1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: freegb.lib,v 1.15 2009-01-14 16:07:04 Singular Exp $"; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: freegb.lib Twosided Noncommutative Groebner bases in Free Algebras |
---|
6 | AUTHOR: Viktor Levandovskyy, levandov@math.rwth-aachen.de |
---|
7 | |
---|
8 | PROCEDURES: |
---|
9 | freegbRing(d); creates a ring with d blocks of shifted original variables |
---|
10 | freegbasis(L, int n); compute two-sided Groebner basis of ideal, encoded via L, up to degree n |
---|
11 | |
---|
12 | AUXILIARY PROCEDURES: |
---|
13 | |
---|
14 | lp2lstr(K, s); convert letter-place ideal to a list of modules |
---|
15 | lst2str(L[, n]); convert a list (of modules) into polynomials in free algebra |
---|
16 | mod2str(M[, n]); convert a module into a polynomial in free algebra |
---|
17 | vct2str(M[, n]); convert a vector into a word in free algebra |
---|
18 | Liebr(a,b[, N]); compute Lie bracket ab-ba of two letterplace polynomials |
---|
19 | Serre(A,z); compute the ideal of Serre's relations associated to a generalized Cartan matrix A |
---|
20 | isVar(p); check whether p is a power of a single variable |
---|
21 | |
---|
22 | SEE ALSO: Letterplace |
---|
23 | " |
---|
24 | |
---|
25 | // this library computes two-sided GB of an ideal |
---|
26 | // in a free associative algebra |
---|
27 | |
---|
28 | // a monomial is encoded via a vector V |
---|
29 | // where V[1] = coefficient |
---|
30 | // V[1+i] = the corresponding symbol |
---|
31 | |
---|
32 | LIB "discretize.lib"; // for replace |
---|
33 | LIB "qhmoduli.lib"; // for Max |
---|
34 | |
---|
35 | proc testfreegblib() |
---|
36 | { |
---|
37 | example freegbRing; |
---|
38 | example freegbasis; |
---|
39 | "AUXILIARY PROCEDURES: "; |
---|
40 | example lp2lstr; |
---|
41 | example lst2str; |
---|
42 | example mod2str; |
---|
43 | example vct2str; |
---|
44 | example Liebr; |
---|
45 | example Serre; |
---|
46 | example isVar; |
---|
47 | } |
---|
48 | |
---|
49 | |
---|
50 | // obsolete? |
---|
51 | |
---|
52 | static proc lshift(module M, int s, string varing, def lpring) |
---|
53 | { |
---|
54 | // FINALLY IMPLEMENTED AS A PART OT THE CODE |
---|
55 | // shifts a poly from the ring @R to s positions |
---|
56 | // M lives in varing, the result in lpring |
---|
57 | // to be run from varing |
---|
58 | int i, j, k, sm, sv; |
---|
59 | vector v; |
---|
60 | // execute("setring "+lpring); |
---|
61 | setring lpring; |
---|
62 | poly @@p; |
---|
63 | ideal I; |
---|
64 | execute("setring "+varing); |
---|
65 | sm = ncols(M); |
---|
66 | for (i=1; i<=s; i++) |
---|
67 | { |
---|
68 | // modules, e.g. free polynomials |
---|
69 | for (j=1; j<=sm; j++) |
---|
70 | { |
---|
71 | //vectors, e.g. free monomials |
---|
72 | v = M[j]; |
---|
73 | sv = size(v); |
---|
74 | sp = "@@p = @@p + "; |
---|
75 | for (k=2; k<=sv; k++) |
---|
76 | { |
---|
77 | sp = sp + string(v[k])+"("+string(k-1+s)+")*"; |
---|
78 | } |
---|
79 | sp = sp + string(v[1])+";"; // coef; |
---|
80 | setring lpring; |
---|
81 | // execute("setring "+lpring); |
---|
82 | execute(sp); |
---|
83 | execute("setring "+varing); |
---|
84 | } |
---|
85 | setring lpring; |
---|
86 | // execute("setring "+lpring); |
---|
87 | I = I,@@p; |
---|
88 | @@p = 0; |
---|
89 | } |
---|
90 | setring lpring; |
---|
91 | //execute("setring "+lpring); |
---|
92 | export(I); |
---|
93 | // setring varing; |
---|
94 | execute("setring "+varing); |
---|
95 | } |
---|
96 | |
---|
97 | static proc skip0(vector v) |
---|
98 | { |
---|
99 | // skips zeros in a vector, producing another vector |
---|
100 | int sv = nrows(v); |
---|
101 | int sw = size(v); |
---|
102 | if (sv == sw) |
---|
103 | { |
---|
104 | return(v); |
---|
105 | } |
---|
106 | int i; |
---|
107 | int j=1; |
---|
108 | vector w; |
---|
109 | for (i=1; i<=sv; i++) |
---|
110 | { |
---|
111 | if (v[i] != 0) |
---|
112 | { |
---|
113 | w = w + v[i]*gen(j); |
---|
114 | j++; |
---|
115 | } |
---|
116 | } |
---|
117 | return(w); |
---|
118 | } |
---|
119 | |
---|
120 | proc lst2str(list L, list #) |
---|
121 | "USAGE: lst2str(L[,n]); L a list of modules, n an optional integer |
---|
122 | RETURN: list (of strings) |
---|
123 | PURPOSE: convert a list (of modules) into polynomials in free algebra |
---|
124 | EXAMPLE: example lst2str; shows examples |
---|
125 | NOTE: if an optional integer is not 0, stars signs are used in multiplication |
---|
126 | " |
---|
127 | { |
---|
128 | // returns a list of strings |
---|
129 | // being sentences in words built from L |
---|
130 | // if #[1] = 1, use * between generators |
---|
131 | int useStar = 0; |
---|
132 | if ( size(#)>0 ) |
---|
133 | { |
---|
134 | if (#[1]) |
---|
135 | { |
---|
136 | useStar = 1; |
---|
137 | } |
---|
138 | } |
---|
139 | int i; |
---|
140 | int s = size(L); |
---|
141 | list N; |
---|
142 | for(i=1; i<=s; i++) |
---|
143 | { |
---|
144 | if ((typeof(L[i]) == "module") || (typeof(L[i]) == "matrix") ) |
---|
145 | { |
---|
146 | N[i] = mod2str(L[i],useStar); |
---|
147 | } |
---|
148 | else |
---|
149 | { |
---|
150 | "module or matrix expected in the list"; |
---|
151 | return(N); |
---|
152 | } |
---|
153 | } |
---|
154 | return(N); |
---|
155 | } |
---|
156 | example |
---|
157 | { |
---|
158 | "EXAMPLE:"; echo = 2; |
---|
159 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
160 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
161 | module N = [1,x,y,x,y],[-2,y,x,y,x],[6,x,y,y,x,y]; |
---|
162 | list L; L[1] = M; L[2] = N; |
---|
163 | lst2str(L); |
---|
164 | lst2str(L[1],1); |
---|
165 | } |
---|
166 | |
---|
167 | |
---|
168 | proc mod2str(module M, list #) |
---|
169 | "USAGE: mod2str(M[,n]); M a module, n an optional integer |
---|
170 | RETURN: string |
---|
171 | PURPOSE: convert a module into a polynomial in free algebra |
---|
172 | EXAMPLE: example mod2str; shows examples |
---|
173 | NOTE: if an optional integer is not 0, stars signs are used in multiplication |
---|
174 | " |
---|
175 | { |
---|
176 | // returns a string |
---|
177 | // a sentence in words built from M |
---|
178 | // if #[1] = 1, use * between generators |
---|
179 | int useStar = 0; |
---|
180 | if ( size(#)>0 ) |
---|
181 | { |
---|
182 | if (#[1]) |
---|
183 | { |
---|
184 | useStar = 1; |
---|
185 | } |
---|
186 | } |
---|
187 | int i; |
---|
188 | int s = ncols(M); |
---|
189 | string t; |
---|
190 | string mp; |
---|
191 | for(i=1; i<=s; i++) |
---|
192 | { |
---|
193 | mp = vct2str(M[i],useStar); |
---|
194 | if (mp[1] == "-") |
---|
195 | { |
---|
196 | t = t + mp; |
---|
197 | } |
---|
198 | else |
---|
199 | { |
---|
200 | t = t + "+" + mp; |
---|
201 | } |
---|
202 | } |
---|
203 | if (t[1]=="+") |
---|
204 | { |
---|
205 | t = t[2..size(t)]; // remove first "+" |
---|
206 | } |
---|
207 | return(t); |
---|
208 | } |
---|
209 | example |
---|
210 | { |
---|
211 | "EXAMPLE:"; echo = 2; |
---|
212 | ring r = 0,(x,y,z),(dp); |
---|
213 | module M = [1,x,y,x,y],[-2,y,x,y,x],[6,x,y,y,x,y]; |
---|
214 | mod2str(M); |
---|
215 | mod2str(M,1); |
---|
216 | } |
---|
217 | |
---|
218 | proc vct2str(vector v, list #) |
---|
219 | "USAGE: vct2str(v[,n]); v a vector, n an optional integer |
---|
220 | RETURN: string |
---|
221 | PURPOSE: convert a vector into a word in free algebra |
---|
222 | EXAMPLE: example vct2str; shows examples |
---|
223 | NOTE: if an optional integer is not 0, stars signs are used in multiplication |
---|
224 | " |
---|
225 | { |
---|
226 | // if #[1] = 1, use * between generators |
---|
227 | int useStar = 0; |
---|
228 | if ( size(#)>0 ) |
---|
229 | { |
---|
230 | if (#[1]) |
---|
231 | { |
---|
232 | useStar = 1; |
---|
233 | } |
---|
234 | } |
---|
235 | int ppl = printlevel-voice+2; |
---|
236 | // for a word, encoded by v |
---|
237 | // produces a string for it |
---|
238 | v = skip0(v); |
---|
239 | number cf = leadcoef(v[1]); |
---|
240 | int s = size(v); |
---|
241 | string vs,vv,vp,err; |
---|
242 | int i,j,p,q; |
---|
243 | for (i=1; i<=s-1; i++) |
---|
244 | { |
---|
245 | p = isVar(v[i+1]); |
---|
246 | if (p==0) |
---|
247 | { |
---|
248 | err = "Error: monomial expected at" + string(i+1); |
---|
249 | dbprint(ppl,err); |
---|
250 | return("_"); |
---|
251 | } |
---|
252 | if (p==1) |
---|
253 | { |
---|
254 | if (useStar && (size(vs) >0)) { vs = vs + "*"; } |
---|
255 | vs = vs + string(v[i+1]); |
---|
256 | } |
---|
257 | else //power |
---|
258 | { |
---|
259 | vv = string(v[i+1]); |
---|
260 | q = find(vv,"^"); |
---|
261 | if (q==0) |
---|
262 | { |
---|
263 | q = find(vv,string(p)); |
---|
264 | if (q==0) |
---|
265 | { |
---|
266 | err = "error in find for string "+vv; |
---|
267 | dbprint(ppl,err); |
---|
268 | return("_"); |
---|
269 | } |
---|
270 | } |
---|
271 | // q>0 |
---|
272 | vp = vv[1..q-1]; |
---|
273 | for(j=1;j<=p;j++) |
---|
274 | { |
---|
275 | if (useStar && (size(vs) >0)) { vs = vs + "*"; } |
---|
276 | vs = vs + vp; |
---|
