1 | //////////////////////////////////////////////////////////////// |
---|
2 | version="version fpalgebras.lib 4.1.1.0 Feb_2018 "; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: fpalgebras.lib |
---|
6 | AUTHORS: Karim Abou Zeid, karim.abou.zeid at rwth-aachen.de |
---|
7 | @* Grischa Studzinski, grischa.studzinski at rwth-aachen.de |
---|
8 | |
---|
9 | Support: Project II.6 in the transregional collaborative research centre |
---|
10 | SFB-TRR 195 'Symbolic Tools in Mathematics and their Application' of the German DFG |
---|
11 | |
---|
12 | OVERVIEW: |
---|
13 | Generation of various algebras, including group algebras of finitely presented groups in the Letterplace ring |
---|
14 | |
---|
15 | PROCEDURES: |
---|
16 | baumslagSolitar(int n, int m, int d, list #); |
---|
17 | baumslag(int m, int n, int d); |
---|
18 | crystallographicGroupP1(int d); |
---|
19 | crystallographicGroupPM(int d); |
---|
20 | crystallographicGroupPG(int d); |
---|
21 | crystallographicGroupP2MM(int d); |
---|
22 | crystallographicGroupP2(int d); |
---|
23 | crystallographicGroupP2GG(int d); |
---|
24 | crystallographicGroupCM(int d); |
---|
25 | crystallographicGroupC2MM(int d); |
---|
26 | crystallographicGroupP4(int d); |
---|
27 | crystallographicGroupP4MM(int d); |
---|
28 | crystallographicGroupP4GM(int d); |
---|
29 | crystallographicGroupP3(int d); |
---|
30 | crystallographicGroupP31M(int d); |
---|
31 | crystallographicGroupP3M1(int d); |
---|
32 | crystallographicGroupP6(int d); |
---|
33 | crystallographicGroupP6MM(int d); |
---|
34 | dyckGroup1(int n, int d, intvec P); |
---|
35 | dyckGroup2(int n, int d, intvec P); |
---|
36 | dyckGroup3(int n, int d, intvec P); |
---|
37 | fibonacciGroup(int m, int d); |
---|
38 | tetrahedronGroup(int g, int d); |
---|
39 | triangularGroup(int g, int d); |
---|
40 | "; |
---|
41 | |
---|
42 | LIB "freegb.lib"; |
---|
43 | LIB "general.lib"; |
---|
44 | //////////////////////////////////////////////////////////////////// |
---|
45 | |
---|
46 | //////////////////////////////////////////////////////////////////// |
---|
47 | // Baumslag //////////////////////////////////////////////////////// |
---|
48 | // from Grischa Studzinski ///////////////////////////////////////// |
---|
49 | //////////////////////////////////////////////////////////////////// |
---|
50 | |
---|
51 | proc baumslagSolitar(int n, int m, int d, list #) |
---|
52 | "USAGE: baumslagSolitar(m,n,d[,IsGroup]); n an integer, m an integer, d an integer, IsGroup an optional integer |
---|
53 | RETURN: ring |
---|
54 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
55 | @* - in the group case: A = a^(-1), B = b^(-1) |
---|
56 | @* - negativ input is only allowed in the group case! |
---|
57 | @* - d gives a degreebound and must be >m,n |
---|
58 | " |
---|
59 | { |
---|
60 | int isGroup = 0; |
---|
61 | if (size(#) > 0) {isGroup = #[1];} |
---|
62 | |
---|
63 | if (isGroup != 0) |
---|
64 | { |
---|
65 | int baseringdef; |
---|
66 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
67 | { |
---|
68 | def save = basering; |
---|
69 | baseringdef = 1; |
---|
70 | } |
---|
71 | if (m < 0 || n < 0) {ERROR("Exponent can't be negativ in monoid rings!");} |
---|
72 | if (d < 1 || d < m || d < n) {ERROR("Degree bound must be positiv and greater then m,n!");} |
---|
73 | int i; |
---|
74 | ring mr = 0,(a,b),Dp; |
---|
75 | def Mr = makeLetterplaceRing(d); |
---|
76 | setring Mr; |
---|
77 | poly p,q; |
---|
78 | if (n==0) {p = b(1);} |
---|
79 | else |
---|
80 | { |
---|
81 | p = a(1)*b(2); |
---|
82 | for (i = 1; i < n; i++) {p = lpMult(a(1),p);} |
---|
83 | } |
---|
84 | if (m==0) {q = b(1);} |
---|
85 | else |
---|
86 | { |
---|
87 | q = b(1)*a(2); |
---|
88 | for (i = 1; i < m; i++) {q = lpMult(q,a(1));} |
---|
89 | } |
---|
90 | ideal I = p - q; |
---|
91 | export(I); |
---|
92 | if (baseringdef == 1) {setring save;} |
---|
93 | return(Mr); |
---|
94 | } |
---|
95 | else |
---|
96 | { |
---|
97 | int baseringdef; |
---|
98 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
99 | { |
---|
100 | def save = basering; |
---|
101 | baseringdef = 1; |
---|
102 | } |
---|
103 | int i; |
---|
104 | if (d < 1 || d < absValue(m) || d < absValue(n)) {ERROR("Degree bound must be positiv and greater then |m|,|n|!");} |
---|
105 | ring gr = 0,(a,b,A,B),Dp; |
---|
106 | def Gr = makeLetterplaceRing(d); |
---|
107 | setring Gr; |
---|
108 | poly p,q; |
---|
109 | if (n==0) {p = b(1);} |
---|
110 | else |
---|
111 | {if (n > 0) |
---|
112 | { |
---|
113 | p = a(1)*b(2); |
---|
114 | for (i = 1; i < n; i++) {p = lpMult(a(1),p);} |
---|
115 | } |
---|
116 | else |
---|
117 | { |
---|
118 | p = A(1)*b(2); |
---|
119 | for (i = 1; i < -n; i++) {p = lpMult(A(1),p);} |
---|
120 | } |
---|
121 | } |
---|
122 | if (m==0) {q = b(1);} |
---|
123 | else |
---|
124 | {if (m > 0) |
---|
125 | { |
---|
126 | q = b(1)*a(2); |
---|
127 | for (i = 1; i < m; i++) {q = lpMult(q,a(1));} |
---|
128 | } |
---|
129 | else |
---|
130 | { |
---|
131 | q = A(1)*b(2); |
---|
132 | for (i = 1; i < -m; i++) {q = lpMult(q,A(1));} |
---|
133 | } |
---|
134 | } |
---|
135 | ideal I = p - q, a(1)*A(2) - 1, b(1)*B(2) - 1, a(1)*A(2) - A(1)*a(2), b(1)*B(2) - B(1)*b(2); |
---|
136 | export(I); |
---|
137 | if (baseringdef == 1) {setring save;} |
---|
138 | return(Gr); |
---|
139 | } |
---|
140 | } |
---|
141 | example { |
---|
142 | "EXAMPLE:"; echo = 2; |
---|
143 | def R = baumslagSolitar(2,3,4); setring R; |
---|
144 | I; |
---|
145 | } |
---|
146 | |
---|
147 | proc baumslagGroup(int m, int n, int d) |
---|
148 | "USAGE: baumslagGroup(m,n,d); m an integer, n an integer, d an integer |
---|
149 | RETURN: ring |
---|
150 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
151 | @* - Baumslag group with the following presentation |
---|
152 | @* < a, b | a^m = b^n = 1 > |
---|
153 | @* -d gives the degreebound for the Letterplace ring |
---|
154 | " |
---|
155 | { |
---|
156 | if (m < 0 || n < 0 ) {ERROR("m,n must be non-negativ integers!");} |
