1 | ///////////////////////////////////////////////////////////////////////////// |
---|
2 | version="version freegb.lib 4.1.1.4 Oct_2018 "; // $Id$ |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: freegb.lib Two-sided Groebner bases in free algebras and tools via Letterplace approach |
---|
6 | AUTHORS: Viktor Levandovskyy, viktor.levandovskyy at math.rwth-aachen.de |
---|
7 | @* Karim Abou Zeid, karim.abou.zeid at rwth-aachen.de |
---|
8 | @* Grischa Studzinski, grischa.studzinski at math.rwth-aachen.de |
---|
9 | |
---|
10 | OVERVIEW: For the theory, see chapter 'Letterplace' in the Singular Manual. |
---|
11 | |
---|
12 | This library provides access to kernel functions and also contains legacy code (partially as |
---|
13 | static procedures) for compatibility reasons. |
---|
14 | |
---|
15 | KEYWORDS: free associative algebra; tensor algebra; free noncommutative Groebner basis; |
---|
16 | Letterplace Groebner basis; finitely presented algebra |
---|
17 | |
---|
18 | Support: Joint projects LE 2697/2-1 and KR 1907/3-1 of the Priority Programme SPP 1489: |
---|
19 | 'Algorithmische und Experimentelle Methoden in Algebra, Geometrie und Zahlentheorie' |
---|
20 | of the German DFG |
---|
21 | and Project II.6 of the transregional collaborative research centre |
---|
22 | SFB-TRR 195 'Symbolic Tools in Mathematics and their Application' of the German DFG |
---|
23 | |
---|
24 | PROCEDURES: |
---|
25 | freeAlgebra(r, d); creates a Letterplace ring out of given data |
---|
26 | isFreeAlgebra(r); check whether r is a letterplace ring (free algebra) |
---|
27 | lpDegBound(R); returns the degree bound of a letterplace ring |
---|
28 | lpVarBlockSize(R); returns the size of the letterplace blocks |
---|
29 | |
---|
30 | letplaceGBasis(I); (deprecated, use twostd) two-sided Groebner basis of a letterplace ideal I |
---|
31 | |
---|
32 | lpDivision(f,I); two-sided division with remainder |
---|
33 | lpGBPres2Poly(L,I); reconstructs a polynomial from the output of lpDivision |
---|
34 | |
---|
35 | lieBracket(a,b[, N]); Lie bracket ab-ba of two letterplace polynomials |
---|
36 | isOrderingShiftInvariant(i); tests shift-invariance of the monomial ordering |
---|
37 | isVar(p); check whether p is a power of a single variable |
---|
38 | |
---|
39 | lpLmDivides(ideal I, poly p); tests whether there exists q in I, such that LM(q)|LM(p) |
---|
40 | lpVarAt(poly p, int pos); returns the variable (as a poly) at position pos of the poly p |
---|
41 | |
---|
42 | makeLetterplaceRing(d); (deprecated, use freeAlgebra) creates a Letterplace ring out of given data |
---|
43 | setLetterplaceAttributes(R,d,b); (for testing purposes) supplies ring R with the letterplace structure |
---|
44 | |
---|
45 | SEE ALSO: fpadim_lib, fpaprops_lib, fpalgebras_lib, LETTERPLACE |
---|
46 | "; |
---|
47 | |
---|
48 | // Remark Oct 2018: iv2lp, lp2iv etc are NOT IN HEADER because |
---|
49 | // they should not be used anymore |
---|
50 | |
---|
51 | /* more legacy: |
---|
52 | lpPrint(I, r); represents Letterplace ideal in the form of words (legacy routine) |
---|
53 | freeGBasis(L, n); computes two-sided Groebner basis of an ideal, encoded via list L (legacy routine) |
---|
54 | lp2lstr(K, s); convert a letterplace ideal into a list of modules |
---|
55 | lst2str(L[, n]); convert a list (of modules) into polynomials in free algebra via strings |
---|
56 | mod2str(M[, n]); convert a module into a polynomial in free algebra via strings |
---|
57 | vct2str(M[, n]); convert a vector into a word in free algebra |
---|
58 | //also, there were |
---|
59 | shiftPoly; |
---|
60 | lpPower; |
---|
61 | */ |
---|
62 | |
---|
63 | LIB "qhmoduli.lib"; // for Max |
---|
64 | LIB "bfun.lib"; // for inForm |
---|
65 | LIB "fpadim.lib"; // for intvec conversion |
---|
66 | LIB "fpalgebras.lib"; // for compatibility |
---|
67 | |
---|
68 | /* very fast and cheap test of consistency and functionality |
---|
69 | DO NOT make it static ! |
---|
70 | after adding the new proc, add it here */ |
---|
71 | proc tstfreegb() |
---|
72 | { |
---|
73 | example makeLetterplaceRing; |
---|
74 | example letplaceGBasis; |
---|
75 | example lpNF; |
---|
76 | example lpDivision; |
---|
77 | example lpGBPres2Poly; |
---|
78 | example freeGBasis; |
---|
79 | example setLetterplaceAttributes; |
---|
80 | example isOrderingShiftInvariant; |
---|
81 | /* secondary */ |
---|
82 | example lieBracket; |
---|
83 | example lpPrint; |
---|
84 | example isVar; |
---|
85 | |
---|
86 | example lpLmDivides; |
---|
87 | example lpVarAt; |
---|
88 | |
---|
89 | example ivL2lpI; |
---|
90 | example iv2lp; |
---|
91 | example iv2lpList; |
---|
92 | example iv2lpMat; |
---|
93 | example lp2iv; |
---|
94 | example lp2ivId; |
---|
95 | example lpId2ivLi; |
---|
96 | } |
---|
97 | |
---|
98 | proc setLetterplaceAttributes(def R, int uptodeg, int lV) |
---|
99 | "USAGE: setLetterplaceAttributes(R, d, b); R a ring, b,d integers |
---|
100 | RETURN: ring with special attributes set |
---|
101 | PURPOSE: sets attributes for a letterplace ring: |
---|
102 | @* 'isLetterplaceRing' = true, 'uptodeg' = d, 'lV' = b, where |
---|
103 | @* 'uptodeg' stands for the degree bound, |
---|
104 | @* 'lV' for the number of variables in the block 0. |
---|
105 | NOTE: Activate the resulting ring by using @code{setring} |
---|
106 | " |
---|
107 | { |
---|
108 | if (uptodeg*lV != nvars(R)) |
---|
109 | { |
---|
110 | ERROR("uptodeg and lV do not agree on the basering!"); |
---|
111 | } |
---|
112 | |
---|
113 | // Set letterplace-specific attributes for the output ring! |
---|
114 | // a kind of dirty hack, getting the ringlist again |
---|
115 | list RL = ringlist(R); |
---|
116 | attrib(RL, "isLetterplaceRing", lV); |
---|
117 | attrib(RL, "maxExp", 1); |
---|
118 | def @R = ring(RL); |
---|
119 | attrib(@R, "uptodeg", uptodeg); // no longer needed |
---|
120 | attrib(@R, "isLetterplaceRing", lV); |
---|
121 | return (@R); |
---|
122 | } |
---|
123 | example |
---|
124 | { |
---|
125 | "EXAMPLE:"; echo = 2; |
---|
126 | ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp; |
---|
127 | def R = setLetterplaceAttributes(r, 4, 2); setring R; |
---|
128 | lpVarBlockSize(R); |
---|
129 | lieBracket(x(1),y(1),2); |
---|
130 | } |
---|
131 | |
---|
132 | |
---|
133 | static proc lst2str(list L, list #) |
---|
134 | "USAGE: lst2str(L[,n]); L a list of modules, n an optional integer |
---|
135 | RETURN: list (of strings) |
---|
136 | PURPOSE: convert a list (of modules) into polynomials in free algebra |
---|
137 | EXAMPLE: example lst2str; shows examples |
---|
138 | NOTE: if an optional integer is not 0, stars signs are used in multiplication |
---|
139 | " |
---|
140 | { |
---|
141 | // returns a list of strings |
---|
142 | // being sentences in words built from L |
---|
143 | // if #[1] = 1, use * between generators |
---|
144 | int useStar = 0; |
---|
145 | if ( size(#)>0 ) |
---|
146 | { |
---|
147 | if ( typeof(#[1]) != "int") |
---|
148 | { |
---|
149 | ERROR("Second argument of type int expected"); |
---|
150 | } |
---|
151 | if (#[1]) |
---|
152 | { |
---|
153 | useStar = 1; |
---|
154 | } |
---|
155 | } |
---|
156 | int i; |
---|
157 | int s = size(L); |
---|
158 | if (s<1) { return(list(""));} |
---|
159 | list N; |
---|
160 | for(i=1; i<=s; i++) |
---|
161 | { |
---|
162 | if ((typeof(L[i]) == "module") || (typeof(L[i]) == "matrix") ) |
---|
163 | { |
---|
164 | N[i] = mod2str(L[i],useStar); |
---|
165 | } |
---|
166 | else |
---|
167 | { |
---|
168 | "module or matrix expected in the list"; |
---|
169 | return(N); |
---|
170 | } |
---|
171 | } |
---|
172 | return(N); |
---|
173 | } |
---|
174 | example |
---|
175 | { |
---|
176 | "EXAMPLE:"; echo = 2; |
---|
177 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
178 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
179 | module N = [1,x,y,x,y],[-2,y,x,y,x],[6,x,y,y,x,y]; |
---|
180 | list L; L[1] = M; L[2] = N; |
---|
181 | lst2str(L); |
---|
182 | lst2str(L[1],1); |
---|
183 | } |
---|
184 | |
---|
185 | |
---|
186 | static proc mod2str(module M, list #) |
---|
187 | "USAGE: mod2str(M[,n]); M a module, n an optional integer |
---|
188 | RETURN: string |
---|
189 | PURPOSE: convert a module into a polynomial in free algebra |
---|
190 | EXAMPLE: example mod2str; shows examples |
---|
191 | NOTE: if an optional integer is not 0, stars signs are used in multiplication |
---|
192 | " |
---|
193 | { |
---|
194 | if (size(M)==0) { return(""); } |
---|
195 | // returns a string |
---|
196 | // a sentence in words built from M |
---|
197 | // if #[1] = 1, use * between generators |
---|
198 | int useStar = 0; |
---|
199 | if ( size(#)>0 ) |
---|
200 | { |
---|
201 | if ( typeof(#[1]) != "int") |
---|
202 | { |
---|
203 | ERROR("Second argument of type int expected"); |
---|
204 | } |
---|
205 | if (#[1]) |
---|
206 | { |
---|
207 | useStar = 1; |
---|
208 | } |
---|
209 | } |
---|
210 | int i; |
---|
211 | int s = ncols(M); |
---|
212 | string t; |
---|
213 | string mp; |
---|
214 | for(i=1; i<=s; i++) |
---|
215 | { |
---|
216 | mp = vct2str(M[i],useStar); |
---|
217 | if (mp[1] == "-") |
---|
218 | { |
---|
219 | t = t + mp; |
---|
220 | } |
---|
221 | else |
---|
222 | { |
---|
223 | if (mp != "") |
---|
224 | { |
---|
225 | t = t + "+" + mp; |
---|
226 | } |
---|
227 | } |
---|
228 | } |
---|
229 | if (t[1]=="+") |
---|
230 | { |
---|
231 | t = t[2..size(t)]; // remove first "+" |
---|
232 | } |
---|
233 | return(t); |
---|
234 | } |
---|
235 | example |
---|
236 | { |
---|
237 | "EXAMPLE:"; echo = 2; |
---|
238 | ring r = 0,(x,y,z),(dp); |
---|
239 | module M = [1,x,y,x,y],[-2,y,x,y,x],[6,x,y,y,x,y]; |
---|
240 | mod2str(M); |
---|
241 | mod2str(M,1); |
---|
242 | } |
---|
243 | |
---|
244 | static proc vct2str(vector v, list #) |
---|
245 | "USAGE: vct2str(v[,n]); v a vector, n an optional integer |
---|
246 | RETURN: string |
---|
247 | PURPOSE: convert a vector into a word in free algebra |
---|
248 | EXAMPLE: example vct2str; shows examples |
---|
249 | NOTE: if an optional integer is not 0, stars signs are used in multiplication |
---|
250 | " |
---|
251 | { |
---|
252 | if (v==0) { return(""); } |
---|
253 | // if #[1] = 1, use * between generators |
---|
254 | int useStar = 0; |
---|
255 | if ( size(#)>0 ) |
---|
256 | { |
---|
257 | if (#[1]) |
---|
258 | { |
---|
259 | useStar = 1; |
---|
260 | } |
---|
261 | } |
---|
262 | int ppl = printlevel-voice+2; |
---|
263 | // for a word, encoded by v |
---|
264 | // produces a string for it |
---|
265 | v = skip0(v); |
---|
266 | if (v==0) { return(string(""));} |
---|
267 | number cf = leadcoef(v[1]); |
---|
268 | int s = size(v); |
---|
269 | string vs,vv,vp,err; |
---|
270 | int i,j,p,q; |
---|
271 | for (i=1; i<=s-1; i++) |
---|
272 | { |
---|
273 | p = isVar(v[i+1]); |
---|
274 | if (p==0) |
---|
275 | { |
---|
276 | err = "Error: monomial expected at nonzero position " + string(i+1); |
---|
277 | ERROR(err+" in vct2str"); |
---|
278 | // dbprint(ppl,err); |
---|
279 | // return("_"); |
---|
280 | } |
---|
281 | if (p==1) |
---|
282 | { |
---|
283 | if (useStar && (size(vs) >0)) { vs = vs + "*"; } |
---|
284 | vs = vs + string(v[i+1]); |
---|
285 | } |
---|
286 | else //power |
---|
287 | { |
---|
288 | vv = string(v[i+1]); |
---|
289 | q = find(vv,"^"); |
---|
290 | if (q==0) |
---|
291 | { |
---|
292 | q = find(vv,string(p)); |
---|
293 | if (q==0) |
---|
294 | { |
---|
295 | err = "error in find for string "+vv; |
---|
296 | dbprint(ppl,err); |
---|
297 | return("_"); |
---|
298 | } |
---|
299 | } |
---|
300 | // q>0 |
---|
301 | vp = vv[1..q-1]; |
---|
302 | for(j=1;j<=p;j++) |
---|
303 | { |
---|
304 | if (useStar && (size(vs) >0)) { vs = vs + "*"; } |
---|
305 | vs = vs + vp; |
---|
306 | } |
---|
307 | } |
---|
308 | } |
---|
309 | string scf; |
---|
310 | if (cf == -1) |
---|
311 | { |
---|
312 | scf = "-"; |
---|
313 | } |
---|
314 | else |
---|
315 | { |
---|
316 | scf = string(cf); |
---|
317 | if ( (cf == 1) && (size(vs)>0) ) |
---|
318 | { |
---|
319 | scf = ""; |
---|
320 | } |
---|
321 | } |
---|
322 | if (useStar && (size(scf) >0) && (scf!="-") ) { scf = scf + "*"; } |
---|
323 | vs = scf + vs; |
---|
324 | return(vs); |
---|
325 | } |
---|
326 | example |
---|
327 | { |
---|
328 | "EXAMPLE:"; echo = 2; |
---|
329 | ring r = (0,a),(x,y3,z(1)),dp; |
---|
330 | vector v = [-7,x,y3^4,x2,z(1)^3]; |
---|
331 | vct2str(v); |
---|
332 | vct2str(v,1); |
---|
333 | vector w = [-7a^5+6a,x,y3,y3,x,z(1),z(1)]; |
---|
334 | vct2str(w); |
---|
335 | vct2str(w,1); |
---|
336 | } |
---|
337 | |
---|
338 | proc isVar(poly p) |
---|
339 | "USAGE: isVar(p); poly p |
---|
340 | RETURN: int |
---|
341 | PURPOSE: check, whether leading monomial of p is a power of a single variable |
---|
342 | @* from the basering. Returns the exponent or 0 if p is multivariate. |
---|
343 | EXAMPLE: example isVar; shows examples |
---|
344 | " |
---|
345 | { |
---|
346 | // checks whether p is a variable indeed |
---|
347 | // if it's a power of a variable, returns the power |
---|
348 | if (p==0) { return(0); } //"p=0"; |
---|
349 | poly q = leadmonom(p); |
---|
350 | if ( (p-lead(p)) !=0 ) { return(0); } // "p-lm(p)>0"; |
---|
351 | intvec v = leadexp(p); |
---|
352 | int s = size(v); |
---|
353 | int i=1; |
---|
354 | int cnt = 0; |
---|
355 | int pwr = 0; |
---|
356 | for (i=1; i<=s; i++) |
---|
357 | { |
---|
358 | if (v[i] != 0) |
---|
359 | { |
---|
360 | cnt++; |
---|
361 | pwr = v[i]; |
---|
362 | } |
---|
363 | } |
---|
364 | // "cnt:"; cnt; |
---|
365 | if (cnt==1) { return(pwr); } |
---|
366 | else { return(0); } |
---|
367 | } |
---|
368 | example |
---|
369 | { |
---|
370 | "EXAMPLE:"; echo = 2; |
---|
371 | ring r = 0,(x,y),dp; |
---|
372 | poly f = xy+1; |
---|
373 | isVar(f); |
---|
374 | poly g = y^3; |
---|
375 | isVar(g); |
---|
376 | poly h = 7*x^3; |
---|
377 | isVar(h); |
---|
378 | poly i = 1; |
---|
379 | isVar(i); |
---|
380 | } |
---|
381 | |
---|
382 | proc lpLmDivides(ideal I, poly p) |
---|
383 | "USAGE: lpLmDivides(I); I an ideal |
---|
384 | RETURN: boolean |
---|
385 | ASSUME: basering is a Letterplace ring |
---|
386 | PURPOSE: tests if there is a polynomial q in I with LM(q)|LM(p) |
---|
387 | EXAMPLE: example lpLmDivides; shows examples |
---|
388 | " |
---|
389 | { |
---|
390 | ERROR(" freegb.so not loaded"); |
---|
391 | } |
---|
392 | example |
---|
393 | { |
---|
394 | "EXAMPLE:"; echo = 2; |
---|
395 | ring r = 0,(x,y),dp; |
---|
396 | def R = freeAlgebra(r, 5); |
---|
397 | setring R; |
---|
398 | poly p = x*y*y; |
---|
399 | lpLmDivides(y*y, p); |
---|
400 | lpLmDivides(y*x, p); |
---|
401 | lpLmDivides(ideal(y*y, y*x), p); |
---|
402 | } |
---|
403 | |
---|
404 | proc lpVarAt(poly p, int pos) |
---|
405 | "USAGE: lpVarAt(p, pos); p a poly, pos an int |
---|
406 | RETURN: poly |
---|
407 | ASSUME: basering is a Letterplace ring |
---|
408 | PURPOSE: returns the variable (as a poly) at position pos of the poly p |
---|
409 | EXAMPLE: example lpVarAt; shows examples |
---|
410 | " |
---|
411 | { |
---|
412 | ERROR(" freegb.so not loaded"); |
---|
413 | } |
---|
414 | example |
---|
415 | { |
---|
416 | "EXAMPLE:"; echo = 2; |
---|
417 | ring r = 0,(x,y),dp; |
---|
418 | def R = freeAlgebra(r, 5); |
---|
419 | setring R; |
---|
420 | poly p = y*y*x; |
---|
421 | lpVarAt(p, 3); |
---|
422 | } |
---|
423 | |
---|
424 | proc letplaceGBasis(def I) |
---|
425 | "USAGE: letplaceGBasis(I); I an ideal/module |
---|
426 | RETURN: ideal/module |
---|
427 | ASSUME: basering is a Letterplace ring, input consists of Letterplace |
---|
428 | @* polynomials |
---|
429 | PURPOSE: compute the two-sided Groebner basis of I via Letterplace |
---|
430 | @* algorithm (legacy routine) |
---|
431 | NOTE: the degree bound for this computation is read off the letterplace |
---|
432 | @* structure of basering |
---|
433 | EXAMPLE: example letplaceGBasis; shows examples |
---|
434 | " |
---|
435 | { |
---|
436 | return(std(I)); |
---|
437 | } |
---|
438 | example |
---|
439 | { |
---|
440 | "EXAMPLE:"; echo = 2; |
---|
441 | ring r = 0,(x,y,z),Dp; |
---|
442 | int degree_bound = 5; |
---|
443 | def R = freeAlgebra(r, 5); |
---|
444 | setring R; |
---|
445 | ideal I = -x*y-7*y*y+3*x*x, x*y*x-y*x*y; |
---|
446 | ideal J = letplaceGBasis(I); |
---|
447 | J; |
---|
448 | } |
---|
449 | |
---|
450 | /* // temporary name for testing */ |
---|
451 | /* proc lpRightStd(ideal F, ideal Q) */ |
---|
452 | /* { */ |
---|
453 | /* return (system("rightgb", F, Q)); */ |
---|
454 | /* } */ |
---|
455 | |
---|
456 | /* |
---|
457 | //// this was the part of example in the old good Letterplace |
---|
458 | // now transfom letterplace polynomials into strings of words |
---|
459 | lp2lstr(J,r); // export an object called @code{@LN} to the ring r |
---|
460 | setring r; // change to the ring r |
---|
461 | lst2str(@LN,1); |
---|
462 | */ |
---|
463 | |
---|
464 | |
---|
465 | proc lieBracket(poly a, poly b, list #) |
---|
466 | "USAGE: lieBracket(a,b[,N]); a,b letterplace polynomials, N an optional integer |
---|
467 | RETURN: poly |
---|