277 | } |
---|
278 | } |
---|
279 | } |
---|
280 | string scf; |
---|
281 | if (cf == -1) |
---|
282 | { |
---|
283 | scf = "-"; |
---|
284 | } |
---|
285 | else |
---|
286 | { |
---|
287 | scf = string(cf); |
---|
288 | if (cf == 1) |
---|
289 | { |
---|
290 | scf = ""; |
---|
291 | } |
---|
292 | } |
---|
293 | if (useStar && (size(scf) >0) && (scf!="-") ) { scf = scf + "*"; } |
---|
294 | vs = scf + vs; |
---|
295 | return(vs); |
---|
296 | } |
---|
297 | example |
---|
298 | { |
---|
299 | "EXAMPLE:"; echo = 2; |
---|
300 | ring r = (0,a),(x,y3,z(1)),dp; |
---|
301 | vector v = [-7,x,y3^4,x2,z(1)^3]; |
---|
302 | vct2str(v); |
---|
303 | vct2str(v,1); |
---|
304 | vector w = [-7a^5+6a,x,y3,y3,x,z(1),z(1)]; |
---|
305 | vct2str(w); |
---|
306 | vct2str(w,1); |
---|
307 | } |
---|
308 | |
---|
309 | proc isVar(poly p) |
---|
310 | "USAGE: isVar(p); poly p |
---|
311 | RETURN: int |
---|
312 | PURPOSE: checks whether p is a power of a single variable from the basering. |
---|
313 | @* Returns the exponent or 0 is p is not a power of a single variable. |
---|
314 | EXAMPLE: example isVar; shows examples |
---|
315 | " |
---|
316 | { |
---|
317 | // checks whether p is a variable indeed |
---|
318 | // if it's a power of a variable, returns the power |
---|
319 | if (p==0) { return(0); } //"p=0"; |
---|
320 | poly q = leadmonom(p); |
---|
321 | if ( (p-lead(p)) !=0 ) { return(0); } // "p-lm(p)>0"; |
---|
322 | intvec v = leadexp(p); |
---|
323 | int s = size(v); |
---|
324 | int i=1; |
---|
325 | int cnt = 0; |
---|
326 | int pwr = 0; |
---|
327 | for (i=1; i<=s; i++) |
---|
328 | { |
---|
329 | if (v[i] != 0) |
---|
330 | { |
---|
331 | cnt++; |
---|
332 | pwr = v[i]; |
---|
333 | } |
---|
334 | } |
---|
335 | // "cnt:"; cnt; |
---|
336 | if (cnt==1) { return(pwr); } |
---|
337 | else { return(0); } |
---|
338 | } |
---|
339 | example |
---|
340 | { |
---|
341 | "EXAMPLE:"; echo = 2; |
---|
342 | ring r = 0,(x,y),dp; |
---|
343 | poly f = xy+1; |
---|
344 | isVar(f); |
---|
345 | poly g = xy; |
---|
346 | isVar(g); |
---|
347 | poly h = y^3; |
---|
348 | isVar(h); |
---|
349 | poly i = 1; |
---|
350 | isVar(i); |
---|
351 | } |
---|
352 | |
---|
353 | // new conversion routines |
---|
354 | |
---|
355 | static proc id2words(ideal I, int d) |
---|
356 | { |
---|
357 | // NOT FINISHED |
---|
358 | // input: ideal I of polys in letter-place notation |
---|
359 | // in the ring with d real vars |
---|
360 | // output: the list of strings: associative words |
---|
361 | // extract names of vars |
---|
362 | int i,m,n; string s; string place = "(1)"; |
---|
363 | list lv; |
---|
364 | for(i=1; i<=d; i++) |
---|
365 | { |
---|
366 | s = string(var(i)); |
---|
367 | // get rid of place |
---|
368 | n = find(s, place); |
---|
369 | if (n>0) |
---|
370 | { |
---|
371 | s = s[1..n-1]; |
---|
372 | } |
---|
373 | lv[i] = s; |
---|
374 | } |
---|
375 | poly p,q; |
---|
376 | for (i=1; i<=ncols(I); i++) |
---|
377 | { |
---|
378 | if (I[i] != 0) |
---|
379 | { |
---|
380 | p = I[i]; |
---|
381 | while (p!=0) |
---|
382 | { |
---|
383 | q = leadmonom(p); |
---|
384 | } |
---|
385 | } |
---|
386 | } |
---|
387 | |
---|
388 | return(lv); |
---|
389 | } |
---|
390 | example |
---|
391 | { |
---|
392 | "EXAMPLE:"; echo = 2; |
---|
393 | ring r = 0,(x(1),y(1),z(1),x(2),y(2),z(2)),dp; |
---|
394 | ideal I = x(1)*y(2) -z(1)*x(2); |
---|
395 | id2words(I,3); |
---|
396 | } |
---|
397 | |
---|
398 | static proc mono2word(poly p, int d) |
---|
399 | { |
---|
400 | } |
---|
401 | |
---|
402 | // given the element -7xy^2x, it is represented as [-7,x,y^2,x] or as [-7,x,y,y,x] |
---|
403 | // use the orig ord on (x,y,z) and expand it blockwise to (x(i),y(i),z(i)) |
---|
404 | |
---|
405 | // the correspondences: |
---|
406 | // monomial in K<x,y,z> <<--->> vector in R |
---|
407 | // polynomial in K<x,y,z> <<--->> list of vectors (matrix/module) in R |
---|
408 | // ideal in K<x,y,z> <<--->> list of matrices/modules in R |
---|
409 | |
---|
410 | |
---|
411 | // 1. form a new ring |
---|
412 | // 2. NOP |
---|
413 | // 3. compute GB -> with the kernel stuff |
---|
414 | // 4. skip shifted elts (check that no such exist?) |
---|
415 | // 5. go back to orig vars, produce strings/modules |
---|
416 | // 6. return the result |
---|
417 | |
---|
418 | proc freegbasis(list LM, int d) |
---|
419 | "USAGE: freegbasis(L, d); L a list of modules, d an integer |
---|
420 | RETURN: ring |
---|
421 | PURPOSE: compute the two-sided Groebner basis of an ideal, encoded by L in |
---|
422 | the free associative algebra, up to degree d |
---|
423 | EXAMPLE: example freegbasis; shows examples |
---|
424 | " |
---|
425 | { |
---|
426 | // d = up to degree, will be shifted to d+1 |
---|
427 | if (d<1) {"bad d"; return(0);} |
---|
428 | |
---|
429 | int ppl = printlevel-voice+2; |
---|
430 | string err = ""; |
---|
431 | |
---|
432 | int i,j,s; |
---|
433 | def save = basering; |
---|
434 | // determine max no of places in the input |
---|
435 | int slm = size(LM); // numbers of polys in the ideal |
---|
436 | int sm; |
---|
437 | intvec iv; |
---|
438 | module M; |
---|
439 | for (i=1; i<=slm; i++) |
---|
440 | { |
---|
441 | // modules, e.g. free polynomials |
---|
442 | M = LM[i]; |
---|
443 | sm = ncols(M); |
---|
444 | for (j=1; j<=sm; j++) |
---|
445 | { |
---|
446 | //vectors, e.g. free monomials |
---|
447 | iv = iv, size(M[j])-1; // 1 place is reserved by the coeff |
---|
448 | } |
---|
449 | } |
---|
450 | int D = Max(iv); // max size of input words |
---|
451 | if (d<D) {"bad d"; return(LM);} |
---|
452 | D = D + d-1; |
---|
453 | // D = d; |
---|
454 | list LR = ringlist(save); |
---|
455 | list L, tmp; |
---|
456 | L[1] = LR[1]; // ground field |
---|
457 | L[4] = LR[4]; // quotient ideal |
---|
458 | tmp = LR[2]; // varnames |
---|
459 | s = size(LR[2]); |
---|
460 | for (i=1; i<=D; i++) |
---|
461 | { |
---|
462 | for (j=1; j<=s; j++) |
---|
463 | { |
---|
464 | tmp[i*s+j] = string(tmp[j])+"("+string(i+1)+")"; |
---|
465 | } |
---|
466 | } |
---|
467 | for (i=1; i<=s; i++) |
---|
468 | { |
---|
469 | tmp[i] = string(tmp[i])+"("+string(1)+")"; |
---|
470 | } |
---|
471 | L[2] = tmp; |
---|
472 | list OrigNames = LR[2]; |
---|
473 | // ordering: d blocks of the ord on r |
---|
474 | // try to get whether the ord on r is blockord itself |
---|
475 | s = size(LR[3]); |
---|
476 | if (s==2) |
---|
477 | { |
---|
478 | // not a blockord, 1 block + module ord |
---|
479 | tmp = LR[3][s]; // module ord |
---|
480 | for (i=1; i<=D; i++) |
---|
481 | { |
---|
482 | LR[3][s-1+i] = LR[3][1]; |
---|
483 | } |
---|
484 | LR[3][s+D] = tmp; |
---|
485 | } |
---|
486 | if (s>2) |
---|
487 | { |
---|
488 | // there are s-1 blocks |
---|
489 | int nb = s-1; |
---|
490 | tmp = LR[3][s]; // module ord |
---|
491 | for (i=1; i<=D; i++) |
---|
492 | { |
---|
493 | for (j=1; j<=nb; j++) |
---|
494 | { |
---|
495 | LR[3][i*nb+j] = LR[3][j]; |
---|
496 | } |
---|
497 | } |
---|
498 | // size(LR[3]); |
---|
499 | LR[3][nb*(D+1)+1] = tmp; |
---|
500 | } |
---|
501 | L[3] = LR[3]; |
---|
502 | def @R = ring(L); |
---|
503 | setring @R; |
---|
504 | ideal I; |
---|
505 | poly @p; |
---|
506 | s = size(OrigNames); |
---|
507 | // "s:";s; |
---|
508 | // convert LM to canonical vectors (no powers) |
---|
509 | setring save; |
---|
510 | kill M; // M was defined earlier |
---|
511 | module M; |
---|
512 | slm = size(LM); // numbers of polys in the ideal |
---|
513 | int sv,k,l; |
---|
514 | vector v; |
---|
515 | // poly p; |
---|
516 | string sp; |
---|
517 | setring @R; |
---|
518 | poly @@p=0; |
---|
519 | setring save; |
---|
520 | for (l=1; l<=slm; l++) |
---|
521 | { |
---|
522 | // modules, e.g. free polynomials |
---|
523 | M = LM[l]; |
---|
524 | sm = ncols(M); // in intvec iv the sizes are stored |
---|
525 | // modules, e.g. free polynomials |
---|
526 | for (j=1; j<=sm; j++) |
---|
527 | { |
---|
528 | //vectors, e.g. free monomials |
---|
529 | v = M[j]; |
---|
530 | sv = size(v); |
---|
531 | // "sv:";sv; |
---|
532 | sp = "@@p = @@p + "; |
---|
533 | for (k=2; k<=sv; k++) |
---|
534 | { |
---|
535 | sp = sp + string(v[k])+"("+string(k-1)+")*"; |
---|
536 | } |
---|
537 | sp = sp + string(v[1])+";"; // coef; |
---|
538 | setring @R; |
---|
539 | execute(sp); |
---|
540 | setring save; |
---|
541 | } |
---|
542 | setring @R; |
---|
543 | // "@@p:"; @@p; |
---|
544 | I = I,@@p; |
---|
545 | @@p = 0; |
---|
546 | setring save; |
---|
547 | } |
---|
548 | kill sp; |
---|
549 | // 3. compute GB |
---|
550 | setring @R; |
---|
551 | dbprint(ppl,"computing GB"); |
---|
552 | ideal J = system("freegb",I,d,nvars(save)); |
---|
553 | // ideal J = slimgb(I); |
---|
554 | dbprint(ppl,J); |
---|
555 | // 4. skip shifted elts |
---|
556 | ideal K = select1(J,1..s); // s = size(OrigNames) |
---|
557 | dbprint(ppl,K); |
---|
558 | dbprint(ppl, "done with GB"); |
---|
559 | // K contains vars x(1),...z(1) = images of originals |
