|
3913 | always be canceled when the expansion is simple (the root of the |
---|
3914 | extension field does not occur among the coefficients) |
---|
3915 | DISPLAY: information about the various stages of the programme if the third |
---|
3916 | flag does not equal 0 |
---|
3917 | RETURN: primary invariants (type <matrix>) of the invariant ring and if |
---|
3918 | computable Reynolds operator (type <matrix>) and Molien series (type |
---|
3919 | <matrix>), if the first flag is 1 and we are in the non-modular case |
---|
3920 | then an <intvec> is returned giving some of the degrees where no |
---|
3921 | non-trivial homogeneous invariants can be found |
---|
3922 | EXAMPLE: example primary_invariants_random; shows an example |
---|
3923 | THEORY: Bases of homogeneous invariants are generated successively and random |
---|
3924 | linear combinations are chosen as primary invariants that lower the |
---|
3925 | dimension of the ideal generated by the previously found invariants |
---|
3926 | (see paper "Generating a Noetherian Normalization of the Invariant Ring |
---|
3927 | of a Finite Group" by Decker, Heydtmann, Schreyer (1997) to appear in |
---|
3928 | JSC). |
---|
3929 | { |
---|
3930 | // ----------------- checking input and setting flags ------------------------ |
---|
3931 | if (size(#)<2) |
---|
3932 | { "ERROR: There are too few parameters."; |
---|
3933 | return(); |
---|
3934 | } |
---|
3935 | int ch=char(basering); // the algorithms depend very much on the |
---|
3936 | // characteristic of the ground field |
---|
3937 | int n=nvars(basering); // n is the number of variables, as well |
---|
3938 | // as the size of the matrices, as well |
---|
3939 | // as the number of primary invariants, |
---|
3940 | // we should get |
---|
3941 | int gen_num; |
---|
3942 | int mol_flag,v; |
---|
3943 | if (typeof(#[size(#)])=="intvec" && typeof(#[size(#)-1])=="int") |
---|
3944 | { if (size(#[size(#)])<>3) |
---|
3945 | { "ERROR: <intvec> should have three entries."; |
---|
3946 | return(); |
---|
3947 | } |
---|
3948 | gen_num=size(#)-2; |
---|
3949 | mol_flag=#[size(#)][1]; |
---|
3950 | if (#[size(#)][2]<0 && (ch==0 or (ch<>0 && mol_flag<>0))) |
---|
3951 | { "ERROR: the second component of <intvec> should be >=0"; |
---|
3952 | return(); |
---|
3953 | } |
---|
3954 | int interval=#[size(#)][2]; |
---|
3955 | v=#[size(#)][3]; |
---|
3956 | int max=#[size(#)-1]; |
---|
3957 | if (gen_num==0) |
---|
3958 | { "ERROR: There are no generators of a finite matrix group given."; |
---|
3959 | return(); |
---|
3960 | } |
---|
3961 | } |
---|
3962 | else |
---|
3963 | { if (typeof(#[size(#)])=="int") |
---|
3964 | { gen_num=size(#)-1; |
---|
3965 | mol_flag=0; |
---|
3966 | int interval=0; |
---|
3967 | v=0; |
---|
3968 | int max=#[size(#)]; |
---|
3969 | } |
---|
3970 | else |
---|
3971 | { "ERROR: If the two last parameters are not <int> and <intvec>, the last"; |
---|
3972 | " parameter should be an <int>."; |
---|
3973 | return(); |
---|
3974 | } |
---|
3975 | } |
---|
3976 | for (int i=1;i<=gen_num;i=i+1) |
---|
3977 | { if (typeof(#[i])=="matrix") |
---|
3978 | { if (nrows(#[i])<>n or ncols(#[i])<>n) |
---|
3979 | { "ERROR: The number of variables of the base ring needs to be the same"; |
---|
3980 | " as the dimension of the square matrices"; |
---|
3981 | return(); |
---|
3982 | } |
---|
3983 | } |
---|
3984 | else |
---|
3985 | { "ERROR: The first parameters should be a list of matrices"; |
---|
3986 | return(); |
---|
3987 | } |
---|
3988 | } |
---|
3989 | //---------------------------------------------------------------------------- |
---|
3990 | if (mol_flag==0) |
---|
3991 | { if (ch==0) |
---|
3992 | { matrix REY,M=reynolds_molien(#[1..gen_num],intvec(0,interval,v)); |
---|
3993 | // one will contain Reynolds operator and |
---|
3994 | // the other enumerator and denominator |
---|
3995 | // of Molien series |
---|
3996 | matrix P=primary_char0_random(REY,M,max,v); |
---|
3997 | return(P,REY,M); |
---|
3998 | } |
---|
3999 | else |
---|
4000 | { list L=group_reynolds(#[1..gen_num],v); |
---|
4001 | if (L[1]<>0) // testing whether we are in the modular |
---|
4002 | { string newring="aksldfalkdsflkj"; // case |
---|
4003 | if (minpoly==0) |
---|
4004 | { if (v) |
---|
4005 | { " We are dealing with the non-modular case."; |
---|
4006 | } |
---|
4007 | molien(L[2..size(L)],newring,intvec(0,interval,v)); |
---|
4008 | matrix P=primary_charp_random(L[1],newring,max,v); |
---|
4009 | return(P,L[1],newring); |
---|
4010 | } |
---|
4011 | else |
---|
4012 | { if (v) |
---|
4013 | { " Since it is impossible for this programme to calculate the Molien series for"; |
---|
4014 | " invariant rings over extension fields of prime characteristic, we have to"; |
---|
4015 | " continue without it."; |
---|
4016 | ""; |
---|
4017 | |
---|
4018 | } |
---|
4019 | list l=primary_charp_no_molien_random(L[1],max,v); |
---|
4020 | if (size(l)==2) |
---|
4021 | { return(l[1],L[1],l[2]); |
---|
4022 | } |
---|
4023 | else |
---|
4024 | { return(l[1],L[1]); |
---|
4025 | } |
---|
4026 | } |
---|
4027 | } |
---|
4028 | else // the modular case |
---|
4029 | { if (v) |
---|
4030 | { " There is also no Molien series, we can make use of..."; |
---|
4031 | ""; |
---|
4032 | " We can start looking for primary invariants..."; |
---|
4033 | ""; |
---|
4034 | } |
---|
4035 | return(primary_charp_without_random(#[1..gen_num],max,v)); |
---|
4036 | } |
---|
4037 | } |
---|
4038 | } |
---|
4039 | if (mol_flag==1) // the user wants no calculation of the |
---|
4040 | { list L=group_reynolds(#[1..gen_num],v); // Molien series |
---|
4041 | if (ch==0) |
---|
4042 | { list l=primary_char0_no_molien_random(L[1],max,v); |
---|
4043 | if (size(l)==2) |
---|
4044 | { return(l[1],L[1],l[2]); |
---|
4045 | } |
---|
4046 | else |
---|
4047 | { return(l[1],L[1]); |
---|
4048 | } |
---|
4049 | } |
---|
4050 | else |
---|
4051 | { if (L[1]<>0) // testing whether we are in the modular |
---|
4052 | { list l=primary_charp_no_molien_random(L[1],max,v); // case |
---|
4053 | if (size(l)==2) |
---|
4054 | { return(l[1],L[1],l[2]); |
---|
4055 | } |
---|
4056 | else |
---|
4057 | { return(l[1],L[1]); |
---|
4058 | } |
---|
4059 | } |
---|
4060 | else // the modular case |
---|
4061 | { if (v) |
---|
4062 | { " We can start looking for primary invariants..."; |
---|
4063 | ""; |
---|
4064 | } |
---|
4065 | return(primary_charp_without_random(#[1..gen_num],max,v)); |
---|
4066 | } |
---|
4067 | } |
---|
4068 | } |
---|
4069 | if (mol_flag==-1) |
---|
4070 | { if (ch==0) |
---|
4071 | { "ERROR: Characteristic 0 can only be simulated in characteristic p>>0."; |
---|
4072 | return(); |
---|
4073 | } |
---|
4074 | list L=group_reynolds(#[1..gen_num],v); |
---|
4075 | string newring="aksldfalkdsflkj"; |
---|
4076 | molien(L[2..size(L)],newring,intvec(1,interval,v)); |
---|
4077 | matrix P=primary_charp_random(L[1],newring,max,v); |
---|
4078 | return(P,L[1],newring); |
---|
4079 | } |
---|
4080 | else // the user specified that the |
---|
4081 | { if (ch==0) // characteristic divides the group order |
---|
4082 | { "ERROR: The characteristic cannot divide the group order when it is 0."; |
---|
4083 | return(); |
---|
4084 | } |
---|
4085 | if (v) |
---|
4086 | { ""; |
---|
4087 | } |
---|
4088 | return(primary_charp_without_random(#[1..gen_num],max,v)); |
---|
4089 | } |
---|
4090 | } |
---|
4091 | example |
---|
4092 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
4093 | echo=2; |
---|
4094 | ring R=0,(x,y,z),dp; |
---|
4095 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
4096 | list L=primary_invariants_random(A,1); |
---|
4097 | print(L[1]); |
---|
4098 | } |
---|
4099 | |
---|
4100 | proc concat_intmat(intmat A,intmat B) |
---|
4101 | { int n=nrows(A); |
---|
4102 | int m1=ncols(A); |
---|
4103 | int m2=ncols(B); |
---|
4104 | intmat C[n][m1+m2]; |
---|
4105 | C[1..n,1..m1]=A[1..n,1..m1]; |
---|
4106 | C[1..n,m1+1..m1+m2]=B[1..n,1..m2]; |
---|
4107 | return(C); |
---|
4108 | } |
---|
4109 | |
---|
4110 | proc power_products(intvec deg_vec,int d) |
---|
4111 | USAGE: power_products(dv,d); |
---|
4112 | dv: an <intvec> giving the degrees of homogeneous polynomials, d: the |
---|
4113 | degree of the desired power products |
---|
4114 | RETURN: a size(dv)*m <intmat> where each column ought to be interpreted as |
---|
4115 | containing the exponents of the corresponding polynomials. The product |
---|
4116 | of the powers is then homogeneous of degree d. |
---|
4117 | EXAMPLE: example power_products; gives an example |
---|
4118 | { if (d<=0) |
---|
4119 | { "ERROR: The <int> may not be <= 0"; |
---|
4120 | return(); |
---|
4121 | } |
---|
4122 | int d_neu,j,nc; |
---|
4123 | int s=size(deg_vec); |
---|
4124 | intmat PP[s][1]; |
---|
4125 | intmat TEST[s][1]; |
---|
4126 | for (int i=1;i<=s;i=i+1) |
---|
4127 | { if (i<0) |
---|
4128 | { "ERROR: The entries of <intvec> may not be <= 0"; |
---|
4129 | return(); |
---|
4130 | } |
---|
4131 | d_neu=d-deg_vec[i]; |
---|
4132 | if (d_neu>0) |
---|
4133 | { intmat PPd_neu=power_products(intvec(deg_vec[i..s]),d_neu); |
---|
4134 | if (size(ideal(PPd_neu))<>0) |
---|
4135 | { nc=ncols(PPd_neu); |
---|
4136 | intmat PPd_neu_gross[s][nc]; |
---|
4137 | PPd_neu_gross[i..s,1..nc]=PPd_neu[1..s-i+1,1..nc]; |
---|
4138 | for (j=1;j<=nc;j=j+1) |
---|
4139 | { PPd_neu_gross[i,j]=PPd_neu_gross[i,j]+1; |
---|
4140 | } |
---|
4141 | PP=concat_intmat(PP,PPd_neu_gross); |
---|
4142 | kill PPd_neu_gross; |
---|
4143 | } |
---|
4144 | kill PPd_neu; |
---|
4145 | } |
---|
4146 | if (d_neu==0) |
---|
4147 | { intmat PPd_neu[s][1]; |
---|
4148 | PPd_neu[i,1]=1; |
---|
4149 | PP=concat_intmat(PP,PPd_neu); |
---|
4150 | kill PPd_neu; |
---|
4151 | } |
---|
4152 | } |
---|
4153 | if (matrix(PP)<>matrix(TEST)) |
---|
4154 | { PP=compress(PP); |
---|
4155 | } |
---|
4156 | return(PP); |
---|
4157 | } |
---|
4158 | example |
---|
4159 | { echo=2; |
---|
4160 | intvec dv=5,5,5,10,10; |
---|