468 | ASSUME: basering has a letterplace ring structure |
---|
469 | PURPOSE:compute the Lie bracket [a,b] = ab - ba between letterplace polynomials |
---|
470 | NOTE: if N>1 is specified, then the left normed bracket [a,[...[a,b]]]] is |
---|
471 | @* computed. |
---|
472 | EXAMPLE: example lieBracket; shows examples |
---|
473 | " |
---|
474 | { |
---|
475 | if (lpAssumeViolation()) |
---|
476 | { |
---|
477 | // ERROR("Either 'uptodeg' or 'lV' global variables are not set!"); |
---|
478 | ERROR("Incomplete Letterplace structure on the basering!"); |
---|
479 | } |
---|
480 | // alias ppLiebr; |
---|
481 | //if int N is given compute [a,[...[a,b]]]] left normed bracket |
---|
482 | int N=1; |
---|
483 | if (size(#)>0) |
---|
484 | { |
---|
485 | if (typeof(#[1])=="int") |
---|
486 | { |
---|
487 | N = int(#[1]); |
---|
488 | } |
---|
489 | } |
---|
490 | if (N<=0) { return(q); } |
---|
491 | poly q = a*b - b*a; |
---|
492 | if (N >1) |
---|
493 | { |
---|
494 | for(int i=1; i<=N-1; i++) |
---|
495 | { |
---|
496 | q = lieBracket(a,q); |
---|
497 | } |
---|
498 | } |
---|
499 | return(q); |
---|
500 | } |
---|
501 | example |
---|
502 | { |
---|
503 | "EXAMPLE:"; echo = 2; |
---|
504 | ring r = 0,(x,y),dp; |
---|
505 | def R = freeAlgebra(r, 4); // R with letterplace structure |
---|
506 | setring R; |
---|
507 | poly a = x*y; poly b = y; |
---|
508 | lieBracket(a,b); |
---|
509 | lieBracket(x,y,2); |
---|
510 | } |
---|
511 | |
---|
512 | proc lpPrint(ideal I, def @r) |
---|
513 | "USAGE: lpPrint(I, r); I an ideal, r a ring |
---|
514 | RETURN: list of strings |
---|
515 | PURPOSE: represent Letterplace ideal in the form of words (legacy routine) |
---|
516 | ASSUME: - basering is a Letterplace ring, r is the commutative ring |
---|
517 | from which basering has been built |
---|
518 | EXAMPLE: example lpPrint; shows example |
---|
519 | " |
---|
520 | { |
---|
521 | def save = basering; |
---|
522 | lp2lstr(I,@r); // export an object called @code{@LN} to the ring r |
---|
523 | setring @r; // change to the ring r |
---|
524 | list @L = lst2str(@LN,1); |
---|
525 | export @L; |
---|
526 | setring save; |
---|
527 | list @@L = @L; |
---|
528 | setring @r; |
---|
529 | kill @L; |
---|
530 | kill @LN; |
---|
531 | setring save; |
---|
532 | return(@@L); |
---|
533 | } |
---|
534 | example |
---|
535 | { |
---|
536 | "EXAMPLE:"; echo = 2; |
---|
537 | ring r = (0,a,b,g),(x,y),Dp; |
---|
538 | def R = freeAlgebra(r, 4); // constructs a Letterplace ring |
---|
539 | setring R; // downup algebra A |
---|
540 | ideal J = x*x*y-a*x*y*x - b*y*x*x - g*x, |
---|
541 | x*y*y-a*y*x*y - b*y*y*x - g*y; |
---|
542 | list L = lpPrint(J,r); |
---|
543 | L; |
---|
544 | } |
---|
545 | |
---|
546 | /* HISTORICAL STUFF from 2007 |
---|
547 | // given the element -7xy^2x, it is represented as [-7,x,y^2,x] or as [-7,x,y,y,x] |
---|
548 | // use the orig ord on (x,y,z) and expand it blockwise to (x(i),y(i),z(i)) |
---|
549 | |
---|
550 | // the correspondences: |
---|
551 | // monomial in K<x,y,z> <<--->> vector in R |
---|
552 | // polynomial in K<x,y,z> <<--->> list of vectors (matrix/module) in R |
---|
553 | // ideal in K<x,y,z> <<--->> list of matrices/modules in R |
---|
554 | |
---|
555 | |
---|
556 | // 1. form a new ring |
---|
557 | // 2. NOP |
---|
558 | // 3. compute GB -> with the kernel stuff |
---|
559 | // 4. skip shifted elts (check that no such exist?) |
---|
560 | // 5. go back to orig vars, produce strings/modules |
---|
561 | // 6. return the result |
---|
562 | */ |
---|
563 | |
---|
564 | proc freeGBasis(list LM, int d) |
---|
565 | "USAGE: freeGBasis(L, d); L a list of modules, d an integer |
---|
566 | RETURN: ring |
---|
567 | ASSUME: L has a special form. Namely, it is a list of modules, where |
---|
568 | |
---|
569 | - each generator of every module stands for a monomial times coefficient in |
---|
570 | @* free algebra, |
---|
571 | |
---|
572 | - in such a vector generator, the 1st entry is a nonzero coefficient from the |
---|
573 | @* ground field |
---|
574 | |
---|
575 | - and each next entry hosts a variable from the basering. |
---|
576 | PURPOSE: compute the two-sided Groebner basis of an ideal, encoded by L |
---|
577 | @* in the free associative algebra, up to degree d |
---|
578 | NOTE: Apply @code{lst2str} to the output in order to obtain a better readable |
---|
579 | @* presentation |
---|
580 | EXAMPLE: example freeGBasis; shows examples |
---|
581 | " |
---|
582 | { |
---|
583 | // d = up to degree, will be shifted to d+1 |
---|
584 | if (d<1) {"bad d"; return(0);} |
---|
585 | |
---|
586 | int ppl = printlevel-voice+2; |
---|
587 | string err = ""; |
---|
588 | |
---|
589 | int i,j,s; |
---|
590 | def save = basering; |
---|
591 | // determine max no of places in the input |
---|
592 | int slm = size(LM); // numbers of polys in the ideal |
---|
593 | int sm; |
---|
594 | intvec iv; |
---|
595 | module M; |
---|
596 | for (i=1; i<=slm; i++) |
---|
597 | { |
---|
598 | // modules, e.g. free polynomials |
---|
599 | M = LM[i]; |
---|
600 | sm = ncols(M); |
---|
601 | for (j=1; j<=sm; j++) |
---|
602 | { |
---|
603 | //vectors, e.g. free monomials |
---|
604 | iv = iv, size(M[j])-1; // 1 place is reserved by the coeff |
---|
605 | } |
---|
606 | } |
---|
607 | int D = Max(iv); // max size of input words |
---|
608 | if (d<D) {"bad d"; return(LM);} |
---|
609 | D = D + d-1; |
---|
610 | // D = d; |
---|
611 | list LR = ringlist(save); |
---|
612 | list L, tmp; |
---|
613 | L[1] = LR[1]; // ground field |
---|
614 | L[4] = LR[4]; // quotient ideal |
---|
615 | tmp = LR[2]; // varnames |
---|
616 | s = size(LR[2]); |
---|
617 | for (i=1; i<=D; i++) |
---|
618 | { |
---|
619 | for (j=1; j<=s; j++) |
---|
620 | { |
---|
621 | tmp[i*s+j] = tmp[j]; |
---|
622 | } |
---|
623 | } |
---|
624 | L[2] = tmp; |
---|
625 | list OrigNames = LR[2]; |
---|
626 | // ordering: d blocks of the ord on r |
---|
627 | // try to get whether the ord on r is blockord itself |
---|
628 | s = size(LR[3]); |
---|
629 | if (s==2) |
---|
630 | { |
---|
631 | // not a blockord, 1 block + module ord |
---|
632 | tmp = LR[3][s]; // module ord |
---|
633 | for (i=1; i<=D; i++) |
---|
634 | { |
---|
635 | LR[3][s-1+i] = LR[3][1]; |
---|
636 | } |
---|
637 | LR[3][s+D] = tmp; |
---|
638 | } |
---|
639 | if (s>2) |
---|
640 | { |
---|
641 | // there are s-1 blocks |
---|
642 | int nb = s-1; |
---|
643 | tmp = LR[3][s]; // module ord |
---|
644 | for (i=1; i<=D; i++) |
---|
645 | { |
---|
646 | for (j=1; j<=nb; j++) |
---|
647 | { |
---|
648 | LR[3][i*nb+j] = LR[3][j]; |
---|
649 | } |
---|
650 | } |
---|
651 | // size(LR[3]); |
---|
652 | LR[3][nb*(D+1)+1] = tmp; |
---|
653 | } |
---|
654 | L[3] = LR[3]; |
---|
655 | attrib(L,"isLetterplaceRing",s); |
---|
656 | attrib(L, "maxExp", 1); |
---|
657 | def @R = ring(L); |
---|
658 | @R = setLetterplaceAttributes(@R, D+1, nvars(save)); |
---|
659 | setring @R; |
---|
660 | ideal I; |
---|
661 | poly @p; |
---|
662 | s = size(OrigNames); |
---|
663 | // "s:";s; |
---|
664 | // convert LM to canonical vectors (no powers) |
---|
665 | setring save; |
---|
666 | kill M; // M was defined earlier |
---|
667 | module M; |
---|
668 | slm = size(LM); // numbers of polys in the ideal |
---|
669 | int sv,k,l; |
---|
670 | vector v; |
---|
671 | // poly p; |
---|
672 | string sp; |
---|
673 | setring @R; |
---|
674 | poly @@p=0; |
---|
675 | setring save; |
---|
676 | for (l=1; l<=slm; l++) |
---|
677 | { |
---|
678 | // modules, e.g. free polynomials |
---|
679 | M = LM[l]; |
---|
680 | sm = ncols(M); // in intvec iv the sizes are stored |
---|
681 | // modules, e.g. free polynomials |
---|
682 | for (j=1; j<=sm; j++) |
---|
683 | { |
---|
684 | //vectors, e.g. free monomials |
---|
685 | v = M[j]; |
---|
686 | sv = size(v); |
---|
687 | // "sv:";sv; |
---|
688 | sp = "@@p = @@p + "; |
---|
689 | for (k=2; k<=sv; k++) |
---|
690 | { |
---|
691 | sp = sp + string(v[k])+"*"; |
---|
692 | } |
---|
693 | sp = sp + string(v[1])+";"; // coef; |
---|
694 | setring @R; |
---|
695 | execute(sp); |
---|
696 | setring save; |
---|
697 | } |
---|
698 | setring @R; |
---|
699 | // "@@p:"; @@p; |
---|
700 | I = I,@@p; |
---|
701 | @@p = 0; |
---|
702 | setring save; |
---|
703 | } |
---|
704 | kill sp; |
---|
705 | // 3. compute GB |
---|
706 | setring @R; |
---|
707 | dbprint(ppl,"computing GB"); |
---|
708 | ideal J = std(I); |
---|
709 | // ideal J = slimgb(I); |
---|
710 | dbprint(ppl,J); |
---|
711 | // 4. skip shifted elts |
---|
712 | attrib(@R, "isLetterplaceRing", 0); // select1 doesn't want to work with letterplace enabled |
---|
713 | ideal K = select1(J,1..s); // s = size(OrigNames) |
---|
714 | dbprint(ppl,K); |
---|
715 | dbprint(ppl, "done with GB"); |
---|
716 | // K contains vars x(1),...z(1) = images of originals |
---|
717 | // 5. go back to orig vars, produce strings/modules |
---|
718 | if (K[1] == 0) |
---|
719 | { |
---|
720 | "no reasonable output, GB gives 0"; |
---|
721 | return(0); |
---|
722 | } |
---|
723 | int sk = size(K); |
---|
724 | int sp, sx, a, b; |
---|
725 | intvec x; |
---|
726 | poly p,q; |
---|
727 | poly pn; |
---|
728 | // vars in 'save' |
---|
729 | setring save; |
---|
730 | module N; |
---|
731 | list LN; |
---|
732 | vector V; |
---|
733 | poly pn; |
---|
734 | // test and skip exponents >=2 |
---|
735 | setring @R; |
---|
736 | for(i=1; i<=sk; i++) |
---|
737 | { |
---|
738 | p = K[i]; |
---|
739 | while (p!=0) |
---|
740 | { |
---|
741 | q = lead(p); |
---|
742 | // "processing q:";q; |
---|
743 | x = leadexp(q); |
---|
744 | sx = size(x); |
---|
745 | for(k=1; k<=sx; k++) |
---|
746 | { |
---|
747 | if ( x[k] >= 2 ) |
---|
748 | { |
---|
749 | err = "skip: the value x[k] is " + string(x[k]); |
---|
750 | dbprint(ppl,err); |
---|
751 | // return(0); |
---|
752 | K[i] = 0; |
---|
753 | p = 0; |
---|
754 | q = 0; |
---|
755 | break; |
---|
756 | } |
---|
757 | } |
---|
758 | p = p - q; |
---|
759 | } |
---|
760 | } |
---|
761 | K = simplify(K,2); |
---|
762 | sk = size(K); |
---|
763 | for(i=1; i<=sk; i++) |
---|
764 | { |
---|
765 | // setring save; |
---|
766 | // V = 0; |
---|
767 | setring @R; |
---|
768 | p = K[i]; |
---|
769 | while (p!=0) |
---|
770 | { |
---|
771 | q = lead(p); |
---|
772 | err = "processing q:" + string(q); |
---|
773 | dbprint(ppl,err); |
---|
774 | x = leadexp(q); |
---|
775 | sx = size(x); |
---|
776 | pn = leadcoef(q); |
---|
777 | setring save; |
---|
778 | pn = imap(@R,pn); |
---|
779 | V = V + leadcoef(pn)*gen(1); |
---|
780 | for(k=1; k<=sx; k++) |
---|
781 | { |
---|
782 | if (x[k] ==1) |
---|
783 | { |
---|
784 | a = k div s; // block number=a+1, a!=0 |
---|
785 | b = k % s; // remainder |
---|
786 | // printf("a: %s, b: %s",a,b); |
---|
787 | if (b == 0) |
---|
788 | { |
---|
789 | // that is it's the last var in the block |
---|
790 | b = s; |
---|
791 | a = a-1; |
---|
792 | } |
---|
793 | V = V + var(b)*gen(a+2); |
---|
794 | } |
---|
795 | // else |
---|
796 | // { |
---|
797 | // printf("error: the value x[k] is %s", x[k]); |
---|
798 | // return(0); |
---|
799 | // } |
---|
800 | } |
---|
801 | err = "V: " + string(V); |
---|
802 | dbprint(ppl,err); |
---|
803 | // printf("V: %s", string(V)); |
---|
804 | N = N,V; |
---|
805 | V = 0; |
---|
806 | setring @R; |
---|
807 | p = p - q; |
---|
808 | pn = 0; |
---|
809 | } |
---|
810 | setring save; |
---|
811 | LN[i] = simplify(N,2); |
---|
812 | N = 0; |
---|
813 | } |
---|
814 | setring save; |
---|
815 | return(LN); |
---|
816 | } |
---|
817 | example |
---|
818 | { |
---|
819 | "EXAMPLE:"; echo = 2; |
---|
820 | ring r = 0,(x,y,z),(dp(1),dp(2)); // ring r = 0,(x,y,z),(a(3,0,2), dp(2)); |
---|
821 | module M = [-1,x,y],[-7,y,y],[3,x,x]; // stands for free poly -xy - 7yy - 3xx |
---|
822 | module N = [1,x,y,x],[-1,y,x,y]; // stands for free poly xyx - yxy |
---|
823 | list L; L[1] = M; L[2] = N; // list of modules stands for an ideal in free algebra |
---|
824 | lst2str(L); // list to string conversion of input polynomials |
---|
825 | def U = freeGBasis(L,5); // 5 is the degree bound |
---|
826 | lst2str(U); |
---|
827 | } |
---|
828 | |
---|
829 | static proc crs(list LM, int d) |
---|
830 | "USAGE: crs(L, d); L a list of modules, d an integer |
---|
831 | RETURN: ring |
---|
832 | PURPOSE: create a ring and shift the ideal |
---|
833 | EXAMPLE: example crs; shows examples |
---|
834 | " |
---|
835 | { |
---|
836 | // d = up to degree, will be shifted to d+1 |
---|
837 | if (d<1) {"bad d"; return(0);} |
---|
838 | |
---|
839 | int ppl = printlevel-voice+2; |
---|
840 | string err = ""; |
---|
841 | |
---|
842 | int i,j,s; |
---|
843 | def save = basering; |
---|
844 | // determine max no of places in the input |
---|
845 | int slm = size(LM); // numbers of polys in the ideal |
---|
846 | int sm; |
---|
847 | intvec iv; |
---|
848 | module M; |
---|
849 | for (i=1; i<=slm; i++) |
---|
850 | { |
---|
851 | // modules, e.g. free polynomials |
---|
852 | M = LM[i]; |
---|
853 | sm = ncols(M); |
---|
854 | for (j=1; j<=sm; j++) |
---|
855 | { |
---|
856 | //vectors, e.g. free monomials |
---|
857 | iv = iv, size(M[j])-1; // 1 place is reserved by the coeff |
---|
858 | } |
---|
859 | } |
---|
860 | int D = Max(iv); // max size of input words |
---|
861 | if (d<D) {"bad d"; return(LM);} |
---|
862 | D = D + d-1; |
---|
863 | // D = d; |
---|
864 | list LR = ringlist(save); |
---|
865 | list L, tmp; |
---|
866 | L[1] = LR[1]; // ground field |
---|
867 | L[4] = LR[4]; // quotient ideal |
---|
868 | tmp = LR[2]; // varnames |
---|
869 | s = size(LR[2]); |
---|
870 | for (i=1; i<=D; i++) |
---|
871 | { |
---|
872 | for (j=1; j<=s; j++) |
---|
873 | { |
---|
874 | tmp[i*s+j] = string(tmp[j])+"("+string(i)+")"; |
---|
875 | } |
---|
876 | } |
---|
877 | for (i=1; i<=s; i++) |
---|
878 | { |
---|
879 | tmp[i] = string(tmp[i])+"("+string(0)+")"; |
---|
880 | } |
---|
881 | L[2] = tmp; |
---|
882 | list OrigNames = LR[2]; |
---|
883 | // ordering: d blocks of the ord on r |
---|
884 | // try to get whether the ord on r is blockord itself |
---|
885 | s = size(LR[3]); |
---|
886 | if (s==2) |
---|
887 | { |
---|
888 | // not a blockord, 1 block + module ord |
---|
889 | tmp = LR[3][s]; // module ord |
---|
890 | for (i=1; i<=D; i++) |
---|
891 | { |
---|
892 | LR[3][s-1+i] = LR[3][1]; |
---|
893 | } |
---|
894 | LR[3][s+D] = tmp; |
---|
895 | } |
---|
896 | if (s>2) |
---|
897 | { |
---|
898 | // there are s-1 blocks |
---|
899 | int nb = s-1; |
---|
900 | tmp = LR[3][s]; // module ord |
---|
901 | for (i=1; i<=D; i++) |
---|
902 | { |
---|
903 | for (j=1; j<=nb; j++) |
---|
904 | { |
---|
905 | LR[3][i*nb+j] = LR[3][j]; |
---|
906 | } |
---|
907 | } |
---|
908 | // size(LR[3]); |
---|
909 | LR[3][nb*(D+1)+1] = tmp; |
---|
910 | } |
---|
911 | L[3] = LR[3]; |
---|
912 | def @R = ring(L); |
---|
913 | setring @R; |
---|
914 | ideal I; |
---|
915 | poly @p; |
---|
916 | s = size(OrigNames); |
---|
917 | // "s:";s; |
---|
918 | // convert LM to canonical vectors (no powers) |
---|
919 | setring save; |
---|
920 | kill M; // M was defined earlier |
---|
921 | module M; |
---|
922 | slm = size(LM); // numbers of polys in the ideal |
---|
923 | int sv,k,l; |
---|
924 | vector v; |
---|
925 | // poly p; |
---|
926 | string sp; |
---|
927 | setring @R; |
---|
928 | poly @@p=0; |
---|
929 | setring save; |
---|
930 | for (l=1; l<=slm; l++) |
---|
931 | { |
---|
932 | // modules, e.g. free polynomials |
---|
933 | M = LM[l]; |
---|
934 | sm = ncols(M); // in intvec iv the sizes are stored |
---|
935 | for (i=0; i<=d-iv[l]; i++) |
---|
936 | { |
---|
937 | // modules, e.g. free polynomials |
---|
938 | for (j=1; j<=sm; j++) |
---|
939 | { |
---|
940 | //vectors, e.g. free monomials |
---|
941 | v = M[j]; |
---|
942 | sv = size(v); |
---|
943 | // "sv:";sv; |
---|
944 | sp = "@@p = @@p + "; |
---|
945 | for (k=2; k<=sv; k++) |
---|
946 | { |
---|
947 | sp = sp + string(v[k])+"("+string(k-2+i)+")*"; |
---|
948 | } |
---|
949 | sp = sp + string(v[1])+";"; // coef; |
---|
950 | setring @R; |
---|
951 | execute(sp); |
---|
952 | setring save; |
---|
953 | } |
---|
954 | setring @R; |
---|
955 | // "@@p:"; @@p; |
---|
956 | I = I,@@p; |
---|
957 | @@p = 0; |
---|
958 | setring save; |
---|
959 | } |
---|
960 | } |
---|
961 | setring @R; |
---|
962 | export I; |
---|
963 | return(@R); |
---|
964 | } |
---|
965 | example |
---|
966 | { |
---|
967 | "EXAMPLE:"; echo = 2; |
---|
968 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
969 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
970 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
971 | list L; L[1] = M; L[2] = N; |
---|
972 | lst2str(L); |
---|
973 | def U = crs(L,5); |
---|
974 | setring U; U; |
---|
975 | I; |
---|
976 | } |
---|
977 | |
---|
978 | static proc polylen(ideal I) |
---|
979 | { |
---|
980 | // returns the ideal of length of polys |
---|
981 | int i; |
---|
982 | intvec J; |
---|
983 | number s = 0; |
---|
984 | for(i=1;i<=ncols(I);i++) |
---|
985 | { |
---|
986 | J[i] = size(I[i]); |
---|
987 | s = s + J[i]; |
---|
988 | } |
---|
989 | printf("the sum of length %s",s); |