---|
560 | // 5. go back to orig vars, produce strings/modules |
---|
561 | if (K[1] == 0) |
---|
562 | { |
---|
563 | "no reasonable output, GB gives 0"; |
---|
564 | return(0); |
---|
565 | } |
---|
566 | int sk = size(K); |
---|
567 | int sp, sx, a, b; |
---|
568 | intvec x; |
---|
569 | poly p,q; |
---|
570 | poly pn; |
---|
571 | // vars in 'save' |
---|
572 | setring save; |
---|
573 | module N; |
---|
574 | list LN; |
---|
575 | vector V; |
---|
576 | poly pn; |
---|
577 | // test and skip exponents >=2 |
---|
578 | setring @R; |
---|
579 | for(i=1; i<=sk; i++) |
---|
580 | { |
---|
581 | p = K[i]; |
---|
582 | while (p!=0) |
---|
583 | { |
---|
584 | q = lead(p); |
---|
585 | // "processing q:";q; |
---|
586 | x = leadexp(q); |
---|
587 | sx = size(x); |
---|
588 | for(k=1; k<=sx; k++) |
---|
589 | { |
---|
590 | if ( x[k] >= 2 ) |
---|
591 | { |
---|
592 | err = "skip: the value x[k] is " + string(x[k]); |
---|
593 | dbprint(ppl,err); |
---|
594 | // return(0); |
---|
595 | K[i] = 0; |
---|
596 | p = 0; |
---|
597 | q = 0; |
---|
598 | break; |
---|
599 | } |
---|
600 | } |
---|
601 | p = p - q; |
---|
602 | } |
---|
603 | } |
---|
604 | K = simplify(K,2); |
---|
605 | sk = size(K); |
---|
606 | for(i=1; i<=sk; i++) |
---|
607 | { |
---|
608 | // setring save; |
---|
609 | // V = 0; |
---|
610 | setring @R; |
---|
611 | p = K[i]; |
---|
612 | while (p!=0) |
---|
613 | { |
---|
614 | q = lead(p); |
---|
615 | err = "processing q:" + string(q); |
---|
616 | dbprint(ppl,err); |
---|
617 | x = leadexp(q); |
---|
618 | sx = size(x); |
---|
619 | pn = leadcoef(q); |
---|
620 | setring save; |
---|
621 | pn = imap(@R,pn); |
---|
622 | V = V + leadcoef(pn)*gen(1); |
---|
623 | for(k=1; k<=sx; k++) |
---|
624 | { |
---|
625 | if (x[k] ==1) |
---|
626 | { |
---|
627 | a = k / s; // block number=a+1, a!=0 |
---|
628 | b = k % s; // remainder |
---|
629 | // printf("a: %s, b: %s",a,b); |
---|
630 | if (b == 0) |
---|
631 | { |
---|
632 | // that is it's the last var in the block |
---|
633 | b = s; |
---|
634 | a = a-1; |
---|
635 | } |
---|
636 | V = V + var(b)*gen(a+2); |
---|
637 | } |
---|
638 | // else |
---|
639 | // { |
---|
640 | // printf("error: the value x[k] is %s", x[k]); |
---|
641 | // return(0); |
---|
642 | // } |
---|
643 | } |
---|
644 | err = "V: " + string(V); |
---|
645 | dbprint(ppl,err); |
---|
646 | // printf("V: %s", string(V)); |
---|
647 | N = N,V; |
---|
648 | V = 0; |
---|
649 | setring @R; |
---|
650 | p = p - q; |
---|
651 | pn = 0; |
---|
652 | } |
---|
653 | setring save; |
---|
654 | LN[i] = simplify(N,2); |
---|
655 | N = 0; |
---|
656 | } |
---|
657 | setring save; |
---|
658 | return(LN); |
---|
659 | } |
---|
660 | example |
---|
661 | { |
---|
662 | "EXAMPLE:"; echo = 2; |
---|
663 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
664 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
665 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
666 | list L; L[1] = M; L[2] = N; |
---|
667 | lst2str(L); |
---|
668 | def U = freegbasis(L,5); |
---|
669 | lst2str(U); |
---|
670 | } |
---|
671 | |
---|
672 | static proc crs(list LM, int d) |
---|
673 | "USAGE: crs(L, d); L a list of modules, d an integer |
---|
674 | RETURN: ring |
---|
675 | PURPOSE: create a ring and shift the ideal |
---|
676 | EXAMPLE: example crs; shows examples |
---|
677 | " |
---|
678 | { |
---|
679 | // d = up to degree, will be shifted to d+1 |
---|
680 | if (d<1) {"bad d"; return(0);} |
---|
681 | |
---|
682 | int ppl = printlevel-voice+2; |
---|
683 | string err = ""; |
---|
684 | |
---|
685 | int i,j,s; |
---|
686 | def save = basering; |
---|
687 | // determine max no of places in the input |
---|
688 | int slm = size(LM); // numbers of polys in the ideal |
---|
689 | int sm; |
---|
690 | intvec iv; |
---|
691 | module M; |
---|
692 | for (i=1; i<=slm; i++) |
---|
693 | { |
---|
694 | // modules, e.g. free polynomials |
---|
695 | M = LM[i]; |
---|
696 | sm = ncols(M); |
---|
697 | for (j=1; j<=sm; j++) |
---|
698 | { |
---|
699 | //vectors, e.g. free monomials |
---|
700 | iv = iv, size(M[j])-1; // 1 place is reserved by the coeff |
---|
701 | } |
---|
702 | } |
---|
703 | int D = Max(iv); // max size of input words |
---|
704 | if (d<D) {"bad d"; return(LM);} |
---|
705 | D = D + d-1; |
---|
706 | // D = d; |
---|
707 | list LR = ringlist(save); |
---|
708 | list L, tmp; |
---|
709 | L[1] = LR[1]; // ground field |
---|
710 | L[4] = LR[4]; // quotient ideal |
---|
711 | tmp = LR[2]; // varnames |
---|
712 | s = size(LR[2]); |
---|
713 | for (i=1; i<=D; i++) |
---|
714 | { |
---|
715 | for (j=1; j<=s; j++) |
---|
716 | { |
---|
717 | tmp[i*s+j] = string(tmp[j])+"("+string(i)+")"; |
---|
718 | } |
---|
719 | } |
---|
720 | for (i=1; i<=s; i++) |
---|
721 | { |
---|
722 | tmp[i] = string(tmp[i])+"("+string(0)+")"; |
---|
723 | } |
---|
724 | L[2] = tmp; |
---|
725 | list OrigNames = LR[2]; |
---|
726 | // ordering: d blocks of the ord on r |
---|
727 | // try to get whether the ord on r is blockord itself |
---|
728 | s = size(LR[3]); |
---|
729 | if (s==2) |
---|
730 | { |
---|
731 | // not a blockord, 1 block + module ord |
---|
732 | tmp = LR[3][s]; // module ord |
---|
733 | for (i=1; i<=D; i++) |
---|
734 | { |
---|
735 | LR[3][s-1+i] = LR[3][1]; |
---|
736 | } |
---|
737 | LR[3][s+D] = tmp; |
---|
738 | } |
---|
739 | if (s>2) |
---|
740 | { |
---|
741 | // there are s-1 blocks |
---|
742 | int nb = s-1; |
---|
743 | tmp = LR[3][s]; // module ord |
---|
744 | for (i=1; i<=D; i++) |
---|
745 | { |
---|
746 | for (j=1; j<=nb; j++) |
---|
747 | { |
---|
748 | LR[3][i*nb+j] = LR[3][j]; |
---|
749 | } |
---|
750 | } |
---|
751 | // size(LR[3]); |
---|
752 | LR[3][nb*(D+1)+1] = tmp; |
---|
753 | } |
---|
754 | L[3] = LR[3]; |
---|
755 | def @R = ring(L); |
---|
756 | setring @R; |
---|
757 | ideal I; |
---|
758 | poly @p; |
---|
759 | s = size(OrigNames); |
---|
760 | // "s:";s; |
---|
761 | // convert LM to canonical vectors (no powers) |
---|
762 | setring save; |
---|
763 | kill M; // M was defined earlier |
---|
764 | module M; |
---|
765 | slm = size(LM); // numbers of polys in the ideal |
---|
766 | int sv,k,l; |
---|
767 | vector v; |
---|
768 | // poly p; |
---|
769 | string sp; |
---|
770 | setring @R; |
---|
771 | poly @@p=0; |
---|
772 | setring save; |
---|
773 | for (l=1; l<=slm; l++) |
---|
774 | { |
---|
775 | // modules, e.g. free polynomials |
---|
776 | M = LM[l]; |
---|
777 | sm = ncols(M); // in intvec iv the sizes are stored |
---|
778 | for (i=0; i<=d-iv[l]; i++) |
---|
779 | { |
---|
780 | // modules, e.g. free polynomials |
---|
781 | for (j=1; j<=sm; j++) |
---|
782 | { |
---|
783 | //vectors, e.g. free monomials |
---|
784 | v = M[j]; |
---|
785 | sv = size(v); |
---|
786 | // "sv:";sv; |
---|
787 | sp = "@@p = @@p + "; |
---|
788 | for (k=2; k<=sv; k++) |
---|
789 | { |
---|
790 | sp = sp + string(v[k])+"("+string(k-2+i)+")*"; |
---|
791 | } |
---|
792 | sp = sp + string(v[1])+";"; // coef; |
---|
793 | setring @R; |
---|
794 | execute(sp); |
---|
795 | setring save; |
---|
796 | } |
---|
797 | setring @R; |
---|
798 | // "@@p:"; @@p; |
---|
799 | I = I,@@p; |
---|
800 | @@p = 0; |
---|
801 | setring save; |
---|
802 | } |
---|
803 | } |
---|
804 | setring @R; |
---|
805 | export I; |
---|
806 | return(@R); |
---|
807 | } |
---|
808 | example |
---|
809 | { |
---|
810 | "EXAMPLE:"; echo = 2; |
---|
811 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
812 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
813 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
814 | list L; L[1] = M; L[2] = N; |
---|
815 | lst2str(L); |
---|
816 | def U = crs(L,5); |
---|
817 | setring U; U; |
---|
818 | I; |
---|
819 | } |
---|
820 | |
---|
821 | static proc polylen(ideal I) |
---|
822 | { |
---|
823 | // returns the ideal of length of polys |
---|
824 | int i; |
---|
825 | intvec J; |
---|
826 | number s = 0; |
---|
827 | for(i=1;i<=ncols(I);i++) |
---|
828 | { |
---|
829 | J[i] = size(I[i]); |
---|
830 | s = s + J[i]; |
---|
831 | } |
---|
832 | printf("the sum of length %s",s); |
---|
833 | // print(s); |
---|
834 | return(J); |
---|
835 | } |
---|
836 | |
---|
837 | proc freegbRing(int d) |
---|
838 | "USAGE: freegbRing(d); d an integer |
---|
839 | RETURN: ring |
---|
840 | PURPOSE: creates a ring with d blocks of shifted original variables |
---|
841 | EXAMPLE: example freegbRing; shows examples |
---|
842 | " |
---|
843 | { |
---|
844 | // d = up to degree, will be shifted to d+1 |
---|
845 | if (d<1) {"bad d"; return(0);} |
---|
846 | |
---|
847 | int ppl = printlevel-voice+2; |
---|
848 | string err = ""; |
---|
849 | |
---|
850 | int i,j,s; |
---|
851 | def save = basering; |
---|
852 | int D = d-1; |
---|
853 | list LR = ringlist(save); |
---|
854 | list L, tmp; |
---|
855 | L[1] = LR[1]; // ground field |
---|
856 | L[4] = LR[4]; // quotient ideal |
---|
857 | tmp = LR[2]; // varnames |
---|
858 | s = size(LR[2]); |