4161 | print(power_products(dv,10)); |
---|
4162 | print(power_products(dv,7)); |
---|
4163 | } |
---|
4164 | |
---|
4165 | proc secondary_char0 (matrix P, matrix REY, matrix M, list #) |
---|
4166 | USAGE: secondary_char0(P,REY,M[,v]); |
---|
4167 | P: a 1xn <matrix> with primary invariants, REY: a gxn <matrix> |
---|
4168 | representing the Reynolds operator, M: a 1x2 <matrix> giving enumerator |
---|
4169 | and denominator of the Molien series, v: an optional <int> |
---|
4170 | ASSUME: n is the number of variables of the basering, g the size of the group, |
---|
4171 | REY is the 1st return value of group_reynolds(), reynolds_molien() or |
---|
4172 | the second one of primary_invariants(), M the return value of molien() |
---|
4173 | or the second one of reynolds_molien() or the third one of |
---|
4174 | primary_invariants() |
---|
4175 | RETURN: secondary invariants of the invariant ring (type <matrix>) and |
---|
4176 | irreducible secondary invariants (type <matrix>) |
---|
4177 | DISPLAY: information if v does not equal 0 |
---|
4178 | EXAMPLE: example secondary_char0; shows an example |
---|
4179 | THEORY: The secondary invariants are calculated by finding a basis (in terms of |
---|
4180 | monomials) of the basering modulo the primary invariants, mapping those |
---|
4181 | to invariants with the Reynolds operator and using these images or |
---|
4182 | their power products such that they are linearly independent modulo the |
---|
4183 | primary invariants (see paper "Some Algorithms in Invariant Theory of |
---|
4184 | Finite Groups" by Kemper and Steel (1997)). |
---|
4185 | { def br=basering; |
---|
4186 | degBound=0; |
---|
4187 | //----------------- checking input and setting verbose mode ------------------ |
---|
4188 | if (char(br)<>0) |
---|
4189 | { "ERROR: secondary_char0 should only be used with rings of characteristic 0."; |
---|
4190 | return(); |
---|
4191 | } |
---|
4192 | int i; |
---|
4193 | if (size(#)>0) |
---|
4194 | { if (typeof(#[size(#)])=="int") |
---|
4195 | { int v=#[size(#)]; |
---|
4196 | } |
---|
4197 | else |
---|
4198 | { int v=0; |
---|
4199 | } |
---|
4200 | } |
---|
4201 | else |
---|
4202 | { int v=0; |
---|
4203 | } |
---|
4204 | int n=nvars(br); // n is the number of variables, as well |
---|
4205 | // as the size of the matrices, as well |
---|
4206 | // as the number of primary invariants, |
---|
4207 | // we should get |
---|
4208 | if (ncols(P)<>n) |
---|
4209 | { "ERROR: The first parameter ought to be the matrix of the primary"; |
---|
4210 | " invariants." |
---|
4211 | return(); |
---|
4212 | } |
---|
4213 | if (ncols(REY)<>n) |
---|
4214 | { "ERROR: The second parameter ought to be the Reynolds operator." |
---|
4215 | return(); |
---|
4216 | } |
---|
4217 | if (ncols(M)<>2 or nrows(M)<>1) |
---|
4218 | { "ERROR: The third parameter ought to be the Molien series." |
---|
4219 | return(); |
---|
4220 | } |
---|
4221 | if (v && voice==2) |
---|
4222 | { ""; |
---|
4223 | } |
---|
4224 | int j, m, counter; |
---|
4225 | //- finding the polynomial giving number and degrees of secondary invariants - |
---|
4226 | poly p=1; |
---|
4227 | for (j=1;j<=n;j=j+1) // calculating the denominator of the |
---|
4228 | { p=p*(1-var(1)^deg(P[j])); // Hilbert series of the ring generated |
---|
4229 | } // by the primary invariants - |
---|
4230 | matrix s[1][2]=M[1,1]*p,M[1,2]; // s is used for canceling |
---|
4231 | s=matrix(syz(ideal(s))); |
---|
4232 | p=s[2,1]; // the polynomial telling us where to |
---|
4233 | // search for secondary invariants |
---|
4234 | map slead=br,ideal(0); |
---|
4235 | p=1/slead(p)*p; // smallest term of p needs to be 1 |
---|
4236 | if (v) |
---|
4237 | { " Polynomial telling us where to look for secondary invariants:"; |
---|
4238 | " "+string(p); |
---|
4239 | ""; |
---|
4240 | } |
---|
4241 | matrix dimmat=coeffs(p,var(1)); // dimmat will contain the number of |
---|
4242 | // secondary invariants, we need to find |
---|
4243 | // of a certain degree - |
---|
4244 | m=nrows(dimmat); // m-1 is the highest degree |
---|
4245 | if (v) |
---|
4246 | { " In degree 0 we have: 1"; |
---|
4247 | ""; |
---|
4248 | } |
---|
4249 | //-------------------------- initializing variables -------------------------- |
---|
4250 | intmat PP; |
---|
4251 | poly pp; |
---|
4252 | int k; |
---|
4253 | intvec deg_vec; |
---|
4254 | ideal sP=std(ideal(P)); |
---|
4255 | ideal TEST,B,IS; |
---|
4256 | ideal S=1; // 1 is the first secondary invariant - |
---|
4257 | //--------------------- generating secondary invariants ---------------------- |
---|
4258 | for (i=2;i<=m;i=i+1) // going through dimmat - |
---|
4259 | { if (int(dimmat[i,1])<>0) // when it is == 0 we need to find 0 |
---|
4260 | { // elements in the current degree (i-1) |
---|
4261 | if (v) |
---|
4262 | { " Searching in degree "+string(i-1)+", we need to find "+string(int(dimmat[i,1]))+" invariant(s)..."; |
---|
4263 | } |
---|
4264 | TEST=sP; |
---|
4265 | counter=0; // we'll count up to degvec[i] |
---|
4266 | if (IS[1]<>0) |
---|
4267 | { PP=power_products(deg_vec,i-1); // finding power products of irreducible |
---|
4268 | } // secondary invariants |
---|
4269 | if (size(ideal(PP))<>0) |
---|
4270 | { for (j=1;j<=ncols(PP);j=j+1) // going through all the power products |
---|
4271 | { pp=1; |
---|
4272 | for (k=1;k<=nrows(PP);k=k+1) |
---|
4273 | { pp=pp*IS[1,k]^PP[k,j]; |
---|
4274 | } |
---|
4275 | if (reduce(pp,TEST)<>0) |
---|
4276 | { S=S,pp; |
---|
4277 | counter=counter+1; |
---|
4278 | if (v) |
---|
4279 | { " We find: "+string(pp); |
---|
4280 | } |
---|
4281 | if (int(dimmat[i,1])<>counter) |
---|
4282 | { TEST=std(TEST+ideal(NF(pp,TEST))); // should be replaced by next |
---|
4283 | // line soon |
---|
4284 | // TEST=std(TEST,NF(pp,TEST)); |
---|
4285 | } |
---|
4286 | else |
---|
4287 | { break; |
---|
4288 | } |
---|
4289 | } |
---|
4290 | } |
---|
4291 | } |
---|
4292 | if (int(dimmat[i,1])<>counter) |
---|
4293 | { B=sort_of_invariant_basis(sP,REY,i-1,int(dimmat[i,1])*6); // B contains |
---|
4294 | // images of kbase(sP,i-1) under the |
---|
4295 | // Reynolds operator that are linearly |
---|
4296 | // independent and that don't reduce to |
---|
4297 | // 0 modulo sP - |
---|
4298 | if (counter==0 && ncols(B)==int(dimmat[i,1])) // then we can take all of |
---|
4299 | { S=S,B; // B |
---|
4300 | IS=IS+B; |
---|
4301 | if (deg_vec[1]==0) |
---|
4302 | { deg_vec=i-1; |
---|
4303 | if (v) |
---|
4304 | { " We find: "+string(B[1]); |
---|
4305 | } |
---|
4306 | for (j=2;j<=int(dimmat[i,1]);j=j+1) |
---|
4307 | { deg_vec=deg_vec,i-1; |
---|
4308 | if (v) |
---|
4309 | { " We find: "+string(B[j]); |
---|
4310 | } |
---|
4311 | } |
---|
4312 | } |
---|
4313 | else |
---|
4314 | { for (j=1;j<=int(dimmat[i,1]);j=j+1) |
---|
4315 | { deg_vec=deg_vec,i-1; |
---|
4316 | if (v) |
---|
4317 | { " We find: "+string(B[j]); |
---|
4318 | } |
---|
4319 | } |
---|
4320 | } |
---|
4321 | } |
---|
4322 | else |
---|
4323 | { j=0; // j goes through all of B - |
---|
4324 | while (int(dimmat[i,1])<>counter) // need to find dimmat[i,1] |
---|
4325 | { // invariants that are linearly |
---|
4326 | // independent modulo TEST |
---|
4327 | j=j+1; |
---|
4328 | if (reduce(B[j],TEST)<>0) // B[j] should be added |
---|
4329 | { S=S,B[j]; |
---|
4330 | IS=IS+ideal(B[j]); |
---|
4331 | if (deg_vec[1]==0) |
---|
4332 | { deg_vec[1]=i-1; |
---|
4333 | } |
---|
4334 | else |
---|
4335 | { deg_vec=deg_vec,i-1; |
---|
4336 | } |
---|
4337 | counter=counter+1; |
---|
4338 | if (v) |
---|
4339 | { " We find: "+string(B[j]); |
---|
4340 | } |
---|
4341 | if (int(dimmat[i,1])<>counter) |
---|
4342 | { TEST=std(TEST+ideal(NF(B[j],TEST))); // should be replaced by |
---|
4343 | // next line |
---|
4344 | // TEST=std(TEST,NF(B[j],TEST)); |
---|
4345 | } |
---|
4346 | } |
---|
4347 | } |
---|
4348 | } |
---|
4349 | } |
---|
4350 | if (v) |
---|
4351 | { ""; |
---|
4352 | } |
---|
4353 | } |
---|
4354 | } |
---|
4355 | if (v) |
---|
4356 | { " We're done!"; |
---|
4357 | ""; |
---|
4358 | } |
---|
4359 | return(matrix(S),matrix(IS)); |
---|
4360 | } |
---|
4361 | example |
---|
4362 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
4363 | echo=2; |
---|
4364 | ring R=0,(x,y,z),dp; |
---|
4365 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
4366 | list L=primary_invariants(A); |
---|
4367 | matrix S,IS=secondary_char0(L[1..3]); |
---|
4368 | print(S); |
---|
4369 | print(IS); |
---|
4370 | } |
---|
4371 | |
---|
4372 | proc secondary_charp (matrix P, matrix REY, string ring_name, list #) |
---|
4373 | USAGE: secondary_charp(P,REY,ringname[,v]); |
---|
4374 | P: a 1xn <matrix> with primary invariants, REY: a gxn <matrix> |
---|
4375 | representing the Reynolds operator, ringname: a <string> giving the |
---|
4376 | name of a ring of characteristic 0 where the Molien series is stored, |
---|
4377 | v: an optional <int> |
---|
4378 | ASSUME: n is the number of variables of the basering, g the size of the group, |
---|
4379 | REY is the 1st return value of group_reynolds(), reynolds_molien() or |
---|
4380 | the second one of primary_invariants(), `ringname` is ring of |
---|
4381 | characteristic 0 that has been created by molien() or reynolds_molien() |
---|
4382 | or primary_invariants() |
---|
4383 | RETURN: secondary invariants of the invariant ring (type <matrix>) and |
---|
4384 | irreducible secondary invariants (type <matrix>) |
---|
4385 | DISPLAY: information if v does not equal 0 |
---|
4386 | EXAMPLE: example secondary_charp; shows an example |
---|
4387 | THEORY: The secondary invariants are calculated by finding a basis (in terms of |
---|
4388 | monomials) of the basering modulo the primary invariants, mapping those |
---|
4389 | to invariants with the Reynolds operator and using these images or |
---|
4390 | their power products such that they are linearly independent modulo the |
---|
4391 | primary invariants (see paper "Some Algorithms in Invariant Theory of |