---|
990 | // print(s); |
---|
991 | return(J); |
---|
992 | } |
---|
993 | |
---|
994 | proc lpDegBound(def R) |
---|
995 | "USAGE: lpDegBound(R); R a letterplace ring |
---|
996 | RETURN: int |
---|
997 | PURPOSE: returns the degree bound of the letterplace ring |
---|
998 | EXAMPLE: example lpDegBound; shows examples |
---|
999 | " |
---|
1000 | { |
---|
1001 | int lV = attrib(R, "isLetterplaceRing"); |
---|
1002 | if (lV < 1) { |
---|
1003 | ERROR("not a letterplace ring"); |
---|
1004 | } |
---|
1005 | return (nvars(R) div lV); |
---|
1006 | } |
---|
1007 | example |
---|
1008 | { |
---|
1009 | "EXAMPLE:"; echo = 2; |
---|
1010 | ring r = 0,(x,y,z),dp; |
---|
1011 | def R = freeAlgebra(r, 7); |
---|
1012 | lpDegBound(R); |
---|
1013 | } |
---|
1014 | |
---|
1015 | proc lpVarBlockSize(def R) |
---|
1016 | "USAGE: lpVarBlockSize(R); R a letterplace ring |
---|
1017 | RETURN: int |
---|
1018 | PURPOSE: returns the variable block size of the letterplace ring, that is the number of variables of the original ring. |
---|
1019 | EXAMPLE: example lpVarBlockSize; shows examples |
---|
1020 | " |
---|
1021 | { |
---|
1022 | int lV = attrib(R, "isLetterplaceRing"); |
---|
1023 | if (lV < 1) { |
---|
1024 | ERROR("not a letterplace ring"); |
---|
1025 | } |
---|
1026 | return (lV); |
---|
1027 | } |
---|
1028 | example |
---|
1029 | { |
---|
1030 | "EXAMPLE:"; echo = 2; |
---|
1031 | ring r = 0,(x,y,z),dp; |
---|
1032 | def R = freeAlgebra(r, 7); |
---|
1033 | lpVarBlockSize(R); |
---|
1034 | } |
---|
1035 | |
---|
1036 | proc isFreeAlgebra(def r) |
---|
1037 | "USAGE: isFreeAlgebra(r); r a ring |
---|
1038 | RETURN: boolean |
---|
1039 | PURPOSE: check whether R is a letterplace ring (free algebra) |
---|
1040 | EXAMPLE: example isFreeAlgebra; shows examples |
---|
1041 | " |
---|
1042 | { |
---|
1043 | int lV = attrib(r, "isLetterplaceRing"); |
---|
1044 | if (lV < 1) { |
---|
1045 | return (0); |
---|
1046 | } |
---|
1047 | return (1); |
---|
1048 | } |
---|
1049 | example |
---|
1050 | { |
---|
1051 | "EXAMPLE:"; echo = 2; |
---|
1052 | ring r = 0,(x,y,z),dp; |
---|
1053 | isFreeAlgebra(r); |
---|
1054 | def R = freeAlgebra(r, 7); |
---|
1055 | isFreeAlgebra(R); |
---|
1056 | } |
---|
1057 | |
---|
1058 | proc freeAlgebra(def r, int d) |
---|
1059 | "USAGE: freeAlgebra(r, d); r a ring, d an integer |
---|
1060 | RETURN: ring |
---|
1061 | PURPOSE: creates a letterplace ring with the ordering of r |
---|
1062 | EXAMPLE: example freeAlgebra; shows examples |
---|
1063 | " |
---|
1064 | { |
---|
1065 | ERROR(" freegb.so not loaded"); |
---|
1066 | } |
---|
1067 | example |
---|
1068 | { |
---|
1069 | "EXAMPLE:"; echo = 2; |
---|
1070 | ring r = 0,(x,y,z),dp; |
---|
1071 | def R = freeAlgebra(r, 7); |
---|
1072 | R; |
---|
1073 | ring r2 = 0,(x,y,z),lp; |
---|
1074 | def R2 = freeAlgebra(r2, 7); |
---|
1075 | R2; |
---|
1076 | } |
---|
1077 | |
---|
1078 | // united all previous makes, including mLR1 (homog) and mLR2 (nonhomog) |
---|
1079 | proc makeLetterplaceRing(int d, list #) |
---|
1080 | "USAGE: makeLetterplaceRing(d [,h]); d an integer, h an optional integer (deprecated, use freeAlgebra instead) |
---|
1081 | RETURN: ring |
---|
1082 | PURPOSE: creates a ring with the ordering, used in letterplace computations |
---|
1083 | NOTE: h = -1 (default) : the ordering of the current ring will be used |
---|
1084 | h = 0 : Dp ordering will be used |
---|
1085 | h = 2 : weights 1 used for all the variables, a tie breaker is a list of block of original ring |
---|
1086 | h = 1 : the pure homogeneous letterplace block ordering (applicable in the situation of homogeneous input ideals) will be used. |
---|
1087 | EXAMPLE: example makeLetterplaceRing; shows examples |
---|
1088 | " |
---|
1089 | { |
---|
1090 | int alternativeVersion = -1; |
---|
1091 | if ( size(#)>0 ) |
---|
1092 | { |
---|
1093 | if (typeof(#[1]) == "int") |
---|
1094 | { |
---|
1095 | alternativeVersion = #[1]; |
---|
1096 | } |
---|
1097 | } |
---|
1098 | if (alternativeVersion == 1) |
---|
1099 | { |
---|
1100 | def @A = makeLetterplaceRing1(d); |
---|
1101 | } |
---|
1102 | else { |
---|
1103 | if (alternativeVersion == 2) |
---|
1104 | { |
---|
1105 | def @A = makeLetterplaceRing2(d); |
---|
1106 | } |
---|
1107 | else { |
---|
1108 | if (alternativeVersion == 0) |
---|
1109 | { |
---|
1110 | def @A = makeLetterplaceRing4(d); |
---|
1111 | } |
---|
1112 | else { |
---|
1113 | def @A = freeAlgebra(basering, d); |
---|
1114 | } |
---|
1115 | } |
---|
1116 | } |
---|
1117 | return(@A); |
---|
1118 | } |
---|
1119 | example |
---|
1120 | { |
---|
1121 | "EXAMPLE:"; echo = 2; |
---|
1122 | ring r = 0,(x,y,z),Dp; |
---|
1123 | def A = makeLetterplaceRing(2); // same as makeLetterplaceRing(2,0) |
---|
1124 | setring A; A; |
---|
1125 | lpVarBlockSize(A); |
---|
1126 | lpDegBound(A); // degree bound |
---|
1127 | setring r; def B = makeLetterplaceRing(2,1); // to compare: |
---|
1128 | setring B; B; |
---|
1129 | lpVarBlockSize(B); |
---|
1130 | lpDegBound(B); // degree bound |
---|
1131 | setring r; def C = makeLetterplaceRing(2,2); // to compare: |
---|
1132 | setring C; C; |
---|
1133 | lpDegBound(C); |
---|
1134 | lpDegBound(C); // degree bound |
---|
1135 | } |
---|
1136 | |
---|
1137 | static proc makeLetterplaceRing1(int d) |
---|
1138 | "USAGE: makeLetterplaceRing1(d); d an integer |
---|
1139 | RETURN: ring |
---|
1140 | PURPOSE: creates a ring with a special ordering, suitable for |
---|
1141 | @* the use of homogeneous letterplace (d blocks of shifted original variables) |
---|
1142 | EXAMPLE: example makeLetterplaceRing1; shows examples |
---|
1143 | " |
---|
1144 | { |
---|
1145 | // d = up to degree, will be shifted to d+1 |
---|
1146 | if (d<1) {"bad d"; return(0);} |
---|
1147 | |
---|
1148 | int uptodeg = d; int lV = nvars(basering); |
---|
1149 | |
---|
1150 | int ppl = printlevel-voice+2; |
---|
1151 | string err = ""; |
---|
1152 | |
---|
1153 | int i,j,s; |
---|
1154 | def save = basering; |
---|
1155 | int D = d-1; |
---|
1156 | list LR = ringlist(save); |
---|
1157 | list L, tmp; |
---|
1158 | L[1] = LR[1]; // ground field |
---|
1159 | L[4] = LR[4]; // quotient ideal |
---|
1160 | tmp = LR[2]; // varnames |
---|
1161 | s = size(LR[2]); |
---|
1162 | for (i=1; i<=D; i++) |
---|
1163 | { |
---|
1164 | for (j=1; j<=s; j++) |
---|
1165 | { |
---|
1166 | tmp[i*s+j] = tmp[j]; |
---|
1167 | } |
---|
1168 | } |
---|
1169 | L[2] = tmp; |
---|
1170 | list OrigNames = LR[2]; |
---|
1171 | // ordering: d blocks of the ord on r |
---|
1172 | // try to get whether the ord on r is blockord itself |
---|
1173 | // TODO: make L(2) ordering! exponent is maximally 2 |
---|
1174 | s = size(LR[3]); |
---|
1175 | if (s==2) |
---|
1176 | { |
---|
1177 | // not a blockord, 1 block + module ord |
---|
1178 | tmp = LR[3][s]; // module ord |
---|
1179 | for (i=1; i<=D; i++) |
---|
1180 | { |
---|
1181 | LR[3][s-1+i] = LR[3][1]; |
---|
1182 | } |
---|
1183 | LR[3][s+D] = tmp; |
---|
1184 | } |
---|
1185 | if (s>2) |
---|
1186 | { |
---|
1187 | // there are s-1 blocks |
---|
1188 | int nb = s-1; |
---|
1189 | tmp = LR[3][s]; // module ord |
---|
1190 | for (i=1; i<=D; i++) |
---|
1191 | { |
---|
1192 | for (j=1; j<=nb; j++) |
---|
1193 | { |
---|
1194 | LR[3][i*nb+j] = LR[3][j]; |
---|
1195 | } |
---|
1196 | } |
---|
1197 | // size(LR[3]); |
---|
1198 | LR[3][nb*(D+1)+1] = tmp; |
---|
1199 | } |
---|
1200 | L[3] = LR[3]; |
---|
1201 | attrib(L,"maxExp",1); |
---|
1202 | attrib(L,"isLetterplaceRing",lV); |
---|
1203 | def @R = ring(L); |
---|
1204 | // setring @R; |
---|
1205 | // int uptodeg = d; int lV = nvars(basering); // were defined before |
---|
1206 | def @@R = setLetterplaceAttributes(@R,uptodeg,lV); |
---|
1207 | return (@@R); |
---|
1208 | } |
---|
1209 | example |
---|
1210 | { |
---|
1211 | "EXAMPLE:"; echo = 2; |
---|
1212 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
1213 | def A = makeLetterplaceRing1(2); |
---|
1214 | setring A; |
---|
1215 | A; |
---|
1216 | lpVarBlockSize(A);// number of variables in the main block |
---|
1217 | lpDegBound(A); // degree bound |
---|
1218 | } |
---|
1219 | |
---|
1220 | static proc makeLetterplaceRing2(int d) |
---|
1221 | "USAGE: makeLetterplaceRing2(d); d an integer |
---|
1222 | RETURN: ring |
---|
1223 | PURPOSE: creates a ring with a special ordering, suitable for |
---|
1224 | @* the use of non-homogeneous letterplace |
---|
1225 | NOTE: the matrix for the ordering looks as follows: first row is 1,1,...,1 |
---|
1226 | @* then there come 'd' blocks of shifted original variables |
---|
1227 | EXAMPLE: example makeLetterplaceRing2; shows examples |
---|
1228 | " |
---|
1229 | { |
---|
1230 | |
---|
1231 | // ToDo future: inherit positive weights in the orig ring |
---|
1232 | // complain on nonpositive ones |
---|
1233 | |
---|
1234 | // d = up to degree, will be shifted to d+1 |
---|
1235 | if (d<1) {"bad d"; return(0);} |
---|
1236 | |
---|
1237 | int uptodeg = d; int lV = nvars(basering); |
---|
1238 | |
---|
1239 | int ppl = printlevel-voice+2; |
---|
1240 | string err = ""; |
---|
1241 | |
---|
1242 | int i,j,s; |
---|
1243 | def save = basering; |
---|
1244 | int D = d-1; |
---|
1245 | list LR = ringlist(save); |
---|
1246 | list L, tmp, tmp2, tmp3; |
---|
1247 | L[1] = LR[1]; // ground field |
---|
1248 | L[4] = LR[4]; // quotient ideal |
---|
1249 | tmp = LR[2]; // varnames |
---|
1250 | s = size(LR[2]); |
---|
1251 | for (i=1; i<=D; i++) |
---|
1252 | { |
---|
1253 | for (j=1; j<=s; j++) |
---|
1254 | { |
---|
1255 | tmp[i*s+j] =tmp[j]; |
---|
1256 | } |
---|
1257 | } |
---|
1258 | L[2] = tmp; |
---|
1259 | list OrigNames = LR[2]; |
---|
1260 | // ordering: one 1..1 a above |
---|
1261 | // ordering: d blocks of the ord on r |
---|
1262 | // try to get whether the ord on r is blockord itself |
---|
1263 | // TODO: make L(2) ordering! exponent is maximally 2 |
---|
1264 | s = size(LR[3]); |
---|
1265 | if (s==2) |
---|
1266 | { |
---|
1267 | // not a blockord, 1 block + module ord |
---|
1268 | tmp = LR[3][s]; // module ord |
---|
1269 | for (i=1; i<=d; i++) |
---|
1270 | { |
---|
1271 | LR[3][s-1+i] = LR[3][1]; |
---|
1272 | } |
---|
1273 | // LR[3][s+D] = tmp; |
---|
1274 | LR[3][s+1+D] = tmp; |
---|
1275 | LR[3][1] = list("a",intvec(1: int(d*lV))); // deg-ord |
---|
1276 | } |
---|
1277 | if (s>2) |
---|
1278 | { |
---|
1279 | // there are s-1 blocks |
---|
1280 | int nb = s-1; |
---|
1281 | tmp = LR[3][s]; // module ord to place at the very end |
---|
1282 | tmp2 = LR[3]; tmp2 = tmp2[1..nb]; |
---|
1283 | tmp3[1] = list("a",intvec(1: int(d*lV))); // deg-ord, insert as the 1st |
---|
1284 | for (i=1; i<=d; i++) |
---|
1285 | { |
---|
1286 | tmp3 = tmp3 + tmp2; |
---|
1287 | } |
---|
1288 | tmp3 = tmp3 + list(tmp); |
---|
1289 | LR[3] = tmp3; |
---|
1290 | // for (i=1; i<=d; i++) |
---|
1291 | // { |
---|
1292 | // for (j=1; j<=nb; j++) |
---|
1293 | // { |
---|
1294 | // // LR[3][i*nb+j+1]= LR[3][j]; |
---|
1295 | // LR[3][i*nb+j+1]= tmp2[j]; |
---|
1296 | // } |
---|
1297 | // } |
---|
1298 | // // size(LR[3]); |
---|
1299 | // LR[3][(s-1)*d+2] = tmp; |
---|
1300 | // LR[3] = list("a",intvec(1: int(d*lV))) + LR[3]; // deg-ord, insert as the 1st |
---|
1301 | // remove everything behind nb*(D+1)+1 ? |
---|
1302 | // tmp = LR[3]; |
---|
1303 | // LR[3] = tmp[1..size(tmp)-1]; |
---|
1304 | } |
---|
1305 | L[3] = LR[3]; |
---|
1306 | attrib(L,"maxExp",1); |
---|
1307 | attrib(L,"isLetterplaceRing",lV); |
---|
1308 | def @R = ring(L); |
---|
1309 | // setring @R; |
---|
1310 | // int uptodeg = d; int lV = nvars(basering); // were defined before |
---|
1311 | def @@R = setLetterplaceAttributes(@R,uptodeg,lV); |
---|
1312 | return (@@R); |
---|
1313 | } |
---|
1314 | example |
---|
1315 | { |
---|
1316 | "EXAMPLE:"; echo = 2; |
---|
1317 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
1318 | def A = makeLetterplaceRing2(2); |
---|
1319 | setring A; |
---|
1320 | A; |
---|
1321 | lpVarBlockSize(A); // number of variables in the main block |
---|
1322 | lpDegBound(A); // degree bound |
---|
1323 | } |
---|
1324 | |
---|
1325 | static proc makeLetterplaceRing4(int d) |
---|
1326 | "USAGE: makeLetterplaceRing4(d); d an integer |
---|
1327 | RETURN: ring |
---|
1328 | PURPOSE: creates a Letterplace ring with a Dp ordering, suitable for |
---|
1329 | @* the use of non-homogeneous letterplace |
---|
1330 | NOTE: the matrix for the ordering looks as follows: first row is 1,1,...,1 |
---|
1331 | EXAMPLE: example makeLetterplaceRing4; shows examples |
---|
1332 | " |
---|
1333 | { |
---|
1334 | |
---|
1335 | // ToDo future: inherit positive weights in the orig ring |
---|
1336 | // complain on nonpositive ones |
---|
1337 | |
---|
1338 | // d = up to degree, will be shifted to d+1 |
---|
1339 | if (d<1) {"bad d"; return(0);} |
---|
1340 | |
---|
1341 | int uptodeg = d; int lV = nvars(basering); |
---|
1342 | |
---|
1343 | int ppl = printlevel-voice+2; |
---|
1344 | string err = ""; |
---|
1345 | |
---|
1346 | int i,j,s; |
---|
1347 | def save = basering; |
---|
1348 | int D = d-1; |
---|
1349 | list LR = ringlist(save); |
---|
1350 | list L, tmp, tmp2, tmp3; |
---|
1351 | L[1] = LR[1]; // ground field |
---|
1352 | L[4] = LR[4]; // quotient ideal |
---|
1353 | tmp = LR[2]; // varnames |
---|
1354 | s = size(LR[2]); |
---|
1355 | for (i=1; i<=D; i++) |
---|
1356 | { |
---|
1357 | for (j=1; j<=s; j++) |
---|
1358 | { |
---|
1359 | tmp[i*s+j] =tmp[j]; |
---|
1360 | } |
---|
1361 | } |
---|
1362 | L[2] = tmp; |
---|
1363 | list OrigNames = LR[2]; |
---|
1364 | |
---|
1365 | s = size(LR[3]); |
---|
1366 | list ordering; |
---|
1367 | ordering[1] = list("Dp",intvec(1: int(d*lV))); |
---|
1368 | ordering[2] = LR[3][s]; // module ord to place at the very end |
---|
1369 | LR[3] = ordering; |
---|
1370 | |
---|
1371 | L[3] = LR[3]; |
---|
1372 | attrib(L,"maxExp",1); |
---|
1373 | attrib(L,"isLetterplaceRing",lV); |
---|
1374 | def @R = ring(L); |
---|
1375 | def @@R = setLetterplaceAttributes(@R,uptodeg,lV); |
---|
1376 | return (@@R); |
---|
1377 | } |
---|
1378 | example |
---|
1379 | { |
---|
1380 | "EXAMPLE:"; echo = 2; |
---|
1381 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
1382 | def A = makeLetterplaceRing4(2); |
---|
1383 | setring A; |
---|
1384 | A; |
---|
1385 | lpVarBlockSize(A); // number of variables in the main block |
---|
1386 | lpDegBound(A); // degree bound |
---|
1387 | } |
---|
1388 | |
---|
1389 | // P[s;sigma] approach |
---|
1390 | static proc makeLetterplaceRing3(int d) |
---|
1391 | "USAGE: makeLetterplaceRing3(d); d an integer |
---|
1392 | RETURN: ring |
---|
1393 | PURPOSE: creates a ring with a special ordering, representing |
---|
1394 | @* the original P[s,sigma] (adds d blocks of shifted s) |
---|
1395 | ASSUME: basering is a letterplace ring |
---|
1396 | NOTE: experimental status |
---|
1397 | EXAMPLE: example makeLetterplaceRing3; shows examples |
---|
1398 | " |
---|
1399 | { |
---|
1400 | // d = up to degree, will be shifted to d+1 |
---|
1401 | if (d<1) {"bad d"; return(0);} |
---|
1402 | |
---|
1403 | int uptodeg = d; int lV = nvars(basering); |
---|
1404 | |
---|
1405 | int ppl = printlevel-voice+2; |
---|
1406 | string err = ""; |
---|
1407 | |
---|
1408 | int i,j,s; |
---|
1409 | def save = basering; |
---|
1410 | int D = d-1; |
---|
1411 | list LR = ringlist(save); |
---|
1412 | list L, tmp; |
---|
1413 | L[1] = LR[1]; // ground field |
---|
1414 | L[4] = LR[4]; // quotient ideal |
---|
1415 | tmp = LR[2]; // varnames |
---|
1416 | tmp[size(tmp)+1] = "s"; |
---|
1417 | // add s's |
---|
1418 | // string newSname = "@s"; |
---|
1419 | s = size(LR[2]); |
---|
1420 | for (i=1; i<=D; i++) |
---|
1421 | { |
---|
1422 | for (j=1; j<=s; j++) |
---|
1423 | { |
---|
1424 | tmp[i*s+j] = tmp[j]; |
---|
1425 | } |
---|
1426 | } |
---|
1427 | // the final index is D*s+s = (D+1)*s = degBound*s |
---|
1428 | L[2] = tmp; |
---|
1429 | list OrigNames = LR[2]; |
---|
1430 | // ordering: d blocks of the MODIFIED ord on r |
---|
1431 | // try to get whether the ord on r is blockord itself |
---|
1432 | // TODO: make L(2) ordering! exponent is maximally 2 |
---|
1433 | s = size(LR[3]); |
---|
1434 | |
---|
1435 | // assume: basering was a letterplace, so get its block |
---|
1436 | tmp = LR[3][1]; // ASSUME: it's a nice block |
---|
1437 | // modify it |
---|
1438 | // add (0,..,0,1) ... as antiblock part |
---|
1439 | intvec iv; list ttmp, tmp1; |
---|
1440 | for (i=1; i<=d; i++) |
---|
1441 | { |
---|
1442 | // the position to hold 1: |
---|
1443 | iv = intvec( gen( i*(lV+1)-1 ) ); |
---|
1444 | ttmp[1] = "a"; |
---|
1445 | ttmp[2] = iv; |
---|
1446 | tmp1[i] = ttmp; |
---|
1447 | } |
---|
1448 | // finished: antiblock part //TOCONTINUE |
---|
1449 | |
---|
1450 | if (s==2) |
---|
1451 | { |
---|
1452 | // not a blockord, 1 block + module ord |
---|
1453 | tmp = LR[3][s]; // module ord |
---|
1454 | for (i=1; i<=D; i++) |
---|
1455 | { |
---|
1456 | LR[3][s-1+i] = LR[3][1]; |
---|
1457 | } |
---|
1458 | LR[3][s+D] = tmp; |
---|
1459 | } |
---|
1460 | if (s>2) |
---|
1461 | { |
---|
1462 | // there are s-1 blocks |