---|
157 | if (d < 1 || d < m || d < n) {ERROR("degreebound must be positiv and larger than n and m!");} |
---|
158 | int i; |
---|
159 | ring r = 0,(a,b),dp; |
---|
160 | def R = makeLetterplaceRing(d); |
---|
161 | setring R; |
---|
162 | poly p,q; |
---|
163 | p = 1; q = 1; |
---|
164 | for (i = 1; i <= m; i++){p = lpMult(p,a(1));} |
---|
165 | for (i = 1; i <= n; i++){q = lpMult(q,b(1));} |
---|
166 | ideal I = p-1,q-1; |
---|
167 | export(I); |
---|
168 | return(R); |
---|
169 | } |
---|
170 | example { |
---|
171 | "EXAMPLE:"; echo = 2; |
---|
172 | def R = baumslag(2,3,4); setring R; |
---|
173 | I; |
---|
174 | } |
---|
175 | |
---|
176 | //////////////////////////////////////////////////////////////////// |
---|
177 | // Crystallographic Groups ////////////////////////////////////////// |
---|
178 | // from Grischa Studzinski ///////////////////////////////////////// |
---|
179 | //////////////////////////////////////////////////////////////////// |
---|
180 | |
---|
181 | proc crystallographicGroupP1(int d) |
---|
182 | "USAGE: crystallographicGroupP1(d); d an integer |
---|
183 | RETURN: ring |
---|
184 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
185 | @* - p1 group with the following presentation |
---|
186 | @* < x, y | [x, y] = 1 > |
---|
187 | @* -d gives the degreebound for the Letterplace ring |
---|
188 | " |
---|
189 | { |
---|
190 | if (d < 2){ERROR("Degreebound is to small for choosen example!");} |
---|
191 | |
---|
192 | int baseringdef; |
---|
193 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
194 | { |
---|
195 | def save = basering; |
---|
196 | baseringdef = 1; |
---|
197 | } |
---|
198 | ring r = 2,(x,y,X,Y),dp; |
---|
199 | def R = makeLetterplaceRing(d); |
---|
200 | setring R; |
---|
201 | ideal I = x(1)*y(2)-y(1)*x(2)-1, X(1)*x(2)-1, x(1)*X(2)-1, y(1)*Y(2)-1, Y(1)*y(2)-1; |
---|
202 | I = simplify(I,2); |
---|
203 | export(I); |
---|
204 | if (baseringdef == 1) {setring save;} |
---|
205 | return(R); |
---|
206 | } |
---|
207 | example { |
---|
208 | "EXAMPLE:"; echo = 2; |
---|
209 | def R = crystallographicGroupP1(5); setring R; |
---|
210 | I; |
---|
211 | } |
---|
212 | |
---|
213 | // old? there is already another crystallographicGroupP2 proc |
---|
214 | /* proc crystallographicGroupP2(int d) */ |
---|
215 | /* " */ |
---|
216 | /* p2 group with the following presentation */ |
---|
217 | /* < x, y, r | [x, y] = r^2 = 1, r^-1*x*r = x^-1, r^-1*y*r = y^-1 > */ |
---|
218 | /* Note: r = r^-1 */ |
---|
219 | /* " */ |
---|
220 | /* { */ |
---|
221 | /* if (d < 3){ERROR("Degreebound is to small for choosen example!");} */ |
---|
222 | |
---|
223 | /* int baseringdef; */ |
---|
224 | /* if (defined(basering)) // if a basering is defined, it should be saved for later use */ |
---|
225 | /* { */ |
---|
226 | /* def save = basering; */ |
---|
227 | /* baseringdef = 1; */ |
---|
228 | /* } */ |
---|
229 | /* ring r = 2,(x,y,r,X,Y),dp; */ |
---|
230 | /* def R = makeLetterplaceRing(d); */ |
---|
231 | /* setring R; */ |
---|
232 | /* ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-r(1)*r(2), r(1)*r(2)-1, r(1)*x(2)*r(3)-X(1), r(1)*y(2)*r(3)-Y(1),x(1)*X(2)-1, */ |
---|
233 | /* X(1)*x(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; */ |
---|
234 | /* I = simplify(I,2); */ |
---|
235 | /* export(I); */ |
---|
236 | /* if (baseringdef == 1) {setring save;} */ |
---|
237 | /* return(R); */ |
---|
238 | /* } */ |
---|
239 | |
---|
240 | proc crystallographicGroupPM(int d) |
---|
241 | "USAGE: crystallographicGroupPM(d); d an integer |
---|
242 | RETURN: ring |
---|
243 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
244 | @* - pm group with the following presentation |
---|
245 | @* < x, y, m | [x, y] = m^2 = 1, m^-1*x*m = x, m^-1*y*m = y^-1 > |
---|
246 | @* - d gives the degreebound for the Letterplace ring |
---|
247 | " |
---|
248 | { |
---|
249 | if (d < 3){ERROR("Degreebound is to small for choosen example!");} |
---|
250 | |
---|
251 | int baseringdef; |
---|
252 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
253 | { |
---|
254 | def save = basering; |
---|
255 | baseringdef = 1; |
---|
256 | } |
---|
257 | ring r = 2,(x,y,m,X,Y),dp; |
---|
258 | def R = makeLetterplaceRing(d); |
---|
259 | setring R; |
---|
260 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-m(1)*m(2), m(1)*m(2)-1, m(1)*x(2)*m(3)-x(1), m(1)*y(2)*m(3)-Y(1),x(1)*X(2)-1, |
---|
261 | X(1)*x(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
262 | I = simplify(I,2); |
---|
263 | export(I); |
---|
264 | if (baseringdef == 1) {setring save;} |
---|
265 | return(R); |
---|
266 | } |
---|
267 | example { |
---|
268 | "EXAMPLE:"; echo = 2; |
---|
269 | def R = crystallographicGroupPM(5); setring R; |
---|
270 | I; |
---|
271 | } |
---|
272 | |
---|
273 | proc crystallographicGroupPG(int d) |
---|
274 | "USAGE: crystallographicGroupPG(d); d an integer |
---|
275 | RETURN: ring |
---|
276 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
277 | @* - pg group with the following presentation |
---|
278 | @* < x, y, t | [x, y] = 1, t^2 = x, t^-1*y*t = y^-1 > |
---|
279 | @* - d gives the degreebound for the Letterplace ring |
---|
280 | " |
---|
281 | { |
---|
282 | if (d < 3){ERROR("Degreebound is to small for choosen example!");} |
---|
283 | |
---|
284 | int baseringdef; |
---|
285 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
286 | { |
---|
287 | def save = basering; |
---|
288 | baseringdef = 1; |
---|
289 | } |
---|
290 | ring r = 2,(x,y,t,X,Y,T),dp; |
---|
291 | def R = makeLetterplaceRing(d); |
---|
292 | setring R; |
---|
293 | ideal I = x(1)*y(2)-y(1)*x(2)-1, t(1)*t(2) - x(1), T(1)*y(2)*t(3)-Y(1), X(1)*x(2)-1, x(1)*X(2)-1, |
---|
294 | Y(1)*y(2)-1, y(1)*Y(2)-1, t(1)*T(2)-1, T(1)*t(2)-1; |
---|
295 | I = simplify(I,2); |
---|
296 | export(I); |
---|
297 | if (baseringdef == 1) {setring save;} |
---|
298 | return(R); |
---|
299 | } |
---|
300 | example { |
---|
301 | "EXAMPLE:"; echo = 2; |