---|
859 | for (i=1; i<=D; i++) |
---|
860 | { |
---|
861 | for (j=1; j<=s; j++) |
---|
862 | { |
---|
863 | tmp[i*s+j] = string(tmp[j])+"("+string(i+1)+")"; |
---|
864 | } |
---|
865 | } |
---|
866 | for (i=1; i<=s; i++) |
---|
867 | { |
---|
868 | tmp[i] = string(tmp[i])+"("+string(1)+")"; |
---|
869 | } |
---|
870 | L[2] = tmp; |
---|
871 | list OrigNames = LR[2]; |
---|
872 | // ordering: d blocks of the ord on r |
---|
873 | // try to get whether the ord on r is blockord itself |
---|
874 | // TODO: make L(2) ordering! exponent is maximally 2 |
---|
875 | s = size(LR[3]); |
---|
876 | if (s==2) |
---|
877 | { |
---|
878 | // not a blockord, 1 block + module ord |
---|
879 | tmp = LR[3][s]; // module ord |
---|
880 | for (i=1; i<=D; i++) |
---|
881 | { |
---|
882 | LR[3][s-1+i] = LR[3][1]; |
---|
883 | } |
---|
884 | LR[3][s+D] = tmp; |
---|
885 | } |
---|
886 | if (s>2) |
---|
887 | { |
---|
888 | // there are s-1 blocks |
---|
889 | int nb = s-1; |
---|
890 | tmp = LR[3][s]; // module ord |
---|
891 | for (i=1; i<=D; i++) |
---|
892 | { |
---|
893 | for (j=1; j<=nb; j++) |
---|
894 | { |
---|
895 | LR[3][i*nb+j] = LR[3][j]; |
---|
896 | } |
---|
897 | } |
---|
898 | // size(LR[3]); |
---|
899 | LR[3][nb*(D+1)+1] = tmp; |
---|
900 | } |
---|
901 | L[3] = LR[3]; |
---|
902 | def @R = ring(L); |
---|
903 | // setring @R; |
---|
904 | return (@R); |
---|
905 | } |
---|
906 | example |
---|
907 | { |
---|
908 | "EXAMPLE:"; echo = 2; |
---|
909 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
910 | def A = freegbRing(2); |
---|
911 | setring A; |
---|
912 | A; |
---|
913 | } |
---|
914 | |
---|
915 | /* EXAMPLES: |
---|
916 | |
---|
917 | //static proc ex_shift() |
---|
918 | { |
---|
919 | LIB "freegb.lib"; |
---|
920 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
921 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
922 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
923 | list L; L[1] = M; L[2] = N; |
---|
924 | lst2str(L); |
---|
925 | def U = crs(L,5); |
---|
926 | setring U; U; |
---|
927 | I; |
---|
928 | poly p = I[2]; // I[8]; |
---|
929 | p; |
---|
930 | system("stest",p,7,7,3); // error -> the world is ok |
---|
931 | poly q1 = system("stest",p,1,7,3); //ok |
---|
932 | poly q6 = system("stest",p,6,7,3); //ok |
---|
933 | system("btest",p,3); //ok |
---|
934 | system("btest",q1,3); //ok |
---|
935 | system("btest",q6,3); //ok |
---|
936 | } |
---|
937 | |
---|
938 | //static proc test_shrink() |
---|
939 | { |
---|
940 | LIB "freegb.lib"; |
---|
941 | ring r =0,(x,y,z),dp; |
---|
942 | int d = 5; |
---|
943 | def R = freegbRing(d); |
---|
944 | setring R; |
---|
945 | poly p1 = x(1)*y(2)*z(3); |
---|
946 | poly p2 = x(1)*y(4)*z(5); |
---|
947 | poly p3 = x(1)*y(1)*z(3); |
---|
948 | poly p4 = x(1)*y(2)*z(2); |
---|
949 | poly p5 = x(3)*z(5); |
---|
950 | poly p6 = x(1)*y(1)*x(3)*z(5); |
---|
951 | poly p7 = x(1)*y(2)*x(3)*y(4)*z(5); |
---|
952 | poly p8 = p1+p2+p3+p4+p5 + p6 + p7; |
---|
953 | p1; system("shrinktest",p1,3); |
---|
954 | p2; system("shrinktest",p2,3); |
---|
955 | p3; system("shrinktest",p3,3); |
---|
956 | p4; system("shrinktest",p4,3); |
---|
957 | p5; system("shrinktest",p5,3); |
---|
958 | p6; system("shrinktest",p6,3); |
---|
959 | p7; system("shrinktest",p7,3); |
---|
960 | p8; system("shrinktest",p8,3); |
---|
961 | poly p9 = p1 + 2*p2 + 5*p5 + 7*p7; |
---|
962 | p9; system("shrinktest",p9,3); |
---|
963 | } |
---|
964 | |
---|
965 | //static proc ex2() |
---|
966 | { |
---|
967 | option(prot); |
---|
968 | LIB "freegb.lib"; |
---|
969 | ring r = 0,(x,y),dp; |
---|
970 | module M = [-1,x,y],[3,x,x]; // 3x^2 - xy |
---|
971 | def U = freegb(M,7); |
---|
972 | lst2str(U); |
---|
973 | } |
---|
974 | |
---|
975 | //static proc ex_nonhomog() |
---|
976 | { |
---|
977 | option(prot); |
---|
978 | LIB "freegb.lib"; |
---|
979 | ring r = 0,(x,y,h),dp; |
---|
980 | list L; |
---|
981 | module M; |
---|
982 | M = [-1,y,y],[1,x,x,x]; // x3-y2 |
---|
983 | L[1] = M; |
---|
984 | M = [1,x,h],[-1,h,x]; // xh-hx |
---|
985 | L[2] = M; |
---|
986 | M = [1,y,h],[-1,h,y]; // yh-hy |
---|
987 | L[3] = M; |
---|
988 | def U = freegb(L,4); |
---|
989 | lst2str(U); |
---|
990 | // strange elements in the basis |
---|
991 | } |
---|
992 | |
---|
993 | //static proc ex_nonhomog_comm() |
---|
994 | { |
---|
995 | option(prot); |
---|
996 | LIB "freegb.lib"; |
---|
997 | ring r = 0,(x,y),dp; |
---|
998 | module M = [-1,y,y],[1,x,x,x]; |
---|
999 | def U = freegb(M,5); |
---|
1000 | lst2str(U); |
---|
1001 | } |
---|
1002 | |
---|
1003 | //static proc ex_nonhomog_h() |
---|
1004 | { |
---|
1005 | option(prot); |
---|
1006 | LIB "freegb.lib"; |
---|
1007 | ring r = 0,(x,y,h),(a(1,1),dp); |
---|
1008 | module M = [-1,y,y,h],[1,x,x,x]; // x3 - y2h |
---|
1009 | def U = freegb(M,6); |
---|
1010 | lst2str(U); |
---|
1011 | } |
---|
1012 | |
---|
1013 | //static proc ex_nonhomog_h2() |
---|
1014 | { |
---|
1015 | option(prot); |
---|
1016 | LIB "freegb.lib"; |
---|
1017 | ring r = 0,(x,y,h),(dp); |
---|
1018 | list L; |
---|
1019 | module M; |
---|
1020 | M = [-1,y,y,h],[1,x,x,x]; // x3 - y2h |
---|
1021 | L[1] = M; |
---|
1022 | M = [1,x,h],[-1,h,x]; // xh - hx |
---|
1023 | L[2] = M; |
---|
1024 | M = [1,y,h],[-1,h,y]; // yh - hy |
---|
1025 | L[3] = M; |
---|
1026 | def U = freegbasis(L,3); |
---|
1027 | lst2str(U); |
---|
1028 | // strange answer CHECK |
---|
1029 | } |
---|
1030 | |
---|
1031 | |
---|
1032 | //static proc ex_nonhomog_3() |
---|
1033 | { |
---|
1034 | option(prot); |
---|
1035 | LIB "./freegb.lib"; |
---|
1036 | ring r = 0,(x,y,z),(dp); |
---|
1037 | list L; |
---|
1038 | module M; |
---|
1039 | M = [1,z,y],[-1,x]; // zy - x |
---|
1040 | L[1] = M; |
---|
1041 | M = [1,z,x],[-1,y]; // zx - y |
---|
1042 | L[2] = M; |
---|
1043 | M = [1,y,x],[-1,z]; // yx - z |
---|
1044 | L[3] = M; |
---|
1045 | lst2str(L); |
---|
1046 | list U = freegb(L,4); |
---|
1047 | lst2str(U); |
---|
1048 | // strange answer CHECK |
---|
1049 | } |
---|
1050 | |
---|
1051 | //static proc ex_densep_2() |
---|
1052 | { |
---|
1053 | option(prot); |
---|
1054 | LIB "freegb.lib"; |
---|
1055 | ring r = (0,a,b,c),(x,y),(Dp); // deglex |
---|
1056 | module M = [1,x,x], [a,x,y], [b,y,x], [c,y,y]; |
---|
1057 | lst2str(M); |
---|
1058 | list U = freegb(M,5); |
---|
1059 | lst2str(U); |
---|
1060 | // a=b is important -> finite basis!!! |
---|
1061 | module M = [1,x,x], [a,x,y], [a,y,x], [c,y,y]; |
---|
1062 | lst2str(M); |
---|
1063 | list U = freegb(M,5); |
---|
1064 | lst2str(U); |
---|
1065 | } |
---|
1066 | |
---|
1067 | // END COMMENTED EXAMPLES |
---|
1068 | |
---|
1069 | */ |
---|
1070 | |
---|
1071 | // 1. form a new ring |
---|
1072 | // 2. produce shifted generators |
---|
1073 | // 3. compute GB |
---|
1074 | // 4. skip shifted elts |
---|
1075 | // 5. go back to orig vars, produce strings/modules |
---|
1076 | // 6. return the result |
---|
1077 | |
---|
1078 | static proc freegbold(list LM, int d) |
---|
1079 | "USAGE: freegbold(L, d); L a list of modules, d an integer |
---|
1080 | RETURN: ring |
---|
1081 | PURPOSE: compute the two-sided Groebner basis of an ideal, encoded by L in |
---|
1082 | the free associative algebra, up to degree d |
---|
1083 | EXAMPLE: example freegbold; shows examples |
---|
1084 | " |
---|
1085 | { |
---|
1086 | // d = up to degree, will be shifted to d+1 |
---|
1087 | if (d<1) {"bad d"; return(0);} |
---|
1088 | |
---|
1089 | int ppl = printlevel-voice+2; |
---|
1090 | string err = ""; |
---|
1091 | |
---|
1092 | int i,j,s; |
---|
1093 | def save = basering; |
---|
1094 | // determine max no of places in the input |
---|
1095 | int slm = size(LM); // numbers of polys in the ideal |
---|
1096 | int sm; |
---|
1097 | intvec iv; |
---|
1098 | module M; |
---|
1099 | for (i=1; i<=slm; i++) |
---|
1100 | { |
---|
1101 | // modules, e.g. free polynomials |
---|
1102 | M = LM[i]; |
---|
1103 | sm = ncols(M); |
---|
1104 | for (j=1; j<=sm; j++) |
---|
1105 | { |
---|
1106 | //vectors, e.g. free monomials |
---|
1107 | iv = iv, size(M[j])-1; // 1 place is reserved by the coeff |
---|
1108 | } |
---|
1109 | } |
---|
1110 | int D = Max(iv); // max size of input words |
---|
1111 | if (d<D) {"bad d"; return(LM);} |
---|
1112 | D = D + d-1; |
---|
1113 | // D = d; |
---|
1114 | list LR = ringlist(save); |
---|
1115 | list L, tmp; |
---|
1116 | L[1] = LR[1]; // ground field |
---|
1117 | L[4] = LR[4]; // quotient ideal |
---|
1118 | tmp = LR[2]; // varnames |
---|
1119 | s = size(LR[2]); |
---|
1120 | for (i=1; i<=D; i++) |
---|
1121 | { |
---|
1122 | for (j=1; j<=s; j++) |
---|
1123 | { |
---|
1124 | tmp[i*s+j] = string(tmp[j])+"("+string(i+1)+")"; |
---|
1125 | } |
---|
1126 | } |
---|
1127 | for (i=1; i<=s; i++) |
---|
1128 | { |
---|
1129 | tmp[i] = string(tmp[i])+"("+string(1)+")"; |
---|
1130 | } |
---|
1131 | L[2] = tmp; |
---|
1132 | list OrigNames = LR[2]; |
---|
1133 | // ordering: d blocks of the ord on r |