---|
4392 | Finite Groups" by Kemper and Steel (1997)). |
---|
4393 | { def br=basering; |
---|
4394 | degBound=0; |
---|
4395 | //---------------- checking input and setting verbose mode ------------------- |
---|
4396 | if (char(br)==0) |
---|
4397 | { "ERROR: secondary_charp should only be used with rings of characteristic p>0."; |
---|
4398 | return(); |
---|
4399 | } |
---|
4400 | int i; |
---|
4401 | if (size(#)>0) |
---|
4402 | { if (typeof(#[size(#)])=="int") |
---|
4403 | { int v=#[size(#)]; |
---|
4404 | } |
---|
4405 | else |
---|
4406 | { int v=0; |
---|
4407 | } |
---|
4408 | } |
---|
4409 | else |
---|
4410 | { int v=0; |
---|
4411 | } |
---|
4412 | int n=nvars(br); // n is the number of variables, as well |
---|
4413 | // as the size of the matrices, as well |
---|
4414 | // as the number of primary invariants, |
---|
4415 | // we should get |
---|
4416 | if (ncols(P)<>n) |
---|
4417 | { "ERROR: The first parameter ought to be the matrix of the primary"; |
---|
4418 | " invariants." |
---|
4419 | return(); |
---|
4420 | } |
---|
4421 | if (ncols(REY)<>n) |
---|
4422 | { "ERROR: The second parameter ought to be the Reynolds operator." |
---|
4423 | return(); |
---|
4424 | } |
---|
4425 | if (typeof(`ring_name`)<>"ring") |
---|
4426 | { "ERROR: The <string> should give the name of the ring where the Molien." |
---|
4427 | " series is stored."; |
---|
4428 | return(); |
---|
4429 | } |
---|
4430 | if (v && voice==2) |
---|
4431 | { ""; |
---|
4432 | } |
---|
4433 | int j, m, counter, d; |
---|
4434 | intvec deg_dim_vec; |
---|
4435 | //- finding the polynomial giving number and degrees of secondary invariants - |
---|
4436 | for (j=1;j<=n;j=j+1) |
---|
4437 | { deg_dim_vec[j]=deg(P[j]); |
---|
4438 | } |
---|
4439 | setring `ring_name`; |
---|
4440 | poly p=1; |
---|
4441 | for (j=1;j<=n;j=j+1) // calculating the denominator of the |
---|
4442 | { p=p*(1-var(1)^deg_dim_vec[j]); // Hilbert series of the ring generated |
---|
4443 | } // by the primary invariants - |
---|
4444 | matrix s[1][2]=M[1,1]*p,M[1,2]; // s is used for canceling |
---|
4445 | s=matrix(syz(ideal(s))); |
---|
4446 | p=s[2,1]; // the polynomial telling us where to |
---|
4447 | // search for secondary invariants |
---|
4448 | map slead=basering,ideal(0); |
---|
4449 | p=1/slead(p)*p; // smallest term of p needs to be 1 |
---|
4450 | if (v) |
---|
4451 | { " Polynomial telling us where to look for secondary invariants:"; |
---|
4452 | " "+string(p); |
---|
4453 | ""; |
---|
4454 | } |
---|
4455 | matrix dimmat=coeffs(p,var(1)); // dimmat will contain the number of |
---|
4456 | // secondary invariants, we need to find |
---|
4457 | // of a certain degree - |
---|
4458 | m=nrows(dimmat); // m-1 is the highest degree |
---|
4459 | deg_dim_vec=1; |
---|
4460 | for (j=2;j<=m;j=j+1) |
---|
4461 | { deg_dim_vec=deg_dim_vec,int(dimmat[j,1]); |
---|
4462 | } |
---|
4463 | if (v) |
---|
4464 | { " In degree 0 we have: 1"; |
---|
4465 | ""; |
---|
4466 | } |
---|
4467 | //------------------------ initializing variables ---------------------------- |
---|
4468 | setring br; |
---|
4469 | intmat PP; |
---|
4470 | poly pp; |
---|
4471 | int k; |
---|
4472 | intvec deg_vec; |
---|
4473 | ideal sP=std(ideal(P)); |
---|
4474 | ideal TEST,B,IS; |
---|
4475 | ideal S=1; // 1 is the first secondary invariant |
---|
4476 | //------------------- generating secondary invariants ------------------------ |
---|
4477 | for (i=2;i<=m;i=i+1) // going through deg_dim_vec - |
---|
4478 | { if (deg_dim_vec[i]<>0) // when it is == 0 we need to find 0 |
---|
4479 | { // elements in the current degree (i-1) |
---|
4480 | if (v) |
---|
4481 | { " Searching in degree "+string(i-1)+", we need to find "+string(deg_dim_vec[i])+" invariant(s)..."; |
---|
4482 | } |
---|
4483 | TEST=sP; |
---|
4484 | counter=0; // we'll count up to degvec[i] |
---|
4485 | if (IS[1]<>0) |
---|
4486 | { PP=power_products(deg_vec,i-1); // generating power products of |
---|
4487 | } // irreducible secondary invariants |
---|
4488 | if (size(ideal(PP))<>0) |
---|
4489 | { for (j=1;j<=ncols(PP);j=j+1) // going through all of those |
---|
4490 | { pp=1; |
---|
4491 | for (k=1;k<=nrows(PP);k=k+1) |
---|
4492 | { pp=pp*IS[1,k]^PP[k,j]; |
---|
4493 | } |
---|
4494 | if (reduce(pp,TEST)<>0) |
---|
4495 | { S=S,pp; |
---|
4496 | counter=counter+1; |
---|
4497 | if (v) |
---|
4498 | { " We find: "+string(pp); |
---|
4499 | } |
---|
4500 | if (deg_dim_vec[i]<>counter) |
---|
4501 | { TEST=std(TEST+ideal(NF(pp,TEST))); // should be soon replaced by |
---|
4502 | // next line |
---|
4503 | // TEST=std(TEST,NF(pp,TEST)); |
---|
4504 | } |
---|
4505 | else |
---|
4506 | { break; |
---|
4507 | } |
---|
4508 | } |
---|
4509 | } |
---|
4510 | } |
---|
4511 | if (deg_dim_vec[i]<>counter) |
---|
4512 | { B=sort_of_invariant_basis(sP,REY,i-1,deg_dim_vec[i]*6); // B contains |
---|
4513 | // images of kbase(sP,i-1) under the |
---|
4514 | // Reynolds operator that are linearly |
---|
4515 | // independent and that don't reduce to |
---|
4516 | // 0 modulo sP - |
---|
4517 | if (counter==0 && ncols(B)==deg_dim_vec[i]) // then we can add all of B |
---|
4518 | { S=S,B; |
---|
4519 | IS=IS+B; |
---|
4520 | if (deg_vec[1]==0) |
---|
4521 | { deg_vec=i-1; |
---|
4522 | if (v) |
---|
4523 | { " We find: "+string(B[1]); |
---|
4524 | } |
---|
4525 | for (j=2;j<=deg_dim_vec[i];j=j+1) |
---|
4526 | { deg_vec=deg_vec,i-1; |
---|
4527 | if (v) |
---|
4528 | { " We find: "+string(B[j]); |
---|
4529 | } |
---|
4530 | } |
---|
4531 | } |
---|
4532 | else |
---|
4533 | { for (j=1;j<=deg_dim_vec[i];j=j+1) |
---|
4534 | { deg_vec=deg_vec,i-1; |
---|
4535 | if (v) |
---|
4536 | { " We find: "+string(B[j]); |
---|
4537 | } |
---|
4538 | } |
---|
4539 | } |
---|
4540 | } |
---|
4541 | else |
---|
4542 | { j=0; // j goes through all of B - |
---|
4543 | while (deg_dim_vec[i]<>counter) // need to find deg_dim_vec[i] |
---|
4544 | { // invariants that are linearly |
---|
4545 | // independent modulo TEST |
---|
4546 | j=j+1; |
---|
4547 | if (reduce(B[j],TEST)<>0) // B[j] should be added |
---|
4548 | { S=S,B[j]; |
---|
4549 | IS=IS+ideal(B[j]); |
---|
4550 | if (deg_vec[1]==0) |
---|
4551 | { deg_vec[1]=i-1; |
---|
4552 | } |
---|
4553 | else |
---|
4554 | { deg_vec=deg_vec,i-1; |
---|
4555 | } |
---|
4556 | counter=counter+1; |
---|
4557 | if (v) |
---|
4558 | { " We find: "+string(B[j]); |
---|
4559 | } |
---|
4560 | if (deg_dim_vec[i]<>counter) |
---|
4561 | { TEST=std(TEST+ideal(NF(B[j],TEST))); // should be soon replaced |
---|
4562 | // by next line |
---|
4563 | // TEST=std(TEST,NF(B[j],TEST)); |
---|
4564 | } |
---|
4565 | } |
---|
4566 | } |
---|
4567 | } |
---|
4568 | } |
---|
4569 | if (v) |
---|
4570 | { ""; |
---|
4571 | } |
---|
4572 | } |
---|
4573 | } |
---|
4574 | if (v) |
---|
4575 | { " We're done!"; |
---|
4576 | ""; |
---|
4577 | } |
---|
4578 | if (ring_name=="aksldfalkdsflkj") |
---|
4579 | { kill `ring_name`; |
---|
4580 | } |
---|
4581 | return(matrix(S),matrix(IS)); |
---|
4582 | } |
---|
4583 | example |
---|
4584 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7 (changed into"; |
---|
4585 | " characteristic 3)"; |
---|
4586 | echo=2; |
---|
4587 | ring R=3,(x,y,z),dp; |
---|
4588 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
4589 | list L=primary_invariants(A); |
---|
4590 | matrix S,IS=secondary_charp(L[1..size(L)]); |
---|
4591 | print(S); |
---|
4592 | print(IS); |
---|
4593 | } |
---|
4594 | |
---|
4595 | proc secondary_no_molien (matrix P, matrix REY, list #) |
---|
4596 | USAGE: secondary_no_molien(P,REY[,deg_vec,v]); |
---|
4597 | P: a 1xn <matrix> with primary invariants, REY: a gxn <matrix> |
---|
4598 | representing the Reynolds operator, deg_vec: an optional <intvec> |
---|
4599 | listing some degrees where no non-trivial homogeneous invariants can be |
---|
4600 | found, v: an optional <int> |
---|
4601 | ASSUME: n is the number of variables of the basering, g the size of the group, |
---|
4602 | REY is the 1st return value of group_reynolds(), reynolds_molien() or |
---|
4603 | the second one of primary_invariants(), deg_vec is the second return |
---|
4604 | value of primary_char0_no_molien(), primary_charp_no_molien(), |
---|
4605 | primary_char0_no_molien_random() or primary_charp_no_molien_random() |
---|
4606 | RETURN: secondary invariants of the invariant ring (type <matrix>) |
---|
4607 | DISPLAY: information if v does not equal 0 |
---|
4608 | EXAMPLE: example secondary_no_molien; shows an example |
---|
4609 | THEORY: The secondary invariants are calculated by finding a basis (in terms of |
---|
4610 | monomials) of the basering modulo the primary invariants, mapping those |
---|
4611 | to invariants with the Reynolds operator and using these images as |
---|
4612 | candidates for secondary invariants. |
---|
4613 | { int i; |
---|
4614 | degBound=0; |
---|
4615 | //------------------ checking input and setting verbose ---------------------- |
---|
4616 | if (size(#)==1 or size(#)==2) |
---|
4617 | { if (typeof(#[size(#)])=="int") |
---|
4618 | { if (size(#)==2) |
---|
4619 | { if (typeof(#[size(#)-1])=="intvec") |
---|
4620 | { intvec deg_vec=#[size(#)-1]; |
---|
4621 | } |
---|
4622 | else |
---|
4623 | { "ERROR: the third parameter should be an <intvec>"; |
---|
4624 | return(); |
---|
4625 | } |
---|
4626 | } |
---|
4627 | int v=#[size(#)]; |
---|
4628 | } |
---|
4629 | else |
---|
4630 | { if (size(#)==1) |
---|
4631 | { if (typeof(#[size(#)])=="intvec") |
---|
4632 | { intvec deg_vec=#[size(#)]; |
---|
4633 | int v=0; |
---|
4634 | } |
---|
4635 | else |
---|
4636 | { "ERROR: the third parameter should be an <intvec>"; |
---|
4637 | return(); |
---|
4638 | } |
---|
4639 | } |
---|
4640 | else |
---|
4641 | { "ERROR: wrong list of parameters"; |
---|
4642 | return(); |
---|
4643 | } |
---|
4644 | } |
---|
4645 | } |
---|
4646 | else |
---|
4647 | { if (size(#)>2) |
---|
4648 | { "ERROR: there are too many parameters"; |
---|