---|
302 | def R = crystallographicGroupPG(5); setring R; |
---|
303 | I; |
---|
304 | } |
---|
305 | |
---|
306 | |
---|
307 | proc crystallographicGroupP2MM(int d) |
---|
308 | "USAGE: crystallographicGroupP2MM(d); d an integer |
---|
309 | RETURN: ring |
---|
310 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
311 | @* - p2mm group with the following presentation |
---|
312 | @* < x, y, p, q | [x, y] = [p, q] = p^2 = q^2 = 1, p^-1*x*p = x, q^-1*x*q = x^-1, p^-1*y*p = y^-1, q^-1*y*q = y > |
---|
313 | @* - d gives the degreebound for the Letterplace ring |
---|
314 | " |
---|
315 | { |
---|
316 | if (d < 3){ERROR("Degreebound is to small for choosen example!");} |
---|
317 | |
---|
318 | int baseringdef; |
---|
319 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
320 | { |
---|
321 | def save = basering; |
---|
322 | baseringdef = 1; |
---|
323 | } |
---|
324 | ring r = 2,(x,y,p,q,X,Y),dp; |
---|
325 | def R = makeLetterplaceRing(d); |
---|
326 | setring R; |
---|
327 | ideal I = x(1)*y(2)-y(1)*x(2)-1, p(1)*q(2)-q(1)*p(2)-1, p(1)*p(2) - 1, q(1)*q(2) - 1, p(1)*y(2)*p(3)-Y(1), p(1)*x(2)*p(3)-x(1), |
---|
328 | q(1)*y(2)*q(3)-y(1), q(1)*x(2)*q(3)-X(1), X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1, x(1)*y(2)-y(1)*x(2)- p(1)*p(2), |
---|
329 | x(1)*y(2)-y(1)*x(2)- q(1)*q(2), p(1)*p(2)-q(1)*q(2); |
---|
330 | I = simplify(I,2); |
---|
331 | export(I); |
---|
332 | if (baseringdef == 1) {setring save;} |
---|
333 | return(R); |
---|
334 | } |
---|
335 | example { |
---|
336 | "EXAMPLE:"; echo = 2; |
---|
337 | def R = crystallographicGroupP2MM(5); setring R; |
---|
338 | I; |
---|
339 | } |
---|
340 | |
---|
341 | proc crystallographicGroupP2(int d) |
---|
342 | "USAGE: crystallographicGroupP2(d); d an integer |
---|
343 | RETURN: ring |
---|
344 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
345 | @* - p2 group with the following presentation |
---|
346 | @* < x, y, m, t | [x, y] = t^2 = 1, m^2 = y, t^-1*x*t = x, m^-1*x*m = x^-1, t^-1*y*t = y^-1, t^-1*m*t = m^-1 > |
---|
347 | @* - d gives the degreebound for the Letterplace ring |
---|
348 | " |
---|
349 | { |
---|
350 | if (d < 3){ERROR("Degreebound is to small for choosen example!");} |
---|
351 | |
---|
352 | int baseringdef; |
---|
353 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
354 | { |
---|
355 | def save = basering; |
---|
356 | baseringdef = 1; |
---|
357 | } |
---|
358 | ring r = 2,(x,y,m,t,X,Y,M),dp; |
---|
359 | def R = makeLetterplaceRing(d); |
---|
360 | setring R; |
---|
361 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-t(1)*t(2), m(1)*m(2)-y(1), t(1)*t(2) - 1, t(1)*x(2)*t(3)-x(1), |
---|
362 | M(1)*x(2)*m(3)-X(1), t(1)*y(2)*t(3)-Y(1), t(1)*m(2)*t(3)-M(1), X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1, |
---|
363 | m(1)*M(2)-1, M(1)*m(2)-1; |
---|
364 | I = simplify(I,2); |
---|
365 | export(I); |
---|
366 | if (baseringdef == 1) {setring save;} |
---|
367 | return(R); |
---|
368 | } |
---|
369 | example { |
---|
370 | "EXAMPLE:"; echo = 2; |
---|
371 | def R = crystallographicGroupP2(5); setring R; |
---|
372 | I; |
---|
373 | } |
---|
374 | |
---|
375 | proc crystallographicGroupP2GG(int d) |
---|
376 | "USAGE: crystallographicGroupP2GG(d); d an integer |
---|
377 | RETURN: ring |
---|
378 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
379 | @* - p2gg group with the following presentation |
---|
380 | @* < x, y, u, v | [x, y] = (u*v)^2 = 1, u^2 = x, v^2 = y, v^-1*x*v = x^-1, u^-1*y*u = y^-1 > |
---|
381 | @* - d gives the degreebound for the Letterplace ring |
---|
382 | " |
---|
383 | { |
---|
384 | if (d < 4){ERROR("Degreebound is to small for choosen example!");} |
---|
385 | |
---|
386 | int baseringdef; |
---|
387 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
388 | { |
---|
389 | def save = basering; |
---|
390 | baseringdef = 1; |
---|
391 | } |
---|
392 | ring r = 2,(x,y,u,v,X,Y,u,v),dp; |
---|
393 | def R = makeLetterplaceRing(d); |
---|
394 | setring R; |
---|
395 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-u(1)*v(2)*u(3)*v(4), u(1)*v(2)*u(3)*v(4)-1, u(1)*u(2)-x(1), v(1)*v(2) - y, |
---|
396 | V(1)*x(2)*v(3)-X(1), U(1)*y(2)*u(3)-Y(1), |
---|
397 | X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1, u(1)*U(2)-1, U(1)*u(2)-1, v(1)*V(2)-1, V(1)*v(2)-1; |
---|
398 | I = simplify(I,2); |
---|
399 | export(I); |
---|
400 | if (baseringdef == 1) {setring save;} |
---|
401 | return(R); |
---|
402 | } |
---|
403 | example { |
---|
404 | "EXAMPLE:"; echo = 2; |
---|
405 | def R = crystallographicGroupP2GG(5); setring R; |
---|
406 | I; |
---|
407 | } |
---|
408 | |
---|
409 | proc crystallographicGroupCM(int d) |
---|
410 | "USAGE: crystallographicGroupCM(d); d an integer |
---|
411 | RETURN: ring |
---|
412 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
413 | @* - cm group with the following presentation |
---|
414 | @* < x, y, t | [x, y] = t^2 = 1, t^-1*x*t = x*y, t^-1*y*t = y^-1 > |
---|
415 | @* - d gives the degreebound for the Letterplace ring |
---|
416 | " |
---|
417 | { |
---|
418 | if (d < 3){ERROR("Degreebound is to small for choosen example!");} |
---|
419 | |
---|
420 | int baseringdef; |
---|
421 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
422 | { |
---|
423 | def save = basering; |
---|
424 | baseringdef = 1; |
---|
425 | } |
---|
426 | ring r = 2,(x,y,t,X,Y),dp; |
---|
427 | def R = makeLetterplaceRing(d); |
---|
428 | setring R; |
---|
429 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-t(1)*t(2), t(1)*t(2)-1, |
---|
430 | t(1)*x(2)*t(3)-x(1)*y(2), t(1)*y(2)*t(3)-Y(1), |
---|
431 | X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
432 | I = simplify(I,2); |
---|
433 | export(I); |
---|
434 | if (baseringdef == 1) {setring save;} |
---|
435 | return(R); |
---|
436 | } |
---|
437 | example { |
---|
438 | "EXAMPLE:"; echo = 2; |
---|
439 | def R = crystallographicGroupCM(5); setring R; |
---|
440 | I; |
---|
441 | } |
---|
442 | |
---|
443 | proc crystallographicGroupC2MM(int d) |