---|
1134 | // try to get whether the ord on r is blockord itself |
---|
1135 | // TODO: make L(2) ordering! exponent is maximally 2 |
---|
1136 | s = size(LR[3]); |
---|
1137 | if (s==2) |
---|
1138 | { |
---|
1139 | // not a blockord, 1 block + module ord |
---|
1140 | tmp = LR[3][s]; // module ord |
---|
1141 | for (i=1; i<=D; i++) |
---|
1142 | { |
---|
1143 | LR[3][s-1+i] = LR[3][1]; |
---|
1144 | } |
---|
1145 | LR[3][s+D] = tmp; |
---|
1146 | } |
---|
1147 | if (s>2) |
---|
1148 | { |
---|
1149 | // there are s-1 blocks |
---|
1150 | int nb = s-1; |
---|
1151 | tmp = LR[3][s]; // module ord |
---|
1152 | for (i=1; i<=D; i++) |
---|
1153 | { |
---|
1154 | for (j=1; j<=nb; j++) |
---|
1155 | { |
---|
1156 | LR[3][i*nb+j] = LR[3][j]; |
---|
1157 | } |
---|
1158 | } |
---|
1159 | // size(LR[3]); |
---|
1160 | LR[3][nb*(D+1)+1] = tmp; |
---|
1161 | } |
---|
1162 | L[3] = LR[3]; |
---|
1163 | def @R = ring(L); |
---|
1164 | setring @R; |
---|
1165 | ideal I; |
---|
1166 | poly @p; |
---|
1167 | s = size(OrigNames); |
---|
1168 | // "s:";s; |
---|
1169 | // convert LM to canonical vectors (no powers) |
---|
1170 | setring save; |
---|
1171 | kill M; // M was defined earlier |
---|
1172 | module M; |
---|
1173 | slm = size(LM); // numbers of polys in the ideal |
---|
1174 | int sv,k,l; |
---|
1175 | vector v; |
---|
1176 | // poly p; |
---|
1177 | string sp; |
---|
1178 | setring @R; |
---|
1179 | poly @@p=0; |
---|
1180 | setring save; |
---|
1181 | for (l=1; l<=slm; l++) |
---|
1182 | { |
---|
1183 | // modules, e.g. free polynomials |
---|
1184 | M = LM[l]; |
---|
1185 | sm = ncols(M); // in intvec iv the sizes are stored |
---|
1186 | for (i=0; i<=d-iv[l]; i++) |
---|
1187 | { |
---|
1188 | // modules, e.g. free polynomials |
---|
1189 | for (j=1; j<=sm; j++) |
---|
1190 | { |
---|
1191 | //vectors, e.g. free monomials |
---|
1192 | v = M[j]; |
---|
1193 | sv = size(v); |
---|
1194 | // "sv:";sv; |
---|
1195 | sp = "@@p = @@p + "; |
---|
1196 | for (k=2; k<=sv; k++) |
---|
1197 | { |
---|
1198 | sp = sp + string(v[k])+"("+string(k-1+i)+")*"; |
---|
1199 | } |
---|
1200 | sp = sp + string(v[1])+";"; // coef; |
---|
1201 | setring @R; |
---|
1202 | execute(sp); |
---|
1203 | setring save; |
---|
1204 | } |
---|
1205 | setring @R; |
---|
1206 | // "@@p:"; @@p; |
---|
1207 | I = I,@@p; |
---|
1208 | @@p = 0; |
---|
1209 | setring save; |
---|
1210 | } |
---|
1211 | } |
---|
1212 | kill sp; |
---|
1213 | // 3. compute GB |
---|
1214 | setring @R; |
---|
1215 | dbprint(ppl,"computing GB"); |
---|
1216 | // ideal J = groebner(I); |
---|
1217 | ideal J = slimgb(I); |
---|
1218 | dbprint(ppl,J); |
---|
1219 | // 4. skip shifted elts |
---|
1220 | ideal K = select1(J,1..s); // s = size(OrigNames) |
---|
1221 | dbprint(ppl,K); |
---|
1222 | dbprint(ppl, "done with GB"); |
---|
1223 | // K contains vars x(1),...z(1) = images of originals |
---|
1224 | // 5. go back to orig vars, produce strings/modules |
---|
1225 | if (K[1] == 0) |
---|
1226 | { |
---|
1227 | "no reasonable output, GB gives 0"; |
---|
1228 | return(0); |
---|
1229 | } |
---|
1230 | int sk = size(K); |
---|
1231 | int sp, sx, a, b; |
---|
1232 | intvec x; |
---|
1233 | poly p,q; |
---|
1234 | poly pn; |
---|
1235 | // vars in 'save' |
---|
1236 | setring save; |
---|
1237 | module N; |
---|
1238 | list LN; |
---|
1239 | vector V; |
---|
1240 | poly pn; |
---|
1241 | // test and skip exponents >=2 |
---|
1242 | setring @R; |
---|
1243 | for(i=1; i<=sk; i++) |
---|
1244 | { |
---|
1245 | p = K[i]; |
---|
1246 | while (p!=0) |
---|
1247 | { |
---|
1248 | q = lead(p); |
---|
1249 | // "processing q:";q; |
---|
1250 | x = leadexp(q); |
---|
1251 | sx = size(x); |
---|
1252 | for(k=1; k<=sx; k++) |
---|
1253 | { |
---|
1254 | if ( x[k] >= 2 ) |
---|
1255 | { |
---|
1256 | err = "skip: the value x[k] is " + string(x[k]); |
---|
1257 | dbprint(ppl,err); |
---|
1258 | // return(0); |
---|
1259 | K[i] = 0; |
---|
1260 | p = 0; |
---|
1261 | q = 0; |
---|
1262 | break; |
---|
1263 | } |
---|
1264 | } |
---|
1265 | p = p - q; |
---|
1266 | } |
---|
1267 | } |
---|
1268 | K = simplify(K,2); |
---|
1269 | sk = size(K); |
---|
1270 | for(i=1; i<=sk; i++) |
---|
1271 | { |
---|
1272 | // setring save; |
---|
1273 | // V = 0; |
---|
1274 | setring @R; |
---|
1275 | p = K[i]; |
---|
1276 | while (p!=0) |
---|
1277 | { |
---|
1278 | q = lead(p); |
---|
1279 | err = "processing q:" + string(q); |
---|
1280 | dbprint(ppl,err); |
---|
1281 | x = leadexp(q); |
---|
1282 | sx = size(x); |
---|
1283 | pn = leadcoef(q); |
---|
1284 | setring save; |
---|
1285 | pn = imap(@R,pn); |
---|
1286 | V = V + leadcoef(pn)*gen(1); |
---|
1287 | for(k=1; k<=sx; k++) |
---|
1288 | { |
---|
1289 | if (x[k] ==1) |
---|
1290 | { |
---|
1291 | a = k / s; // block number=a+1, a!=0 |
---|
1292 | b = k % s; // remainder |
---|
1293 | // printf("a: %s, b: %s",a,b); |
---|
1294 | if (b == 0) |
---|
1295 | { |
---|
1296 | // that is it's the last var in the block |
---|
1297 | b = s; |
---|
1298 | a = a-1; |
---|
1299 | } |
---|
1300 | V = V + var(b)*gen(a+2); |
---|
1301 | } |
---|
1302 | // else |
---|
1303 | // { |
---|
1304 | // printf("error: the value x[k] is %s", x[k]); |
---|
1305 | // return(0); |
---|
1306 | // } |
---|
1307 | } |
---|
1308 | err = "V: " + string(V); |
---|
1309 | dbprint(ppl,err); |
---|
1310 | // printf("V: %s", string(V)); |
---|
1311 | N = N,V; |
---|
1312 | V = 0; |
---|
1313 | setring @R; |
---|
1314 | p = p - q; |
---|
1315 | pn = 0; |
---|
1316 | } |
---|
1317 | setring save; |
---|
1318 | LN[i] = simplify(N,2); |
---|
1319 | N = 0; |
---|
1320 | } |
---|
1321 | setring save; |
---|
1322 | return(LN); |
---|
1323 | } |
---|
1324 | example |
---|
1325 | { |
---|
1326 | "EXAMPLE:"; echo = 2; |
---|
1327 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
1328 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
1329 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
1330 | list L; L[1] = M; L[2] = N; |
---|
1331 | lst2str(L); |
---|
1332 | def U = freegbold(L,5); |
---|
1333 | lst2str(U); |
---|
1334 | } |
---|
1335 | |
---|
1336 | static proc sgb(ideal I, int d) |
---|
1337 | { |
---|
1338 | // new code |
---|
1339 | // map x_i to x_i(1) via map() |
---|
1340 | //LIB "freegb.lib"; |
---|
1341 | def save = basering; |
---|
1342 | //int d =7;// degree |
---|
1343 | int nv = nvars(save); |
---|
1344 | def R = freegbRing(d); |
---|
1345 | setring R; |
---|
1346 | int i; |
---|
1347 | ideal Imap; |
---|
1348 | for (i=1; i<=nv; i++) |
---|
1349 | { |
---|
1350 | Imap[i] = var(i); |
---|
1351 | } |
---|
1352 | //ideal I = x(1)*y(2), y(1)*x(2)+z(1)*z(2); |
---|
1353 | ideal I = x(1)*x(2),x(1)*y(2) + z(1)*x(2); |
---|
1354 | option(prot); |
---|
1355 | //option(teach); |
---|
1356 | ideal J = system("freegb",I,d,nv); |
---|
1357 | } |
---|
1358 | |
---|
1359 | static proc checkCeq() |
---|
1360 | { |
---|
1361 | ring r = 0,(x,y),Dp; |
---|
1362 | def A = freegbRing(4); |
---|
1363 | setring A; |
---|
1364 | A; |
---|
1365 | // I = x2-xy |
---|
1366 | ideal I = x(1)*x(2) - x(1)*y(2), x(2)*x(3) - x(2)*y(3), x(3)*x(4) - x(3)*y(4); |
---|
1367 | ideal C = x(2)-x(1),x(3)-x(2),x(4)-x(3),y(2)-y(1),y(3)-y(2),y(4)-y(3); |
---|
1368 | ideal K = I,C; |
---|
1369 | groebner(K); |
---|
1370 | } |
---|
1371 | |
---|
1372 | static proc exHom1() |
---|
1373 | { |
---|
1374 | // we start with |
---|
1375 | // z*y - x, z*x - y, y*x - z |
---|
1376 | LIB "freegb.lib"; |
---|
1377 | LIB "elim.lib"; |
---|
1378 | ring r = 0,(x,y,z,h),dp; |
---|
1379 | list L; |
---|
1380 | module M; |
---|
1381 | M = [1,z,y],[-1,x,h]; // zy - xh |
---|
1382 | L[1] = M; |
---|
1383 | M = [1,z,x],[-1,y,h]; // zx - yh |
---|
1384 | L[2] = M; |
---|
1385 | M = [1,y,x],[-1,z,h]; // yx - zh |
---|
1386 | L[3] = M; |
---|
1387 | lst2str(L); |
---|
1388 | def U = crs(L,4); |
---|
1389 | setring U; |
---|
1390 | I = I, |
---|
1391 | y(2)*h(3)+z(2)*x(3), y(3)*h(4)+z(3)*x(4), |
---|
1392 | y(2)*x(3)-z(2)*h(3), y(3)*x(4)-z(3)*h(4); |
---|
1393 | I = simplify(I,2); |
---|
1394 | ring r2 = 0,(x(0..4),y(0..4),z(0..4),h(0..4)),dp; |
---|
1395 | ideal J = imap(U,I); |
---|
1396 | // ideal K = homog(J,h); |
---|
1397 | option(redSB); |
---|
1398 | option(redTail); |
---|
1399 | ideal L = groebner(J); //(K); |
---|
1400 | ideal LL = sat(L,ideal(h))[1]; |
---|
1401 | ideal M = subst(LL,h,1); |
---|
1402 | M = simplify(M,2); |
---|
1403 | setring U; |
---|
1404 | ideal M = imap(r2,M); |
---|
1405 | lst2str(U); |
---|
1406 | } |
---|
1407 | |
---|
1408 | static proc test1() |
---|
1409 | { |
---|
1410 | LIB "freegb.lib"; |
---|
1411 | ring r = 0,(x,y),Dp; |
---|
1412 | int d = 10; // degree |
---|
1413 | def R = freegbRing(d); |
---|
1414 | setring R; |
---|
1415 | ideal I = x(1)*x(2) - y(1)*y(2); |
---|
1416 | option(prot); |
---|
1417 | option(teach); |
---|
1418 | ideal J = system("freegb",I,d,2); |
---|
1419 | J; |
---|
1420 | } |
---|
1421 | |
---|