4649 | return(); |
---|
4650 | } |
---|
4651 | int v=0; |
---|
4652 | } |
---|
4653 | int n=nvars(basering); // n is the number of variables, as well |
---|
4654 | // as the size of the matrices, as well |
---|
4655 | // as the number of primary invariants, |
---|
4656 | // we should get |
---|
4657 | if (ncols(P)<>n) |
---|
4658 | { "ERROR: The first parameter ought to be the matrix of the primary"; |
---|
4659 | " invariants." |
---|
4660 | return(); |
---|
4661 | } |
---|
4662 | if (ncols(REY)<>n) |
---|
4663 | { "ERROR: The second parameter ought to be the Reynolds operator." |
---|
4664 | return(); |
---|
4665 | } |
---|
4666 | if (v && voice==2) |
---|
4667 | { ""; |
---|
4668 | } |
---|
4669 | int j, m, d; |
---|
4670 | int max=1; |
---|
4671 | for (j=1;j<=n;j=j+1) |
---|
4672 | { max=max*deg(P[j]); |
---|
4673 | } |
---|
4674 | max=max/nrows(REY); |
---|
4675 | if (v) |
---|
4676 | { " We need to find "+string(max)+" secondary invariants."; |
---|
4677 | ""; |
---|
4678 | " In degree 0 we have: 1"; |
---|
4679 | ""; |
---|
4680 | } |
---|
4681 | //------------------------- initializing variables --------------------------- |
---|
4682 | ideal sP=std(ideal(P)); |
---|
4683 | ideal B, TEST; |
---|
4684 | ideal S=1; // 1 is the first secondary invariant |
---|
4685 | int counter=1; |
---|
4686 | i=0; |
---|
4687 | if (defined(deg_vec)<>voice) |
---|
4688 | { intvec deg_vec; |
---|
4689 | } |
---|
4690 | int k=1; |
---|
4691 | //--------------------- generating secondary invariants ---------------------- |
---|
4692 | while (counter<>max) |
---|
4693 | { i=i+1; |
---|
4694 | if (deg_vec[k]<>i) |
---|
4695 | { if (v) |
---|
4696 | { " Searching in degree "+string(i)+"..."; |
---|
4697 | } |
---|
4698 | B=sort_of_invariant_basis(sP,REY,i,max); // B contains images of |
---|
4699 | // kbase(sP,i) under the Reynolds |
---|
4700 | // operator that are linearly independent |
---|
4701 | // and that don't reduce to 0 modulo sP |
---|
4702 | TEST=sP; |
---|
4703 | for (j=1;j<=ncols(B);j=j+1) |
---|
4704 | { // that are linearly independent modulo |
---|
4705 | // TEST |
---|
4706 | if (reduce(B[j],TEST)<>0) // B[j] should be added |
---|
4707 | { S=S,B[j]; |
---|
4708 | counter=counter+1; |
---|
4709 | if (v) |
---|
4710 | { " We find: "+string(B[j]); |
---|
4711 | } |
---|
4712 | if (counter==max) |
---|
4713 | { break; |
---|
4714 | } |
---|
4715 | else |
---|
4716 | { if (j<>ncols(B)) |
---|
4717 | { TEST=std(TEST+ideal(NF(B[j],TEST))); // should soon be replaced by |
---|
4718 | // next line |
---|
4719 | // TEST=std(TEST,NF(B[j],TEST)); |
---|
4720 | } |
---|
4721 | } |
---|
4722 | } |
---|
4723 | } |
---|
4724 | } |
---|
4725 | else |
---|
4726 | { if (size(deg_vec)==k) |
---|
4727 | { k=1; |
---|
4728 | } |
---|
4729 | else |
---|
4730 | { k=k+1; |
---|
4731 | } |
---|
4732 | } |
---|
4733 | } |
---|
4734 | if (v) |
---|
4735 | { ""; |
---|
4736 | } |
---|
4737 | if (v) |
---|
4738 | { " We're done!"; |
---|
4739 | ""; |
---|
4740 | } |
---|
4741 | return(matrix(S)); |
---|
4742 | } |
---|
4743 | example |
---|
4744 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
4745 | echo=2; |
---|
4746 | ring R=0,(x,y,z),dp; |
---|
4747 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
4748 | list L=primary_invariants(A,intvec(1,1,0)); |
---|
4749 | matrix S=secondary_no_molien(L[1..3]); |
---|
4750 | print(S); |
---|
4751 | } |
---|
4752 | |
---|
4753 | proc secondary_with_irreducible_ones_no_molien (matrix P, matrix REY, list #) |
---|
4754 | USAGE: secondary_with_irreducible_ones_no_molien(P,REY[,v]); |
---|
4755 | P: a 1xn <matrix> with primary invariants, REY: a gxn <matrix> |
---|
4756 | representing the Reynolds operator, v: an optional <int> |
---|
4757 | ASSUME: n is the number of variables of the basering, g the size of the group, |
---|
4758 | REY is the 1st return value of group_reynolds(), reynolds_molien() or |
---|
4759 | the second one of primary_invariants() |
---|
4760 | RETURN: secondary invariants of the invariant ring (type <matrix>) and |
---|
4761 | irreducible secondary invariants (type <matrix>) |
---|
4762 | DISPLAY: information if v does not equal 0 |
---|
4763 | EXAMPLE: example secondary_with_irreducible_ones_no_molien; shows an example |
---|
4764 | THEORY: The secondary invariants are calculated by finding a basis (in terms of |
---|
4765 | monomials) of the basering modulo the primary invariants, mapping those |
---|
4766 | to invariants with the Reynolds operator and using these images or |
---|
4767 | their power products such that they are linearly independent modulo the |
---|
4768 | primary invariants (see paper "Some Algorithms in Invariant Theory of |
---|
4769 | Finite Groups" by Kemper and Steel (1997)). |
---|
4770 | { int i; |
---|
4771 | degBound=0; |
---|
4772 | //--------------------- checking input and setting verbose mode -------------- |
---|
4773 | if (size(#)==1 or size(#)==2) |
---|
4774 | { if (typeof(#[size(#)])=="int") |
---|
4775 | { if (size(#)==2) |
---|
4776 | { if (typeof(#[size(#)-1])=="intvec") |
---|
4777 | { intvec deg_vec=#[size(#)-1]; |
---|
4778 | } |
---|
4779 | else |
---|
4780 | { "ERROR: the third parameter should be an <intvec>"; |
---|
4781 | return(); |
---|
4782 | } |
---|
4783 | } |
---|
4784 | int v=#[size(#)]; |
---|
4785 | } |
---|
4786 | else |
---|
4787 | { if (size(#)==1) |
---|
4788 | { if (typeof(#[size(#)])=="intvec") |
---|
4789 | { intvec deg_vec=#[size(#)]; |
---|
4790 | int v=0; |
---|
4791 | } |
---|
4792 | else |
---|
4793 | { "ERROR: the third parameter should be an <intvec>"; |
---|
4794 | return(); |
---|
4795 | } |
---|
4796 | } |
---|
4797 | else |
---|
4798 | { "ERROR: wrong list of parameters"; |
---|
4799 | return(); |
---|
4800 | } |
---|
4801 | } |
---|
4802 | } |
---|
4803 | else |
---|
4804 | { if (size(#)>2) |
---|
4805 | { "ERROR: there are too many parameters"; |
---|
4806 | return(); |
---|
4807 | } |
---|
4808 | int v=0; |
---|
4809 | } |
---|
4810 | int n=nvars(basering); // n is the number of variables, as well |
---|
4811 | // as the size of the matrices, as well |
---|
4812 | // as the number of primary invariants, |
---|
4813 | // we should get |
---|
4814 | if (ncols(P)<>n) |
---|
4815 | { "ERROR: The first parameter ought to be the matrix of the primary"; |
---|
4816 | " invariants." |
---|
4817 | return(); |
---|
4818 | } |
---|
4819 | if (ncols(REY)<>n) |
---|
4820 | { "ERROR: The second parameter ought to be the Reynolds operator." |
---|
4821 | return(); |
---|
4822 | } |
---|
4823 | if (v && voice==2) |
---|
4824 | { ""; |
---|
4825 | } |
---|
4826 | int j, m, d; |
---|
4827 | int max=1; |
---|
4828 | for (j=1;j<=n;j=j+1) |
---|
4829 | { max=max*deg(P[j]); |
---|
4830 | } |
---|
4831 | max=max/nrows(REY); |
---|
4832 | if (v) |
---|
4833 | { " We need to find "+string(max)+" secondary invariants."; |
---|
4834 | ""; |
---|
4835 | " In degree 0 we have: 1"; |
---|
4836 | ""; |
---|
4837 | } |
---|
4838 | //------------------------ initializing variables ---------------------------- |
---|
4839 | intmat PP; |
---|
4840 | poly pp; |
---|
4841 | int k; |
---|
4842 | intvec irreducible_deg_vec; |
---|
4843 | ideal sP=std(ideal(P)); |
---|
4844 | ideal B,TEST,IS; |
---|
4845 | ideal S=1; // 1 is the first secondary invariant |
---|
4846 | int counter=1; |
---|
4847 | i=0; |
---|
4848 | if (defined(deg_vec)<>voice) |
---|
4849 | { intvec deg_vec; |
---|
4850 | } |
---|
4851 | int l=1; |
---|
4852 | //------------------- generating secondary invariants ------------------------ |
---|
4853 | while (counter<>max) |
---|
4854 | { i=i+1; |
---|
4855 | if (deg_vec[l]<>i) |
---|
4856 | { if (v) |
---|
4857 | { " Searching in degree "+string(i)+"..."; |
---|
4858 | } |
---|
4859 | TEST=sP; |
---|
4860 | if (IS[1]<>0) |
---|
4861 | { PP=power_products(irreducible_deg_vec,i); // generating all power |
---|
4862 | } // products of irreducible secondary |
---|
4863 | // invariants |
---|
4864 | if (size(ideal(PP))<>0) |
---|
4865 | { for (j=1;j<=ncols(PP);j=j+1) // going through all those power products |
---|
4866 | { pp=1; |
---|
4867 | for (k=1;k<=nrows(PP);k=k+1) |
---|
4868 | { pp=pp*IS[1,k]^PP[k,j]; |
---|
4869 | } |
---|
4870 | if (reduce(pp,TEST)<>0) |
---|
4871 | { S=S,pp; |
---|
4872 | counter=counter+1; |
---|
4873 | if (v) |
---|
4874 | { " We find: "+string(pp); |
---|
4875 | } |
---|
4876 | if (counter<>max) |
---|
4877 | { TEST=std(TEST+ideal(NF(pp,TEST))); // should soon be replaced by |
---|
4878 | // next line |
---|
4879 | // TEST=std(TEST,NF(pp,TEST)); |
---|
4880 | } |
---|
4881 | else |
---|
4882 | { break; |
---|
4883 | } |
---|
4884 | } |
---|
4885 | } |
---|
4886 | } |
---|
4887 | if (max<>counter) |
---|
4888 | { B=sort_of_invariant_basis(sP,REY,i,max); // B contains images of |
---|
4889 | // kbase(sP,i) under the Reynolds |
---|
4890 | // operator that are linearly independent |
---|
4891 | // and that don't reduce to 0 modulo sP |
---|
4892 | for (j=1;j<=ncols(B);j=j+1) |
---|
4893 | { if (reduce(B[j],TEST)<>0) // B[j] should be added |
---|
4894 | { S=S,B[j]; |
---|
4895 | IS=IS+ideal(B[j]); |
---|
4896 | if (irreducible_deg_vec[1]==0) |
---|
4897 | { irreducible_deg_vec[1]=i; |
---|
4898 | } |
---|
4899 | else |
---|
4900 | { irreducible_deg_vec=irreducible_deg_vec,i; |
---|
4901 | } |
---|
4902 | counter=counter+1; |
---|
4903 | if (v) |
---|
4904 | { " We find: "+string(B[j]); |
---|
4905 | } |
---|
4906 | if (counter==max) |
---|
4907 | { break; |
---|
4908 | } |
---|
4909 | else |
---|
4910 | { if (j<>ncols(B)) |
---|
4911 | { TEST=std(TEST+ideal(NF(B[j],TEST))); // should soon be replaced |
---|
4912 | // by next line |
---|
4913 | // TEST=std(TEST,NF(B[j],TEST)); |
---|
4914 | } |
---|
4915 | } |
---|
4916 | } |
---|
4917 | } |
---|
4918 | } |
---|
4919 | } |
---|
4920 | else |
---|
4921 | { if (size(deg_vec)==l) |
---|
4922 | { l=1; |
---|
4923 | } |
---|
4924 | else |
---|
4925 | { l=l+1; |
---|
4926 | } |
---|
4927 | } |
---|
4928 | } |