---|
444 | "USAGE: crystallographicGroupC2MM(d); d an integer |
---|
445 | RETURN: ring |
---|
446 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
447 | @* - c2mm group with the following presentation |
---|
448 | @* < x, y, m, r | [x, y] = m^2 = r^2 = 1, m^-1*y*m = y^-1, m^-1*x*m = x*y, r^-1*y*r = y^-1, r^-1*x*r = x^-1, m^-1*r*m = r^-1 > |
---|
449 | @* - d gives the degreebound for the Letterplace ring |
---|
450 | " |
---|
451 | { |
---|
452 | if (d < 3){ERROR("Degreebound is to small for choosen example!");} |
---|
453 | |
---|
454 | int baseringdef; |
---|
455 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
456 | { |
---|
457 | def save = basering; |
---|
458 | baseringdef = 1; |
---|
459 | } |
---|
460 | ring r = 2,(x,y,m,r,X,Y),dp; |
---|
461 | def R = makeLetterplaceRing(d); |
---|
462 | setring R; |
---|
463 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-m(1)*m(2), x(1)*y(2)-y(1)*x(2)-r(1)*r(2), m(1)*m(2)-1, r(1)*r(2)-1, |
---|
464 | m(1)*m(2)-r(1)*r(2), m(1)*y(2)*m(3)-Y(1), m(1)*x(2)*m(3)-x(1)*y(2), (1)*y(2)*r(3)-Y(1), r(1)*x(2)*r(3)-X(1), m(1)*r(2)*m(3)-r(1), |
---|
465 | X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
466 | I = simplify(I,2); |
---|
467 | export(I); |
---|
468 | if (baseringdef == 1) {setring save;} |
---|
469 | return(R); |
---|
470 | } |
---|
471 | example { |
---|
472 | "EXAMPLE:"; echo = 2; |
---|
473 | def R = crystallographicGroupC2MM(5); setring R; |
---|
474 | I; |
---|
475 | } |
---|
476 | |
---|
477 | proc crystallographicGroupP4(int d) |
---|
478 | "USAGE: crystallographicGroupP4(d); d an integer |
---|
479 | RETURN: ring |
---|
480 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
481 | @* - p4 group with the following presentation |
---|
482 | @* < x, y, r | [x, y] = r^4 = 1, r^-1*x*r = x^-1, r^-1*x*r = y > |
---|
483 | @* - d gives the degreebound for the Letterplace ring |
---|
484 | " |
---|
485 | { |
---|
486 | if (d < 5){ERROR("Degreebound is to small for choosen example!");} |
---|
487 | |
---|
488 | int baseringdef; |
---|
489 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
490 | { |
---|
491 | def save = basering; |
---|
492 | baseringdef = 1; |
---|
493 | } |
---|
494 | ring r = 2,(x,y,r,X,Y),dp; |
---|
495 | def R = makeLetterplaceRing(d); |
---|
496 | setring R; |
---|
497 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-r(1)*r(2)*r(3)*r(4), r(1)*r(2)*r(3)*r(4)-1, |
---|
498 | r(1)*r(2)*r(3)*x(4)*r(5)-X(1), r(1)*r(2)*r(3)*x(4)*r(5)-y(1), |
---|
499 | X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
500 | I = simplify(I,2); |
---|
501 | export(I); |
---|
502 | if (baseringdef == 1) {setring save;} |
---|
503 | return(R); |
---|
504 | } |
---|
505 | example { |
---|
506 | "EXAMPLE:"; echo = 2; |
---|
507 | def R = crystallographicGroupP4(5); setring R; |
---|
508 | I; |
---|
509 | } |
---|
510 | |
---|
511 | proc crystallographicGroupP4MM(int d) |
---|
512 | "USAGE: crystallographicGroupP4MM(d); d an integer |
---|
513 | RETURN: ring |
---|
514 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
515 | @* - p4mm group with the following presentation |
---|
516 | @* < x, y, r, m | [x, y] = r^4 = m^2 = 1, r^-1*y*r = x^-1, r^-1*x*r = y, m^-1*x*m = y, m^-1*r*m = r^-1 > |
---|
517 | @* - d gives the degreebound for the Letterplace ring |
---|
518 | " |
---|
519 | { |
---|
520 | if (d < 5){ERROR("Degreebound is to small for choosen example!");} |
---|
521 | |
---|
522 | int baseringdef; |
---|
523 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
524 | { |
---|
525 | def save = basering; |
---|
526 | baseringdef = 1; |
---|
527 | } |
---|
528 | ring r = 2,(x,y,r,m,X,Y),dp; |
---|
529 | def R = makeLetterplaceRing(d); |
---|
530 | setring R; |
---|
531 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-r(1)*r(2)*r(3)*r(4), r(1)*r(2)*r(3)*r(4)-1, |
---|
532 | r(1)*r(2)*r(3)*x(4)*r(5)-X(1), r(1)*r(2)*r(3)*x(4)*r(5)-y(1), |
---|
533 | X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
534 | I = simplify(I,2); |
---|
535 | export(I); |
---|
536 | if (baseringdef == 1) {setring save;} |
---|
537 | return(R); |
---|
538 | } |
---|
539 | example { |
---|
540 | "EXAMPLE:"; echo = 2; |
---|
541 | def R = crystallographicGroupP4MM(5); setring R; |
---|
542 | I; |
---|
543 | } |
---|
544 | |
---|
545 | proc crystallographicGroupP4GM(int d) |
---|
546 | "USAGE: crystallographicGroupP4GM(d); d an integer |
---|
547 | RETURN: ring |
---|
548 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
549 | @* - p4gm group with the following presentation |
---|
550 | @* < x, y, r, t | [x, y] = r^4 = t^2 = 1, r^-1*y*r = x^-1, r^-1*x*r = y, t^-1*x*t = y, t^-1*r*t = x^-1*r^-1> |
---|
551 | @* - d gives the degreebound for the Letterplace ring |
---|
552 | " |
---|
553 | { |
---|
554 | if (d < 5){ERROR("Degreebound is to small for choosen example!");} |
---|
555 | |
---|
556 | int baseringdef; |
---|
557 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
558 | { |
---|
559 | def save = basering; |
---|
560 | baseringdef = 1; |
---|
561 | } |
---|
562 | ring r = 2,(x,y,r,t,X,Y),dp; |
---|
563 | def R = makeLetterplaceRing(d); |
---|
564 | setring R; |
---|
565 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-r(1)*r(2)*r(3)*r(4), r(1)*r(2)*r(3)*r(4)-1, x(1)*y(2)-y(1)*x(2)-t(1)*t(2), |
---|
566 | t(1)*t(2)-1, r(1)*r(2)*r(3)*r(4)-t(1)*t(2), r(1)*r(2)*r(3)*y(4)*r(5)-X(1), r(1)*r(2)*r(3)*x(4)*r(5)-y(1), |
---|
567 | t(1)*r(2)*t(3)-X(1)*r(2)*r(3)*r(4), X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
568 | I = simplify(I,2); |
---|
569 | export(I); |
---|
570 | if (baseringdef == 1) {setring save;} |
---|
571 | return(R); |
---|
572 | } |
---|
573 | example { |
---|
574 | "EXAMPLE:"; echo = 2; |
---|
575 | def R = crystallographicGroupP4GM(5); setring R; |
---|
576 | I; |
---|
577 | } |
---|
578 | |
---|
579 | proc crystallographicGroupP3(int d) |
---|
580 | "USAGE: crystallographicGroupP3(d); d an integer |
---|
581 | RETURN: ring |
---|
582 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