---|
1463 | int nb = s-1; |
---|
1464 | tmp = LR[3][s]; // module ord |
---|
1465 | for (i=1; i<=D; i++) |
---|
1466 | { |
---|
1467 | for (j=1; j<=nb; j++) |
---|
1468 | { |
---|
1469 | LR[3][i*nb+j] = LR[3][j]; |
---|
1470 | } |
---|
1471 | } |
---|
1472 | // size(LR[3]); |
---|
1473 | LR[3][nb*(D+1)+1] = tmp; |
---|
1474 | } |
---|
1475 | L[3] = LR[3]; |
---|
1476 | attrib(L,"maxExp",1); |
---|
1477 | attrib(L,"isLetterplaceRing",lV); |
---|
1478 | def @R = ring(L); |
---|
1479 | // setring @R; |
---|
1480 | // int uptodeg = d; int lV = nvars(basering); // were defined before |
---|
1481 | def @@R = setLetterplaceAttributes(@R,uptodeg,lV); |
---|
1482 | return (@@R); |
---|
1483 | } |
---|
1484 | example |
---|
1485 | { |
---|
1486 | "EXAMPLE:"; echo = 2; |
---|
1487 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
1488 | def A = makeLetterplaceRing3(2); |
---|
1489 | setring A; |
---|
1490 | A; |
---|
1491 | lpVarBlockSize(A); // number of variables in the main block |
---|
1492 | lpDegBound(A); // degree bound |
---|
1493 | } |
---|
1494 | |
---|
1495 | /* EXAMPLES: |
---|
1496 | |
---|
1497 | //static proc ex_shift() |
---|
1498 | { |
---|
1499 | LIB "freegb.lib"; |
---|
1500 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
1501 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
1502 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
1503 | list L; L[1] = M; L[2] = N; |
---|
1504 | lst2str(L); |
---|
1505 | def U = crs(L,5); |
---|
1506 | setring U; U; |
---|
1507 | I; |
---|
1508 | poly p = I[2]; // I[8]; |
---|
1509 | p; |
---|
1510 | stest(p,7,7,3); // error -> the world is ok |
---|
1511 | poly q1 = stest(p,1,7,3); //ok |
---|
1512 | poly q6 = stest(p,6,7,3); //ok |
---|
1513 | btest(p,3); //ok |
---|
1514 | btest(q1,3); //ok |
---|
1515 | btest(q6,3); //ok |
---|
1516 | } |
---|
1517 | |
---|
1518 | //static proc test_shrink() |
---|
1519 | { |
---|
1520 | LIB "freegb.lib"; |
---|
1521 | ring r =0,(x,y,z),dp; |
---|
1522 | int d = 5; |
---|
1523 | def R = freeAlgebra(r, d); |
---|
1524 | setring R; |
---|
1525 | poly p1 = x(1)*y(2)*z(3); |
---|
1526 | poly p2 = x(1)*y(4)*z(5); |
---|
1527 | poly p3 = x(1)*y(1)*z(3); |
---|
1528 | poly p4 = x(1)*y(2)*z(2); |
---|
1529 | poly p5 = x(3)*z(5); |
---|
1530 | poly p6 = x(1)*y(1)*x(3)*z(5); |
---|
1531 | poly p7 = x(1)*y(2)*x(3)*y(4)*z(5); |
---|
1532 | poly p8 = p1+p2+p3+p4+p5 + p6 + p7; |
---|
1533 | p1; system("shrinktest",p1,3); |
---|
1534 | p2; system("shrinktest",p2,3); |
---|
1535 | p3; system("shrinktest",p3,3); |
---|
1536 | p4; system("shrinktest",p4,3); |
---|
1537 | p5; system("shrinktest",p5,3); |
---|
1538 | p6; system("shrinktest",p6,3); |
---|
1539 | p7; system("shrinktest",p7,3); |
---|
1540 | p8; system("shrinktest",p8,3); |
---|
1541 | poly p9 = p1 + 2*p2 + 5*p5 + 7*p7; |
---|
1542 | p9; system("shrinktest",p9,3); |
---|
1543 | } |
---|
1544 | |
---|
1545 | //static proc ex2() |
---|
1546 | { |
---|
1547 | option(prot); |
---|
1548 | LIB "freegb.lib"; |
---|
1549 | ring r = 0,(x,y),dp; |
---|
1550 | module M = [-1,x,y],[3,x,x]; // 3x^2 - xy |
---|
1551 | def U = freegb(M,7); |
---|
1552 | lst2str(U); |
---|
1553 | } |
---|
1554 | |
---|
1555 | //static proc ex_nonhomog() |
---|
1556 | { |
---|
1557 | option(prot); |
---|
1558 | LIB "freegb.lib"; |
---|
1559 | ring r = 0,(x,y,h),dp; |
---|
1560 | list L; |
---|
1561 | module M; |
---|
1562 | M = [-1,y,y],[1,x,x,x]; // x3-y2 |
---|
1563 | L[1] = M; |
---|
1564 | M = [1,x,h],[-1,h,x]; // xh-hx |
---|
1565 | L[2] = M; |
---|
1566 | M = [1,y,h],[-1,h,y]; // yh-hy |
---|
1567 | L[3] = M; |
---|
1568 | def U = freegb(L,4); |
---|
1569 | lst2str(U); |
---|
1570 | // strange elements in the basis |
---|
1571 | } |
---|
1572 | |
---|
1573 | //static proc ex_nonhomog_comm() |
---|
1574 | { |
---|
1575 | option(prot); |
---|
1576 | LIB "freegb.lib"; |
---|
1577 | ring r = 0,(x,y),dp; |
---|
1578 | module M = [-1,y,y],[1,x,x,x]; |
---|
1579 | def U = freegb(M,5); |
---|
1580 | lst2str(U); |
---|
1581 | } |
---|
1582 | |
---|
1583 | //static proc ex_nonhomog_h() |
---|
1584 | { |
---|
1585 | option(prot); |
---|
1586 | LIB "freegb.lib"; |
---|
1587 | ring r = 0,(x,y,h),(a(1,1),dp); |
---|
1588 | module M = [-1,y,y,h],[1,x,x,x]; // x3 - y2h |
---|
1589 | def U = freegb(M,6); |
---|
1590 | lst2str(U); |
---|
1591 | } |
---|
1592 | |
---|
1593 | //static proc ex_nonhomog_h2() |
---|
1594 | { |
---|
1595 | option(prot); |
---|
1596 | LIB "freegb.lib"; |
---|
1597 | ring r = 0,(x,y,h),(dp); |
---|
1598 | list L; |
---|
1599 | module M; |
---|
1600 | M = [-1,y,y,h],[1,x,x,x]; // x3 - y2h |
---|
1601 | L[1] = M; |
---|
1602 | M = [1,x,h],[-1,h,x]; // xh - hx |
---|
1603 | L[2] = M; |
---|
1604 | M = [1,y,h],[-1,h,y]; // yh - hy |
---|
1605 | L[3] = M; |
---|
1606 | def U = freeGBasis(L,3); |
---|
1607 | lst2str(U); |
---|
1608 | // strange answer CHECK |
---|
1609 | } |
---|
1610 | |
---|
1611 | //static proc ex_nonhomog_3() |
---|
1612 | { |
---|
1613 | option(prot); |
---|
1614 | LIB "./freegb.lib"; |
---|
1615 | ring r = 0,(x,y,z),(dp); |
---|
1616 | list L; |
---|
1617 | module M; |
---|
1618 | M = [1,z,y],[-1,x]; // zy - x |
---|
1619 | L[1] = M; |
---|
1620 | M = [1,z,x],[-1,y]; // zx - y |
---|
1621 | L[2] = M; |
---|
1622 | M = [1,y,x],[-1,z]; // yx - z |
---|
1623 | L[3] = M; |
---|
1624 | lst2str(L); |
---|
1625 | list U = freegb(L,4); |
---|
1626 | lst2str(U); |
---|
1627 | // strange answer CHECK |
---|
1628 | } |
---|
1629 | |
---|
1630 | //static proc ex_densep_2() |
---|
1631 | { |
---|
1632 | option(prot); |
---|
1633 | LIB "freegb.lib"; |
---|
1634 | ring r = (0,a,b,c),(x,y),(Dp); // deglex |
---|
1635 | module M = [1,x,x], [a,x,y], [b,y,x], [c,y,y]; |
---|
1636 | lst2str(M); |
---|
1637 | list U = freegb(M,5); |
---|
1638 | lst2str(U); |
---|
1639 | // a=b is important -> finite basis!!! |
---|
1640 | module M = [1,x,x], [a,x,y], [a,y,x], [c,y,y]; |
---|
1641 | lst2str(M); |
---|
1642 | list U = freegb(M,5); |
---|
1643 | lst2str(U); |
---|
1644 | } |
---|
1645 | |
---|
1646 | // END COMMENTED EXAMPLES |
---|
1647 | |
---|
1648 | */ |
---|
1649 | |
---|
1650 | // 1. form a new ring |
---|
1651 | // 2. produce shifted generators |
---|
1652 | // 3. compute GB |
---|
1653 | // 4. skip shifted elts |
---|
1654 | // 5. go back to orig vars, produce strings/modules |
---|
1655 | // 6. return the result |
---|
1656 | |
---|
1657 | static proc freegbold(list LM, int d) |
---|
1658 | "USAGE: freegbold(L, d); L a list of modules, d an integer |
---|
1659 | RETURN: ring |
---|
1660 | PURPOSE: compute the two-sided Groebner basis of an ideal, encoded by L in |
---|
1661 | the free associative algebra, up to degree d |
---|
1662 | EXAMPLE: example freegbold; shows examples |
---|
1663 | " |
---|
1664 | { |
---|
1665 | // d = up to degree, will be shifted to d+1 |
---|
1666 | if (d<1) {"bad d"; return(0);} |
---|
1667 | |
---|
1668 | int ppl = printlevel-voice+2; |
---|
1669 | string err = ""; |
---|
1670 | |
---|
1671 | int i,j,s; |
---|
1672 | def save = basering; |
---|
1673 | // determine max no of places in the input |
---|
1674 | int slm = size(LM); // numbers of polys in the ideal |
---|
1675 | int sm; |
---|
1676 | intvec iv; |
---|
1677 | module M; |
---|
1678 | for (i=1; i<=slm; i++) |
---|
1679 | { |
---|
1680 | // modules, e.g. free polynomials |
---|
1681 | M = LM[i]; |
---|
1682 | sm = ncols(M); |
---|
1683 | for (j=1; j<=sm; j++) |
---|
1684 | { |
---|
1685 | //vectors, e.g. free monomials |
---|
1686 | iv = iv, size(M[j])-1; // 1 place is reserved by the coeff |
---|
1687 | } |
---|
1688 | } |
---|
1689 | int D = Max(iv); // max size of input words |
---|
1690 | if (d<D) {"bad d"; return(LM);} |
---|
1691 | D = D + d-1; |
---|
1692 | // D = d; |
---|
1693 | list LR = ringlist(save); |
---|
1694 | list L, tmp; |
---|
1695 | L[1] = LR[1]; // ground field |
---|
1696 | L[4] = LR[4]; // quotient ideal |
---|
1697 | tmp = LR[2]; // varnames |
---|
1698 | s = size(LR[2]); |
---|
1699 | for (i=1; i<=D; i++) |
---|
1700 | { |
---|
1701 | for (j=1; j<=s; j++) |
---|
1702 | { |
---|
1703 | tmp[i*s+j] = tmp[j]; |
---|
1704 | } |
---|
1705 | } |
---|
1706 | L[2] = tmp; |
---|
1707 | list OrigNames = LR[2]; |
---|
1708 | // ordering: d blocks of the ord on r |
---|
1709 | // try to get whether the ord on r is blockord itself |
---|
1710 | // TODO: make L(2) ordering! exponent is maximally 2 |
---|
1711 | s = size(LR[3]); |
---|
1712 | if (s==2) |
---|
1713 | { |
---|
1714 | // not a blockord, 1 block + module ord |
---|
1715 | tmp = LR[3][s]; // module ord |
---|
1716 | for (i=1; i<=D; i++) |
---|
1717 | { |
---|
1718 | LR[3][s-1+i] = LR[3][1]; |
---|
1719 | } |
---|
1720 | LR[3][s+D] = tmp; |
---|
1721 | } |
---|
1722 | if (s>2) |
---|
1723 | { |
---|
1724 | // there are s-1 blocks |
---|
1725 | int nb = s-1; |
---|
1726 | tmp = LR[3][s]; // module ord |
---|
1727 | for (i=1; i<=D; i++) |
---|
1728 | { |
---|
1729 | for (j=1; j<=nb; j++) |
---|
1730 | { |
---|
1731 | LR[3][i*nb+j] = LR[3][j]; |
---|
1732 | } |
---|
1733 | } |
---|
1734 | // size(LR[3]); |
---|
1735 | LR[3][nb*(D+1)+1] = tmp; |
---|
1736 | } |
---|
1737 | L[3] = LR[3]; |
---|
1738 | attrib(L,"maxExp",1); |
---|
1739 | attrib(L,"isLetterplaceRing",s); |
---|
1740 | def @R = ring(L); |
---|
1741 | setring @R; |
---|
1742 | ideal I; |
---|
1743 | poly @p; |
---|
1744 | s = size(OrigNames); |
---|
1745 | // "s:";s; |
---|
1746 | // convert LM to canonical vectors (no powers) |
---|
1747 | setring save; |
---|
1748 | kill M; // M was defined earlier |
---|
1749 | module M; |
---|
1750 | slm = size(LM); // numbers of polys in the ideal |
---|
1751 | int sv,k,l; |
---|
1752 | vector v; |
---|
1753 | // poly p; |
---|
1754 | string sp; |
---|
1755 | setring @R; |
---|
1756 | poly @@p=0; |
---|
1757 | setring save; |
---|
1758 | for (l=1; l<=slm; l++) |
---|
1759 | { |
---|
1760 | // modules, e.g. free polynomials |
---|
1761 | M = LM[l]; |
---|
1762 | sm = ncols(M); // in intvec iv the sizes are stored |
---|
1763 | for (i=0; i<=d-iv[l]; i++) |
---|
1764 | { |
---|
1765 | // modules, e.g. free polynomials |
---|
1766 | for (j=1; j<=sm; j++) |
---|
1767 | { |
---|
1768 | //vectors, e.g. free monomials |
---|
1769 | v = M[j]; |
---|
1770 | sv = size(v); |
---|
1771 | // "sv:";sv; |
---|
1772 | sp = "@@p = @@p + "; |
---|
1773 | for (k=2; k<=sv; k++) |
---|
1774 | { |
---|
1775 | sp = sp + string(v[k])+")*"; |
---|
1776 | } |
---|
1777 | sp = sp + string(v[1])+";"; // coef; |
---|
1778 | setring @R; |
---|
1779 | execute(sp); |
---|
1780 | setring save; |
---|
1781 | } |
---|
1782 | setring @R; |
---|
1783 | // "@@p:"; @@p; |
---|
1784 | I = I,@@p; |
---|
1785 | @@p = 0; |
---|
1786 | setring save; |
---|
1787 | } |
---|
1788 | } |
---|
1789 | kill sp; |
---|
1790 | // 3. compute GB |
---|
1791 | setring @R; |
---|
1792 | dbprint(ppl,"computing GB"); |
---|
1793 | // ideal J = groebner(I); |
---|
1794 | ideal J = slimgb(I); |
---|
1795 | dbprint(ppl,J); |
---|
1796 | // 4. skip shifted elts |
---|
1797 | ideal K = select1(J,1..s); // s = size(OrigNames) |
---|
1798 | dbprint(ppl,K); |
---|
1799 | dbprint(ppl, "done with GB"); |
---|
1800 | // K contains vars x(1),...z(1) = images of originals |
---|
1801 | // 5. go back to orig vars, produce strings/modules |
---|
1802 | if (K[1] == 0) |
---|
1803 | { |
---|
1804 | "no reasonable output, GB gives 0"; |
---|
1805 | return(0); |
---|
1806 | } |
---|
1807 | int sk = size(K); |
---|
1808 | int sp, sx, a, b; |
---|
1809 | intvec x; |
---|
1810 | poly p,q; |
---|
1811 | poly pn; |
---|
1812 | // vars in 'save' |
---|
1813 | setring save; |
---|
1814 | module N; |
---|
1815 | list LN; |
---|
1816 | vector V; |
---|
1817 | poly pn; |
---|
1818 | // test and skip exponents >=2 |
---|
1819 | setring @R; |
---|
1820 | for(i=1; i<=sk; i++) |
---|
1821 | { |
---|
1822 | p = K[i]; |
---|
1823 | while (p!=0) |
---|
1824 | { |
---|
1825 | q = lead(p); |
---|
1826 | // "processing q:";q; |
---|
1827 | x = leadexp(q); |
---|
1828 | sx = size(x); |
---|
1829 | for(k=1; k<=sx; k++) |
---|
1830 | { |
---|
1831 | if ( x[k] >= 2 ) |
---|
1832 | { |
---|
1833 | err = "skip: the value x[k] is " + string(x[k]); |
---|
1834 | dbprint(ppl,err); |
---|
1835 | // return(0); |
---|
1836 | K[i] = 0; |
---|
1837 | p = 0; |
---|
1838 | q = 0; |
---|
1839 | break; |
---|
1840 | } |
---|
1841 | } |
---|
1842 | p = p - q; |
---|
1843 | } |
---|
1844 | } |
---|
1845 | K = simplify(K,2); |
---|
1846 | sk = size(K); |
---|
1847 | for(i=1; i<=sk; i++) |
---|
1848 | { |
---|
1849 | // setring save; |
---|
1850 | // V = 0; |
---|
1851 | setring @R; |
---|
1852 | p = K[i]; |
---|
1853 | while (p!=0) |
---|
1854 | { |
---|
1855 | q = lead(p); |
---|
1856 | err = "processing q:" + string(q); |
---|
1857 | dbprint(ppl,err); |
---|
1858 | x = leadexp(q); |
---|
1859 | sx = size(x); |
---|
1860 | pn = leadcoef(q); |
---|
1861 | setring save; |
---|
1862 | pn = imap(@R,pn); |
---|
1863 | V = V + leadcoef(pn)*gen(1); |
---|
1864 | for(k=1; k<=sx; k++) |
---|
1865 | { |
---|
1866 | if (x[k] ==1) |
---|
1867 | { |
---|
1868 | a = k div s; // block number=a+1, a!=0 |
---|
1869 | b = k % s; // remainder |
---|
1870 | // printf("a: %s, b: %s",a,b); |
---|
1871 | if (b == 0) |
---|
1872 | { |
---|
1873 | // that is it's the last var in the block |
---|
1874 | b = s; |
---|
1875 | a = a-1; |
---|
1876 | } |
---|
1877 | V = V + var(b)*gen(a+2); |
---|
1878 | } |
---|
1879 | // else |
---|
1880 | // { |
---|
1881 | // printf("error: the value x[k] is %s", x[k]); |
---|
1882 | // return(0); |
---|
1883 | // } |
---|
1884 | } |
---|
1885 | err = "V: " + string(V); |
---|
1886 | dbprint(ppl,err); |
---|
1887 | // printf("V: %s", string(V)); |
---|
1888 | N = N,V; |
---|
1889 | V = 0; |
---|
1890 | setring @R; |
---|
1891 | p = p - q; |
---|
1892 | pn = 0; |
---|
1893 | } |
---|
1894 | setring save; |
---|
1895 | LN[i] = simplify(N,2); |
---|
1896 | N = 0; |
---|
1897 | } |
---|
1898 | setring save; |
---|
1899 | return(LN); |
---|
1900 | } |
---|
1901 | example |
---|
1902 | { |
---|
1903 | "EXAMPLE:"; echo = 2; |
---|
1904 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
1905 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
1906 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
1907 | list L; L[1] = M; L[2] = N; |
---|
1908 | lst2str(L); |
---|
1909 | def U = freegbold(L,5); |
---|
1910 | lst2str(U); |
---|
1911 | } |
---|
1912 | |
---|
1913 | /* begin older procs and tests |
---|
1914 | |
---|
1915 | static proc exHom1() |
---|
1916 | { |
---|
1917 | // we start with |
---|
1918 | // z*y - x, z*x - y, y*x - z |
---|
1919 | LIB "freegb.lib"; |
---|
1920 | LIB "elim.lib"; |
---|
1921 | ring r = 0,(x,y,z,h),dp; |
---|
1922 | list L; |
---|
1923 | module M; |
---|
1924 | M = [1,z,y],[-1,x,h]; // zy - xh |
---|
1925 | L[1] = M; |
---|
1926 | M = [1,z,x],[-1,y,h]; // zx - yh |
---|
1927 | L[2] = M; |
---|
1928 | M = [1,y,x],[-1,z,h]; // yx - zh |
---|
1929 | L[3] = M; |
---|
1930 | lst2str(L); |
---|
1931 | def U = crs(L,4); |
---|
1932 | setring U; |
---|
1933 | I = I, |
---|
1934 | y(2)*h(3)+z(2)*x(3), y(3)*h(4)+z(3)*x(4), |
---|
1935 | y(2)*x(3)-z(2)*h(3), y(3)*x(4)-z(3)*h(4); |
---|
1936 | I = simplify(I,2); |
---|
1937 | ring r2 = 0,(x(0..4),y(0..4),z(0..4),h(0..4)),dp; |
---|
1938 | ideal J = imap(U,I); |
---|
1939 | // ideal K = homog(J,h); |
---|
1940 | option(redSB); |
---|
1941 | option(redTail); |
---|
1942 | ideal L = groebner(J); //(K); |
---|
1943 | ideal LL = sat(L,ideal(h))[1]; |
---|
1944 | ideal M = subst(LL,h,1); |
---|
1945 | M = simplify(M,2); |
---|
1946 | setring U; |
---|
1947 | ideal M = imap(r2,M); |
---|
1948 | lst2str(U); |
---|
1949 | } |
---|
1950 | |
---|
1951 | static proc test1() |
---|
1952 | { |
---|
1953 | LIB "freegb.lib"; |
---|
1954 | ring r = 0,(x,y),Dp; |
---|
1955 | int d = 10; // degree |
---|
1956 | def R = freeAlgebra(r, d); |
---|
1957 | setring R; |
---|
1958 | ideal I = x(1)*x(2) - y(1)*y(2); |
---|
1959 | option(prot); |
---|
1960 | option(teach); |
---|
1961 | ideal J = system("freegb",I,d,2); |
---|
1962 | J; |
---|
1963 | } |
---|
1964 | |
---|
1965 | static proc test2() |
---|
1966 | { |
---|
1967 | LIB "freegb.lib"; |
---|
1968 | ring r = 0,(x,y),Dp; |
---|
1969 | int d = 10; // degree |
---|
1970 | def R = freeAlgebra(r, d); |
---|
1971 | setring R; |
---|
1972 | ideal I = x(1)*x(2) - x(1)*y(2); |
---|
1973 | option(prot); |
---|
1974 | option(teach); |
---|
1975 | ideal J = system("freegb",I,d,2); |
---|
1976 | J; |
---|
1977 | } |
---|
1978 | |
---|
1979 | static proc test3() |
---|
1980 | { |
---|
1981 | LIB "freegb.lib"; |
---|
1982 | ring r = 0,(x,y,z),dp; |
---|
1983 | int d =5; // degree |
---|
1984 | def R = freeAlgebra(r, d); |
---|
1985 | setring R; |
---|
1986 | ideal I = x(1)*y(2), y(1)*x(2)+z(1)*z(2); |
---|
1987 | option(prot); |
---|
1988 | option(teach); |
---|
1989 | ideal J = system("freegb",I,d,3); |
---|
1990 | } |
---|
1991 | |
---|
1992 | end older procs and tests */ |
---|
1993 | |
---|
1994 | static proc stringpoly2lplace(string s) |
---|
1995 | { |
---|
1996 | // decomposes sentence into terms |