---|
4929 | if (v) |
---|
4930 | { ""; |
---|
4931 | } |
---|
4932 | if (v) |
---|
4933 | { " We're done!"; |
---|
4934 | ""; |
---|
4935 | } |
---|
4936 | return(matrix(S),matrix(IS)); |
---|
4937 | } |
---|
4938 | example |
---|
4939 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
4940 | echo=2; |
---|
4941 | ring R=0,(x,y,z),dp; |
---|
4942 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
4943 | list L=primary_invariants(A,intvec(1,1,0)); |
---|
4944 | matrix S,IS=secondary_with_irreducible_ones_no_molien(L[1..2]); |
---|
4945 | print(S); |
---|
4946 | print(IS); |
---|
4947 | } |
---|
4948 | |
---|
4949 | proc secondary_not_cohen_macaulay (matrix P, list #) |
---|
4950 | USAGE: secondary_not_cohen_macaulay(P,G1,G2,...[,v]); |
---|
4951 | P: a 1xn <matrix> with primary invariants, G1,G2,...: nxn <matrices> |
---|
4952 | generating a finite matrix group, v: an optional <int> |
---|
4953 | ASSUME: n is the number of variables of the basering |
---|
4954 | RETURN: secondary invariants of the invariant ring (type <matrix>) |
---|
4955 | DISPLAY: information if v does not equal 0 |
---|
4956 | EXAMPLE: example secondary_not_cohen_macaulay; shows an example |
---|
4957 | THEORY: The secondary invariants are generated following "Generating Invariant |
---|
4958 | Rings of Finite Groups over Arbitrary Fields" by Kemper (1996, to |
---|
4959 | appear in JSC). |
---|
4960 | { int i, j; |
---|
4961 | degBound=0; |
---|
4962 | def br=basering; |
---|
4963 | int n=nvars(br); // n is the number of variables, as well |
---|
4964 | // as the size of the matrices, as well |
---|
4965 | // as the number of primary invariants, |
---|
4966 | // we should get - |
---|
4967 | if (size(#)>0) // checking input and setting verbose |
---|
4968 | { if (typeof(#[size(#)])=="int") |
---|
4969 | { int gen_num=size(#)-1; |
---|
4970 | if (gen_num==0) |
---|
4971 | { "ERROR: There are no generators of the finite matrix group given."; |
---|
4972 | return(); |
---|
4973 | } |
---|
4974 | int v=#[size(#)]; |
---|
4975 | for (i=1;i<=gen_num;i=i+1) |
---|
4976 | { if (typeof(#[i])<>"matrix") |
---|
4977 | { "ERROR: These parameters should be generators of the finite matrix group."; |
---|
4978 | return(); |
---|
4979 | } |
---|
4980 | if ((n<>nrows(#[i])) or (n<>ncols(#[i]))) |
---|
4981 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
4982 | return(); |
---|
4983 | } |
---|
4984 | } |
---|
4985 | } |
---|
4986 | else |
---|
4987 | { int v=0; |
---|
4988 | int gen_num=size(#); |
---|
4989 | for (i=1;i<=gen_num;i=i+1) |
---|
4990 | { if (typeof(#[i])<>"matrix") |
---|
4991 | { "ERROR: These parameters should be generators of the finite matrix group."; |
---|
4992 | return(); |
---|
4993 | } |
---|
4994 | if ((n<>nrows(#[i])) or (n<>ncols(#[i]))) |
---|
4995 | { "ERROR: matrices need to be square and of the same dimensions"; |
---|
4996 | return(); |
---|
4997 | } |
---|
4998 | } |
---|
4999 | } |
---|
5000 | } |
---|
5001 | else |
---|
5002 | { "ERROR: There are no generators of the finite matrix group given."; |
---|
5003 | return(); |
---|
5004 | } |
---|
5005 | if (ncols(P)<>n) |
---|
5006 | { "ERROR: The first parameter ought to be the matrix of the primary"; |
---|
5007 | " invariants." |
---|
5008 | return(); |
---|
5009 | } |
---|
5010 | if (v && voice==2) |
---|
5011 | { ""; |
---|
5012 | } |
---|
5013 | ring alskdfalkdsj=0,x,dp; |
---|
5014 | matrix M[1][2]=1,(1-x)^n; // we look at our primary invariants as |
---|
5015 | export alskdfalkdsj; |
---|
5016 | export M; |
---|
5017 | setring br; // such of the subgroup that only |
---|
5018 | matrix REY=matrix(maxideal(1)); // contains the identity, this means that |
---|
5019 | // ch does not divide the order anymore, |
---|
5020 | // this means that we can make use of the |
---|
5021 | // Molien series again - M[1,1]/M[1,2] is |
---|
5022 | // the Molien series of that group, we |
---|
5023 | // now calculate the secondary invariants |
---|
5024 | // of this subgroup in the usual fashion |
---|
5025 | // where the primary invariants are the |
---|
5026 | // ones from the bigger group |
---|
5027 | if (v) |
---|
5028 | { " The procedure secondary_charp() is called to calculate secondary invariants"; |
---|
5029 | " of the invariant ring of the trivial group with respect to the primary"; |
---|
5030 | " invariants found previously."; |
---|
5031 | ""; |
---|
5032 | } |
---|
5033 | matrix trivialS=secondary_charp(P,REY,"alskdfalkdsj",v); |
---|
5034 | kill alskdfalkdsj; |
---|
5035 | // now we have those secondary invariants |
---|
5036 | int k=ncols(trivialS); // k is the number of the secondary |
---|
5037 | // invariants, we just calculated |
---|
5038 | if (v) |
---|
5039 | { " We calculate secondary invariants from the ones found for the trivial"; |
---|
5040 | " subgroup."; |
---|
5041 | ""; |
---|
5042 | } |
---|
5043 | map f; // used to let generators act on |
---|
5044 | // secondary invariants with respect to |
---|
5045 | // the trivial group - |
---|
5046 | matrix M(1)[gen_num][k]; // M(1) will contain a module |
---|
5047 | ideal B; |
---|
5048 | for (i=1;i<=gen_num;i=i+1) |
---|
5049 | { B=ideal(matrix(maxideal(1))*transpose(#[i])); // image of the various |
---|
5050 | // variables under the i-th generator - |
---|
5051 | f=br,B; // the corresponding mapping - |
---|
5052 | B=f(trivialS)-trivialS; // these relations should be 0 - |
---|
5053 | M(1)[i,1..k]=B[1..k]; // we will look for the syzygies of M(1) |
---|
5054 | } |
---|
5055 | module M(2)=res(M(1),2)[2]; |
---|
5056 | int m=ncols(M(2)); // number of generators of the module |
---|
5057 | // M(2) - |
---|
5058 | // the following steps calculates the intersection of the module M(2) with |
---|
5059 | // the algebra A^k where A denote the subalgebra of the usual polynomial |
---|
5060 | // ring, generated by the primary invariants |
---|
5061 | string mp=string(minpoly); // generating a ring where we can do |
---|
5062 | // elimination |
---|
5063 | execute "ring R=("+charstr(br)+"),(x(1..n),y(1..n),h),dp;"; |
---|
5064 | execute "minpoly=number("+mp+");"; |
---|
5065 | map f=br,maxideal(1); // canonical mapping |
---|
5066 | matrix M[k][m+k*n]; |
---|
5067 | M[1..k,1..m]=matrix(f(M(2))); // will contain a module - |
---|
5068 | matrix P=f(P); // primary invariants in the new ring |
---|
5069 | for (i=1;i<=n;i=i+1) |
---|
5070 | { for (j=1;j<=k;j=j+1) |
---|
5071 | { M[j,m+(i-1)*k+j]=y(i)-P[1,i]; |
---|
5072 | } |
---|
5073 | } |
---|
5074 | M=elim(module(M),1,n); // eliminating x(1..n), std-calculation |
---|
5075 | // is done internally - |
---|
5076 | M=homog(module(M),h); // homogenize for 'minbase' |
---|
5077 | M=minbase(module(M)); |
---|
5078 | setring br; |
---|
5079 | ideal substitute=maxideal(1),ideal(P),1; |
---|
5080 | f=R,substitute; // replacing y(1..n) by primary |
---|
5081 | // invariants - |
---|
5082 | M(2)=f(M); // M(2) is the new module |
---|
5083 | m=ncols(M(2)); |
---|
5084 | matrix S[1][m]; |
---|
5085 | S=matrix(trivialS)*matrix(M(2)); // S now contains the secondary |
---|
5086 | // invariants |
---|
5087 | for (i=1; i<=m;i=i+1) |
---|
5088 | { S[1,i]=S[1,i]/leadcoef(S[1,i]); // making elements nice |
---|
5089 | } |
---|
5090 | S=sort(ideal(S))[1]; |
---|
5091 | if (v) |
---|
5092 | { " These are the secondary invariants: "; |
---|
5093 | for (i=1;i<=m;i=i+1) |
---|
5094 | { " "+string(S[1,i]); |
---|
5095 | } |
---|
5096 | ""; |
---|
5097 | " We're done!"; |
---|
5098 | ""; |
---|
5099 | } |
---|
5100 | if ((v or (voice==2)) && (m>1)) |
---|
5101 | { " WARNING: The invariant ring might not have a Hironaka decomposition"; |
---|
5102 | " if the characteristic of the coefficient field divides the"; |
---|
5103 | " group order."; |
---|
5104 | } |
---|
5105 | return(S); |
---|
5106 | } |
---|
5107 | example |
---|
5108 | { echo=2; |
---|
5109 | ring R=2,(x,y,z),dp; |
---|
5110 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
5111 | list L=primary_invariants(A); |
---|
5112 | matrix S=secondary_not_cohen_macaulay(L[1],A); |
---|
5113 | print(S); |
---|
5114 | } |
---|
5115 | |
---|
5116 | proc invariant_ring (list #) |
---|
5117 | USAGE: invariant_ring(G1,G2,...[,flags]); |
---|
5118 | G1,G2,...: <matrices> generating a finite matrix group, flags: an |
---|
5119 | optional <intvec> with three entries: if the first one equals 0, the |
---|
5120 | program attempts to compute the Molien series and Reynolds operator, |
---|
5121 | if it equals 1, the program is told that the Molien series should not |
---|
5122 | be computed, if it equals -1 characteristic 0 is simulated, i.e. the |
---|
5123 | Molien series is computed as if the base field were characteristic 0 |
---|
5124 | (the user must choose a field of large prime characteristic, e.g. |
---|
5125 | 32003) and if the first one is anything else, it means that the |
---|
5126 | characteristic of the base field divides the group order (i.e. it will |
---|
5127 | not even be attempted to compute the Reynolds operator or Molien |
---|
5128 | series), the second component should give the size of intervals |
---|
5129 | between canceling common factors in the expansion of the Molien series, |
---|
5130 | 0 (the default) means only once after generating all terms, in prime |
---|
5131 | characteristic also a negative number can be given to indicate that |
---|
5132 | common factors should always be canceled when the expansion is simple |
---|
5133 | (the root of the extension field does not occur among the coefficients) |
---|
5134 | RETURN: primary and secondary invariants (both of type <matrix>) generating the |
---|
5135 | invariant ring with respect to the matrix group generated by the |
---|
5136 | matrices in the input and irreducible secondary invariants (type |
---|
5137 | <matrix>) if the Molien series was available |
---|
5138 | DISPLAY: information about the various stages of the program if the third flag |
---|
5139 | does not equal 0 |
---|
5140 | EXAMPLE: example invariant_ring; shows an example |