583 | @* - p3 group with the following presentation |
---|
584 | @* < x, y, r | [x, y] = r^3 = 1, r^-1*x*r = x^-1*y, r^-1*y*r = x^-1> |
---|
585 | @* - d gives the degreebound for the Letterplace ring |
---|
586 | " |
---|
587 | { |
---|
588 | if (d < 4){ERROR("Degreebound is to small for choosen example!");} |
---|
589 | |
---|
590 | int baseringdef; |
---|
591 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
592 | { |
---|
593 | def save = basering; |
---|
594 | baseringdef = 1; |
---|
595 | } |
---|
596 | ring r = 2,(x,y,r,X,Y),dp; |
---|
597 | def R = makeLetterplaceRing(d); |
---|
598 | setring R; |
---|
599 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-r(1)*r(2)*r(3), r(1)*r(2)*r(3)-1, |
---|
600 | r(1)*r(2)*x(3)*r(4)-X(1)*y(2), r(1)*r(2)*y(3)*r(4)-X(1), X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
601 | I = simplify(I,2); |
---|
602 | export(I); |
---|
603 | if (baseringdef == 1) {setring save;} |
---|
604 | return(R); |
---|
605 | } |
---|
606 | example { |
---|
607 | "EXAMPLE:"; echo = 2; |
---|
608 | def R = crystallographicGroupP3(5); setring R; |
---|
609 | I; |
---|
610 | } |
---|
611 | |
---|
612 | proc crystallographicGroupP31M(int d) |
---|
613 | "USAGE: crystallographicGroupP31M(d); d an integer |
---|
614 | RETURN: ring |
---|
615 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
616 | @* - p31m group with the following presentation |
---|
617 | @* < x, y, r, t | [x, y] = r^2 = t^2 = (t*r)^3 = 1, r^-1*x*r = x, t^-1*y*t = y, t^-1*x*t = x^-1*y, r^-1*y*r = x*y^-1 > |
---|
618 | @* - d gives the degreebound for the Letterplace ring |
---|
619 | " |
---|
620 | { |
---|
621 | if (d < 6){ERROR("Degreebound is to small for choosen example!");} |
---|
622 | |
---|
623 | int baseringdef; |
---|
624 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
625 | { |
---|
626 | def save = basering; |
---|
627 | baseringdef = 1; |
---|
628 | } |
---|
629 | ring r = 2,(x,y,r,t,X,Y),dp; |
---|
630 | def R = makeLetterplaceRing(d); |
---|
631 | setring R; |
---|
632 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-r(1)*r(2), x(1)*y(2)-y(1)*x(2)-t(1)*t(2), r(1)*r(2)-1, t(1)*t(2)-1, |
---|
633 | t(1)*r(2)*t(3)*r(4)*t(5)*r(6)-1, r(1)*r(2)-t(1)*t(2), x(1)*y(2)-y(1)*x(2)-t(1)*r(2)*t(3)*r(4)*t(5)*r(6), |
---|
634 | t(1)*r(2)*t(3)*r(4)*t(5)*r(6)-r(1)*r(2), t(1)*r(2)*t(3)*r(4)*t(5)*r(6)-t(1)*t(2), |
---|
635 | r(1)*x(2)*r(3)-x(1), t(1)*y(2)*t(3)-y(1), t(1)*x(2)*t(3)-X(1)*y(2), r(1)*y(2)*r(3)-x(1)*Y(2), |
---|
636 | X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
637 | I = simplify(I,2); |
---|
638 | export(I); |
---|
639 | if (baseringdef == 1) {setring save;} |
---|
640 | return(R); |
---|
641 | } |
---|
642 | example { |
---|
643 | "EXAMPLE:"; echo = 2; |
---|
644 | def R = crystallographicGroupP31M(5); setring R; |
---|
645 | I; |
---|
646 | } |
---|
647 | |
---|
648 | proc crystallographicGroupP3M1(int d) |
---|
649 | "USAGE: crystallographicGroupP3M1(d); d an integer |
---|
650 | RETURN: ring |
---|
651 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
652 | @* - p3m1 group with the following presentation |
---|
653 | @* < x, y, r, m | [x, y] = r^3 = m^2 = 1, m^-1*r*m = r^2, r^-1*x*r = x^-1*y, r^-1*y*r = x^-1, m^-1*x*m = x^-1, m^-1*y*m = x^-1*y > |
---|
654 | @* - d gives the degreebound for the Letterplace ring |
---|
655 | " |
---|
656 | { |
---|
657 | if (d < 4){ERROR("Degreebound is to small for choosen example!");} |
---|
658 | |
---|
659 | int baseringdef; |
---|
660 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
661 | { |
---|
662 | def save = basering; |
---|
663 | baseringdef = 1; |
---|
664 | } |
---|
665 | ring r = 2,(x,y,r,m,X,Y),dp; |
---|
666 | def R = makeLetterplaceRing(d); |
---|
667 | setring R; |
---|
668 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-r(1)*r(2)*r(3), x(1)*y(2)-y(1)*x(2)-m(1)*m(2), r(1)*r(2)*r(3)-1, m(1)*m(2)-1, |
---|
669 | r(1)*r(2)*r(3)-m(1)*m(2), m(1)*r(2)*m(3)-r(1)*r(2), r(1)*r(2)*x(3)*r(4)-X(1)*y(2), r(1)*r(2)*y(3)*r(4)-X(1),m(1)*x(2)*m(3)-X(1), |
---|
670 | m(1)*y(2)*m(3)-X(1)*y(2), X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
671 | I = simplify(I,2); |
---|
672 | export(I); |
---|
673 | if (baseringdef == 1) {setring save;} |
---|
674 | return(R); |
---|
675 | } |
---|
676 | example { |
---|
677 | "EXAMPLE:"; echo = 2; |
---|
678 | def R = crystallographicGroupP3M1(5); setring R; |
---|
679 | I; |
---|
680 | } |
---|
681 | |
---|
682 | proc crystallographicGroupP6(int d) |
---|
683 | "USAGE: crystallographicGroupP6(d); d an integer |
---|
684 | RETURN: ring |
---|
685 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
686 | @* - p6 group with the following presentation |
---|
687 | @* < x, y, r | [x, y] = r^6 = 1, r^-1*x*r = y, r^-1*y*r = x^-1*y> |
---|
688 | @* - d gives the degreebound for the Letterplace ring |
---|
689 | " |
---|
690 | { |
---|
691 | if (d < 7){ERROR("Degreebound is to small for choosen example!");} |
---|
692 | |
---|
693 | int baseringdef; |
---|
694 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
695 | { |
---|
696 | def save = basering; |
---|
697 | baseringdef = 1; |
---|
698 | } |
---|
699 | ring r = 2,(x,y,r,X,Y),dp; |
---|
700 | def R = makeLetterplaceRing(d); |
---|
701 | setring R; |
---|
702 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-r(1)*r(2)*r(3)*r(4)*r(5)*r(6), r(1)*r(2)*r(3)*r(4)*r(5)*r(6)-1, |
---|
703 | r(1)*r(2)*r(3)*r(4)*r(5)*x(6)*r(7)-y(1), r(1)*r(2)*r(3)*r(4)*r(5)*y(6)*r(7)-X(1)*y(2), |
---|
704 | X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
705 | I = simplify(I,2); |
---|
706 | export(I); |
---|
707 | if (baseringdef == 1) {setring save;} |
---|
708 | return(R); |
---|
709 | } |
---|
710 | example { |
---|
711 | "EXAMPLE:"; echo = 2; |
---|
712 | def R = crystallographicGroupP6(5); setring R; |
---|
713 | I; |
---|
714 | } |
---|
715 | |
---|
716 | proc crystallographicGroupP6MM(int d) |
---|
717 | "USAGE: crystallographicGroupP6MM(d); d an integer |
---|
718 | RETURN: ring |
---|