1422 | static proc test2() |
---|
1423 | { |
---|
1424 | LIB "freegb.lib"; |
---|
1425 | ring r = 0,(x,y),Dp; |
---|
1426 | int d = 10; // degree |
---|
1427 | def R = freegbRing(d); |
---|
1428 | setring R; |
---|
1429 | ideal I = x(1)*x(2) - x(1)*y(2); |
---|
1430 | option(prot); |
---|
1431 | option(teach); |
---|
1432 | ideal J = system("freegb",I,d,2); |
---|
1433 | J; |
---|
1434 | } |
---|
1435 | |
---|
1436 | static proc test3() |
---|
1437 | { |
---|
1438 | LIB "freegb.lib"; |
---|
1439 | ring r = 0,(x,y,z),dp; |
---|
1440 | int d =5; // degree |
---|
1441 | def R = freegbRing(d); |
---|
1442 | setring R; |
---|
1443 | ideal I = x(1)*y(2), y(1)*x(2)+z(1)*z(2); |
---|
1444 | option(prot); |
---|
1445 | option(teach); |
---|
1446 | ideal J = system("freegb",I,d,3); |
---|
1447 | } |
---|
1448 | |
---|
1449 | static proc schur2-3() |
---|
1450 | { |
---|
1451 | // nonhomog: |
---|
1452 | // h^4-10*h^2+9,f*e-e*f+h, h*2-e*h-2*e,h*f-f*h+2*f |
---|
1453 | // homogenized with t |
---|
1454 | // h^4-10*h^2*t^2+9*t^4,f*e-e*f+h*t, h*2-e*h-2*e*t,h*f-f*h+2*f*t, |
---|
1455 | // t*h - h*t, t*f - f*t, t*e - e*t |
---|
1456 | } |
---|
1457 | |
---|
1458 | proc adem(int i, int j) |
---|
1459 | "USAGE: adem(i,j); i,j int |
---|
1460 | RETURN: ideal |
---|
1461 | ASSUME: there are at least i+j variables in the basering |
---|
1462 | PURPOSE: compute the ideal of Adem relations for i<2j in characteristic 0 |
---|
1463 | EXAMPLE: example adem; shows examples |
---|
1464 | " |
---|
1465 | { |
---|
1466 | // produces Adem relations for i<2j in char 0 |
---|
1467 | // assume: 0<i<2j |
---|
1468 | // requires presence of vars up to i+j |
---|
1469 | if ( (i<0) || (i >= 2*j) ) |
---|
1470 | { |
---|
1471 | ERROR("arguments out of range"); return(0); |
---|
1472 | } |
---|
1473 | ring @r = 0,(s(i+j..0)),lp; |
---|
1474 | poly p,q; |
---|
1475 | number n; |
---|
1476 | int ii = i div 2; int k; |
---|
1477 | // k=0 => s(0)=1 |
---|
1478 | n = binomial(j-1,i); |
---|
1479 | q = n*s(i+j)*s(0); |
---|
1480 | printf("k=0, term=%s",q); |
---|
1481 | p = p + q; |
---|
1482 | for (k=1; k<= ii; k++) |
---|
1483 | { |
---|
1484 | n = binomial(j-k-1,i-2*k); |
---|
1485 | q = n*s(i+j-k)*s(k);; |
---|
1486 | printf("k=%s, term=%s",k,q); |
---|
1487 | p = p + q; |
---|
1488 | } |
---|
1489 | poly AdemRel = p; |
---|
1490 | export AdemRel; |
---|
1491 | return(@r); |
---|
1492 | } |
---|
1493 | example |
---|
1494 | { |
---|
1495 | "EXAMPLE:"; echo = 2; |
---|
1496 | def A = adem(2,5); |
---|
1497 | setring A; |
---|
1498 | AdemRel; |
---|
1499 | } |
---|
1500 | |
---|
1501 | /* |
---|
1502 | 1,1: 0 |
---|
1503 | 1,2: s(3)*s(0) == s(3) -> def for s(3):=s(1)s(2) |
---|
1504 | 2,1: adm |
---|
1505 | 2,2: s(3)*s(1) == s(1)s(2)s(1) |
---|
1506 | 1,3: 0 ( since 2*s(4)*s(0) = 0 mod 2) |
---|
1507 | 3,1: adm |
---|
1508 | 2,3: s(5)*s(0)+s(4)*s(1) == s(5)+s(4)*s(1) |
---|
1509 | 3,2: 0 |
---|
1510 | 3,3: s(5)*s(1) |
---|
1511 | 1,4: 3*s(5)*s(0) == s(5) -> def for s(5):=s(1)*s(4) |
---|
1512 | 4,1: adm |
---|
1513 | 2,4: 3*s(6)*s(0)+s(5)*s(1) == s(6) + s(5)*s(1) == s(6) + s(1)*s(4)*s(1) |
---|
1514 | 4,2: adm |
---|
1515 | 4,3: s(5)*s(2) |
---|
1516 | 3,4: s(7)*s(0)+2*s(6)*s(1) == s(7) -> def for s(7):=s(3)*s(4) |
---|
1517 | 4,4: s(7)*s(1)+s(6)*s(2) |
---|
1518 | */ |
---|
1519 | |
---|
1520 | /* s1,s2: |
---|
1521 | s1*s1 =0, s2*s2 = s1*s2*s1 |
---|
1522 | */ |
---|
1523 | |
---|
1524 | /* |
---|
1525 | try char 0: |
---|
1526 | s1,s2: |
---|
1527 | s1*s1 =0, s2*s2 = s1*s2*s1, s(1)*s(3)== s(1)*s(1)*s(3) == 0 = 2*s(4) ->def for s(4) |
---|
1528 | hence 2==0! only in char 2 |
---|
1529 | */ |
---|
1530 | |
---|
1531 | // Adem rels modulo 2 are interesting |
---|
1532 | |
---|
1533 | //static |
---|
1534 | proc stringpoly2lplace(string s) |
---|
1535 | { |
---|
1536 | // decomposes sentence into terms |
---|
1537 | s = replace(s,newline,""); // get rid of newlines |
---|
1538 | s = replace(s," ",""); // get rid of empties |
---|
1539 | //arith symbols: +,- |
---|
1540 | // decompose into words with coeffs |
---|
1541 | list LS; |
---|
1542 | int i,j,ie,je,k,cnt; |
---|
1543 | // s[1]="-" situation |
---|
1544 | if (s[1]=="-") |
---|
1545 | { |
---|
1546 | LS = stringpoly2lplace(string(s[2..size(s)])); |
---|
1547 | LS[1] = string("-"+string(LS[1])); |
---|
1548 | return(LS); |
---|
1549 | } |
---|
1550 | i = find(s,"-",2); |
---|
1551 | // i==1 might happen if the 1st symbol coeff is negative |
---|
1552 | j = find(s,"+"); |
---|
1553 | list LL; |
---|
1554 | if (i==j) |
---|
1555 | { |
---|
1556 | "return a monomial"; |
---|
1557 | // that is both are 0 -> s is a monomial |
---|
1558 | LS[1] = s; |
---|
1559 | return(LS); |
---|
1560 | } |
---|
1561 | if (i==0) |
---|
1562 | { |
---|
1563 | "i==0 situation"; |
---|
1564 | // no minuses at all => pluses only |
---|
1565 | cnt++; |
---|
1566 | LS[cnt] = string(s[1..j-1]); |
---|
1567 | s = s[j+1..size(s)]; |
---|
1568 | while (s!= "") |
---|
1569 | { |
---|
1570 | j = find(s,"+"); |
---|
1571 | cnt++; |
---|
1572 | if (j==0) |
---|
1573 | { |
---|
1574 | LS[cnt] = string(s); |
---|
1575 | s = ""; |
---|
1576 | } |
---|
1577 | else |
---|
1578 | { |
---|
1579 | LS[cnt] = string(s[1..j-1]); |
---|
1580 | s = s[j+1..size(s)]; |
---|
1581 | } |
---|
1582 | } |
---|
1583 | return(LS); |
---|
1584 | } |
---|
1585 | if (j==0) |
---|
1586 | { |
---|
1587 | "j==0 situation"; |
---|
1588 | // no pluses at all except the lead coef => the rest are minuses only |
---|
1589 | cnt++; |
---|
1590 | LS[cnt] = string(s[1..i-1]); |
---|
1591 | s = s[i..size(s)]; |
---|
1592 | while (s!= "") |
---|
1593 | { |
---|
1594 | i = find(s,"-",2); |
---|
1595 | cnt++; |
---|
1596 | if (i==0) |
---|
1597 | { |
---|
1598 | LS[cnt] = string(s); |
---|
1599 | s = ""; |
---|
1600 | } |
---|
1601 | else |
---|
1602 | { |
---|
1603 | LS[cnt] = string(s[1..i-1]); |
---|
1604 | s = s[i..size(s)]; |
---|
1605 | } |
---|
1606 | } |
---|
1607 | return(LS); |
---|
1608 | } |
---|
1609 | // now i, j are nonzero |
---|
1610 | if (i>j) |
---|
1611 | { |
---|
1612 | "i>j situation"; |
---|
1613 | // + comes first, at place j |
---|
1614 | cnt++; |
---|
1615 | // "cnt:"; cnt; "j:"; j; |
---|
1616 | LS[cnt] = string(s[1..j-1]); |
---|
1617 | s = s[j+1..size(s)]; |
---|
1618 | LL = stringpoly2lplace(s); |
---|
1619 | LS = LS + LL; |
---|
1620 | kill LL; |
---|
1621 | return(LS); |
---|
1622 | } |
---|
1623 | else |
---|
1624 | { |
---|
1625 | "j>i situation"; |
---|
1626 | // - might come first, at place i |
---|
1627 | if (i>1) |
---|
1628 | { |
---|
1629 | cnt++; |
---|
1630 | LS[cnt] = string(s[1..i-1]); |
---|
1631 | s = s[i..size(s)]; |
---|
1632 | } |
---|
1633 | else |
---|
1634 | { |
---|
1635 | // i==1-> minus at leadcoef |
---|
1636 | ie = find(s,"-",i+1); |
---|
1637 | je = find(s,"+",i+1); |
---|
1638 | if (je == ie) |
---|
1639 | { |
---|
1640 | "ie=je situation"; |
---|
1641 | //monomial |
---|
1642 | cnt++; |
---|
1643 | LS[cnt] = s; |
---|
1644 | return(LS); |
---|
1645 | } |
---|
1646 | if (je < ie) |
---|
1647 | { |
---|
1648 | "je<ie situation"; |
---|
1649 | // + comes first |
---|
1650 | cnt++; |
---|
1651 | LS[cnt] = s[1..je-1]; |
---|
1652 | s = s[je+1..size(s)]; |
---|
1653 | } |
---|
1654 | else |
---|
1655 | { |
---|
1656 | // ie < je |
---|
1657 | "ie<je situation"; |
---|
1658 | cnt++; |
---|
1659 | LS[cnt] = s[1..ie-1]; |
---|
1660 | s = s[ie..size(s)]; |
---|
1661 | } |
---|
1662 | } |
---|
1663 | "going into recursion with "+s; |
---|
1664 | LL = stringpoly2lplace(s); |
---|
1665 | LS = LS + LL; |
---|
1666 | return(LS); |
---|
1667 | } |
---|
1668 | } |
---|
1669 | example |
---|
1670 | { |
---|
1671 | "EXAMPLE:"; echo = 2; |
---|
1672 | string s = "x*y+y*z+z*t"; // + only |
---|
1673 | stringpoly2lplace(s); |
---|
1674 | string s2 = "x*y - y*z-z*t*w*w"; // +1, - only |
---|
1675 | stringpoly2lplace(s2); |
---|
1676 | string s3 = "-x*y + y - 2*x +7*w*w*w"; |
---|
1677 | stringpoly2lplace(s3); |
---|
1678 | } |
---|
1679 | |
---|
1680 | static proc addplaces(list L) |
---|
1681 | { |
---|
1682 | // adds places to the list of strings |
---|
1683 | // according to their order in the list |
---|
1684 | int s = size(L); |
---|
1685 | int i; |
---|
1686 | for (i=1; i<=s; i++) |
---|
1687 | { |
---|
1688 | if (typeof(L[i]) == "string") |
---|
1689 | { |
---|
1690 | L[i] = L[i] + "(" + string(i) + ")"; |
---|
1691 | } |
---|
1692 | else |
---|
1693 | { |
---|
1694 | ERROR("entry of type string expected"); |
---|
1695 | return(0); |
---|
1696 | } |
---|
1697 | } |
---|
1698 | return(L); |
---|
1699 | } |
---|
1700 | example |
---|
1701 | { |
---|
1702 | "EXAMPLE:"; echo = 2; |
---|
1703 | string a = "f1"; string b = "f2"; |
---|
1704 | list L = a,b,a; |
---|
1705 | addplaces(L); |
---|
1706 | } |
---|
1707 | |
---|
1708 | //static |
---|
1709 | proc sent2lplace(string s) |
---|
1710 | { |
---|
1711 | // SENTence of words TO LetterPLACE |
---|
1712 | list L = stringpoly2lplace(s); |