---|
5141 | THEORY: Bases of homogeneous invariants are generated successively and those |
---|
5142 | are chosen as primary invariants that lower the dimension of the ideal |
---|
5143 | generated by the previously found invariants (see paper "Generating a |
---|
5144 | Noetherian Normalization of the Invariant Ring of a Finite Group" by |
---|
5145 | Decker, Heydtmann, Schreyer (1997) to appear in JSC). In the |
---|
5146 | non-modular case secondary invariants are calculated by finding a |
---|
5147 | basis (in terms of monomials) of the basering modulo the primary |
---|
5148 | invariants, mapping to invariants with the Reynolds operator and using |
---|
5149 | those or their power products such that they are linearly independent |
---|
5150 | modulo the primary invariants (see paper "Some Algorithms in Invariant |
---|
5151 | Theory of Finite Groups" by Kemper and Steel (1997)). In the modular |
---|
5152 | case they are generated according to "Generating Invariant Rings of |
---|
5153 | Finite Groups over Arbitrary Fields" by Kemper (1996, to appear in |
---|
5154 | JSC). |
---|
5155 | { if (size(#)==0) |
---|
5156 | { "ERROR: There are no generators given."; |
---|
5157 | return(); |
---|
5158 | } |
---|
5159 | int ch=char(basering); // the algorithms depend very much on the |
---|
5160 | // characteristic of the ground field - |
---|
5161 | int n=nvars(basering); // n is the number of variables, as well |
---|
5162 | // as the size of the matrices, as well |
---|
5163 | // as the number of primary invariants, |
---|
5164 | // we should get |
---|
5165 | int gen_num; |
---|
5166 | int mol_flag, v; |
---|
5167 | //------------------- checking input and setting flags ----------------------- |
---|
5168 | if (typeof(#[size(#)])=="intvec") |
---|
5169 | { if (size(#[size(#)])<>3) |
---|
5170 | { "ERROR: The <intvec> should have three entries."; |
---|
5171 | return(); |
---|
5172 | } |
---|
5173 | gen_num=size(#)-1; |
---|
5174 | mol_flag=#[size(#)][1]; |
---|
5175 | if (#[size(#)][2]<0 && (ch==0 or (ch<>0 && mol_flag<>0))) |
---|
5176 | { "ERROR: the second component of <intvec> should be >=0"; |
---|
5177 | return(); |
---|
5178 | } |
---|
5179 | int interval=#[size(#)][2]; |
---|
5180 | v=#[size(#)][3]; |
---|
5181 | } |
---|
5182 | else |
---|
5183 | { gen_num=size(#); |
---|
5184 | mol_flag=0; |
---|
5185 | int interval=0; |
---|
5186 | v=0; |
---|
5187 | } |
---|
5188 | //---------------------------------------------------------------------------- |
---|
5189 | if (mol_flag==0) // calculation Molien series will be |
---|
5190 | { if (ch==0) // attempted - |
---|
5191 | { matrix REY,M=reynolds_molien(#[1..gen_num],intvec(0,interval,v)); // one |
---|
5192 | // will contain Reynolds operator and the |
---|
5193 | // other enumerator and denominator of |
---|
5194 | // Molien series |
---|
5195 | matrix P=primary_char0(REY,M,v); |
---|
5196 | matrix S,IS=secondary_char0(P,REY,M,v); |
---|
5197 | return(P,S,IS); |
---|
5198 | } |
---|
5199 | else |
---|
5200 | { list L=group_reynolds(#[1..gen_num],v); |
---|
5201 | if (L[1]<>0) // testing whether we are in the modular |
---|
5202 | { string newring="aksldfalkdsflkj"; // case |
---|
5203 | if (minpoly==0) |
---|
5204 | { if (v) |
---|
5205 | { " We are dealing with the non-modular case."; |
---|
5206 | } |
---|
5207 | molien(L[3..size(L)],newring,L[2],intvec(0,interval,v)); |
---|
5208 | matrix P=primary_charp(L[1],newring,v); |
---|
5209 | matrix S,IS=secondary_charp(P,L[1],newring,v); |
---|
5210 | if (voice==2) |
---|
5211 | { kill aksldfalkdsflkj; |
---|
5212 | } |
---|
5213 | return(P,S,IS); |
---|
5214 | } |
---|
5215 | else |
---|
5216 | { if (v) |
---|
5217 | { " Since it is impossible for this programme to calculate the Molien |
---|
5218 | series for"; |
---|
5219 | " invariant rings over extension fields of prime characteristic, we |
---|
5220 | have to"; |
---|
5221 | " continue without it."; |
---|
5222 | ""; |
---|
5223 | |
---|
5224 | } |
---|
5225 | list l=primary_charp_no_molien(L[1],v); |
---|
5226 | if (size(l)==2) |
---|
5227 | { matix S=secondary_no_molien(l[1],L[1],l[2],v); |
---|
5228 | } |
---|
5229 | else |
---|
5230 | { matix S=secondary_no_molien(l[1],L[1],v); |
---|
5231 | } |
---|
5232 | return(l[1],S); |
---|
5233 | } |
---|
5234 | } |
---|
5235 | else // the modular case |
---|
5236 | { if (v) |
---|
5237 | { " There is also no Molien series or Reynolds operator, we can make use of..."; |
---|
5238 | ""; |
---|
5239 | " We can start looking for primary invariants..."; |
---|
5240 | ""; |
---|
5241 | } |
---|
5242 | matrix P=primary_charp_without(#[1..gen_num],v); |
---|
5243 | matrix S=secondary_not_cohen_macaulay(P,#[1..gen_num],v); |
---|
5244 | return(P,S); |
---|
5245 | } |
---|
5246 | } |
---|
5247 | } |
---|
5248 | if (mol_flag==1) // the user wants no calculation of the |
---|
5249 | { list L=group_reynolds(#[1..gen_num],v); // Molien series |
---|
5250 | if (ch==0) |
---|
5251 | { list l=primary_char0_no_molien(L[1],v); |
---|
5252 | if (size(l)==2) |
---|
5253 | { matix S=secondary_no_molien(l[1],L[1],l[2],v); |
---|
5254 | } |
---|
5255 | else |
---|
5256 | { matix S=secondary_no_molien(l[1],L[1],v); |
---|
5257 | } |
---|
5258 | return(l[1],S); |
---|
5259 | } |
---|
5260 | else |
---|
5261 | { if (L[1]<>0) // testing whether we are in the modular |
---|
5262 | { list l=primary_charp_no_molien(L[1],v); // case |
---|
5263 | if (size(l)==2) |
---|
5264 | { matix S=secondary_no_molien(l[1],L[1],l[2],v); |
---|
5265 | } |
---|
5266 | else |
---|
5267 | { matix S=secondary_no_molien(l[1],L[1],v); |
---|
5268 | } |
---|
5269 | return(l[1],S); |
---|
5270 | } |
---|
5271 | else // the modular case |
---|
5272 | { if (v) |
---|
5273 | { " We can start looking for primary invariants..."; |
---|
5274 | ""; |
---|
5275 | } |
---|
5276 | matrix P=primary_charp_without(#[1..gen_num],v); |
---|
5277 | matrix S=secondary_not_cohen_macaulay(P,#[1..gen_num],v); |
---|
5278 | return(L[1],S); |
---|
5279 | } |
---|
5280 | } |
---|
5281 | } |
---|
5282 | if (mol_flag==-1) |
---|
5283 | { if (ch==0) |
---|
5284 | { "ERROR: Characteristic 0 can only be simulated in characteristic p>>0. |
---|
5285 | "; |
---|
5286 | return(); |
---|
5287 | } |
---|
5288 | list L=group_reynolds(#[1..gen_num],v); |
---|
5289 | string newring="aksldfalkdsflkj"; |
---|
5290 | molien(L[2..size(L)],newring,intvec(1,interval,v)); |
---|
5291 | matrix P=primary_charp(L[1],newring,v); |
---|
5292 | matrix S,IS=secondary_charp(P,L[1],newring,v); |
---|
5293 | kill aksldfalkdsflkj; |
---|
5294 | return(P,S,IS); |
---|
5295 | } |
---|
5296 | else // the user specified that the |
---|
5297 | { if (ch==0) // characteristic divides the group order |
---|
5298 | { "ERROR: The characteristic cannot divide the group order when it is 0. |
---|
5299 | "; |
---|
5300 | return(); |
---|
5301 | } |
---|
5302 | if (v) |
---|
5303 | { ""; |
---|
5304 | } |
---|
5305 | matrix P=primary_charp_without(#[1..gen_num],v); |
---|
5306 | matrix S=secondary_not_cohen_macaulay(P,#[1..gen_num],v); |
---|
5307 | return(L[1],S); |
---|
5308 | } |
---|
5309 | } |
---|
5310 | example |
---|
5311 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
5312 | echo=2; |
---|
5313 | ring R=0,(x,y,z),dp; |
---|
5314 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
5315 | matrix P,S,IS=invariant_ring(A); |
---|
5316 | print(P); |
---|
5317 | print(S); |
---|
5318 | print(IS); |
---|
5319 | } |
---|
5320 | |
---|
5321 | proc invariant_ring_random (list #) |
---|
5322 | USAGE: invariant_ring_random(G1,G2,...,r[,flags]); |
---|
5323 | G1,G2,...: <matrices> generating a finite matrix group, r: an <int> |
---|
5324 | where -|r| to |r| is the range of coefficients of random |
---|
5325 | combinations of bases elements that serve as primary invariants, |
---|
5326 | flags: an optional <intvec> with three entries: if the first one equals |
---|
5327 | 0, the program attempts to compute the Molien series and Reynolds |
---|
5328 | operator, if it equals 1, the program is told that the Molien series |
---|
5329 | should not be computed, if it equals -1 characteristic 0 is simulated, |
---|
5330 | i.e. the Molien series is computed as if the base field were |
---|
5331 | characteristic 0 (the user must choose a field of large prime |
---|
5332 | characteristic, e.g. 32003) and if the first one is anything else, it |
---|
5333 | means that the characteristic of the base field divides the group order |
---|
5334 | (i.e. it will not even be attempted to compute the Reynolds operator or |
---|
5335 | Molien series), the second component should give the size of intervals |
---|
5336 | between canceling common factors in the expansion of the Molien series, |
---|
5337 | 0 (the default) means only once after generating all terms, in prime |
---|
5338 | characteristic also a negative number can be given to indicate that |
---|
5339 | common factors should always be canceled when the expansion is simple |
---|
5340 | (the root of the extension field does not occur among the coefficients) |
---|
5341 | RETURN: primary and secondary invariants (both of type <matrix>) generating the |
---|
5342 | invariant ring with respect to the matrix group generated by the |
---|
5343 | matrices in the input and irreducible secondary invariants (type |
---|
5344 | <matrix>) if the Molien series was available |
---|
5345 | DISPLAY: information about the various stages of the program if the third flag |
---|
5346 | does not equal 0 |
---|
5347 | EXAMPLE: example invariant_ring_random; shows an example |
---|
5348 | THEORY: is the same as for invariant_ring except that random combinations of |
---|
5349 | basis elements are chosen as candidates for primary invariants and |
---|
5350 | hopefully they lower the dimension of the previously found primary |
---|
5351 | invariants by the right amount. |
---|
5352 | { if (size(#)<2) |
---|
5353 | { "ERROR: There are too few parameters."; |