719 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
720 | @* - p6mm group with the following presentation |
---|
721 | @* < x, y, r, m | [x, y] = r^6 = m^2 = 1, r^-1*y*r = x^-1*y, r^-1*x*r = y, m^-1*x*m = x^-1, m^-1*y*m = x^-1*y, m^-1*r*m = r^-1*y> |
---|
722 | @* - d gives the degreebound for the Letterplace ring |
---|
723 | " |
---|
724 | { |
---|
725 | if (d < 7){ERROR("Degreebound is to small for choosen example!");} |
---|
726 | |
---|
727 | int baseringdef; |
---|
728 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
729 | { |
---|
730 | def save = basering; |
---|
731 | baseringdef = 1; |
---|
732 | } |
---|
733 | ring r = 2,(x,y,r,m,X,Y),dp; |
---|
734 | def R = makeLetterplaceRing(d); |
---|
735 | setring R; |
---|
736 | ideal I = x(1)*y(2)-y(1)*x(2)-1, x(1)*y(2)-y(1)*x(2)-r(1)*r(2)*r(3)*r(4)*r(5)*r(6), r(1)*r(2)*r(3)*r(4)*r(5)*r(6)-1, |
---|
737 | x(1)*y(2)-y(1)*x(2)-m(1)*m(2), r(1)*r(2)*r(3)*r(4)*r(5)*r(6)-m(1)*m(2), m(1)*m(2)-1, m(1)*x(2)*m(3)-X(1), m(1)*y(2)*m(3)-X(1)*y(2), |
---|
738 | r(1)*r(2)*r(3)*r(4)*r(5)*x(6)*r(7)-y(1), r(1)*r(2)*r(3)*r(4)*r(5)*y(6)*r(7)-X(1)*y(2), M(1)*r(2)*m(3)- r(1)*r(2)*r(3)*r(4)*r(5)*y(6) |
---|
739 | X(1)*x(2)-1, x(1)*X(2)-1, Y(1)*y(2)-1, y(1)*Y(2)-1; |
---|
740 | I = simplify(I,2); |
---|
741 | export(I); |
---|
742 | if (baseringdef == 1) {setring save;} |
---|
743 | return(R); |
---|
744 | } |
---|
745 | example { |
---|
746 | "EXAMPLE:"; echo = 2; |
---|
747 | def R = crystallographicGroupP6MM(5); setring R; |
---|
748 | I; |
---|
749 | } |
---|
750 | |
---|
751 | //////////////////////////////////////////////////////////////////// |
---|
752 | // Dyck Group ////////////////////////////////////////////////////// |
---|
753 | // from Grischa Studzinski ///////////////////////////////////////// |
---|
754 | //////////////////////////////////////////////////////////////////// |
---|
755 | |
---|
756 | proc dyckGroup1(int n, int d, intvec P) |
---|
757 | "USAGE: dyckGroup1(n,d,P); n an integer, d an integer, P an intvec |
---|
758 | RETURN: ring |
---|
759 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
760 | @* - The Dyck group with the following presentation |
---|
761 | @* < x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 > |
---|
762 | @* - negative exponents are allowed |
---|
763 | @* - representation in the form x_i^p_i - x_(i+1)^p_(i+1) |
---|
764 | @* - d gives the degreebound for the Letterplace ring |
---|
765 | " |
---|
766 | { |
---|
767 | int baseringdef,i,j; |
---|
768 | if (n < 1) {ERROR("There must be at least one variable!");} |
---|
769 | if (d < n) {ERROR("Degreebound is to small!");} |
---|
770 | for (i = 1; i <= size(P); i++) {if (d < absValue(P[i])){ERROR("Degreebound is to small!");}} |
---|
771 | |
---|
772 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
773 | { |
---|
774 | def save = basering; |
---|
775 | baseringdef = 1; |
---|
776 | } |
---|
777 | ring r = 2,(x(1..n),Y(1..n)),dp; |
---|
778 | def R = makeLetterplaceRing(d); |
---|
779 | setring R; |
---|
780 | ideal I; poly p,q; |
---|
781 | p = 1; q = 1; |
---|
782 | for (i = 1; i<= n; i++) {p = lpMult(p,var(i));} |
---|
783 | I = p-1; |
---|
784 | for (i = n; i > 0; i--) |
---|
785 | { |
---|
786 | if (P[i] >= 0) {for (j = 1; j <= P[i]; j++){q = lpMult(q,var(i));}} |
---|
787 | else {for (j = 1; j <= -P[i]; j++){q = lpMult(q,var(i+n));}} |
---|
788 | I = p - q,I; |
---|
789 | p = q; q = 1; |
---|
790 | } |
---|
791 | |
---|
792 | I = simplify(I,2); |
---|
793 | export(I); |
---|
794 | if (baseringdef == 1) {setring save;} |
---|
795 | return(R); |
---|
796 | } |
---|
797 | example { |
---|
798 | "EXAMPLE:"; echo = 2; |
---|
799 | intvec P = 1,2,3; |
---|
800 | def R = dyckGroup1(3,5,P); setring R; |
---|
801 | I; |
---|
802 | } |
---|
803 | |
---|
804 | |
---|
805 | proc dyckGroup2(int n, int d, intvec P) |
---|
806 | "USAGE: dyckGroup2(n,d,P); n an integer, d an integer, P an intvec |
---|
807 | RETURN: ring |
---|
808 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
809 | @* - The Dyck group with the following presentation |
---|
810 | @* < x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 > |
---|
811 | @* - negative exponents are allowed |
---|
812 | @* - representation in the form x_i^p_i - 1 |
---|
813 | @* - d gives the degreebound for the Letterplace ring |
---|
814 | " |
---|
815 | { |
---|
816 | int baseringdef,i,j; |
---|
817 | if (n < 1) {ERROR("There must be at least one variable!");} |
---|
818 | if (d < n) {ERROR("Degreebound is to small!");} |
---|
819 | for (i = 1; i <= size(P); i++) {if (d < absValue(P[i])){ERROR("Degreebound is to small!");}} |
---|
820 | |
---|
821 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
822 | { |
---|
823 | def save = basering; |
---|
824 | baseringdef = 1; |
---|
825 | } |
---|
826 | ring r = 2,(x(1..n),Y(1..n)),dp; |
---|
827 | def R = makeLetterplaceRing(d); |
---|
828 | setring R; |
---|
829 | ideal I; poly p; |
---|
830 | p = 1; |
---|
831 | for (i = 1; i<= n; i++) {p = lpMult(p,var(i));} |
---|
832 | I = p-1; |
---|
833 | for (i = n; i > 0; i--) |
---|
834 | { |
---|
835 | p = 1; |
---|
836 | if (P[i] >= 0) {for (j = 1; j <= P[i]; j++){p = lpMult(p,var(i));}} |
---|
837 | else {for (j = 1; j <= -P[i]; j++){p = lpMult(p,var(i+n));}} |
---|
838 | I = p - 1,I; |
---|
839 | } |
---|
840 | |
---|
841 | I = simplify(I,2); |
---|
842 | export(I); |
---|
843 | if (baseringdef == 1) {setring save;} |
---|
844 | return(R); |
---|
845 | } |
---|
846 | example { |
---|
847 | "EXAMPLE:"; echo = 2; |
---|
848 | intvec P = 1,2,3; |
---|
849 | def R = dyckGroup2(3,5,P); setring R; |
---|
850 | I; |
---|
851 | } |
---|
852 | |
---|
853 | |
---|
854 | |
---|
855 | proc dyckGroup3(int n, int d, intvec P) |
---|
856 | "USAGE: dyckGroup2(n,d,P); n an integer, d an integer, P an intvec |
---|
857 | RETURN: ring |
---|
858 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
859 | @* - The Dyck group with the following presentation |
---|