---|
1997 | s = replace(s,newline,""); // get rid of newlines |
---|
1998 | s = replace(s," ",""); // get rid of empties |
---|
1999 | //arith symbols: +,- |
---|
2000 | // decompose into words with coeffs |
---|
2001 | list LS; |
---|
2002 | int i,j,ie,je,k,cnt; |
---|
2003 | // s[1]="-" situation |
---|
2004 | if (s[1]=="-") |
---|
2005 | { |
---|
2006 | LS = stringpoly2lplace(string(s[2..size(s)])); |
---|
2007 | LS[1] = string("-"+string(LS[1])); |
---|
2008 | return(LS); |
---|
2009 | } |
---|
2010 | i = find(s,"-",2); |
---|
2011 | // i==1 might happen if the 1st symbol coeff is negative |
---|
2012 | j = find(s,"+"); |
---|
2013 | list LL; |
---|
2014 | if (i==j) |
---|
2015 | { |
---|
2016 | "return a monomial"; |
---|
2017 | // that is both are 0 -> s is a monomial |
---|
2018 | LS[1] = s; |
---|
2019 | return(LS); |
---|
2020 | } |
---|
2021 | if (i==0) |
---|
2022 | { |
---|
2023 | "i==0 situation"; |
---|
2024 | // no minuses at all => pluses only |
---|
2025 | cnt++; |
---|
2026 | LS[cnt] = string(s[1..j-1]); |
---|
2027 | s = s[j+1..size(s)]; |
---|
2028 | while (s!= "") |
---|
2029 | { |
---|
2030 | j = find(s,"+"); |
---|
2031 | cnt++; |
---|
2032 | if (j==0) |
---|
2033 | { |
---|
2034 | LS[cnt] = string(s); |
---|
2035 | s = ""; |
---|
2036 | } |
---|
2037 | else |
---|
2038 | { |
---|
2039 | LS[cnt] = string(s[1..j-1]); |
---|
2040 | s = s[j+1..size(s)]; |
---|
2041 | } |
---|
2042 | } |
---|
2043 | return(LS); |
---|
2044 | } |
---|
2045 | if (j==0) |
---|
2046 | { |
---|
2047 | "j==0 situation"; |
---|
2048 | // no pluses at all except the lead coef => the rest are minuses only |
---|
2049 | cnt++; |
---|
2050 | LS[cnt] = string(s[1..i-1]); |
---|
2051 | s = s[i..size(s)]; |
---|
2052 | while (s!= "") |
---|
2053 | { |
---|
2054 | i = find(s,"-",2); |
---|
2055 | cnt++; |
---|
2056 | if (i==0) |
---|
2057 | { |
---|
2058 | LS[cnt] = string(s); |
---|
2059 | s = ""; |
---|
2060 | } |
---|
2061 | else |
---|
2062 | { |
---|
2063 | LS[cnt] = string(s[1..i-1]); |
---|
2064 | s = s[i..size(s)]; |
---|
2065 | } |
---|
2066 | } |
---|
2067 | return(LS); |
---|
2068 | } |
---|
2069 | // now i, j are nonzero |
---|
2070 | if (i>j) |
---|
2071 | { |
---|
2072 | "i>j situation"; |
---|
2073 | // + comes first, at place j |
---|
2074 | cnt++; |
---|
2075 | // "cnt:"; cnt; "j:"; j; |
---|
2076 | LS[cnt] = string(s[1..j-1]); |
---|
2077 | s = s[j+1..size(s)]; |
---|
2078 | LL = stringpoly2lplace(s); |
---|
2079 | LS = LS + LL; |
---|
2080 | kill LL; |
---|
2081 | return(LS); |
---|
2082 | } |
---|
2083 | else |
---|
2084 | { |
---|
2085 | "j>i situation"; |
---|
2086 | // - might come first, at place i |
---|
2087 | if (i>1) |
---|
2088 | { |
---|
2089 | cnt++; |
---|
2090 | LS[cnt] = string(s[1..i-1]); |
---|
2091 | s = s[i..size(s)]; |
---|
2092 | } |
---|
2093 | else |
---|
2094 | { |
---|
2095 | // i==1-> minus at leadcoef |
---|
2096 | ie = find(s,"-",i+1); |
---|
2097 | je = find(s,"+",i+1); |
---|
2098 | if (je == ie) |
---|
2099 | { |
---|
2100 | "ie=je situation"; |
---|
2101 | //monomial |
---|
2102 | cnt++; |
---|
2103 | LS[cnt] = s; |
---|
2104 | return(LS); |
---|
2105 | } |
---|
2106 | if (je < ie) |
---|
2107 | { |
---|
2108 | "je<ie situation"; |
---|
2109 | // + comes first |
---|
2110 | cnt++; |
---|
2111 | LS[cnt] = s[1..je-1]; |
---|
2112 | s = s[je+1..size(s)]; |
---|
2113 | } |
---|
2114 | else |
---|
2115 | { |
---|
2116 | // ie < je |
---|
2117 | "ie<je situation"; |
---|
2118 | cnt++; |
---|
2119 | LS[cnt] = s[1..ie-1]; |
---|
2120 | s = s[ie..size(s)]; |
---|
2121 | } |
---|
2122 | } |
---|
2123 | "going into recursion with "+s; |
---|
2124 | LL = stringpoly2lplace(s); |
---|
2125 | LS = LS + LL; |
---|
2126 | return(LS); |
---|
2127 | } |
---|
2128 | } |
---|
2129 | example |
---|
2130 | { |
---|
2131 | "EXAMPLE:"; echo = 2; |
---|
2132 | string s = "x*y+y*z+z*t"; // + only |
---|
2133 | stringpoly2lplace(s); |
---|
2134 | string s2 = "x*y - y*z-z*t*w*w"; // +1, - only |
---|
2135 | stringpoly2lplace(s2); |
---|
2136 | string s3 = "-x*y + y - 2*x +7*w*w*w"; |
---|
2137 | stringpoly2lplace(s3); |
---|
2138 | } |
---|
2139 | |
---|
2140 | static proc addplaces(list L) |
---|
2141 | { |
---|
2142 | // adds places to the list of strings |
---|
2143 | // according to their order in the list |
---|
2144 | int s = size(L); |
---|
2145 | int i; |
---|
2146 | for (i=1; i<=s; i++) |
---|
2147 | { |
---|
2148 | if (typeof(L[i]) == "string") |
---|
2149 | { |
---|
2150 | L[i] = L[i] + "(" + string(i) + ")"; |
---|
2151 | } |
---|
2152 | else |
---|
2153 | { |
---|
2154 | ERROR("entry of type string expected"); |
---|
2155 | return(0); |
---|
2156 | } |
---|
2157 | } |
---|
2158 | return(L); |
---|
2159 | } |
---|
2160 | example |
---|
2161 | { |
---|
2162 | "EXAMPLE:"; echo = 2; |
---|
2163 | string a = "f1"; string b = "f2"; |
---|
2164 | list L = a,b,a; |
---|
2165 | addplaces(L); |
---|
2166 | } |
---|
2167 | |
---|
2168 | static proc sent2lplace(string s) |
---|
2169 | { |
---|
2170 | // SENTence of words TO LetterPLACE |
---|
2171 | list L = stringpoly2lplace(s); |
---|
2172 | int i; int ss = size(L); |
---|
2173 | for(i=1; i<=ss; i++) |
---|
2174 | { |
---|
2175 | L[i] = str2lplace(L[i]); |
---|
2176 | } |
---|
2177 | return(L); |
---|
2178 | } |
---|
2179 | example |
---|
2180 | { |
---|
2181 | "EXAMPLE:"; echo = 2; |
---|
2182 | ring r = 0,(f2,f1),dp; |
---|
2183 | string s = "f2*f1*f1 - 2*f1*f2*f1+ f1*f1*f2"; |
---|
2184 | sent2lplace(s); |
---|
2185 | } |
---|
2186 | |
---|
2187 | static proc testnumber(string s) |
---|
2188 | { |
---|
2189 | string t; |
---|
2190 | if (s[1]=="-") |
---|
2191 | { |
---|
2192 | // two situations: either there's a negative number |
---|
2193 | t = s[2..size(s)]; |
---|
2194 | if (testnumber(t)) |
---|
2195 | { |
---|
2196 | //a negative number |
---|
2197 | } |
---|
2198 | else |
---|
2199 | { |
---|
2200 | // a variable times -1 |
---|
2201 | } |
---|
2202 | // or just a "-" for -1 |
---|
2203 | } |
---|
2204 | t = "ring @r=("; |
---|
2205 | t = t + charstr(basering)+"),"; |
---|
2206 | t = t + string(var(1))+",dp;"; |
---|
2207 | // write(":w tstnum.tst",t); |
---|
2208 | t = t+ "number @@Nn = " + s + ";"+"$"; |
---|
2209 | write(":w tstnum.tst",t); |
---|
2210 | string runsing = system("Singular"); |
---|
2211 | int k; |
---|
2212 | t = runsing+ " -teq <tstnum.tst >tstnum.out"; |
---|
2213 | k = system("sh",t); |
---|
2214 | if (k!=0) |
---|
2215 | { |
---|
2216 | ERROR("Problems running Singular"); |
---|
2217 | } |
---|
2218 | int i = system("sh", "grep error tstnum.out > /dev/NULL"); |
---|
2219 | if (i!=0) |
---|
2220 | { |
---|
2221 | // no error: s is a number |
---|
2222 | i = 1; |
---|
2223 | } |
---|
2224 | k = system("sh","rm tstnum.tst tstnum.out > /dev/NULL"); |
---|
2225 | return(i); |
---|
2226 | } |
---|
2227 | example |
---|
2228 | { |
---|
2229 | "EXAMPLE:"; echo = 2; |
---|
2230 | ring r = (0,a),x,dp; |
---|
2231 | string s = "a^2+7*a-2"; |
---|
2232 | testnumber(s); |
---|
2233 | s = "b+a"; |
---|
2234 | testnumber(s); |
---|
2235 | } |
---|
2236 | |
---|
2237 | static proc str2lplace(string s) |
---|
2238 | { |
---|
2239 | // converts a word (monomial) with coeff into letter-place |
---|
2240 | // string: coef*var1^exp1*var2^exp2*...varN^expN |
---|
2241 | s = strpower2rep(s); // expand powers |
---|
2242 | if (size(s)==0) { return(0); } |
---|
2243 | int i,j,k,insC; |
---|
2244 | string a,b,c,d,t; |
---|
2245 | // 1. get coeff |
---|
2246 | i = find(s,"*"); |
---|
2247 | if (i==0) { return(s); } |
---|
2248 | list VN; |
---|
2249 | c = s[1..i-1]; // incl. the case like (-a^2+1) |
---|
2250 | int tn = testnumber(c); |
---|
2251 | if (tn == 0) |
---|
2252 | { |
---|
2253 | // failed test |
---|
2254 | if (c[1]=="-") |
---|
2255 | { |
---|
2256 | // two situations: either there's a negative number |
---|
2257 | t = c[2..size(c)]; |
---|
2258 | if (testnumber(t)) |
---|
2259 | { |
---|
2260 | //a negative number |
---|
2261 | // nop here |
---|
2262 | } |
---|
2263 | else |
---|
2264 | { |
---|
2265 | // a variable times -1 |
---|
2266 | c = "-1"; |
---|
2267 | j++; VN[j] = t; //string(c[2..size(c)]); |
---|
2268 | insC = 1; |
---|
2269 | } |
---|
2270 | } |
---|
2271 | else |
---|
2272 | { |
---|
2273 | // just a variable with coeff 1 |
---|
2274 | j++; VN[j] = string(c); |
---|
2275 | c = "1"; |
---|
2276 | insC = 1; |
---|
2277 | } |
---|
2278 | } |
---|
2279 | // get vars |
---|
2280 | t = s; |
---|
2281 | // t = s[i+1..size(s)]; |
---|
2282 | k = size(t); //j = 0; |
---|
2283 | while (k>0) |
---|
2284 | { |
---|
2285 | t = t[i+1..size(t)]; //next part |
---|
2286 | i = find(t,"*"); // next * |
---|
2287 | if (i==0) |
---|
2288 | { |
---|
2289 | // last monomial |
---|
2290 | j++; |
---|
2291 | VN[j] = t; |
---|
2292 | k = size(t); |
---|
2293 | break; |
---|
2294 | } |
---|
2295 | b = t[1..i-1]; |
---|
2296 | // print(b); |
---|
2297 | j++; |
---|
2298 | VN[j] = b; |
---|
2299 | k = size(t); |
---|
2300 | } |
---|
2301 | VN = addplaces(VN); |
---|
2302 | VN[size(VN)+1] = string(c); |
---|
2303 | return(VN); |
---|
2304 | } |
---|
2305 | example |
---|
2306 | { |
---|
2307 | "EXAMPLE:"; echo = 2; |
---|
2308 | ring r = (0,a),(f2,f1),dp; |
---|
2309 | str2lplace("-2*f2^2*f1^2*f2"); |
---|
2310 | str2lplace("-f1*f2"); |
---|
2311 | str2lplace("(-a^2+7a)*f1*f2"); |
---|
2312 | } |
---|
2313 | |
---|
2314 | static proc strpower2rep(string s) |
---|
2315 | { |
---|
2316 | // makes x*x*x*x out of x^4 ., rep statys for repetitions |
---|
2317 | // looks for "-" problem |
---|
2318 | // exception: "-" as coeff |
---|
2319 | string ex,t; |
---|
2320 | int i,j,k; |
---|
2321 | |
---|
2322 | i = find(s,"^"); // first ^ |
---|
2323 | if (i==0) { return(s); } // no ^ signs |
---|
2324 | |
---|
2325 | if (s[1] == "-") |
---|
2326 | { |
---|
2327 | // either -coef or -1 |
---|
2328 | // got the coeff: |
---|
2329 | i = find(s,"*"); |
---|
2330 | if (i==0) |
---|
2331 | { |
---|
2332 | // no *'s => coef == -1 or s == -23 |
---|
2333 | i = size(s)+1; |
---|
2334 | } |
---|
2335 | t = string(s[2..i-1]); // without "-" |
---|
2336 | if ( testnumber(t) ) |
---|
2337 | { |
---|
2338 | // a good number |
---|
2339 | t = strpower2rep(string(s[2..size(s)])); |
---|
2340 | t = "-"+t; |
---|
2341 | return(t); |
---|
2342 | } |
---|
2343 | else |
---|
2344 | { |
---|
2345 | // a variable |
---|
2346 | t = strpower2rep(string(s[2..size(s)])); |
---|
2347 | t = "-1*"+ t; |
---|
2348 | return(t); |
---|
2349 | } |
---|
2350 | } |
---|
2351 | // the case when leadcoef is a number in () |
---|
2352 | if (s[1] == "(") |
---|
2353 | { |
---|
2354 | i = find(s,")",2); // must be nonzero |
---|
2355 | t = s[2..i-1]; |
---|
2356 | if ( testnumber(t) ) |
---|
2357 | { |
---|
2358 | // a good number |
---|
2359 | } |
---|
2360 | else {"strpower2rep: bad number as coef";} |
---|
2361 | ex = string(s[i+2..size(s)]); // 2 because of * |
---|
2362 | ex = strpower2rep(ex); |
---|
2363 | t = "("+t+")*"+ex; |
---|
2364 | return(t); |
---|
2365 | } |
---|
2366 | |
---|
2367 | i = find(s,"^"); // first ^ |
---|
2368 | j = find(s,"*",i+1); // next * == end of ^ |
---|
2369 | if (j==0) |
---|
2370 | { |
---|
2371 | ex = s[i+1..size(s)]; |
---|
2372 | } |
---|
2373 | else |
---|
2374 | { |
---|
2375 | ex = s[i+1..j-1]; |
---|
2376 | } |
---|
2377 | execute("int @exp = " + ex + ";"); //@exp = exponent |
---|
2378 | // got varname |
---|
2379 | for (k=i-1; k>0; k--) |
---|
2380 | { |
---|
2381 | if (s[k] == "*") break; |
---|
2382 | } |
---|
2383 | string varn = s[k+1..i-1]; |
---|
2384 | // "varn:"; varn; |
---|
2385 | string pref; |
---|
2386 | if (k>0) |
---|
2387 | { |
---|
2388 | pref = s[1..k]; // with * on the k-th place |
---|
2389 | } |
---|
2390 | // "pref:"; pref; |
---|
2391 | string suf; |
---|
2392 | if ( (j>0) && (j+1 <= size(s)) ) |
---|
2393 | { |
---|
2394 | suf = s[j+1..size(s)]; // without * on the 1st place |
---|
2395 | } |
---|
2396 | // "suf:"; suf; |
---|
2397 | string toins; |
---|
2398 | for (k=1; k<=@exp; k++) |
---|
2399 | { |
---|
2400 | toins = toins + varn+"*"; |
---|
2401 | } |
---|
2402 | // "toins: "; toins; |
---|
2403 | if (size(suf) == 0) |
---|
2404 | { |
---|
2405 | toins = toins[1..size(toins)-1]; // get rid of trailing * |
---|
2406 | } |
---|
2407 | else |
---|
2408 | { |
---|
2409 | suf = strpower2rep(suf); |
---|
2410 | } |
---|
2411 | ex = pref + toins + suf; |
---|
2412 | return(ex); |
---|
2413 | // return(strpower2rep(ex)); |
---|
2414 | } |
---|
2415 | example |
---|
2416 | { |
---|
2417 | "EXAMPLE:"; echo = 2; |
---|
2418 | ring r = (0,a),(x,y,z,t),dp; |
---|
2419 | strpower2rep("-x^4"); |
---|
2420 | strpower2rep("-2*x^4*y^3*z*t^2"); |
---|
2421 | strpower2rep("-a^2*x^4"); |
---|
2422 | } |
---|
2423 | |
---|
2424 | |
---|
2425 | |
---|
2426 | static proc shiftPoly(poly a, int i) |
---|
2427 | "USAGE: shiftPoly(p,i); p letterplace poly, i int |
---|
2428 | RETURN: poly |
---|
2429 | ASSUME: basering has letterplace ring structure |
---|
2430 | PURPOSE: compute the i-th shift of letterplace polynomial p |
---|
2431 | EXAMPLE: example shiftPoly; shows examples |
---|
2432 | " |
---|
2433 | { |
---|
2434 | // shifts a monomial a by i |
---|
2435 | // calls pLPshift(p,sh,uptodeg,lVblock); |
---|
2436 | if (lpAssumeViolation()) |
---|
2437 | { |
---|
2438 | ERROR("Incomplete Letterplace structure on the basering!"); |
---|
2439 | } |
---|
2440 | return(stest(a,i)); |
---|
2441 | } |
---|
2442 | example |
---|
2443 | { |
---|
2444 | "EXAMPLE:"; echo = 2; |
---|
2445 | ring r = 0,(x,y,z),dp; |
---|
2446 | int uptodeg = 5; int lV = 3; |
---|
2447 | def R = freeAlgebra(r, uptodeg); |
---|
2448 | setring R; |
---|
2449 | poly f = x*z*y - 2*z*y + 3*x; |
---|
2450 | shiftPoly(f,1); |
---|
2451 | shiftPoly(f,2); |
---|
2452 | } |
---|
2453 | |
---|
2454 | static proc lastBlock(poly p) |
---|
2455 | "USAGE: lastBlock(p); p letterplace poly |
---|
2456 | RETURN: int |
---|
2457 | ASSUME: basering has letterplace ring structure |
---|
2458 | PURPOSE: get the number of the last block occuring in the poly |
---|
2459 | EXAMPLE: example lastBlock; shows examples |
---|
2460 | " |
---|
2461 | { |
---|
2462 | if (lpAssumeViolation()) |
---|
2463 | { |
---|
2464 | ERROR("Incomplete Letterplace structure on the basering!"); |
---|
2465 | } |
---|
2466 | // calls pLastVblock(p); |
---|
2467 | return(btest(p)); |
---|
2468 | } |
---|
2469 | example |
---|
2470 | { |
---|
2471 | "EXAMPLE:"; echo = 2; |
---|
2472 | ring r = 0,(x,y,z),dp; |
---|
2473 | int uptodeg = 5; |
---|
2474 | def R = freeAlgebra(r, uptodeg); |
---|
2475 | setring R; |
---|
2476 | poly f = x*z*y - 2*z*y + 3*x; |
---|
2477 | lastBlock(f); // should be 3 |
---|
2478 | } |
---|
2479 | |
---|
2480 | static proc test_shift() |
---|
2481 | { |
---|
2482 | LIB "freegb.lib"; |
---|
2483 | ring r = 0,(a,b),dp; |
---|
2484 | int d =5; |
---|
2485 | def R = freeAlgebra(r, d); |
---|
2486 | setring R; |
---|
2487 | int uptodeg = d; |
---|
2488 | int lV = 2; |
---|
2489 | def R = setLetterplaceAttributes(r,uptodeg,2); // supply R with letterplace structure |
---|
2490 | setring R; |
---|
2491 | poly p = mmLiebr(a,b); |
---|
2492 | poly p = lieBracket(a,b); |
---|
2493 | } |
---|
2494 | |
---|
2495 | proc lp2lstr(ideal K, def save) |
---|
2496 | "USAGE: lp2lstr(K,s); K an ideal, s a ring name |
---|
2497 | RETURN: nothing (exports object @LN into the ring named s) |
---|
2498 | ASSUME: basering has a letterplace ring structure |
---|
2499 | PURPOSE: converts letterplace ideal to list of modules |
---|
2500 | NOTE: useful as preprocessing to 'lst2str' |
---|
2501 | EXAMPLE: example lp2lstr; shows examples |
---|
2502 | " |
---|
2503 | { |
---|
2504 | def @R = basering; |
---|
2505 | string err; |
---|
2506 | int s = nvars(save); |
---|
2507 | int i,j,k; |
---|
2508 | // K contains vars x(1),...z(1) = images of originals |
---|
2509 | // 5. go back to orig vars, produce strings/modules |
---|
2510 | int sk = size(K); |
---|
2511 | int sp, sx, a, b; |
---|
2512 | intvec x; |
---|
2513 | poly p,q; |
---|
2514 | poly pn; |
---|
2515 | // vars in 'save' |
---|
2516 | setring save; |
---|
2517 | module N; |
---|
2518 | list LN; |
---|
2519 | vector V; |
---|
2520 | poly pn; |
---|
2521 | // test and skip exponents >=2 |
---|
2522 | setring @R; |
---|
2523 | for(i=1; i<=sk; i++) |
---|
2524 | { |
---|
2525 | p = K[i]; |
---|
2526 | while (p!=0) |
---|
2527 | { |
---|
2528 | q = lead(p); |
---|
2529 | // "processing q:";q; |
---|
2530 | x = leadexp(q); |
---|
2531 | sx = size(x); |
---|
2532 | for(k=1; k<=sx; k++) |
---|
2533 | { |
---|
2534 | if ( x[k] >= 2 ) |
---|
2535 | { |
---|
2536 | err = "skip: the value x[k] is " + string(x[k]); |
---|
2537 | dbprint(ppl,err); |
---|
2538 | // return(0); |
---|
2539 | K[i] = 0; |
---|
2540 | p = 0; |
---|
2541 | q = 0; |
---|
2542 | break; |
---|
2543 | } |
---|
2544 | } |
---|
2545 | p = p - q; |
---|
2546 | } |
---|
2547 | } |
---|
2548 | K = simplify(K,2); |
---|
2549 | sk = size(K); |
---|
2550 | for(i=1; i<=sk; i++) |
---|
2551 | { |
---|
2552 | // setring save; |
---|