---|
5354 | return(); |
---|
5355 | } |
---|
5356 | int ch=char(basering); // the algorithms depend very much on the |
---|
5357 | // characteristic of the ground field |
---|
5358 | int n=nvars(basering); // n is the number of variables, as well |
---|
5359 | // as the size of the matrices, as well |
---|
5360 | // as the number of primary invariants, |
---|
5361 | // we should get |
---|
5362 | int gen_num; |
---|
5363 | int mol_flag, v; |
---|
5364 | //------------------- checking input and setting flags ----------------------- |
---|
5365 | if (typeof(#[size(#)])=="intvec" && typeof(#[size(#)-1])=="int") |
---|
5366 | { if (size(#[size(#)])<>3) |
---|
5367 | { "ERROR: <intvec> should have three entries."; |
---|
5368 | return(); |
---|
5369 | } |
---|
5370 | gen_num=size(#)-2; |
---|
5371 | mol_flag=#[size(#)][1]; |
---|
5372 | if (#[size(#)][2]<0 && (ch==0 or (ch<>0 && mol_flag<>0))) |
---|
5373 | { "ERROR: the second component of <intvec> should be >=0"; |
---|
5374 | return(); |
---|
5375 | } |
---|
5376 | int interval=#[size(#)][2]; |
---|
5377 | v=#[size(#)][3]; |
---|
5378 | int max=#[size(#)-1]; |
---|
5379 | if (gen_num==0) |
---|
5380 | { "ERROR: There are no generators of a finite matrix group given."; |
---|
5381 | return(); |
---|
5382 | } |
---|
5383 | } |
---|
5384 | else |
---|
5385 | { if (typeof(#[size(#)])=="int") |
---|
5386 | { gen_num=size(#)-1; |
---|
5387 | mol_flag=0; |
---|
5388 | int interval=0; |
---|
5389 | v=0; |
---|
5390 | int max=#[size(#)]; |
---|
5391 | } |
---|
5392 | else |
---|
5393 | { "ERROR: If the two last parameters are not <int> and <intvec>, the last"; |
---|
5394 | " parameter should be an <int>."; |
---|
5395 | return(); |
---|
5396 | } |
---|
5397 | } |
---|
5398 | for (int i=1;i<=gen_num;i=i+1) |
---|
5399 | { if (typeof(#[i])=="matrix") |
---|
5400 | { if (nrows(#[i])<>n or ncols(#[i])<>n) |
---|
5401 | { "ERROR: The number of variables of the base ring needs to be the same"; |
---|
5402 | " as the dimension of the square matrices"; |
---|
5403 | return(); |
---|
5404 | } |
---|
5405 | } |
---|
5406 | else |
---|
5407 | { "ERROR: The first parameters should be a list of matrices"; |
---|
5408 | return(); |
---|
5409 | } |
---|
5410 | } |
---|
5411 | //---------------------------------------------------------------------------- |
---|
5412 | if (mol_flag==0) |
---|
5413 | { if (ch==0) |
---|
5414 | { matrix REY,M=reynolds_molien(#[1..gen_num],intvec(0,interval,v)); // one |
---|
5415 | // will contain Reynolds operator and the |
---|
5416 | // other enumerator and denominator of |
---|
5417 | // Molien series |
---|
5418 | matrix P=primary_char0_random(REY,M,max,v); |
---|
5419 | matrix S,IS=secondary_char0(P,REY,M,v); |
---|
5420 | return(P,S,IS); |
---|
5421 | } |
---|
5422 | else |
---|
5423 | { list L=group_reynolds(#[1..gen_num],v); |
---|
5424 | if (L[1]<>0) // testing whether we are in the modular |
---|
5425 | { string newring="aksldfalkdsflkj"; // case |
---|
5426 | if (minpoly==0) |
---|
5427 | { if (v) |
---|
5428 | { " We are dealing with the non-modular case."; |
---|
5429 | } |
---|
5430 | molien(L[3..size(L)],newring,L[2],intvec(0,interval,v)); |
---|
5431 | matrix P=primary_charp_random(L[1],newring,max,v); |
---|
5432 | matrix S,IS=secondary_charp(P,L[1],newring,v); |
---|
5433 | if (voice==2) |
---|
5434 | { kill aksldfalkdsflkj; |
---|
5435 | } |
---|
5436 | return(P,S,IS); |
---|
5437 | } |
---|
5438 | else |
---|
5439 | { if (v) |
---|
5440 | { " Since it is impossible for this programme to calculate the Molien |
---|
5441 | series for"; |
---|
5442 | " invariant rings over extension fields of prime characteristic, we |
---|
5443 | have to"; |
---|
5444 | " continue without it."; |
---|
5445 | ""; |
---|
5446 | |
---|
5447 | } |
---|
5448 | list l=primary_charp_no_molien_random(L[1],max,v); |
---|
5449 | if (size(l)==2) |
---|
5450 | { matix S=secondary_no_molien(l[1],L[1],l[2],v); |
---|
5451 | } |
---|
5452 | else |
---|
5453 | { matix S=secondary_no_molien(l[1],L[1],v); |
---|
5454 | } |
---|
5455 | return(l[1],S); |
---|
5456 | } |
---|
5457 | } |
---|
5458 | else // the modular case |
---|
5459 | { if (v) |
---|
5460 | { " There is also no Molien series, we can make use of..."; |
---|
5461 | ""; |
---|
5462 | " We can start looking for primary invariants..."; |
---|
5463 | ""; |
---|
5464 | } |
---|
5465 | matrix P=primary_charp_without_random(#[1..gen_num],max,v); |
---|
5466 | matrix S=secondary_not_cohen_macaulay(P,#[1..gen_num],v); |
---|
5467 | return(L[1],S); |
---|
5468 | } |
---|
5469 | } |
---|
5470 | } |
---|
5471 | if (mol_flag==1) // the user wants no calculation of the |
---|
5472 | { list L=group_reynolds(#[1..gen_num],v); // Molien series |
---|
5473 | if (ch==0) |
---|
5474 | { list l=primary_char0_no_molien_random(L[1],max,v); |
---|
5475 | if (size(l)==2) |
---|
5476 | { matix S=secondary_no_molien(l[1],L[1],l[2],v); |
---|
5477 | } |
---|
5478 | else |
---|
5479 | { matix S=secondary_no_molien(l[1],L[1],v); |
---|
5480 | } |
---|
5481 | return(l[1],S); |
---|
5482 | } |
---|
5483 | else |
---|
5484 | { if (L[1]<>0) // testing whether we are in the modular |
---|
5485 | { list l=primary_charp_no_molien_random(L[1],max,v); // case |
---|
5486 | if (size(l)==2) |
---|
5487 | { matix S=secondary_no_molien(l[1],L[1],l[2],v); |
---|
5488 | } |
---|
5489 | else |
---|
5490 | { matix S=secondary_no_molien(l[1],L[1],v); |
---|
5491 | } |
---|
5492 | return(l[1],S); |
---|
5493 | } |
---|
5494 | else // the modular case |
---|
5495 | { if (v) |
---|
5496 | { " We can start looking for primary invariants..."; |
---|
5497 | ""; |
---|
5498 | } |
---|
5499 | matrix P=primary_charp_without_random(#[1..gen_num],max,v); |
---|
5500 | matrix S=secondary_not_cohen_macaulay(P,#[1..gen_num],v); |
---|
5501 | return(L[1],S); |
---|
5502 | } |
---|
5503 | } |
---|
5504 | } |
---|
5505 | if (mol_flag==-1) |
---|
5506 | { if (ch==0) |
---|
5507 | { "ERROR: Characteristic 0 can only be simulated in characteristic p>>0. |
---|
5508 | "; |
---|
5509 | return(); |
---|
5510 | } |
---|
5511 | list L=group_reynolds(#[1..gen_num],v); |
---|
5512 | string newring="aksldfalkdsflkj"; |
---|
5513 | molien(L[2..size(L)],newring,intvec(1,v)); |
---|
5514 | matrix P=primary_charp_random(L[1],newring,max,v); |
---|
5515 | matrix S,IS=secondary_charp(P,L[1],newring,v); |
---|
5516 | kill aksldfalkdsflkj; |
---|
5517 | return(P,S,IS); |
---|
5518 | } |
---|
5519 | else // the user specified that the |
---|
5520 | { if (ch==0) // characteristic divides the group order |
---|
5521 | { "ERROR: The characteristic cannot divide the group order when it is 0. |
---|
5522 | "; |
---|
5523 | return(); |
---|
5524 | } |
---|
5525 | if (v) |
---|
5526 | { ""; |
---|
5527 | } |
---|
5528 | matrix P=primary_charp_without_random(#[1..gen_num],max,v); |
---|
5529 | matrix S=secondary_not_cohen_macaulay(P,#[1..gen_num],v); |
---|
5530 | return(L[1],S); |
---|
5531 | } |
---|
5532 | } |
---|
5533 | example |
---|
5534 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
5535 | echo=2; |
---|
5536 | ring R=0,(x,y,z),dp; |
---|
5537 | matrix A[3][3]=0,1,0,-1,0,0,0,0,-1; |
---|
5538 | matrix P,S,IS=invariant_ring_random(A,1); |
---|
5539 | print(P); |
---|
5540 | print(S); |
---|
5541 | print(IS); |
---|
5542 | } |
---|
5543 | |
---|
5544 | proc algebra_containment (poly p, matrix A) |
---|
5545 | USAGE: algebra_containment(p,A); |
---|
5546 | p: arbitrary <poly>, A: a 1xm <matrix> giving generators of a |
---|
5547 | subalgebra of the basering |
---|
5548 | RETURN: 1 (TRUE) (type <int>) if p is contained in the subalgebra |
---|
5549 | 0 (FALSE) (type <int>) if <poly> is not contained |
---|
5550 | DISPLAY: a representation of p in terms of algebra generators A[1,i]=y(i) if p |
---|
5551 | is contained in the subalgebra |
---|
5552 | EXAMPLE: example algebra_containment; shows an example |
---|
5553 | THEORY: The ideal of algebraic relations of the algebra generators f1,...,fm |
---|
5554 | given by A is computed introducing new variables y(i) and the product |
---|
5555 | order: x^a*y^b > y^d*y^e if x^a > x^d or else if y^b > y^e. p reduces |
---|
5556 | to a polynomial only in the y(i) <=> p is contained in the subring |
---|
5557 | generated by the polynomials in A. |
---|
5558 | { degBound=0; |
---|
5559 | if (nrows(A)==1) |
---|
5560 | { def br=basering; |
---|
5561 | int n=nvars(br); |
---|
5562 | int m=ncols(A); |
---|
5563 | string mp=string(minpoly); |
---|
5564 | execute "ring R=("+charstr(br)+"),(x(1..n),y(1..m)),(dp(n),dp(m));"; |
---|
5565 | execute "minpoly=number("+mp+");"; |
---|
5566 | ring R=0,(x(1..n),y(1..m)),(dp(n),dp(m)); |
---|
5567 | ideal vars=x(1..n); |
---|
5568 | map emb=br,vars; |
---|
5569 | ideal A=ideal(emb(A)); |
---|
5570 | ideal check=emb(p); |
---|
5571 | for (int i=1;i<=m;i=i+1) |
---|
5572 | { A[i]=A[i]-y(i); |
---|
5573 | } |
---|
5574 | A=std(A); |
---|
5575 | check[1]=reduce(check[1],A); |
---|
5576 | A=elim(check,1,n); |
---|
5577 | if (A[1]<>0) |
---|
5578 | { "\/\/ "+string(check); |
---|
5579 | return(1); |
---|
5580 | } |
---|
5581 | else |
---|
5582 | { return(0); |
---|
5583 | } |
---|
5584 | } |
---|
5585 | else |
---|
5586 | { "ERROR: <matrix> may only have one row"; |
---|
5587 | return(); |
---|
5588 | } |
---|
5589 | } |
---|
5590 | example |
---|
5591 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
5592 | echo=2; |
---|
5593 | ring R=0,(x,y,z),dp; |
---|
5594 | matrix A[1][7]=x2+y2,z2,x4+y4,1,x2z-1y2z,xyz,x3y-1xy3; |
---|
5595 | poly p1=x10z3-x8y2z3+2x6y4z3-2x4y6z3+x2y8z3-y10z3+x6z4+3x4y2z4+3x2y4z4+y6z4; |
---|
5596 | algebra_containment(p1,A); |
---|
5597 | poly p2=z; |
---|
5598 | algebra_containment(p2,A); |
---|
5599 | } |
---|
5600 | |
---|
5601 | proc module_containment(poly p, matrix P, matrix S) |
---|
5602 | USAGE: module_containment(p,P,S); |
---|
5603 | p: arbitrary <poly>, P: a 1xn <matrix> giving generators of an algebra, |
---|