860 | @* < x_1, x_2, ... , x_n | (x_1)^p1 = (x_2)^p2 = ... = (x_n)^pn = x_1 * x_2 * ... * x_n = 1 > |
---|
861 | @* - only positive exponents are allowed |
---|
862 | @* - no inverse generators needed |
---|
863 | @* - d gives the degreebound for the Letterplace ring |
---|
864 | " |
---|
865 | { |
---|
866 | int baseringdef,i,j; |
---|
867 | if (n < 1) {ERROR("There must be at least one variable!");} |
---|
868 | if (d < n) {ERROR("Degreebound is to small!");} |
---|
869 | for (i = 1; i <= size(P); i++) {if (P[i] < 0){ERROR("Exponents must be positive!");}} |
---|
870 | for (i = 1; i <= size(P); i++) {if (d < P[i]){ERROR("Degreebound is to small!");}} |
---|
871 | |
---|
872 | |
---|
873 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
874 | { |
---|
875 | def save = basering; |
---|
876 | baseringdef = 1; |
---|
877 | } |
---|
878 | ring r = 2,x(1..n),dp; |
---|
879 | def R = makeLetterplaceRing(d); |
---|
880 | setring R; |
---|
881 | ideal I; poly p; |
---|
882 | p = 1; |
---|
883 | for (i = 1; i<= n; i++) {p = lpMult(p,var(i));} |
---|
884 | I = p-1; |
---|
885 | for (i = n; i > 0; i--) |
---|
886 | { |
---|
887 | p = 1; |
---|
888 | for (j = 1; j <= P[i]; j++){p = lpMult(p,var(i));} |
---|
889 | I = p - 1,I; |
---|
890 | } |
---|
891 | |
---|
892 | I = simplify(I,2); |
---|
893 | export(I); |
---|
894 | if (baseringdef == 1) {setring save;} |
---|
895 | return(R); |
---|
896 | } |
---|
897 | example { |
---|
898 | "EXAMPLE:"; echo = 2; |
---|
899 | intvec P = 1,2,3; |
---|
900 | def R = dyckGroup3(3,5,P); setring R; |
---|
901 | I; |
---|
902 | } |
---|
903 | |
---|
904 | //////////////////////////////////////////////////////////////////// |
---|
905 | // Fibonacci Group ///////////////////////////////////////////////// |
---|
906 | // from Grischa Studzinski ///////////////////////////////////////// |
---|
907 | //////////////////////////////////////////////////////////////////// |
---|
908 | |
---|
909 | proc fibonacciGroup(int m, int d) |
---|
910 | "USAGE: fibonacciGroup(m,d); m an integer, d an integer |
---|
911 | RETURN: ring |
---|
912 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
913 | @* - The Fibonacci group F(2, m) with the following presentation |
---|
914 | @* < x_1, x_2, ... , x_m | x_i * x_(i + 1) = x_(i + 2) > |
---|
915 | @* - d gives the degreebound for the Letterplace ring |
---|
916 | " |
---|
917 | // TODO: basefield Q oder F2? |
---|
918 | // TODO: inverse Elemente! |
---|
919 | { |
---|
920 | if (m < 3) {ERROR("At least three generators are required!");} |
---|
921 | if (d < 2) {ERROR("Degree bound must be at least 2!");} |
---|
922 | int baseringdef,i; |
---|
923 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
924 | { |
---|
925 | def save = basering; |
---|
926 | baseringdef = 1; |
---|
927 | } |
---|
928 | ring r = 2,(x(1..m),Y(1..m)),dp; |
---|
929 | def R = makeLetterplaceRing(d); |
---|
930 | setring R; |
---|
931 | ideal I; poly p; |
---|
932 | for (i = 1; i < m-1; i++) |
---|
933 | { |
---|
934 | p = lpMult(var(i),var(i+1))-var(i+2); |
---|
935 | I = I,p; |
---|
936 | } |
---|
937 | for (i = 1; i <= m; i++) |
---|
938 | { |
---|
939 | p = lpMult(var(i),var(i+m))-1; |
---|
940 | I = I,p; |
---|
941 | p = lpMult(var(i+m),var(i))-1; |
---|
942 | I = I,p; |
---|
943 | } |
---|
944 | I = simplify(I,2); |
---|
945 | export(I); |
---|
946 | if (baseringdef == 1) {setring save;} |
---|
947 | return(R); |
---|
948 | } |
---|
949 | example { |
---|
950 | "EXAMPLE:"; echo = 2; |
---|
951 | def R = fibonacciGroup(3,5); setring R; |
---|
952 | I; |
---|
953 | } |
---|
954 | |
---|
955 | |
---|
956 | //////////////////////////////////////////////////////////////////// |
---|
957 | // Tetrahedron Groups /////////////////////////////////////////////// |
---|
958 | // from Grischa Studzinski ///////////////////////////////////////// |
---|
959 | //////////////////////////////////////////////////////////////////// |
---|
960 | |
---|
961 | proc tetrahedronGroup(int g, int d) |
---|
962 | "USAGE: tetrahedronGroup(g,d); g an integer, d an integer |
---|
963 | RETURN: ring |
---|
964 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
965 | @* - g gives the number of the example |
---|
966 | @* - d gives the degreebound for the Letterplace ring |
---|
967 | @* |
---|
968 | The examples are found in |
---|
969 | Classification of the finite generalized tetrahedron groups |
---|
970 | by Gerhard Rosenberger and Martin Scheer. |
---|
971 | The 5 examples are denoted in Proposition 1.9 and concern |
---|
972 | finite generalized tetrahedron group in the Tsarnarov-case, which are |
---|
973 | not equivalent to a presentation for an ordinary tetrahedron group. |
---|
974 | @* |
---|
975 | " |
---|
976 | { |
---|
977 | if (g < 1 || g > 5) {ERROR("There are only 5 examples!");} |
---|
978 | if ((g == 1 && d < 6)||(g == 2 && d < 6)||(g == 3 && d < 5)||(g == 4 && d < 4)||(g == 5 && d < 5)) |
---|
979 | {ERROR("Degreebound is to small for choosen example!");} |
---|
980 | |
---|
981 | int baseringdef,i,j; |
---|
982 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
983 | { |
---|
984 | def save = basering; |
---|
985 | baseringdef = 1; |
---|
986 | } |
---|
987 | ring r = 2,(x,y,z),dp; |
---|
988 | def R = makeLetterplaceRing(d); |
---|
989 | setring R; |
---|
990 | ideal I; |
---|
991 | if (g == 1) |
---|
992 | {I = x(1)*x(2)*x(3)*x(4)*x(5)-1, y(1)*y(2)-1, z(1)*z(2)*z(3)-1, x(1)*y(2)*x(3)*y(4)*x(5)*y(6)-1, x(1)*x(2)*z(3)*x(4)*x(5)*z(6)-1, |
---|
993 | y(1)*z(2)*y(3)*z(4)-1; |
---|
994 | } |
---|
995 | if (g == 2) |
---|
996 | {I = x(1)*x(2)*x(3)-1, y(1)*y(2)*y(3)-1, z(1)*z(2)*z(3)*z(4)*z(5)-1,x(1)*y(2)*x(3)*y(4)-1,x(1)*z(2)*x(3)*z(4)-1, |
---|
997 | y(1)*z(2)*z(3)*y(4)*z(5)*z(6)-1; |
---|
998 | } |
---|
999 | if (g == 3) |
---|
1000 | {I = x(1)*x(2)*x(3)-1, y(1)*y(2)*y(3)-1, z(1)*z(2)*z(3)-1, x(1)*y(2)*x(3)*y(4)-1, x(1)*z(2)*x(3)*z(4)-1, y(1)*z(2)*y(3)*z(4)-1; |
---|
1001 | } |
---|
1002 | if (g == 4) |
---|