2553 | // V = 0; |
---|
2554 | setring @R; |
---|
2555 | p = K[i]; |
---|
2556 | while (p!=0) |
---|
2557 | { |
---|
2558 | q = lead(p); |
---|
2559 | err = "processing q:" + string(q); |
---|
2560 | dbprint(ppl,err); |
---|
2561 | x = leadexp(q); |
---|
2562 | sx = size(x); |
---|
2563 | pn = leadcoef(q); |
---|
2564 | setring save; |
---|
2565 | pn = imap(@R,pn); |
---|
2566 | V = V + leadcoef(pn)*gen(1); |
---|
2567 | for(k=1; k<=sx; k++) |
---|
2568 | { |
---|
2569 | if (x[k] ==1) |
---|
2570 | { |
---|
2571 | a = k div s; // block number=a+1, a!=0 |
---|
2572 | b = k % s; // remainder |
---|
2573 | // printf("a: %s, b: %s",a,b); |
---|
2574 | if (b == 0) |
---|
2575 | { |
---|
2576 | // that is it's the last var in the block |
---|
2577 | b = s; |
---|
2578 | a = a-1; |
---|
2579 | } |
---|
2580 | V = V + var(b)*gen(a+2); |
---|
2581 | } |
---|
2582 | } |
---|
2583 | err = "V: " + string(V); |
---|
2584 | dbprint(ppl,err); |
---|
2585 | // printf("V: %s", string(V)); |
---|
2586 | N = N,V; |
---|
2587 | V = 0; |
---|
2588 | setring @R; |
---|
2589 | p = p - q; |
---|
2590 | pn = 0; |
---|
2591 | } |
---|
2592 | setring save; |
---|
2593 | LN[i] = simplify(N,2); |
---|
2594 | N = 0; |
---|
2595 | } |
---|
2596 | setring save; |
---|
2597 | list @LN = LN; |
---|
2598 | export @LN; |
---|
2599 | // return(LN); |
---|
2600 | } |
---|
2601 | example |
---|
2602 | { |
---|
2603 | "EXAMPLE:"; echo = 2; |
---|
2604 | intmat A[2][2] = 2, -1, -1, 2; // sl_3 == A_2 |
---|
2605 | ring r = 0,(f1,f2),dp; |
---|
2606 | def R = freeAlgebra(r, 3); |
---|
2607 | setring R; |
---|
2608 | ideal I = serreRelations(A,1); |
---|
2609 | lp2lstr(I,r); |
---|
2610 | setring r; |
---|
2611 | lst2str(@LN,1); |
---|
2612 | } |
---|
2613 | |
---|
2614 | static proc strList2poly(list L) |
---|
2615 | { |
---|
2616 | // list L comes from sent2lplace (which takes a polynomial as input) |
---|
2617 | // each entry of L is a sublist with the coef on the last place |
---|
2618 | int s = size(L); int t; |
---|
2619 | int i,j; |
---|
2620 | list M; |
---|
2621 | poly p,q; |
---|
2622 | string Q; |
---|
2623 | for(i=1; i<=s; i++) |
---|
2624 | { |
---|
2625 | M = L[i]; |
---|
2626 | t = size(M); |
---|
2627 | // q = M[t]; // a constant |
---|
2628 | Q = string(M[t]); |
---|
2629 | for(j=1; j<t; j++) |
---|
2630 | { |
---|
2631 | // q = q*M[j]; |
---|
2632 | Q = Q+"*"+string(M[j]); |
---|
2633 | } |
---|
2634 | execute("q="+Q+";"); |
---|
2635 | // q; |
---|
2636 | p = p + q; |
---|
2637 | } |
---|
2638 | kill Q; |
---|
2639 | return(p); |
---|
2640 | } |
---|
2641 | example |
---|
2642 | { |
---|
2643 | "EXAMPLE:"; echo = 2; |
---|
2644 | ring r =0,(x,y,z,t),Dp; |
---|
2645 | def A = freeAlgebra(r, 4); |
---|
2646 | setring A; |
---|
2647 | string t = "-2*y*z*y*z + y*t*z*z - z*x*x*y + 2*z*y*z*y"; |
---|
2648 | list L = sent2lplace(t); |
---|
2649 | L; |
---|
2650 | poly p = strList2poly(L); |
---|
2651 | p; |
---|
2652 | } |
---|
2653 | |
---|
2654 | static proc file2lplace(string fname) |
---|
2655 | "USAGE: file2lplace(fnm); fnm a string |
---|
2656 | RETURN: ideal |
---|
2657 | PURPOSE: convert the contents of the file fnm into ideal of polynomials in free algebra |
---|
2658 | EXAMPLE: example file2lplace; shows examples |
---|
2659 | " |
---|
2660 | { |
---|
2661 | // format: from the usual string to letterplace |
---|
2662 | string s = read(fname); |
---|
2663 | // assume: file is a comma-sep list of polys |
---|
2664 | // the vars are declared before |
---|
2665 | // the file ends with ";" |
---|
2666 | string t; int i; |
---|
2667 | ideal I; |
---|
2668 | list tst; |
---|
2669 | while (s!="") |
---|
2670 | { |
---|
2671 | i = find(s,","); |
---|
2672 | "i"; i; |
---|
2673 | if (i==0) |
---|
2674 | { |
---|
2675 | i = find(s,";"); |
---|
2676 | if (i==0) |
---|
2677 | { |
---|
2678 | // no ; ?? |
---|
2679 | "no colon or semicolon found anymore"; |
---|
2680 | return(I); |
---|
2681 | } |
---|
2682 | // no "," but ";" on the i-th place |
---|
2683 | t = s[1..i-1]; |
---|
2684 | s = ""; |
---|
2685 | "processing: "; t; |
---|
2686 | tst = sent2lplace(t); |
---|
2687 | tst; |
---|
2688 | I = I, strList2poly(tst); |
---|
2689 | return(I); |
---|
2690 | } |
---|
2691 | // here i !=0 |
---|
2692 | t = s[1..i-1]; |
---|
2693 | s = s[i+1..size(s)]; |
---|
2694 | "processing: "; t; |
---|
2695 | tst = sent2lplace(t); |
---|
2696 | tst; |
---|
2697 | I = I, strList2poly(tst); |
---|
2698 | } |
---|
2699 | return(I); |
---|
2700 | } |
---|
2701 | example |
---|
2702 | { |
---|
2703 | "EXAMPLE:"; echo = 2; |
---|
2704 | ring r =0,(x,y,z,t),dp; |
---|
2705 | def A = freeAlgebra(r, 4); |
---|
2706 | setring A; |
---|
2707 | string fn = "myfile"; |
---|
2708 | string s1 = "z*y*y*y - 3*y*z*x*y + 3*y*y*z*y - y*x*y*z,"; |
---|
2709 | string s2 = "-2*y*x*y*z + y*y*z*z - z*z*y*y + 2*z*y*z*y,"; |
---|
2710 | string s3 = "z*y*x*t - 2*y*z*y*t + y*y*z*t - t*z*y*y + 2*t*y*z*y - t*x*y*z;"; |
---|
2711 | write(":w "+fn,s1); write(":a "+fn,s2); write(":a "+fn,s3); |
---|
2712 | read(fn); |
---|
2713 | ideal I = file2lplace(fn); |
---|
2714 | I; |
---|
2715 | } |
---|
2716 | |
---|
2717 | /* EXAMPLES AGAIN: |
---|
2718 | //static proc get_ls3nilp() |
---|
2719 | { |
---|
2720 | //first app of file2lplace |
---|
2721 | ring r =0,(x,y,z,t),dp; |
---|
2722 | int d = 10; |
---|
2723 | def A = freeAlgebra(r, d); |
---|
2724 | setring A; |
---|
2725 | ideal I = file2lplace("./ls3nilp.bg"); |
---|
2726 | // and now test the correctness: go back from lplace to strings |
---|
2727 | lp2lstr(I,r); |
---|
2728 | setring r; |
---|
2729 | lst2str(@LN,1); // agree! |
---|
2730 | } |
---|
2731 | |
---|
2732 | */ |
---|
2733 | |
---|
2734 | // static proc lpMultX(poly f, poly g) |
---|
2735 | // { |
---|
2736 | // /* multiplies two polys in a very general setting correctly */ |
---|
2737 | // /* alternative to lpMult, possibly better at non-positive orderings */ |
---|
2738 | // |
---|
2739 | // if (lpAssumeViolation()) |
---|
2740 | // { |
---|
2741 | // ERROR("Incomplete Letterplace structure on the basering!"); |
---|
2742 | // } |
---|
2743 | // // decompose f,g into graded pieces with inForm: need dmodapp.lib |
---|
2744 | // int b = attrib(basering,"isLetterplaceRing"); // the length of the block |
---|
2745 | // intvec w; // inherit the graded on the oridinal ring |
---|
2746 | // int i; |
---|
2747 | // for(i=1; i<=b; i++) |
---|
2748 | // { |
---|
2749 | // w[i] = deg(var(i)); |
---|
2750 | // } |
---|
2751 | // intvec v = w; |
---|
2752 | // for(i=1; i< lpDegBound(basering); i++) |
---|
2753 | // { |
---|
2754 | // v = v,w; |
---|
2755 | // } |
---|
2756 | // w = v; |
---|
2757 | // poly p,q,s, result; |
---|
2758 | // s = g; |
---|
2759 | // while (f!=0) |
---|
2760 | // { |
---|
2761 | // p = inForm(f,w)[1]; |
---|
2762 | // f = f - p; |
---|
2763 | // s = g; |
---|
2764 | // while (s!=0) |
---|
2765 | // { |
---|
2766 | // q = inForm(s,w)[1]; |
---|
2767 | // s = s - q; |
---|
2768 | // result = result + lpMult(p,q); |
---|
2769 | // } |
---|
2770 | // } |
---|
2771 | // // shrinking |
---|
2772 | // // result; |
---|
2773 | // return( system("shrinktest",result,attrib(basering, "isLetterplaceRing")) ); |
---|
2774 | // } |
---|
2775 | // example |
---|
2776 | // { |
---|
2777 | // "EXAMPLE:"; echo = 2; |
---|
2778 | // // define a ring in letterplace form as follows: |
---|
2779 | // ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp; |
---|
2780 | // def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure |
---|
2781 | // setring R; |
---|
2782 | // poly a = x(1)*y(2)+x(1)+y(1); poly b = y(1)+3; |
---|
2783 | // lpMultX(b,a); |
---|
2784 | // lpMultX(a,b); |
---|
2785 | // } |
---|
2786 | // |
---|
2787 | // // multiply two letterplace polynomials, lpMult: done |
---|
2788 | // // reduction/ Normalform? needs kernel stuff |
---|
2789 | // |
---|
2790 | // |
---|
2791 | // proc lpMult(poly f, poly g) |
---|
2792 | // "USAGE: lpMult(f,g); f,g letterplace polynomials |
---|
2793 | // RETURN: poly |
---|
2794 | // ASSUME: basering has a letterplace ring structure |
---|
2795 | // PURPOSE: compute the letterplace form of f*g |
---|
2796 | // EXAMPLE: example lpMult; shows examples |
---|
2797 | // " |
---|
2798 | // { |
---|
2799 | // |
---|
2800 | // // changelog: |
---|
2801 | // // VL oct 2010: deg -> deg(_,w) for the length |
---|
2802 | // // shrink the result => don't need to decompose polys |
---|
2803 | // // since the shift is big enough |
---|
2804 | // |
---|
2805 | // // indeed it's better to have that |
---|
2806 | // // ASSUME: both f and g are quasi-homogeneous |
---|
2807 | // |
---|
2808 | // if (lpAssumeViolation()) |
---|
2809 | // { |
---|
2810 | // ERROR("Incomplete Letterplace structure on the basering!"); |
---|
2811 | // } |
---|
2812 | // intvec w = 1:nvars(basering); |
---|
2813 | // int sf = deg(f,w); // VL Oct 2010: we need rather length than degree |
---|
2814 | // int sg = deg(g,w); // esp. in the case of weighted ordering |
---|
2815 | // int uptodeg = attrib(basering, "uptodeg"); |
---|
2816 | // if (sf+sg > uptodeg) |
---|
2817 | // { |
---|
2818 | // ERROR("degree bound violated by the product!"); |
---|
2819 | // } |
---|
2820 | // // if (sf>1) { sf = sf -1; } |
---|
2821 | // poly v = f*shiftPoly(g,sf); |
---|
2822 | // // bug, reported by Simon King: in nonhomog case [solved] |
---|
2823 | // // we need to shrink |
---|
2824 | // return( system("shrinktest",v,attrib(basering, "isLetterplaceRing")) ); |
---|
2825 | // } |
---|
2826 | // example |
---|
2827 | // { |
---|
2828 | // "EXAMPLE:"; echo = 2; |
---|
2829 | // // define a ring in letterplace form as follows: |
---|
2830 | // ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp; |
---|
2831 | // def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure |
---|
2832 | // setring R; |
---|
2833 | // poly a = x(1)*y(2)+x(1)+y(1); poly b = y(1)+3; |
---|
2834 | // lpMult(b,a); |
---|
2835 | // lpMult(a,b); |
---|
2836 | // } |
---|
2837 | |
---|
2838 | static proc lpPower(poly f, int n) |
---|
2839 | "USAGE: lpPower(f,n); f letterplace polynomial, int n |
---|
2840 | RETURN: poly |
---|
2841 | ASSUME: basering has a letterplace ring structure |
---|
2842 | PURPOSE: compute the letterplace form of f^n |
---|
2843 | EXAMPLE: example lpPower; shows examples |
---|
2844 | " |
---|
2845 | { |
---|
2846 | if (n<0) { ERROR("the power must be a natural number!"); } |
---|
2847 | if (n==0) { return(poly(1)); } |
---|
2848 | if (n==1) { return(f); } |
---|
2849 | poly p = 1; |
---|
2850 | for(int i = 1; i <= n; i++) |
---|
2851 | { |
---|
2852 | p = p*f; |
---|
2853 | } |
---|
2854 | return(p); |
---|
2855 | } |
---|
2856 | example |
---|
2857 | { |
---|
2858 | "EXAMPLE:"; echo = 2; |
---|
2859 | // define a ring in letterplace form as follows: |
---|
2860 | ring r = 0,(x,y),dp; |
---|
2861 | def R = freeAlgebra(r, 4,2); // supply R with letterplace structure |
---|
2862 | setring R; |
---|
2863 | poly a = x*y + y; poly b = y - 1; |
---|
2864 | lpPower(a,2); |
---|
2865 | lpPower(b,4); |
---|
2866 | } |
---|
2867 | |
---|
2868 | //Main normal form procedure for the user |
---|
2869 | // TODO Oct 18: replace by legacy call to the kernel function |
---|
2870 | proc lpNF(poly p, ideal G) |
---|
2871 | "USAGE: lpNF(p,G); poly p, ideal G (deprecated in favor of reduce(). will be removed soon) |
---|
2872 | RETURN: poly |
---|
2873 | PURPOSE: computation of the normal form of p with respect to G |
---|
2874 | ASSUME: p is a Letterplace polynomial, G is a set Letterplace polynomials, |
---|
2875 | being a Letterplace Groebner basis (no check for this will be done) |
---|
2876 | NOTE: Strategy: take the smallest monomial wrt ordering for reduction |
---|
2877 | - For homogenous ideals the shift does not matter |
---|
2878 | - For non-homogenous ideals the first shift will be the smallest monomial |
---|
2879 | EXAMPLE: example lpNF; shows examples |
---|
2880 | " |
---|
2881 | {if ((p==0) || (size(G) == 0)){return(p);} |
---|
2882 | checkAssumptions(p,G); |
---|
2883 | G = sort(G)[1]; |
---|
2884 | list L = makeDVecI(G); |
---|
2885 | return(lpNormalForm2(p,G,L)); |
---|
2886 | } |
---|
2887 | example |
---|
2888 | { |
---|
2889 | "EXAMPLE:"; echo = 2; |
---|
2890 | ring r = 0,(x,y),dp; |
---|
2891 | def R = freeAlgebra(r, 4); setring R; |
---|
2892 | ideal I = x*x + y*y - 1; // 2D sphere |
---|
2893 | ideal J = letplaceGBasis(I); // compute a Letterplace Groebner basis |
---|
2894 | J; // it is finite and nice |
---|
2895 | poly f = lieBracket(x,y); f; |
---|
2896 | lpNF(f,J); |
---|
2897 | poly g = lieBracket(x,y*y); g; |
---|
2898 | lpNF(g,J); |
---|
2899 | } |
---|
2900 | /* old and more complicated example |
---|
2901 | { |
---|
2902 | "EXAMPLE:"; echo = 2; |
---|
2903 | ring r = 0,(x,y,z),dp; |
---|
2904 | int d =5; // degree |
---|
2905 | def R = freeAlgebra(r, d); |
---|
2906 | setring R; |
---|
2907 | ideal I = y*x*y - z*y*z, x*y*x - z*x*y, z*x*z - y*z*x, x*x*x + y*y*y + z*z*z + x*y*z; |
---|
2908 | ideal J = letplaceGBasis(I); // compute a Letterplace Groebner basis |
---|
2909 | poly p = y*x*y*z*y - y*z*z*y + z*y*z; |
---|
2910 | poly q = z*x*z*y*z - y*z*x*y*z; |
---|
2911 | lpNF(p,J); |
---|
2912 | lpNF(q,J); |
---|
2913 | } |
---|
2914 | */ |
---|
2915 | // analog of division(); but the output HAS different structure |
---|
2916 | proc lpDivision(poly p, ideal I) |
---|
2917 | "USAGE: lpDivision(p,G); poly p, ideal G |
---|
2918 | PURPOSE: compute a two-sided division with remainder of p wrt G; two-sided noncommutative analogue of the procedure division |
---|
2919 | ASSUME: G = {g1,...,gN} is a Groebner basis, the original ring of the Letterplace ring has the name 'r' and no variable is called 'tag_i' for i in 1...N |
---|
2920 | RETURN: list L |
---|
2921 | NOTE: - L[1] is NF(p,I) |
---|
2922 | - L[2] is the list of expressions [i,l_(ij),r_(ij)] with \sum_(i,j) l_(ij) g_i r_(ij) = p - NF(p,I) |
---|
2923 | - procedure lpGBPres2Poly, applied to L, reconstructs p |
---|
2924 | EXAMPLE: example lpDivision; shows examples |
---|
2925 | " |
---|
2926 | { |
---|
2927 | if (p == 0 || size(I) == 0) { |
---|
2928 | list L = 0; |
---|
2929 | list empty; |
---|
2930 | L[2] = empty; |
---|
2931 | return (L); |
---|
2932 | } |
---|
2933 | poly pNF = lpNF(p,I); |
---|
2934 | p = p - pNF; |
---|
2935 | |
---|
2936 | // make new ring |
---|
2937 | def save = basering; |
---|
2938 | int norigvars = lpVarBlockSize(save); |
---|
2939 | def Rtagged; def temp = save; |
---|
2940 | for (int i = 1; i <= size(I); i++) { |
---|
2941 | Rtagged = temp + ("tag_" + string(i)); |
---|
2942 | temp = Rtagged; |
---|
2943 | } kill i; |
---|
2944 | // currently R + "var" doesn't preserve uptodeg |
---|
2945 | Rtagged = setLetterplaceAttributes(Rtagged, lpVarBlockSize(Rtagged), lpDegBound(save)); |
---|
2946 | setring Rtagged; |
---|
2947 | |
---|
2948 | // restore vars |
---|
2949 | poly p = imap(save, p); |
---|
2950 | poly pNF = imap(save, pNF); |
---|
2951 | ideal I = imap(save, I); |
---|
2952 | for (int i = 1; i <= size(I); i++) { |
---|
2953 | I[i] = I[i] - var(norigvars + i); |
---|
2954 | } kill i; |
---|
2955 | |
---|
2956 | list summands; |
---|
2957 | list L = pNF; |
---|
2958 | poly pTaggedNF = lpNF(p,I); |
---|
2959 | for (int i = 1; i <= size(pTaggedNF); i++) { |
---|
2960 | intvec iv = lp2iv(pTaggedNF[i]); |
---|
2961 | for (int j = 1; j <= size(iv); j++) { |
---|
2962 | if (iv[j] > norigvars) { |
---|
2963 | intvec left; |
---|
2964 | intvec right; |
---|
2965 | if (j > 1) { |
---|
2966 | left = iv[1..(j-1)]; |
---|
2967 | } |
---|
2968 | if (j < size(iv)) { |
---|
2969 | right = iv[(j+1)..size(iv)]; |
---|
2970 | } |
---|
2971 | list summand = (iv[j] - norigvars), leadcoef(pTaggedNF[i])*iv2lp(left), iv2lp(right); |
---|
2972 | summands = insert(summands, summand, size(summands)); |
---|
2973 | |
---|
2974 | kill left; |
---|
2975 | kill right; |
---|
2976 | kill summand; |
---|
2977 | break; |
---|
2978 | } |
---|
2979 | } kill j; |
---|
2980 | kill iv; |
---|
2981 | } kill i; |
---|
2982 | |
---|
2983 | L[2] = summands; |
---|
2984 | |
---|
2985 | setring save; |
---|
2986 | list L = imap(Rtagged,L); |
---|
2987 | return (L); |
---|
2988 | } |
---|
2989 | example |
---|
2990 | { |
---|
2991 | "EXAMPLE:"; echo = 2; |
---|
2992 | ring r = 0,(x,y),dp; |
---|
2993 | def R = freeAlgebra(r, 4); setring R; |
---|
2994 | ideal I = x*x + y*y - 1; // 2D sphere |
---|
2995 | ideal J = letplaceGBasis(I); // compute a Letterplace Groebner basis |
---|
2996 | J; // it is finite and nice |
---|
2997 | poly h = x*x*y-y*x*x+x*y; |
---|
2998 | lpDivision(h,J); // what means that the NF of h wrt J is x*y |
---|
2999 | h - lpNF(h,J); // and this poly has the folowing two-sided Groebner presentation: |
---|
3000 | -y*J[1] + J[1]*y; |
---|
3001 | } |
---|
3002 | |
---|
3003 | proc lpGBPres2Poly(list L, ideal I) |
---|
3004 | "USAGE: lpGBPres2Poly(p,G); poly p, ideal G |
---|
3005 | ASSUME: L is a valid Groebner presentation like the result of lpDivision |
---|
3006 | RETURN: poly |
---|
3007 | NOTE: assembles p = \sum_(i,j) l_(ij) g_i r_(ij) + NF(p,I) = \sum_(i) L[2][i][2] I[L[2][i][1]] L[2][i][3] + L[1] |