5604 | S: a 1xt <matrix> giving generators of a module over the algebra |
---|
5605 | generated by P |
---|
5606 | ASSUME: n is the number of variables in the basering and the generators in P |
---|
5607 | are algebraically independent |
---|
5608 | RETURNS: 1 (TRUE) (type <int>) if p is contained in the ring |
---|
5609 | 0 (FALSE) type <int>) if p is not contained |
---|
5610 | DISPLAY: the representation of p in terms of algebra generators P[1,i]=z(i) and |
---|
5611 | module generators S[1,j]=y(j) if p is contained in the module |
---|
5612 | EXAMPLE: example module_containment; shows an example |
---|
5613 | THEORY: The ideal of algebraic relations of all the generators p1,...,pn, |
---|
5614 | s1,...,st given by P and S is computed introducing new variables y(j), |
---|
5615 | z(i) and the product order: x^a*y^b*z^c > x^d*y^e*z^f if x^a > x^d |
---|
5616 | with respect to the lp ordering or else if z^c > z^f with respect to |
---|
5617 | the dp ordering or else if y^b > y^e with respect to the lp ordering |
---|
5618 | again. p reduces to a polynomial only in the y(j) and z(i) linear in |
---|
5619 | the z(i)) <=> p is contained in the module. |
---|
5620 | { def br=basering; |
---|
5621 | degBound=0; |
---|
5622 | int n=nvars(br); |
---|
5623 | if (ncols(P)==n and nrows(P)==1 and nrows(S)==1) |
---|
5624 | { int m=ncols(S); |
---|
5625 | string mp=string(minpoly); |
---|
5626 | execute "ring R=("+charstr(br)+"),(x(1..n),y(1..m),z(1..n)),(lp(n),dp(m),lp(n));"; |
---|
5627 | execute "minpoly=number("+mp+");"; |
---|
5628 | ideal vars=x(1..n); |
---|
5629 | map emb=br,vars; |
---|
5630 | matrix P=emb(P); |
---|
5631 | matrix S=emb(S); |
---|
5632 | ideal check=emb(p); |
---|
5633 | ideal I; |
---|
5634 | for (int i=1;i<=m;i=i+1) |
---|
5635 | { I[i]=S[1,i]-y(i); |
---|
5636 | } |
---|
5637 | for (i=1;i<=n;i=i+1) |
---|
5638 | { I[m+i]=P[1,i]-z(i); |
---|
5639 | } |
---|
5640 | I=std(I); |
---|
5641 | check[1]=reduce(check[1],I); |
---|
5642 | I=elim(check,1,n); // checking whether all variables from |
---|
5643 | if (I[1]<>0) // the former ring have disappeared |
---|
5644 | { "\/\/ "+string(check); |
---|
5645 | return(1); |
---|
5646 | } |
---|
5647 | else |
---|
5648 | { return(0); |
---|
5649 | } |
---|
5650 | } |
---|
5651 | else |
---|
5652 | { "ERROR: the first <matrix> must have the same number of columns as the"; |
---|
5653 | " basering and both <matrices> may only have one row"; |
---|
5654 | return(); |
---|
5655 | } |
---|
5656 | } |
---|
5657 | example |
---|
5658 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
5659 | echo=2; |
---|
5660 | ring R=0,(x,y,z),dp; |
---|
5661 | matrix P[1][3]=x2+y2,z2,x4+y4; |
---|
5662 | matrix S[1][4]=1,x2z-1y2z,xyz,x3y-1xy3; |
---|
5663 | poly p1=x10z3-x8y2z3+2x6y4z3-2x4y6z3+x2y8z3-y10z3+x6z4+3x4y2z4+3x2y4z4+y6z4; |
---|
5664 | module_containment(p1,P,S); |
---|
5665 | poly p2=z; |
---|
5666 | module_containment(p2,P,S); |
---|
5667 | } |
---|
5668 | |
---|
5669 | proc orbit_variety (matrix F,string newring) |
---|
5670 | USAGE: orbit_variety(F,s); |
---|
5671 | F: a 1xm <matrix> defing an invariant ring, s: a <string> giving the |
---|
5672 | name for a new ring |
---|
5673 | RETURN: a Groebner basis (type <ideal>, named G) for the ideal defining the |
---|
5674 | orbit variety (i.e. the syzygy ideal) in the new ring (named `s`) |
---|
5675 | EXAMPLE: example orbit_variety; shows an example |
---|
5676 | THEORY: The ideal of algebraic relations of the invariant ring generators is |
---|
5677 | calculated, then the variables of the original ring are eliminated and |
---|
5678 | the polynomials that are left over define the orbit variety |
---|
5679 | { if (newring=="") |
---|
5680 | { "ERROR: the second parameter may not be an empty <string>"; |
---|
5681 | return(); |
---|
5682 | } |
---|
5683 | if (nrows(F)==1) |
---|
5684 | { def br=basering; |
---|
5685 | int n=nvars(br); |
---|
5686 | int m=ncols(F); |
---|
5687 | string mp=string(minpoly); |
---|
5688 | execute "ring R=("+charstr(br)+"),("+varstr(br)+",y(1..m)),dp;"; |
---|
5689 | execute "minpoly=number("+mp+");"; |
---|
5690 | ideal I=ideal(imap(br,F)); |
---|
5691 | for (int i=1;i<=m;i=i+1) |
---|
5692 | { I[i]=I[i]-y(i); |
---|
5693 | } |
---|
5694 | I=elim(I,1,n); |
---|
5695 | execute "ring "+newring+"=("+charstr(br)+"),(y(1..m)),dp(m);"; |
---|
5696 | execute "minpoly=number("+mp+");"; |
---|
5697 | ideal vars; |
---|
5698 | for (i=2;i<=n;i=i+1) |
---|
5699 | { vars[i]=0; |
---|
5700 | } |
---|
5701 | vars=vars,y(1..m); |
---|
5702 | map emb=R,vars; |
---|
5703 | ideal G=emb(I); |
---|
5704 | kill emb, vars, R; |
---|
5705 | keepring `newring`; |
---|
5706 | // execute "keepring "+newring+";"; |
---|
5707 | return(); |
---|
5708 | } |
---|
5709 | else |
---|
5710 | { "ERROR: the <matrix> may only have one row"; |
---|
5711 | return(); |
---|
5712 | } |
---|
5713 | } |
---|
5714 | example |
---|
5715 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7:"; |
---|
5716 | echo=2; |
---|
5717 | ring R=0,(x,y,z),dp; |
---|
5718 | matrix F[1][7]=x2+y2,z2,x4+y4,1,x2z-1y2z,xyz,x3y-1xy3; |
---|
5719 | string newring="E"; |
---|
5720 | orbit_variety(F,newring); |
---|
5721 | print(G); |
---|
5722 | basering; |
---|
5723 | } |
---|
5724 | |
---|
5725 | proc relative_orbit_variety(ideal I,matrix F,string newring) |
---|
5726 | USAGE: relative_orbit_variety(I,F,s); |
---|
5727 | I: an <ideal> invariant under the action of a group, F: a 1xm |
---|
5728 | <matrix> defining the invariant ring of this group, s: a <string> |
---|
5729 | giving a name for a new ring |
---|
5730 | RETURN: a Groebner basis (type <ideal>, named G) for the ideal defining the |
---|
5731 | relative orbit variety with respect to I in the new ring (named s) |
---|
5732 | EXAMPLE: example relative_orbit_variety; shows an example |
---|
5733 | THEORY: A Groebner basis of the ideal of algebraic relations of the invariant |
---|
5734 | ring generators is calculated, then one of the basis elements plus the |
---|
5735 | ideal generators. The variables of the original ring are eliminated and |
---|
5736 | the polynomials that are left over define thecrelative orbit variety |
---|
5737 | with respect to I. |
---|
5738 | { if (newring=="") |
---|
5739 | { "ERROR: the third parameter may not be empty a <string>"; |
---|
5740 | return(); |
---|
5741 | } |
---|
5742 | degBound=0; |
---|
5743 | if (nrows(F)==1) |
---|
5744 | { def br=basering; |
---|
5745 | int n=nvars(br); |
---|
5746 | int m=ncols(F); |
---|
5747 | string mp=string(minpoly); |
---|
5748 | execute "ring R=("+charstr(br)+"),("+varstr(br)+",y(1..m)),lp;"; |
---|
5749 | execute "minpoly=number("+mp+");"; |
---|
5750 | ideal J=ideal(imap(br,F)); |
---|
5751 | ideal I=imap(br,I); |
---|
5752 | for (int i=1;i<=m;i=i+1) |
---|
5753 | { J[i]=J[i]-y(i); |
---|
5754 | } |
---|
5755 | J=std(J); |
---|
5756 | J=J,I; |
---|
5757 | option(redSB); |
---|
5758 | J=std(J); |
---|
5759 | ideal vars; |
---|
5760 | //for (i=1;i<=n;i=i+1) |
---|
5761 | //{ vars[i]=0; |
---|
5762 | //} |
---|
5763 | vars[n]=0; |
---|
5764 | vars=vars,y(1..m); |
---|
5765 | map emb=R,vars; |
---|
5766 | ideal G=emb(J); |
---|
5767 | J=J-G; |
---|
5768 | for (i=1;i<=ncols(G);i=i+1) |
---|
5769 | { if (J[i]<>0) |
---|
5770 | { G[i]=0; |
---|
5771 | } |
---|
5772 | } |
---|
5773 | G=compress(G); |
---|
5774 | execute "ring "+newring+"=("+charstr(br)+"),(y(1..m)),lp;"; |
---|
5775 | execute "minpoly=number("+mp+");"; |
---|
5776 | ideal vars; |
---|
5777 | for (i=2;i<=n;i=i+1) |
---|
5778 | { vars[i]=0; |
---|
5779 | } |
---|
5780 | vars=vars,y(1..m); |
---|
5781 | map emb=R,vars; |
---|
5782 | ideal G=emb(G); |
---|
5783 | kill vars, emb; |
---|
5784 | keepring `newring`; |
---|
5785 | // execute "keepring "+newring+";"; |
---|
5786 | return(); |
---|
5787 | } |
---|
5788 | else |
---|
5789 | { "ERROR: the <matrix> may only have one row"; |
---|
5790 | return(); |
---|
5791 | } |
---|
5792 | } |
---|
5793 | example |
---|
5794 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.6.3:"; |
---|
5795 | echo=2; |
---|
5796 | ring R=0,(x,y,z),dp; |
---|
5797 | matrix F[1][3]=x+y+z,xy+xz+yz,xyz; |
---|
5798 | ideal I=x2+y2+z2-1,x2y+y2z+z2x-2x-2y-2z,xy2+yz2+zx2-2x-2y-2z; |
---|
5799 | string newring="E"; |
---|
5800 | relative_orbit_variety(I,F,newring); |
---|
5801 | print(G); |
---|
5802 | basering; |
---|
5803 | } |
---|
5804 | |
---|
5805 | proc image_of_variety(ideal I,matrix F) |
---|
5806 | USAGE: image_of_variety(I,F); |
---|
5807 | I: an arbitray <ideal>, F: a 1xm <matrix> defining an invariant ring |
---|
5808 | of a some matrix group |
---|
5809 | RETURN: the <ideal> defining the image under that group of the variety defined |
---|
5810 | by I |
---|
5811 | EXAMPLE: example image_of_variety; shows an example |
---|
5812 | THEORY: relative_orbit_variety(I,F,s) is called and the newly introduced |
---|
5813 | variables in the output are replaced by the generators of the |
---|
5814 | invariant ring. This ideal in the original variables defines the image |
---|
5815 | of the variety defined by I |
---|
5816 | { if (nrows(F)==1) |
---|
5817 | { def br=basering; |
---|
5818 | int n=nvars(br); |
---|
5819 | string newring="E"; |
---|
5820 | relative_orbit_variety(I,F,newring); |
---|
5821 | execute "ring R=("+charstr(br)+"),("+varstr(br)+","+varstr(E)+"),lp;"; |
---|
5822 | ideal F=imap(br,F); |
---|
5823 | for (int i=1;i<=n;i=i+1) |
---|
5824 | { F=0,F; |
---|
5825 | } |
---|
5826 | setring br; |
---|
5827 | map emb2=E,F; |
---|
5828 | return(compress(emb2(G))); |
---|
5829 | } |
---|
5830 | else |
---|
5831 | { "ERROR: the <matrix> may only have one row"; |
---|
5832 | return(); |
---|
5833 | } |
---|
5834 | } |
---|
5835 | example |
---|
5836 | { "EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.6.8:"; |
---|
5837 | echo=2; |
---|
5838 | ring R=0,(x,y,z),dp; |
---|
5839 | matrix F[1][3]=x+y+z,xy+xz+yz,xyz; |
---|
5840 | ideal I=xy; |
---|
5841 | print(image_of_variety(I,F)); |
---|
5842 | } |
---|