---|
1713 | int i; int ss = size(L); |
---|
1714 | for(i=1; i<=ss; i++) |
---|
1715 | { |
---|
1716 | L[i] = str2lplace(L[i]); |
---|
1717 | } |
---|
1718 | return(L); |
---|
1719 | } |
---|
1720 | example |
---|
1721 | { |
---|
1722 | "EXAMPLE:"; echo = 2; |
---|
1723 | ring r = 0,(f2,f1),dp; |
---|
1724 | string s = "f2*f1*f1 - 2*f1*f2*f1+ f1*f1*f2"; |
---|
1725 | sent2lplace(s); |
---|
1726 | } |
---|
1727 | |
---|
1728 | static proc testnumber(string s) |
---|
1729 | { |
---|
1730 | string t; |
---|
1731 | if (s[1]=="-") |
---|
1732 | { |
---|
1733 | // two situations: either there's a negative number |
---|
1734 | t = s[2..size(s)]; |
---|
1735 | if (testnumber(t)) |
---|
1736 | { |
---|
1737 | //a negative number |
---|
1738 | } |
---|
1739 | else |
---|
1740 | { |
---|
1741 | // a variable times -1 |
---|
1742 | } |
---|
1743 | // or just a "-" for -1 |
---|
1744 | } |
---|
1745 | t = "ring @r=("; |
---|
1746 | t = t + charstr(basering)+"),"; |
---|
1747 | t = t + string(var(1))+",dp;"; |
---|
1748 | // write(":w tstnum.tst",t); |
---|
1749 | t = t+ "number @@Nn = " + s + ";"+"$"; |
---|
1750 | write(":w tstnum.tst",t); |
---|
1751 | string runsing = system("Singular"); |
---|
1752 | int k; |
---|
1753 | t = runsing+ " -teq <tstnum.tst >tstnum.out"; |
---|
1754 | k = system("sh",t); |
---|
1755 | if (k!=0) |
---|
1756 | { |
---|
1757 | ERROR("Problems running Singular"); |
---|
1758 | } |
---|
1759 | int i = system("sh", "grep error tstnum.out > /dev/NULL"); |
---|
1760 | if (i!=0) |
---|
1761 | { |
---|
1762 | // no error: s is a number |
---|
1763 | i = 1; |
---|
1764 | } |
---|
1765 | k = system("sh","rm tstnum.tst tstnum.out > /dev/NULL"); |
---|
1766 | return(i); |
---|
1767 | } |
---|
1768 | example |
---|
1769 | { |
---|
1770 | "EXAMPLE:"; echo = 2; |
---|
1771 | ring r = (0,a),x,dp; |
---|
1772 | string s = "a^2+7*a-2"; |
---|
1773 | testnumber(s); |
---|
1774 | s = "b+a"; |
---|
1775 | testnumber(s); |
---|
1776 | } |
---|
1777 | |
---|
1778 | proc str2lplace(string s) |
---|
1779 | { |
---|
1780 | // converts a word (monomial) with coeff into letter-place |
---|
1781 | // string: coef*var1^exp1*var2^exp2*...varN^expN |
---|
1782 | s = strpower2rep(s); // expand powers |
---|
1783 | if (size(s)==0) { return(0); } |
---|
1784 | int i,j,k,insC; |
---|
1785 | string a,b,c,d,t; |
---|
1786 | // 1. get coeff |
---|
1787 | i = find(s,"*"); |
---|
1788 | if (i==0) { return(s); } |
---|
1789 | list VN; |
---|
1790 | c = s[1..i-1]; // incl. the case like (-a^2+1) |
---|
1791 | int tn = testnumber(c); |
---|
1792 | if (tn == 0) |
---|
1793 | { |
---|
1794 | // failed test |
---|
1795 | if (c[1]=="-") |
---|
1796 | { |
---|
1797 | // two situations: either there's a negative number |
---|
1798 | t = c[2..size(c)]; |
---|
1799 | if (testnumber(t)) |
---|
1800 | { |
---|
1801 | //a negative number |
---|
1802 | // nop here |
---|
1803 | } |
---|
1804 | else |
---|
1805 | { |
---|
1806 | // a variable times -1 |
---|
1807 | c = "-1"; |
---|
1808 | j++; VN[j] = t; //string(c[2..size(c)]); |
---|
1809 | insC = 1; |
---|
1810 | } |
---|
1811 | } |
---|
1812 | else |
---|
1813 | { |
---|
1814 | // just a variable with coeff 1 |
---|
1815 | j++; VN[j] = string(c); |
---|
1816 | c = "1"; |
---|
1817 | insC = 1; |
---|
1818 | } |
---|
1819 | } |
---|
1820 | // get vars |
---|
1821 | t = s; |
---|
1822 | // t = s[i+1..size(s)]; |
---|
1823 | k = size(t); //j = 0; |
---|
1824 | while (k>0) |
---|
1825 | { |
---|
1826 | t = t[i+1..size(t)]; //next part |
---|
1827 | i = find(t,"*"); // next * |
---|
1828 | if (i==0) |
---|
1829 | { |
---|
1830 | // last monomial |
---|
1831 | j++; |
---|
1832 | VN[j] = t; |
---|
1833 | k = size(t); |
---|
1834 | break; |
---|
1835 | } |
---|
1836 | b = t[1..i-1]; |
---|
1837 | // print(b); |
---|
1838 | j++; |
---|
1839 | VN[j] = b; |
---|
1840 | k = size(t); |
---|
1841 | } |
---|
1842 | VN = addplaces(VN); |
---|
1843 | VN[size(VN)+1] = string(c); |
---|
1844 | return(VN); |
---|
1845 | } |
---|
1846 | example |
---|
1847 | { |
---|
1848 | "EXAMPLE:"; echo = 2; |
---|
1849 | ring r = (0,a),(f2,f1),dp; |
---|
1850 | str2lplace("-2*f2^2*f1^2*f2"); |
---|
1851 | str2lplace("-f1*f2"); |
---|
1852 | str2lplace("(-a^2+7a)*f1*f2"); |
---|
1853 | } |
---|
1854 | |
---|
1855 | static proc strpower2rep(string s) |
---|
1856 | { |
---|
1857 | // makes x*x*x*x out of x^4 ., rep statys for repetitions |
---|
1858 | // looks for "-" problem |
---|
1859 | // exception: "-" as coeff |
---|
1860 | string ex,t; |
---|
1861 | int i,j,k; |
---|
1862 | |
---|
1863 | i = find(s,"^"); // first ^ |
---|
1864 | if (i==0) { return(s); } // no ^ signs |
---|
1865 | |
---|
1866 | if (s[1] == "-") |
---|
1867 | { |
---|
1868 | // either -coef or -1 |
---|
1869 | // got the coeff: |
---|
1870 | i = find(s,"*"); |
---|
1871 | if (i==0) |
---|
1872 | { |
---|
1873 | // no *'s => coef == -1 or s == -23 |
---|
1874 | i = size(s)+1; |
---|
1875 | } |
---|
1876 | t = string(s[2..i-1]); // without "-" |
---|
1877 | if ( testnumber(t) ) |
---|
1878 | { |
---|
1879 | // a good number |
---|
1880 | t = strpower2rep(string(s[2..size(s)])); |
---|
1881 | t = "-"+t; |
---|
1882 | return(t); |
---|
1883 | } |
---|
1884 | else |
---|
1885 | { |
---|
1886 | // a variable |
---|
1887 | t = strpower2rep(string(s[2..size(s)])); |
---|
1888 | t = "-1*"+ t; |
---|
1889 | return(t); |
---|
1890 | } |
---|
1891 | } |
---|
1892 | // the case when leadcoef is a number in () |
---|
1893 | if (s[1] == "(") |
---|
1894 | { |
---|
1895 | i = find(s,")",2); // must be nonzero |
---|
1896 | t = s[2..i-1]; |
---|
1897 | if ( testnumber(t) ) |
---|
1898 | { |
---|
1899 | // a good number |
---|
1900 | } |
---|
1901 | else {"strpower2rep: bad number as coef";} |
---|
1902 | ex = string(s[i+2..size(s)]); // 2 because of * |
---|
1903 | ex = strpower2rep(ex); |
---|
1904 | t = "("+t+")*"+ex; |
---|
1905 | return(t); |
---|
1906 | } |
---|
1907 | |
---|
1908 | i = find(s,"^"); // first ^ |
---|
1909 | j = find(s,"*",i+1); // next * == end of ^ |
---|
1910 | if (j==0) |
---|
1911 | { |
---|
1912 | ex = s[i+1..size(s)]; |
---|
1913 | } |
---|
1914 | else |
---|
1915 | { |
---|
1916 | ex = s[i+1..j-1]; |
---|
1917 | } |
---|
1918 | execute("int @exp = " + ex + ";"); //@exp = exponent |
---|
1919 | // got varname |
---|
1920 | for (k=i-1; k>0; k--) |
---|
1921 | { |
---|
1922 | if (s[k] == "*") break; |
---|
1923 | } |
---|
1924 | string varn = s[k+1..i-1]; |
---|
1925 | // "varn:"; varn; |
---|
1926 | string pref; |
---|
1927 | if (k>0) |
---|
1928 | { |
---|
1929 | pref = s[1..k]; // with * on the k-th place |
---|
1930 | } |
---|
1931 | // "pref:"; pref; |
---|
1932 | string suf; |
---|
1933 | if ( (j>0) && (j+1 <= size(s)) ) |
---|
1934 | { |
---|
1935 | suf = s[j+1..size(s)]; // without * on the 1st place |
---|
1936 | } |
---|
1937 | // "suf:"; suf; |
---|
1938 | string toins; |
---|
1939 | for (k=1; k<=@exp; k++) |
---|
1940 | { |
---|
1941 | toins = toins + varn+"*"; |
---|
1942 | } |
---|
1943 | // "toins: "; toins; |
---|
1944 | if (size(suf) == 0) |
---|
1945 | { |
---|
1946 | toins = toins[1..size(toins)-1]; // get rid of trailing * |
---|
1947 | } |
---|
1948 | else |
---|
1949 | { |
---|
1950 | suf = strpower2rep(suf); |
---|
1951 | } |
---|
1952 | ex = pref + toins + suf; |
---|
1953 | return(ex); |
---|
1954 | // return(strpower2rep(ex)); |
---|
1955 | } |
---|
1956 | example |
---|
1957 | { |
---|
1958 | "EXAMPLE:"; echo = 2; |
---|
1959 | ring r = (0,a),(x,y,z,t),dp; |
---|
1960 | strpower2rep("-x^4"); |
---|
1961 | strpower2rep("-2*x^4*y^3*z*t^2"); |
---|
1962 | strpower2rep("-a^2*x^4"); |
---|
1963 | } |
---|
1964 | |
---|
1965 | proc Liebr(poly a, poly b, list #) |
---|
1966 | "USAGE: Liebr(a,b[,N]); a,b letterplace polynomials, N an optional integer |
---|
1967 | RETURN: poly |
---|
1968 | PURPOSE: compute the Lie bracket [a,b] = ab - ba between letterplace polynomials |
---|
1969 | NOTE: if N>1 is specified, then the left normed bracket [a,[...[a,b]]]] is computed. |
---|
1970 | EXAMPLE: example Liebr; shows examples |
---|
1971 | " |
---|
1972 | { |
---|
1973 | // alias ppLiebr; |
---|
1974 | //if int N is given compute [a,[...[a,b]]]] left normed bracket |
---|
1975 | poly q; |
---|
1976 | int N=1; |
---|
1977 | if (size(#)>0) |
---|
1978 | { |
---|
1979 | if (typeof(#[1])=="int") |
---|
1980 | { |
---|
1981 | N = int(#[1]); |
---|
1982 | } |
---|
1983 | } |
---|
1984 | if (N<=0) { return(q); } |
---|
1985 | while (b!=0) |
---|
1986 | { |
---|
1987 | q = q + pmLiebr(a,lead(b)); |
---|
1988 | b = b - lead(b); |
---|
1989 | } |
---|
1990 | int i; |
---|
1991 | if (N >1) |
---|
1992 | { |
---|
1993 | for(i=1; i<=N; i++) |
---|
1994 | { |
---|
1995 | q = Liebr(a,q); |
---|
1996 | } |
---|
1997 | } |
---|
1998 | return(q); |
---|
1999 | } |
---|
2000 | example |
---|
2001 | { |
---|
2002 | "EXAMPLE:"; echo = 2; |
---|
2003 | ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp; |