---|
3008 | EXAMPLE: example lpGBPres2Poly; shows examples |
---|
3009 | " |
---|
3010 | { |
---|
3011 | poly p; |
---|
3012 | for (int i = 1; i <= size(L[2]); i++) { |
---|
3013 | p = p + L[2][i][2] * I[L[2][i][1]] * L[2][i][3]; |
---|
3014 | } |
---|
3015 | p = p + L[1]; |
---|
3016 | return (p); |
---|
3017 | } |
---|
3018 | example |
---|
3019 | { |
---|
3020 | "EXAMPLE:"; echo = 2; |
---|
3021 | ring r = 0,(x,y),dp; |
---|
3022 | def R = freeAlgebra(r, 4); setring R; |
---|
3023 | ideal I = x*x + y*y - 1; // 2D sphere |
---|
3024 | ideal J = letplaceGBasis(I); // compute a Letterplace Groebner basis |
---|
3025 | J; // it is finite and nice |
---|
3026 | poly h = x*x*y-y*x*x+x*y; |
---|
3027 | list L = lpDivision(h,J); // what means that the NF of h wrt J is x*y |
---|
3028 | lpGBPres2Poly(L,J); // we see, that it is equal to h from above |
---|
3029 | } |
---|
3030 | |
---|
3031 | |
---|
3032 | |
---|
3033 | |
---|
3034 | //procedures to convert monomials into the DVec representation, all static |
---|
3035 | //////////////////////////////////////////////////////// |
---|
3036 | |
---|
3037 | |
---|
3038 | static proc getExpVecs(ideal G) |
---|
3039 | "USUAGE: getExpVecs(G); |
---|
3040 | RETURN: list of intvecs |
---|
3041 | PURPOSE: convert G into a list of intvecs, corresponding to the exponent vector |
---|
3042 | of the leading monomials of G |
---|
3043 | " |
---|
3044 | {int i; list L; |
---|
3045 | for (i = 1; i <= size(G); i++) {L[i] = leadexp(G[i]); } |
---|
3046 | return(L); |
---|
3047 | } |
---|
3048 | |
---|
3049 | static proc delSupZero(intvec I) |
---|
3050 | "USUAGE:delSupZero(I); |
---|
3051 | RETURN: intvec |
---|
3052 | PURPOSE: Deletes superfluous zero blocks of an exponent vector |
---|
3053 | ASSUME: Intvec is an exponent vector of a letterplace monomial contained in V' |
---|
3054 | " |
---|
3055 | {if (I==intvec(0)) {return(intvec(0));} |
---|
3056 | int j,k,l; |
---|
3057 | int n = lpVarBlockSize(basering); int d = lpDegBound(basering); |
---|
3058 | intvec w; j = 1; |
---|
3059 | while (j <= d) |
---|
3060 | {w = I[1..n]; |
---|
3061 | if (w<>intvec(0)){break;} |
---|
3062 | else {I = I[(n+1)..(n*d)]; d = d-1; j++;} |
---|
3063 | } |
---|
3064 | for (j = 1; j <= d; j++) |
---|
3065 | {l=(j-1)*n+1; k= j*n; |
---|
3066 | w = I[l..k]; |
---|
3067 | if (w==intvec(0)){w = I[1..(l-1)]; return(w);}//if a zero block is found there are only zero blocks left, |
---|
3068 | //otherwise there would be a hole in the monomial |
---|
3069 | // shrink should take care that this will not happen |
---|
3070 | } |
---|
3071 | return(I); |
---|
3072 | } |
---|
3073 | |
---|
3074 | static proc delSupZeroList(list L) |
---|
3075 | "USUAGE:delSupZeroList(L); L a list, containing intvecs |
---|
3076 | RETURN: list, containing intvecs |
---|
3077 | PURPOSE: Deletes all superfluous zero blocks for a list of exponent vectors |
---|
3078 | ASSUME: All intvecs are exponent vectors of letterplace monomials contained in V' |
---|
3079 | " |
---|
3080 | {int i; |
---|
3081 | for (i = size(L); 0 < i; i--){L[i] = delSupZero(L[i]);} |
---|
3082 | return(L); |
---|
3083 | } |
---|
3084 | |
---|
3085 | |
---|
3086 | static proc makeDVec(intvec V) |
---|
3087 | "USUAGE:makeDVec(V); |
---|
3088 | RETURN: intvec |
---|
3089 | PURPOSE: Converts an modified exponent vector into an Dvec |
---|
3090 | NOTE: Superfluos zero blocks must have been deleted befor using this procedure |
---|
3091 | " |
---|
3092 | {int i,j,k,r1,r2; intvec D; |
---|
3093 | int n = lpVarBlockSize(basering); |
---|
3094 | k = size(V) div n; r1 = 0; r2 = 0; |
---|
3095 | for (i=1; i<= k; i++) |
---|
3096 | {for (j=(1+((i-1)*n)); j <= (i*n); j++) |
---|
3097 | {if (V[j]>0){r2 = j - ((i-1)*n); j = (j mod n); break;} |
---|
3098 | } |
---|
3099 | D[size(D)+1] = r1+r2; |
---|
3100 | if (j == 0) {r1 = 0;} else{r1= n-j;} |
---|
3101 | } |
---|
3102 | D = D[2..size(D)]; |
---|
3103 | return(D); |
---|
3104 | } |
---|
3105 | |
---|
3106 | static proc makeDVecL(list L) |
---|
3107 | "USUAGE:makeDVecL(L); L, a list containing intvecs |
---|
3108 | RETURN: list, containing intvecs |
---|
3109 | ASSUME: |
---|
3110 | " |
---|
3111 | {int i; list R; |
---|
3112 | for (i=1; i <= size(L); i++) {R[i] = makeDVec(L[i]);} |
---|
3113 | return(R); |
---|
3114 | } |
---|
3115 | |
---|
3116 | static proc makeDVecI(ideal G) |
---|
3117 | "USUAGE:makeDVecI(G); |
---|
3118 | RETURN:list, containing intvecs |
---|
3119 | PURPOSE:computing the DVec representation for lead(G) |
---|
3120 | ASSUME: |
---|
3121 | " |
---|
3122 | {list L = delSupZeroList(getExpVecs(G)); |
---|
3123 | return(makeDVecL(L)); |
---|
3124 | } |
---|
3125 | |
---|
3126 | |
---|
3127 | //procedures, which are dealing with the DVec representation, all static |
---|
3128 | |
---|
3129 | static proc dShiftDiv(intvec V, intvec W) |
---|
3130 | "USUAGE: dShiftDiv(V,W); |
---|
3131 | RETURN: a list,containing integers, or -1, if no shift of W divides V |
---|
3132 | PURPOSE: find all possible shifts s, such that s.W|V |
---|
3133 | ASSUME: V,W are DVecs of monomials contained in V' |
---|
3134 | " |
---|
3135 | {if(size(V)<size(W)){return(list(-1));} |
---|
3136 | |
---|
3137 | int i,j,r; intvec T; list R; |
---|
3138 | int n = lpVarBlockSize(basering); |
---|
3139 | int k = size(V) - size(W) + 1; |
---|
3140 | if (intvec(V[1..size(W)])-W == 0){R[1]=0;} |
---|
3141 | for (i =2; i <=k; i++) |
---|
3142 | {r = 0; kill T; intvec T; |
---|
3143 | for (j =1; j <= i; j++) {r = r + V[j];} |
---|
3144 | //if (i==1) {T[1] = r-(i-1)*n;} else |
---|
3145 | T[1] = r-(i-1)*n; if (size(W)>1) {T[2..size(W)] = V[(i+1)..(size(W)+i-1)];} |
---|
3146 | if (T-W == 0) {R[size(R)+1] = i-1;} |
---|
3147 | } |
---|
3148 | if (size(R)>0) {return(R);} |
---|
3149 | else {return(list(-1));} |
---|
3150 | } |
---|
3151 | |
---|
3152 | //the first normal form procedure, if a user want not to presort the ideal, just make it not static |
---|
3153 | static proc lpNormalForm1(poly p, ideal G, list L) |
---|
3154 | "USUAGE:lpNormalForm1(p,G); |
---|
3155 | RETURN:poly |
---|
3156 | PURPOSE:computation of the normalform of p w.r.t. G |
---|
3157 | ASSUME: p is a Letterplace polynomial, G is a set of Letterplace polynomials |
---|
3158 | NOTE: Taking the first possible reduction |
---|
3159 | " |
---|
3160 | { |
---|
3161 | if (deg(p) <1) {return(p);} |
---|
3162 | else |
---|
3163 | { |
---|
3164 | int i; int s; |
---|
3165 | intvec V = makeDVec(delSupZero(leadexp(p))); |
---|
3166 | for (i = 1; i <= size(L); i++) |
---|
3167 | {s = dShiftDiv(V, L[i])[1]; |
---|
3168 | if (s <> -1) |
---|
3169 | {p = lpReduce(p,G[i],s); |
---|
3170 | p = lpNormalForm1(p,G,L); |
---|
3171 | break; |
---|
3172 | } |
---|
3173 | } |
---|
3174 | p = p[1] + lpNormalForm1(p-p[1],G,L); |
---|
3175 | return(p); |
---|
3176 | } |
---|
3177 | } |
---|
3178 | |
---|
3179 | // VL; called from lpNF |
---|
3180 | static proc lpNormalForm2(poly pp, ideal G, list L) |
---|
3181 | "USUAGE:lpNormalForm2(p,G); |
---|
3182 | RETURN:poly |
---|
3183 | PURPOSE:computation of the normal form of p w.r.t. G |
---|
3184 | ASSUME: p is a Letterplace polynomial, G is a set of Letterplace polynomials |
---|
3185 | NOTE: Taking the first possible reduction |
---|
3186 | " |
---|
3187 | { |
---|
3188 | poly one = 1; |
---|
3189 | if ( (pp == 0) || (leadmonom(pp) == one) ) { return(pp); } |
---|
3190 | poly p = pp; poly q; |
---|
3191 | int i; int s; intvec V; |
---|
3192 | while ( (p != 0) && (leadmonom(p) != one) ) |
---|
3193 | { |
---|
3194 | //"entered while with p="; p; |
---|
3195 | V = makeDVec(delSupZero(leadexp(p))); |
---|
3196 | i = 0; |
---|
3197 | s = -1; |
---|
3198 | //"look for divisor"; |
---|
3199 | while ( (s == -1) && (i<size(L)) ) |
---|
3200 | { |
---|
3201 | i = i+1; |
---|
3202 | s = dShiftDiv(V, L[i])[1]; |
---|
3203 | } |
---|
3204 | // now, out of here: either i=size(L) and s==-1 => no reduction |
---|
3205 | // otherwise: i<=size(L) and s!= -1 => reduction |
---|
3206 | //"out of divisor search: s="; s; "i="; i; |
---|
3207 | if (s != -1) |
---|
3208 | { |
---|
3209 | //"start reducing with G[i]:"; |
---|
3210 | p = lpReduce(p,G[i],s); // lm-reduction |
---|
3211 | //"reduced to p="; p; |
---|
3212 | } |
---|
3213 | else |
---|
3214 | { |
---|
3215 | // ie no lm-reduction possible; proceed with the tail reduction |
---|
3216 | q = p-lead(p); |
---|
3217 | p = lead(p); |
---|
3218 | if (q!=0) |
---|
3219 | { |
---|
3220 | p = p + lpNormalForm2(q,G,L); |
---|
3221 | } |
---|
3222 | return(p); |
---|
3223 | } |
---|
3224 | } |
---|
3225 | // out of while when p==0 or p == const |
---|
3226 | return(p); |
---|
3227 | } |
---|
3228 | |
---|
3229 | proc isOrderingShiftInvariant(int withHoles) |
---|
3230 | "USAGE: isOrderingShiftInvariant(b); b an integer interpreted as a boolean |
---|
3231 | RETURN: int |
---|
3232 | NOTE: Tests whether the ordering of the current ring is shift invariant, which is the case, when LM(p) > LM(p') for all p and p' where p' is p shifted by any number of places. |
---|
3233 | @* If withHoles != 0 even Letterplace polynomials with holes (eg. x(1)*y(4)) are considered. |
---|
3234 | ASSUME: - basering is a Letterplace ring. |
---|
3235 | " |
---|
3236 | { |
---|
3237 | int shiftInvariant = 1; |
---|
3238 | |
---|
3239 | int d = lpDegBound(basering); |
---|
3240 | |
---|
3241 | ideal monomials; |
---|
3242 | if (withHoles) { |
---|
3243 | monomials = delete(lpMonomialsWithHoles(d-1), 1); // ignore the first element (1) |
---|
3244 | } else { |
---|
3245 | monomials = maxideal(1); |
---|
3246 | for (int i = 2; i <= d-1; i++) { |
---|
3247 | monomials = monomials, maxideal(i); |
---|
3248 | } kill i; |
---|
3249 | } |
---|
3250 | |
---|
3251 | for (int i = 1; i <= size(monomials); i++) { |
---|
3252 | poly monom = monomials[i]; |
---|
3253 | int lastblock = lastBlock(monom); |
---|
3254 | for (int s = 1; s <= d - lastblock; s++) { |
---|
3255 | for (int s2 = 0; s2 < s; s2++) { // paranoid, check every pair |
---|
3256 | poly first = shiftPoly(monom,s2); |
---|
3257 | poly second = shiftPoly(monom,s); |
---|
3258 | if (!(first > second)) { |
---|
3259 | if (printlevel >= voice) { // otherwise string() is always evaluated |
---|
3260 | dbprint(string(first) + " <= " + string(second)); |
---|
3261 | } |
---|
3262 | shiftInvariant = 0; |
---|
3263 | } |
---|
3264 | kill first; kill second; |
---|
3265 | } kill s2; |
---|
3266 | } kill s; |
---|
3267 | kill monom; kill lastblock; |
---|
3268 | } kill i; |
---|
3269 | |
---|
3270 | return(shiftInvariant); |
---|
3271 | } |
---|
3272 | example |
---|
3273 | { |
---|
3274 | "EXAMPLE:"; echo = 2; |
---|
3275 | ring r = 0,(x,y,z),dp; |
---|
3276 | def R = freeAlgebra(r, 5); |
---|
3277 | setring R; |
---|
3278 | isOrderingShiftInvariant(0);// should be 1 |
---|
3279 | |
---|
3280 | ring r = 0,(x,y,z),dp; |
---|
3281 | def R = freeAlgebra(r, 5); |
---|
3282 | list RL = ringlist(R); |
---|
3283 | RL[3][1][1] = "wp"; |
---|
3284 | intvec weights = 1,1,1,1,1,1,1,2,3,1,1,1,1,1,1; |
---|
3285 | RL[3][1][2] = weights; |
---|
3286 | attrib(RL,"isLetterplaceRing",3); |
---|
3287 | attrib(RL,"maxExp",1); |
---|
3288 | def Rw = setLetterplaceAttributes(ring(RL),5,3); |
---|
3289 | setring Rw; |
---|
3290 | /* printlevel = voice + 1; */ |
---|
3291 | isOrderingShiftInvariant(0); |
---|
3292 | isOrderingShiftInvariant(1); |
---|
3293 | } |
---|
3294 | |
---|
3295 | static proc lpMonomialsWithHoles(int d) |
---|
3296 | { |
---|
3297 | if (d < 0) { |
---|
3298 | ERROR("d must not be negative") |
---|
3299 | } |
---|
3300 | |
---|
3301 | ideal monomials = 1; |
---|
3302 | if (d == 0) { |
---|
3303 | return (monomials); |
---|
3304 | } |
---|
3305 | |
---|
3306 | int lV = lpVarBlockSize(basering); // variable count |
---|
3307 | ideal prevMonomials = lpMonomialsWithHoles(d - 1); |
---|
3308 | |
---|
3309 | for (int i = 1; i <= size(prevMonomials); i++) { |
---|
3310 | /* if (deg(prevMonomials[i]) >= d - 1) { */ |
---|
3311 | for (int j = 1; j <= lV; j++) { |
---|
3312 | poly m = prevMonomials[i]; |
---|
3313 | m = m * var(j + (d-1)*lV); |
---|
3314 | monomials = monomials, m; |
---|
3315 | kill m; |
---|
3316 | } kill j; |
---|
3317 | /* } */ |
---|
3318 | } kill i; |
---|
3319 | |
---|
3320 | if (d > 1) { |
---|
3321 | // removes the 1 |
---|
3322 | monomials[1] = 0; |
---|
3323 | monomials = simplify(monomials,2); |
---|
3324 | |
---|
3325 | monomials = prevMonomials, monomials; |
---|
3326 | } |
---|
3327 | return (monomials); |
---|
3328 | } |
---|
3329 | |
---|
3330 | static proc getlpCoeffs(poly q, poly p) |
---|
3331 | {list R; intvec cq,t,lv,rv,bla; |
---|
3332 | int n = lpVarBlockSize(basering); int d = lpDegBound(basering); |
---|
3333 | int i; |
---|
3334 | cq = leadexp(p)-leadexp(q); /* p/q */ |
---|
3335 | for (i = 1; i<= d; i++) |
---|
3336 | {bla = cq[((i-1)*n+1)..(i*n)]; |
---|
3337 | if (bla == 0) {lv = cq[1..i*n]; cq = cq[(i*n+1)..(d*n)]; break;} |
---|
3338 | } |
---|
3339 | |
---|
3340 | d = size(cq) div n; |
---|
3341 | for (i = 1; i<= d; i++) |
---|
3342 | {bla = cq[((i-1)*n+1)..(i*n)]; |
---|
3343 | if (bla <> 0){rv = cq[((i-1)*n+1)..(d*n)]; break;} |
---|
3344 | } |
---|
3345 | return(list(monomial(lv),monomial(rv))); |
---|
3346 | } |
---|
3347 | |
---|
3348 | static proc lpReduce(poly p, poly g, int s) |
---|
3349 | "NOTE: shift can not exceed the degree bound, because s*g | p |
---|
3350 | " |
---|
3351 | {poly l,r,qt; int i; |
---|
3352 | list K = getlpCoeffs(lead(shiftPoly(g,s)), lead(p)); |
---|
3353 | l = K[1]; r = K[2]; |
---|
3354 | kill K; |
---|
3355 | for (i = 1; i <= size(g); i++) |
---|
3356 | { |
---|
3357 | qt = qt + l*g[i]*r; |
---|
3358 | } |
---|
3359 | return(p - leadcoef(p)*normalize(qt)); |
---|
3360 | } |
---|
3361 | |
---|
3362 | static proc entryViolation(intmat M, int n) |
---|
3363 | "PURPOSE:checks, if all entries in M are variable-related |
---|
3364 | " |
---|
3365 | {int i,j; |
---|
3366 | for (i = 1; i <= nrows(M); i++) |
---|
3367 | {for (j = 1; j <= ncols(M); j++) |
---|
3368 | {if(!((1<=M[i,j])&&(M[i,j]<=n))) {return(1);}} |
---|
3369 | } |
---|
3370 | return(0); |
---|
3371 | } |
---|
3372 | |
---|
3373 | static proc checkAssumptionsLPIV(int d, list L) |
---|
3374 | "PURPOSE: Checks, if all the Assumptions are holding |
---|
3375 | " |
---|
3376 | {if (!isFreeAlgebra(basering)) {ERROR("Basering is not a Letterplace ring!");} |
---|
3377 | if (d > lpDegBound(basering)) {ERROR("Specified degree bound exceeds ring parameter!");} |
---|
3378 | int i; |
---|
3379 | for (i = 1; i <= size(L); i++) |
---|
3380 | {if (entryViolation(L[i], lpVarBlockSize(basering))) |
---|
3381 | {ERROR("Not allowed monomial/intvec found!");} |
---|
3382 | } |
---|
3383 | return(); |
---|
3384 | } |
---|
3385 | |
---|
3386 | static proc checkAssumptions(poly p, ideal G) |
---|
3387 | " |
---|
3388 | " |
---|
3389 | {checkLPRing(); |
---|
3390 | checkAssumptionPoly(p); |
---|
3391 | checkAssumptionIdeal(G); |
---|
3392 | return(); |
---|
3393 | } |
---|
3394 | |
---|
3395 | static proc checkLPRing(); |
---|
3396 | " |
---|
3397 | " |
---|
3398 | {if (!isFreeAlgebra(basering)) {ERROR("Basering is not a Letterplace ring!");} |
---|
3399 | return(); |
---|
3400 | } |
---|
3401 | |
---|
3402 | static proc checkAssumptionIdeal(ideal G) |
---|
3403 | "PURPOSE:Check if all elements of ideal are elements of V' |
---|
3404 | " |
---|
3405 | {ideal L = lead(normalize(G)); |
---|
3406 | int i; |
---|
3407 | for (i = 1; i <= ncols(G); i++) {if (!isContainedInVp(G[i])) {ERROR("Ideal containes elements not contained in V'");}} |
---|
3408 | return(); |
---|
3409 | } |
---|
3410 | |
---|
3411 | static proc checkAssumptionPoly(poly p) |
---|
3412 | "PURPOSE:Check if p is an element of V' |
---|
3413 | " |
---|
3414 | {poly l = lead(normalize(p)); |
---|
3415 | if (!isContainedInVp(l)) {ERROR("Polynomial is not contained in V'");} |
---|
3416 | return(); |
---|
3417 | } |
---|
3418 | |
---|
3419 | static proc isContainedInVp(poly p) |
---|
3420 | "PURPOSE: Check monomial for holes in the places |
---|
3421 | " |
---|
3422 | {int r = 0; intvec w; |
---|
3423 | intvec l = leadexp(p); |
---|
3424 | int n = lpVarBlockSize(basering); int d = lpDegBound(basering); |
---|
3425 | int i,j,c,c1; |
---|
3426 | while (1 <= d) |
---|
3427 | { |
---|
3428 | w = l[1..n]; |
---|
3429 | if (w<>(0:n)) {break;} |
---|
3430 | else |
---|
3431 | { |
---|
3432 | if (size(w)==size(l)) break; |
---|
3433 | l = l[(n+1)..(n*d)]; |
---|
3434 | d = d-1; |
---|
3435 | } |
---|
3436 | } |
---|
3437 | |
---|
3438 | while (1 <= d) |
---|
3439 | {for (j = 1; j <= n; j++) |
---|
3440 | {if (l[j]<>0) |
---|
3441 | {if (c1<>0){return(0);} |
---|
3442 | if (c<>0){return(0);} |
---|
3443 | if (l[j]<>1){return(0);} |
---|
3444 | c=1; |
---|
3445 | } |
---|
3446 | } |
---|
3447 | if (c == 0){c1=1;if (1 < d){l = l[(n+1)..(n*d)]; d = d-1;} else {d = d -1;}} |
---|
3448 | else {c = 0; if (1 < d){l = l[(n+1)..(n*d)]; d = d-1;} else {d = d -1;}} |
---|
3449 | } |
---|
3450 | return(1); |
---|
3451 | } |
---|
3452 | |
---|