1003 | {I = x(1)*x(2)*x(3)-1, y(1)*y(2)*y(3)-1, z(1)*z(2)*z(3)*z(4)-1,x(1)*y(2)*x(3)*y(4)-1, x(1)*z(2)*x(3)*z(4)-1, y(1)*z(2)*y(3)*z(4)-1; |
---|
1004 | } |
---|
1005 | if (g ==5) |
---|
1006 | {I = x(1)*x(2)*x(3)-1, y(1)*y(2)*y(3)-1, z(1)*z(2)*z(3)*z(4)*z(5)-1,x(1)*y(2)*x(3)*y(4)-1, x(1)*z(2)*x(3)*z(4)-1, y(1)*z(2)*y(3)*z(4)-1; |
---|
1007 | } |
---|
1008 | |
---|
1009 | I = simplify(I,2); |
---|
1010 | export(I); |
---|
1011 | if (baseringdef == 1) {setring save;} |
---|
1012 | return(R); |
---|
1013 | } |
---|
1014 | example { |
---|
1015 | "EXAMPLE:"; echo = 2; |
---|
1016 | def R = tetrahedronGroup(3,5); setring R; |
---|
1017 | I; |
---|
1018 | } |
---|
1019 | |
---|
1020 | |
---|
1021 | //////////////////////////////////////////////////////////////////// |
---|
1022 | // Triangular Groups /////////////////////////////////////////////// |
---|
1023 | // from Grischa Studzinski ///////////////////////////////////////// |
---|
1024 | //////////////////////////////////////////////////////////////////// |
---|
1025 | |
---|
1026 | proc triangularGroup(int g, int d) |
---|
1027 | "USAGE: triangularGroup(g,d); g an integer, d an integer |
---|
1028 | RETURN: ring |
---|
1029 | NOTE: - the ring contains the ideal I, which contains the required relations |
---|
1030 | @* - g gives the number of the example |
---|
1031 | @* - d gives the degreebound for the Letterplace ring |
---|
1032 | @* |
---|
1033 | The examples are found in |
---|
1034 | Classification of the finite generalized tetrahedron groups |
---|
1035 | by Gerhard Rosenberger and Martin Scheer. |
---|
1036 | The 14 examples are denoted in theorem 2.12 |
---|
1037 | @* |
---|
1038 | " |
---|
1039 | { |
---|
1040 | if (g < 1 || g > 14) {ERROR("There are only 14 examples!");} |
---|
1041 | if ((g == 1 && d < 20)||(g == 2 && d < 21)||(g == 3 && d < 10)||(g == 4 && d < 12)||(g == 5 && d < 10)||(g == 6 && d < 18)||(g == 7 && d < 20)||(g == 8 && d < 16)||(g == 9 && d < 10)||(g == 10 && d < 14)||(g == 11 && d < 16)||(g == 12 && d < 24)||(g == 13 && d < 28)||(g == 14 && d < 37)) |
---|
1042 | {ERROR("Degreebound is to small for choosen example!");} |
---|
1043 | |
---|
1044 | int baseringdef; |
---|
1045 | if (defined(basering)) // if a basering is defined, it should be saved for later use |
---|
1046 | { |
---|
1047 | def save = basering; |
---|
1048 | baseringdef = 1; |
---|
1049 | } |
---|
1050 | ring r = 2,(a,b),dp; |
---|
1051 | def R = makeLetterplaceRing(d); |
---|
1052 | setring R; |
---|
1053 | ideal I; |
---|
1054 | |
---|
1055 | if (g == 1) |
---|
1056 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)-1, |
---|
1057 | a(1)*b(2)*a(3)*b(4)*a(5)*b(6)*b(7)*a(8)*b(9)*b(10)*a(11)*b(12)*a(13)*b(14)*a(15)*b(16)*b(17)*a(18)*b(19)*b(20)-1; |
---|
1058 | } |
---|
1059 | if (g == 2) |
---|
1060 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)-1, |
---|
1061 | a(1)*b(2)*a(3)*b(4)*a(5)*b(6)*b(7)*a(8)*b(9)*a(10)*b(11)*a(12)*b(13)*b(14)*a(15)*b(16)*a(17)*b(18)*a(19)*b(20)*b(21)-1; |
---|
1062 | } |
---|
1063 | if (g == 3) |
---|
1064 | {I = a(1)*a(2)*a(3)-1, b(1)*b(2)*b(3)-1, |
---|
1065 | a(1)*b(2)*a(3)*b(4)*b(5)*a(6)*b(7)*a(8)*b(9)*b(10)-1; |
---|
1066 | } |
---|
1067 | if (g == 4) |
---|
1068 | {I = a(1)*a(2)*a(3)-1, b(1)*b(2)*b(3)-1, |
---|
1069 | a(1)*b(2)*a(3)*a(4)*b(5)*b(6)*a(7)*b(8)*a(9)*a(10)*b(11)*b(12)-1; |
---|
1070 | } |
---|
1071 | if (g == 5) |
---|
1072 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)*b(4)*b(5)-1, |
---|
1073 | a(1)*b(2)*a(3)*b(4)*b(5)*a(6)*b(7)*a(8)*b(9)*b(10)-1; |
---|
1074 | } |
---|
1075 | if (g == 6) |
---|
1076 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)*b(4)*b(5)-1, |
---|
1077 | a(1)*b(2)*a(3)*b(4)*a(5)*b(6)*b(7)*b(8)*b(9)*a(10)*b(11)*a(12)*b(13)*a(14)*b(15)*b(16)*b(17)*b(18)-1; |
---|
1078 | } |
---|
1079 | if (g == 7) |
---|
1080 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)*b(4)*b(5)-1, |
---|
1081 | a(1)*b(2)*a(3)*b(4)*b(5)*a(6)*b(7)*b(8)*b(9)*b(10)*a(11)*b(12)*a(13)*b(14)*b(15)*a(16)*b(17)*b(18)*b(19)*b(20)-1; |
---|
1082 | } |
---|
1083 | if (g == 8) |
---|
1084 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)*b(4)-1, |
---|
1085 | a(1)*b(2)*a(3)*b(4)*a(5)*b(6)*b(7)*b(8)*a(9)*b(10)*a(11)*b(12)*a(13)*b(14)*b(15)*b(16)-1; |
---|
1086 | } |
---|
1087 | if (g == 9) |
---|
1088 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)-1, |
---|
1089 | a(1)*b(2)*a(3)*b(4)*b(5)*a(6)*b(7)*a(8)*b(9)*b(10)-1; |
---|
1090 | } |
---|
1091 | if (g == 10) |
---|
1092 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)-1, |
---|
1093 | a(1)*b(2)*a(3)*b(4)*a(5)*b(6)*b(7)*a(8)*b(9)*a(10)*b(11)*a(12)*b(13)*b(14)-1; |
---|
1094 | } |
---|
1095 | if (g == 11) |
---|
1096 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)-1, |
---|
1097 | a(1)*b(2)*a(3)*b(4)*a(5)*b(6)*a(7)*b(8)*b(9)*a(10)*b(11)*a(12)*b(13)*a(14)*b(15)*b(16)-1; |
---|
1098 | } |
---|
1099 | if (g == 12) |
---|
1100 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)-1, |
---|
1101 | a(1)*b(2)*a(3)*b(4)*a(5)*b(6)*b(7)*a(8)*b(9)*a(10)*b(11)*b(12)*a(13)*b(14)*a(15)*b(16)*a(17)*b(18)*b(19)*a(20)*b(21)*a(22)*b(23)*b(24)-1; |
---|
1102 | } |
---|
1103 | if (g == 13) |
---|
1104 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)-1, |
---|
1105 | a(1)*b(2)*a(3)*b(4)*a(5)*b(6)*a(7)*b(8)*a(9)*b(10)*b(11)*a(12)*b(13)*b(14)*a(15)*b(16)*a(17)*b(18)*a(19)*b(20)*a(21)*b(22)*a(23)*b(24)*b(25)*a(26)*b(27)*b(28)-1; |
---|
1106 | } |
---|
1107 | if (g == 14) |
---|
1108 | {I = a(1)*a(2)-1, b(1)*b(2)*b(3)-1, |
---|
1109 | a(1)*b(2)*a(3)*b(4)*a(5)*b(6)*a(7)*b(8)*b(9)*a(10)*b(11)*b(12)*a(13)*b(14)*a(15)*b(16)*b(17)*a(18)*b(19)*b(20)*a(21)*b(22)*a(23)*b(24)*a(25)*b(26)*a(27)*b(28)*b(29)*a(30)*b(31)*a(32)*b(33)*b(34)*a(35)*b(36)*b(37)-1; |
---|
1110 | } |
---|
1111 | |
---|
1112 | I = simplify(I,2); |
---|
1113 | export(I); |
---|
1114 | if (baseringdef == 1) {setring save;} |
---|
1115 | return(R); |
---|
1116 | } |
---|
1117 | example { |
---|
1118 | "EXAMPLE:"; echo = 2; |
---|
1119 | def R = triangularGroup(3,10); setring R; |
---|
1120 | I; |
---|
1121 | } |
---|