3453 | static proc extractLinearPart(module M) |
---|
3454 | { |
---|
3455 | /* returns vectors from a module whose max leadexp is 1 */ |
---|
3456 | /* does not take nonlinearity into account yet */ |
---|
3457 | /* use rather kernel function isinV to get really nonlinear things */ |
---|
3458 | int i; int s = ncols(M); |
---|
3459 | int answer = 1; |
---|
3460 | vector v; module Ret; |
---|
3461 | for(i=1; i<=s; i++) |
---|
3462 | { |
---|
3463 | if ( isLinearVector(M[i]) ) |
---|
3464 | { |
---|
3465 | Ret = Ret, M[i]; |
---|
3466 | } |
---|
3467 | } |
---|
3468 | Ret = simplify(Ret,2); |
---|
3469 | return(Ret); |
---|
3470 | } |
---|
3471 | |
---|
3472 | static proc isLinearVector(vector v) |
---|
3473 | { |
---|
3474 | /* vector v consists of polynomials */ |
---|
3475 | /* returns true iff max leadexp is 1 */ |
---|
3476 | int i,j,k; |
---|
3477 | intvec w; |
---|
3478 | int s = size(v); |
---|
3479 | poly p; |
---|
3480 | int answer = 1; |
---|
3481 | for(i=1; i<=s; i++) |
---|
3482 | { |
---|
3483 | p = v[i]; |
---|
3484 | while (p != 0) |
---|
3485 | { |
---|
3486 | w = leadexp(p); |
---|
3487 | j = Max(w); |
---|
3488 | if (j >=2) |
---|
3489 | { |
---|
3490 | answer = 0; |
---|
3491 | return(answer); |
---|
3492 | } |
---|
3493 | p = p-lead(p); |
---|
3494 | } |
---|
3495 | } |
---|
3496 | return(answer); |
---|
3497 | } |
---|
3498 | |
---|
3499 | |
---|
3500 | // // the following is to determine a shift of a mono/poly from the |
---|
3501 | // // interface |
---|
3502 | |
---|
3503 | // static proc whichshift(poly p, int numvars) |
---|
3504 | // { |
---|
3505 | // // numvars = number of vars of the orig free algebra |
---|
3506 | // // assume: we are in the letterplace ring |
---|
3507 | // // takes monomial on the input |
---|
3508 | // poly q = lead(p); |
---|
3509 | // intvec v = leadexp(v); |
---|
3510 | // if (v==0) { return(int(0)); } |
---|
3511 | // int sv = size(v); |
---|
3512 | // int i=1; |
---|
3513 | // while ( (v[i]==0) && (i<sv) ) { i++; } |
---|
3514 | // i = sv div i; |
---|
3515 | // return(i); |
---|
3516 | // } |
---|
3517 | |
---|
3518 | |
---|
3519 | // LIB "qhmoduli.lib"; |
---|
3520 | // static proc polyshift(poly p, int numvars) |
---|
3521 | // { |
---|
3522 | // poly q = p; int i = 0; |
---|
3523 | // while (q!=0) |
---|
3524 | // { |
---|
3525 | // i = Max(i, whichshift(q,numvars)); |
---|
3526 | // q = q - lead(q); |
---|
3527 | // } |
---|
3528 | // return(q); |
---|
3529 | // } |
---|
3530 | |
---|
3531 | static proc lpAssumeViolation() |
---|
3532 | { |
---|
3533 | // checks whether the global vars |
---|
3534 | // uptodeg and lV are defined |
---|
3535 | // returns Boolean : yes/no [for assume violation] |
---|
3536 | def uptodeg = lpDegBound(basering); |
---|
3537 | if ( typeof(uptodeg)!="int" ) |
---|
3538 | { |
---|
3539 | return(1); |
---|
3540 | } |
---|
3541 | return (!isFreeAlgebra(basering)) |
---|
3542 | } |
---|
3543 | |
---|
3544 | // obsolete |
---|
3545 | static proc lshift(module M, int s, string varing, def lpring) |
---|
3546 | { |
---|
3547 | // FINALLY IMPLEMENTED AS A PART OT THE C CODE |
---|
3548 | // shifts a polynomial from the ring R to s positions |
---|
3549 | // M lives in varing, the result in lpring |
---|
3550 | // to be run from varing |
---|
3551 | int i, j, k, sm, sv; |
---|
3552 | vector v; |
---|
3553 | // execute("setring "+lpring); |
---|
3554 | setring lpring; |
---|
3555 | poly @@p; |
---|
3556 | ideal I; |
---|
3557 | execute("setring "+varing); |
---|
3558 | sm = ncols(M); |
---|
3559 | for (i=1; i<=s; i++) |
---|
3560 | { |
---|
3561 | // modules, e.g. free polynomials |
---|
3562 | for (j=1; j<=sm; j++) |
---|
3563 | { |
---|
3564 | //vectors, e.g. free monomials |
---|
3565 | v = M[j]; |
---|
3566 | sv = size(v); |
---|
3567 | sp = "@@p = @@p + "; |
---|
3568 | for (k=2; k<=sv; k++) |
---|
3569 | { |
---|
3570 | sp = sp + string(v[k])+"("+string(k-1+s)+")*"; |
---|
3571 | } |
---|
3572 | sp = sp + string(v[1])+";"; // coef; |
---|
3573 | setring lpring; |
---|
3574 | // execute("setring "+lpring); |
---|
3575 | execute(sp); |
---|
3576 | execute("setring "+varing); |
---|
3577 | } |
---|
3578 | setring lpring; |
---|
3579 | // execute("setring "+lpring); |
---|
3580 | I = I,@@p; |
---|
3581 | @@p = 0; |
---|
3582 | } |
---|
3583 | setring lpring; |
---|
3584 | //execute("setring "+lpring); |
---|
3585 | export(I); |
---|
3586 | // setring varing; |
---|
3587 | execute("setring "+varing); |
---|
3588 | } |
---|
3589 | |
---|
3590 | static proc skip0(vector v) |
---|
3591 | { |
---|
3592 | // skips zeros in a vector, producing another vector |
---|
3593 | if ( (v[1]==0) || (v==0) ) { return(vector(0)); } |
---|
3594 | int sv = nrows(v); |
---|
3595 | int sw = size(v); |
---|
3596 | if (sv == sw) |
---|
3597 | { |
---|
3598 | return(v); |
---|
3599 | } |
---|
3600 | int i; |
---|
3601 | int j=1; |
---|
3602 | vector w; |
---|
3603 | for (i=1; i<=sv; i++) |
---|
3604 | { |
---|
3605 | if (v[i] != 0) |
---|
3606 | { |
---|
3607 | w = w + v[i]*gen(j); |
---|
3608 | j++; |
---|
3609 | } |
---|
3610 | } |
---|
3611 | return(w); |
---|
3612 | } |
---|
3613 | |
---|
3614 | // static proc bugSKing() |
---|
3615 | // { |
---|
3616 | // LIB "freegb.lib"; |
---|
3617 | // ring r=0,(a,b),dp; |
---|
3618 | // def R = freeAlgebra(r, 5); |
---|
3619 | // setring R; |
---|
3620 | // poly p = a(1); |
---|
3621 | // poly q = b(1); |
---|
3622 | // poly p2 = lpPower(p,2); |
---|
3623 | // lpMult(p2+q,q)-lpMult(p2,q)-lpMult(q,q); // now its 0 |
---|
3624 | // } |
---|
3625 | // |
---|
3626 | // static proc bugRucker() |
---|
3627 | // { |
---|
3628 | // // needs unstatic lpMultX |
---|
3629 | // LIB "freegb.lib"; |
---|
3630 | // ring r=0,(a,b,c,d,p,q,r,s,t,u,v,w),(a(7,1,1,7),dp); |
---|
3631 | // def R=freeAlgebra(r, 20,1); |
---|
3632 | // setring R; |
---|
3633 | // option(redSB); option(redTail); |
---|
3634 | // ideal I=a(1)*b(2)*c(3)-p(1)*q(2)*r(3)*s(4)*t(5)*u(6),b(1)*c(2)*d(3)-v(1)*w(2); |
---|
3635 | // poly ttt = a(1)*v(2)*w(3)-p(1)*q(2)*r(3)*s(4)*t(5)*u(6)*d(7); |
---|
3636 | // // with lpMult |
---|
3637 | // lpMult(I[1],d(1)) - lpMult(a(1),I[2]); // spoly; has been incorrect before |
---|
3638 | // _ - ttt; |
---|
3639 | // // with lpMultX |
---|
3640 | // lpMultX(I[1],d(1)) - lpMultX(a(1),I[2]); // spoly; has been incorrect before |
---|
3641 | // _ - ttt; |
---|
3642 | // } |
---|
3643 | // |
---|
3644 | // static proc checkWeightedExampleLP() |
---|
3645 | // { |
---|
3646 | // ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),wp(2,1,2,1,2,1,2,1); |
---|
3647 | // def R = setLetterplaceAttributes(r,4,2); // supply R with letterplace structure |
---|
3648 | // setring R; |
---|
3649 | // poly a = x(1)*y(2)+x(1)+y(1); poly b = y(1)+3; |
---|
3650 | // lpMultX(b,a); |
---|
3651 | // lpMultX(a,b); // seems to work properly |
---|
3652 | // } |
---|
3653 | |
---|
3654 | // ----------------- iv2lp and lp2iv ---------------------- |
---|
3655 | proc ivL2lpI(list L) |
---|
3656 | "USAGE: ivL2lpI(L); L a list of intvecs (deprecated, will be removed soon) |
---|
3657 | RETURN: ideal |
---|
3658 | PURPOSE:Transforming a list of intvecs into an ideal of Letterplace monomials |
---|
3659 | ASSUME: - Intvec corresponds to a Letterplace monomial |
---|
3660 | @* - basering has to be a Letterplace ring |
---|
3661 | NOTE: - Assumptions will not be checked! |
---|
3662 | EXAMPLE: example ivL2lpI; shows examples |
---|
3663 | " |
---|
3664 | { |
---|
3665 | int i; ideal G; |
---|
3666 | poly p; |
---|
3667 | for (i = 1; i <= size(L); i++) |
---|
3668 | { |
---|
3669 | p = iv2lp(L[i]); |
---|
3670 | G[(size(G) + 1)] = p; |
---|
3671 | } |
---|
3672 | return(G); |
---|
3673 | } |
---|
3674 | example |
---|
3675 | { |
---|
3676 | "EXAMPLE:"; echo = 2; |
---|
3677 | ring r = 0,(x,y,z),dp; |
---|
3678 | def R = freeAlgebra(r, 5);// constructs a Letterplace ring |
---|
3679 | setring R; //sets basering to Letterplace ring |
---|
3680 | intvec u = 1,1,2; intvec v = 2,1,3; intvec w = 3,1,1; |
---|
3681 | // u = x^2y, v = yxz, w = zx^2 in intvec representation |
---|
3682 | list L = u,v,w; |
---|
3683 | ivL2lpI(L);// invokes the procedure, returns the ideal containing u,v,w |
---|
3684 | } |
---|
3685 | |
---|
3686 | proc iv2lp(intvec I) |
---|
3687 | "USAGE: iv2lp(I); I an intvec (deprecated, will be removed soon) |
---|
3688 | RETURN: poly |
---|
3689 | PURPOSE:Transforming an intvec into the corresponding Letterplace polynomial |
---|
3690 | ASSUME: - Intvec corresponds to a Letterplace monomial |
---|
3691 | @* - basering has to be a Letterplace ring |
---|
3692 | NOTE: - Assumptions will not be checked! |
---|
3693 | EXAMPLE: example iv2lp; shows examples |
---|
3694 | " |
---|
3695 | {if (I[1] == 0) {return(1);} |
---|
3696 | int i = size(I); |
---|
3697 | if (i > lpDegBound(basering)) {ERROR("polynomial exceeds degreebound");} |
---|
3698 | int j; poly p = 1; |
---|
3699 | for (j = 1; j <= i; j++) {if (I[j] > 0) { p = p*var(I[j]);}} //ignore zeroes, because they correspond to 1 |
---|
3700 | return(p); |
---|
3701 | } |
---|
3702 | example |
---|
3703 | { |
---|
3704 | "EXAMPLE:"; echo = 2; |
---|
3705 | ring r = 0,(x,y,z),dp; |
---|
3706 | def R = freeAlgebra(r, 5); // constructs a Letterplace ring |
---|
3707 | setring R; //sets basering to Letterplace ring |
---|
3708 | // u = x^2y, v = yxz, w = zx^2 in intvec representation |
---|
3709 | intvec u = 1,1,2; |
---|
3710 | iv2lp(u); // invokes the procedure and returns the corresponding poly |
---|
3711 | intvec v = 2,1,3; |
---|
3712 | iv2lp(v); |
---|
3713 | intvec w = 3,1,1; |
---|
3714 | iv2lp(w); |
---|
3715 | } |
---|
3716 | |
---|
3717 | proc iv2lpList(list L) |
---|
3718 | "USAGE: iv2lpList(L); L a list of intmats (deprecated, will be removed soon) |
---|
3719 | RETURN: ideal |
---|
3720 | PURPOSE:Converting a list of intmats into an ideal of corresponding monomials |
---|
3721 | ASSUME: - The rows of each intmat in L must correspond to a Letterplace monomial |
---|
3722 | @* - basering has to be a Letterplace ring |
---|
3723 | EXAMPLE: example iv2lpList; shows examples |
---|
3724 | " |
---|
3725 | {checkAssumptionsLPIV(0,L); |
---|
3726 | ideal G; |
---|
3727 | int i; |
---|
3728 | for (i = 1; i <= size(L); i++){G = G + iv2lpMat(L[i]);} |
---|
3729 | return(G); |
---|
3730 | } |
---|
3731 | example |
---|
3732 | { |
---|
3733 | "EXAMPLE:"; echo = 2; |
---|
3734 | ring r = 0,(x,y,z),dp; |
---|
3735 | def R = freeAlgebra(r, 5); // constructs a Letterplace ring |
---|
3736 | setring R; // sets basering to Letterplace ring |
---|
3737 | intmat u[3][1] = 1,1,2; intmat v[1][3] = 2,1,3; intmat w[2][3] = 3,1,1,2,3,1; |
---|
3738 | // defines intmats of different size containing intvec representations of |
---|
3739 | // monomials as rows |
---|
3740 | list L = u,v,w; |
---|
3741 | print(u); print(v); print(w); // shows the intmats contained in L |
---|
3742 | iv2lpList(L); // returns the corresponding monomials as an ideal |
---|
3743 | } |
---|
3744 | |
---|
3745 | |
---|
3746 | proc iv2lpMat(intmat M) |
---|
3747 | "USAGE: iv2lpMat(M); M an intmat (deprecated, will be removed soon) |
---|
3748 | RETURN: ideal |
---|
3749 | PURPOSE:Converting an intmat into an ideal of the corresponding monomials |
---|
3750 | ASSUME: - The rows of M must correspond to Letterplace monomials |
---|
3751 | @* - basering has to be a Letterplace ring |
---|
3752 | EXAMPLE: example iv2lpMat; shows examples |
---|
3753 | " |
---|
3754 | {list L = M; |
---|
3755 | checkAssumptionsLPIV(0,L); |
---|
3756 | kill L; |
---|
3757 | ideal G; poly p; |
---|
3758 | int i; intvec I; |
---|
3759 | for (i = 1; i <= nrows(M); i++) |
---|
3760 | { I = M[i,1..ncols(M)]; |
---|
3761 | p = iv2lp(I); |
---|
3762 | G[size(G)+1] = p; |
---|
3763 | } |
---|
3764 | return(G); |
---|
3765 | } |
---|
3766 | example |
---|
3767 | { |
---|
3768 | "EXAMPLE:"; echo = 2; |
---|
3769 | ring r = 0,(x,y,z),dp; |
---|
3770 | def R = freeAlgebra(r, 5); // constructs a Letterplace ring |
---|
3771 | setring R; // sets basering to Letterplace ring |
---|
3772 | intmat u[3][1] = 1,1,2; intmat v[1][3] = 2,1,3; intmat w[2][3] = 3,1,1,2,3,1; |
---|
3773 | // defines intmats of different size containing intvec representations of |
---|
3774 | // monomials as rows |
---|
3775 | iv2lpMat(u); // returns the monomials contained in u |
---|
3776 | iv2lpMat(v); // returns the monomials contained in v |
---|
3777 | iv2lpMat(w); // returns the monomials contained in w |
---|
3778 | } |
---|
3779 | |
---|
3780 | proc lpId2ivLi(ideal G) |
---|
3781 | "USAGE: lpId2ivLi(G); G an ideal (deprecated, will be removed soon) |
---|
3782 | RETURN: list |
---|
3783 | PURPOSE:Transforming an ideal into the corresponding list of intvecs |
---|
3784 | ASSUME: - basering has to be a Letterplace ring |
---|
3785 | EXAMPLE: example lpId2ivLi; shows examples |
---|
3786 | " |
---|
3787 | { |
---|
3788 | int i,j,k; |
---|
3789 | list M; |
---|
3790 | checkAssumptionsLPIV(0,M); |
---|
3791 | for (i = 1; i <= size(G); i++) {M[i] = lp2iv(G[i]);} |
---|
3792 | return(M); |
---|
3793 | } |
---|
3794 | example |
---|
3795 | { |
---|
3796 | "EXAMPLE:"; echo = 2; |
---|
3797 | ring r = 0,(x,y),dp; |
---|
3798 | def R = freeAlgebra(r, 5); // constructs a Letterplace ring |
---|
3799 | setring R; // sets basering to Letterplace ring |
---|
3800 | ideal L = x*x,y*y,x*y*x; |
---|
3801 | lpId2ivLi(L); // returns the corresponding intvecs as a list |
---|
3802 | } |
---|
3803 | |
---|
3804 | proc lp2iv(poly p) |
---|
3805 | "USAGE: lp2iv(p); p a poly (deprecated, will be removed soon) |
---|
3806 | RETURN: intvec |
---|
3807 | PURPOSE: Transforming a monomial into the corresponding intvec |
---|
3808 | ASSUME: - basering has to be a Letterplace ring |
---|
3809 | NOTE: - Assumptions will not be checked! |
---|
3810 | EXAMPLE: example lp2iv; shows examples |
---|
3811 | " |
---|
3812 | {p = normalize(lead(p)); |
---|
3813 | intvec I; |
---|
3814 | int i,j; |
---|
3815 | if (deg(p) > lpDegBound(basering)) {ERROR("Monomial exceeds degreebound");} |
---|
3816 | if (p == 1) {return(I);} |
---|
3817 | if (p == 0) {ERROR("Monomial is not allowed to equal zero");} |
---|
3818 | intvec lep = leadexp(p); |
---|
3819 | for ( i = 1; i <= lpVarBlockSize(basering); i++) {if (lep[i] == 1) {I = i; break;}} |
---|
3820 | for (i = (lpVarBlockSize(basering)+1); i <= size(lep); i++) |
---|
3821 | {if (lep[i] == 1) |
---|
3822 | { j = (i mod lpVarBlockSize(basering)); |
---|
3823 | if (j == 0) {I = I,lpVarBlockSize(basering);} |
---|
3824 | else {I = I,j;} |
---|
3825 | } |
---|
3826 | else { if (lep[i] > 1) {ERROR("monomial has a not allowed multidegree");}} |
---|
3827 | } |
---|
3828 | if (I[1] == 0) {ERROR("monomial has a not allowed multidegree");} |
---|
3829 | return(I); |
---|
3830 | } |
---|
3831 | example |
---|
3832 | { |
---|
3833 | "EXAMPLE:"; echo = 2; |
---|
3834 | ring r = 0,(x,y,z),dp; |
---|
3835 | def R = freeAlgebra(r, 5); // constructs a Letterplace ring |
---|
3836 | setring R; // sets basering to Letterplace ring |
---|
3837 | poly p = x*x*z; |
---|
3838 | lp2iv(p); // transforms p into the intvec representation |
---|
3839 | lp2iv(y*y*x*x); |
---|
3840 | lp2iv(z*y*x*z*z); |
---|
3841 | } |
---|
3842 | |
---|
3843 | proc lp2ivId(ideal G) |
---|
3844 | "USAGE: lp2ivId(G); G an ideal (deprecated, will be removed soon) |
---|
3845 | RETURN: list |
---|
3846 | PURPOSE:Converting an ideal into an list of intmats, |
---|
3847 | @* the corresponding intvecs forming the rows |
---|
3848 | ASSUME: - basering has to be a Letterplace ring |
---|
3849 | EXAMPLE: example lp2ivId; shows examples |
---|
3850 | " |
---|
3851 | {G = normalize(lead(G)); |
---|
3852 | intvec I; list L; |
---|
3853 | checkAssumptionsLPIV(0,L); |
---|
3854 | int i,md; |
---|
3855 | for (i = 1; i <= size(G); i++) { if (md <= deg(G[i])) {md = deg(G[i]);}} |
---|
3856 | while (size(G) > 0) |
---|
3857 | {ideal Gt; |
---|
3858 | for (i = 1; i <= ncols(G); i++) {if (md == deg(G[i])) {Gt = Gt + G[i]; G[i] = 0;}} |
---|
3859 | if (size(Gt) > 0) |
---|
3860 | {G = simplify(G,2); |
---|
3861 | intmat M [size(Gt)][md]; |
---|
3862 | for (i = 1; i <= size(Gt); i++) {M[i,1..md] = lp2iv(Gt[i]);} |
---|
3863 | L = insert(L,M); |
---|
3864 | kill M; kill Gt; |
---|
3865 | md = md - 1; |
---|
3866 | } |
---|
3867 | else {kill Gt; md = md - 1;} |
---|
3868 | } |
---|
3869 | return(L); |
---|
3870 | } |
---|
3871 | example |
---|
3872 | { |
---|
3873 | "EXAMPLE:"; echo = 2; |
---|
3874 | ring r = 0,(x,y,z),dp; |
---|
3875 | def R = freeAlgebra(r, 5); // constructs a Letterplace ring |
---|
3876 | setring R; // sets basering to Letterplace ring |
---|
3877 | poly p = x*x*z; |
---|
3878 | poly q = y*y*x*x; |
---|
3879 | poly w = z*y*x*z; |
---|
3880 | // p,q,w are some polynomials we want to transform into their |
---|
3881 | // intvec representation |
---|
3882 | ideal G = p,q,w; |
---|
3883 | lp2ivId(G); // returns the list of intmats for this ideal |
---|
3884 | } |
---|
3885 | |
---|
3886 | static proc mod_init() |
---|
3887 | { |
---|
3888 | LIB"freegb.so"; |
---|
3889 | } |
---|