---|
2004 | poly a = x(1)*y(2); poly b = y(1); |
---|
2005 | int uptodeg=4; int lV=2; |
---|
2006 | export uptodeg; export lV; |
---|
2007 | Liebr(a,b); |
---|
2008 | Liebr(x(1),y(1),2); |
---|
2009 | } |
---|
2010 | |
---|
2011 | static proc pmLiebr(poly a, poly b) |
---|
2012 | { |
---|
2013 | // a poly, b mono |
---|
2014 | poly s; |
---|
2015 | while (a!=0) |
---|
2016 | { |
---|
2017 | s = s + mmLiebr(lead(a),lead(b)); |
---|
2018 | a = a - lead(a); |
---|
2019 | } |
---|
2020 | return(s); |
---|
2021 | } |
---|
2022 | |
---|
2023 | //proc pshift(poly a, int i, int uptodeg, int lV) |
---|
2024 | static proc pshift(poly a, int i) |
---|
2025 | { |
---|
2026 | // shifts a monomial a by i |
---|
2027 | // calls pLPshift(p,sh,uptodeg,lVblock); |
---|
2028 | return(system("stest",a,i,uptodeg,lV)); |
---|
2029 | } |
---|
2030 | |
---|
2031 | static proc mmLiebr(poly a, poly b) |
---|
2032 | { |
---|
2033 | // a,b, monomials |
---|
2034 | a = lead(a); |
---|
2035 | b = lead(b); |
---|
2036 | int sa = deg(a); |
---|
2037 | int sb = deg(b); |
---|
2038 | poly v = a*pshift(b,sa) - b*pshift(a,sb); |
---|
2039 | return(v); |
---|
2040 | } |
---|
2041 | |
---|
2042 | static proc test_shift() |
---|
2043 | { |
---|
2044 | LIB "freegb.lib"; |
---|
2045 | ring r = 0,(a,b),dp; |
---|
2046 | int d =5; |
---|
2047 | def R = freegbRing(d); |
---|
2048 | setring R; |
---|
2049 | int uptodeg = d; export uptodeg; |
---|
2050 | int lV = 2; export lV; |
---|
2051 | poly p = mmLiebr(a(1),b(1)); |
---|
2052 | poly p = Liebr(a(1),b(1)); |
---|
2053 | } |
---|
2054 | |
---|
2055 | proc Serre(intmat A, int zu) |
---|
2056 | "USAGE: Serre(A,z); A an intmat, z an int |
---|
2057 | RETURN: ideal |
---|
2058 | ASSUME: basering has a letterplace ring structure and |
---|
2059 | @* A is a generalized Cartan matrix with integer entries |
---|
2060 | PURPOSE: compute the ideal of Serre's relations associated to A |
---|
2061 | EXAMPLE: example Serre; shows examples |
---|
2062 | " |
---|
2063 | { |
---|
2064 | // zu = 1 -> with commutators [f_i,f_j]; zu == 0 without them |
---|
2065 | // suppose that A is cartan matrix |
---|
2066 | // then Serre's relations are |
---|
2067 | // (ad f_j)^{1-A_{ij}} ( f_i) |
---|
2068 | int ppl = printlevel-voice+2; |
---|
2069 | int n = ncols(A); // hence n variables |
---|
2070 | int i,j,k,el; |
---|
2071 | poly p,q; |
---|
2072 | ideal I; |
---|
2073 | for (i=1; i<=n; i++) |
---|
2074 | { |
---|
2075 | for (j=1; j<=n; j++) |
---|
2076 | { |
---|
2077 | el = 1 - A[i,j]; |
---|
2078 | // printf("i:%s, j: %s, l: %s",i,j,l); |
---|
2079 | dbprint(ppl,"i, j, l: ",i,j,el); |
---|
2080 | // if ((i!=j) && (l >0)) |
---|
2081 | // if ( (i!=j) && ( ((zu ==0) && (l >=2)) || ((zu ==1) && (l >=1)) ) ) |
---|
2082 | if ((i!=j) && (el >0)) |
---|
2083 | { |
---|
2084 | q = Liebr(var(j),var(i)); |
---|
2085 | dbprint(ppl,"first bracket: ",q); |
---|
2086 | // if (l >=2) |
---|
2087 | // { |
---|
2088 | for (k=1; k<=el-1; k++) |
---|
2089 | { |
---|
2090 | q = Liebr(var(j),q); |
---|
2091 | dbprint(ppl,"further bracket:",q); |
---|
2092 | } |
---|
2093 | // } |
---|
2094 | } |
---|
2095 | if (q!=0) { I = I,q; q=0;} |
---|
2096 | } |
---|
2097 | } |
---|
2098 | I = simplify(I,2); |
---|
2099 | return(I); |
---|
2100 | } |
---|
2101 | example |
---|
2102 | { |
---|
2103 | "EXAMPLE:"; echo = 2; |
---|
2104 | intmat A[3][3] = |
---|
2105 | 2, -1, 0, |
---|
2106 | -1, 2, -3, |
---|
2107 | 0, -1, 2; // G^1_2 Cartan matrix |
---|
2108 | ring r = 0,(f1,f2,f3),dp; |
---|
2109 | int uptodeg = 5; int lV = 3; |
---|
2110 | export uptodeg; export lV; |
---|
2111 | def R = freegbRing(uptodeg); |
---|
2112 | setring R; |
---|
2113 | ideal I = Serre(A,1); I = simplify(I,1+2+8); |
---|
2114 | I; |
---|
2115 | } |
---|
2116 | |
---|
2117 | /* setup for older example: |
---|
2118 | intmat A[2][2] = 2, -1, -1, 2; // sl_3 == A_2 |
---|
2119 | ring r = 0,(f1,f2),dp; |
---|
2120 | int uptodeg = 5; int lV = 2; |
---|
2121 | */ |
---|
2122 | |
---|
2123 | proc lp2lstr(ideal K, def save) |
---|
2124 | "USAGE: lp2lstr(K,s); K an ideal, s a ring |
---|
2125 | RETURN: nothing (exports object LN into s) |
---|
2126 | ASSUME: basering has a letterplace ring structure |
---|
2127 | PURPOSE: converts letterplace ideal to list of modules |
---|
2128 | NOTE: useful as preprocessing to 'lst2str' |
---|
2129 | EXAMPLE: example lp2lstr; shows examples |
---|
2130 | " |
---|
2131 | { |
---|
2132 | def @R = basering; |
---|
2133 | string err; |
---|
2134 | int s = nvars(save); |
---|
2135 | int i,j,k; |
---|
2136 | // K contains vars x(1),...z(1) = images of originals |
---|
2137 | // 5. go back to orig vars, produce strings/modules |
---|
2138 | int sk = size(K); |
---|
2139 | int sp, sx, a, b; |
---|
2140 | intvec x; |
---|
2141 | poly p,q; |
---|
2142 | poly pn; |
---|
2143 | // vars in 'save' |
---|
2144 | setring save; |
---|
2145 | module N; |
---|
2146 | list LN; |
---|
2147 | vector V; |
---|
2148 | poly pn; |
---|
2149 | // test and skip exponents >=2 |
---|
2150 | setring @R; |
---|
2151 | for(i=1; i<=sk; i++) |
---|
2152 | { |
---|
2153 | p = K[i]; |
---|
2154 | while (p!=0) |
---|
2155 | { |
---|
2156 | q = lead(p); |
---|
2157 | // "processing q:";q; |
---|
2158 | x = leadexp(q); |
---|
2159 | sx = size(x); |
---|
2160 | for(k=1; k<=sx; k++) |
---|
2161 | { |
---|
2162 | if ( x[k] >= 2 ) |
---|
2163 | { |
---|
2164 | err = "skip: the value x[k] is " + string(x[k]); |
---|
2165 | dbprint(ppl,err); |
---|
2166 | // return(0); |
---|
2167 | K[i] = 0; |
---|
2168 | p = 0; |
---|
2169 | q = 0; |
---|
2170 | break; |
---|
2171 | } |
---|
2172 | } |
---|
2173 | p = p - q; |
---|
2174 | } |
---|
2175 | } |
---|
2176 | K = simplify(K,2); |
---|
2177 | sk = size(K); |
---|
2178 | for(i=1; i<=sk; i++) |
---|
2179 | { |
---|
2180 | // setring save; |
---|
2181 | // V = 0; |
---|
2182 | setring @R; |
---|
2183 | p = K[i]; |
---|
2184 | while (p!=0) |
---|
2185 | { |
---|
2186 | q = lead(p); |
---|
2187 | err = "processing q:" + string(q); |
---|
2188 | dbprint(ppl,err); |
---|
2189 | x = leadexp(q); |
---|
2190 | sx = size(x); |
---|
2191 | pn = leadcoef(q); |
---|
2192 | setring save; |
---|
2193 | pn = imap(@R,pn); |
---|
2194 | V = V + leadcoef(pn)*gen(1); |
---|
2195 | for(k=1; k<=sx; k++) |
---|
2196 | { |
---|
2197 | if (x[k] ==1) |
---|
2198 | { |
---|
2199 | a = k / s; // block number=a+1, a!=0 |
---|
2200 | b = k % s; // remainder |
---|
2201 | // printf("a: %s, b: %s",a,b); |
---|
2202 | if (b == 0) |
---|
2203 | { |
---|
2204 | // that is it's the last var in the block |
---|
2205 | b = s; |
---|
2206 | a = a-1; |
---|
2207 | } |
---|
2208 | V = V + var(b)*gen(a+2); |
---|
2209 | } |
---|
2210 | } |
---|
2211 | err = "V: " + string(V); |
---|
2212 | dbprint(ppl,err); |
---|
2213 | // printf("V: %s", string(V)); |
---|
2214 | N = N,V; |
---|
2215 | V = 0; |
---|
2216 | setring @R; |
---|
2217 | p = p - q; |
---|
2218 | pn = 0; |
---|
2219 | } |
---|
2220 | setring save; |
---|
2221 | LN[i] = simplify(N,2); |
---|
2222 | N = 0; |
---|
2223 | } |
---|
2224 | setring save; |
---|
2225 | export LN; |
---|
2226 | // return(LN); |
---|
2227 | } |
---|
2228 | example |
---|
2229 | { |
---|
2230 | "EXAMPLE:"; echo = 2; |
---|
2231 | intmat A[2][2] = 2, -1, -1, 2; // sl_3 == A_2 |
---|
2232 | ring r = 0,(f1,f2),dp; |
---|
2233 | int uptodeg = 3; int lV = 2; |
---|
2234 | export uptodeg; export lV; |
---|
2235 | def R = freegbRing(uptodeg); |
---|
2236 | setring R; |
---|
2237 | ideal I = Serre(A,1); |
---|
2238 | lp2lstr(I,r); |
---|
2239 | setring r; |
---|
2240 | lst2str(LN,1); |
---|
2241 | kill uptodeg; kill lV; |
---|
2242 | } |
---|
2243 | |
---|
2244 | proc strList2poly(list L) |
---|
2245 | { |
---|
2246 | // list L comes from sent2lplace (which takes a poly on the input) |
---|
2247 | // each entry of L is a sublist with the coef on the last place |
---|
2248 | int s = size(L); int t; |
---|
2249 | int i,j; |
---|
2250 | list M; |
---|
2251 | poly p,q; |
---|
2252 | string Q; |
---|
2253 | for(i=1; i<=s; i++) |
---|
2254 | { |
---|
2255 | M = L[i]; |
---|
2256 | t = size(M); |
---|
2257 | // q = M[t]; // a constant |
---|
2258 | Q = string(M[t]); |
---|
2259 | for(j=1; j<t; j++) |
---|
2260 | { |
---|
2261 | // q = q*M[j]; |
---|
2262 | Q = Q+"*"+string(M[j]); |
---|
2263 | } |
---|
2264 | execute("q="+Q+";"); |
---|
2265 | // q; |
---|
2266 | p = p + q; |
---|
2267 | } |
---|
2268 | kill Q; |
---|
2269 | return(p); |
---|
2270 | } |
---|
2271 | example |
---|
2272 | { |
---|
2273 | "EXAMPLE:"; echo = 2; |
---|
2274 | ring r =0,(x,y,z,t),Dp; |
---|
2275 | def A = freegbRing(4); |
---|
2276 | setring A; |
---|
2277 | string t = "-2*y*z*y*z + y*t*z*z - z*x*x*y + 2*z*y*z*y"; |
---|
2278 | list L = sent2lplace(t); |
---|
2279 | L; |
---|
2280 | poly p = strList2poly(L); |
---|
2281 | p; |
---|
2282 | } |
---|
2283 | |
---|
2284 | proc file2lplace(string fname) |
---|
2285 | "USAGE: file2lplace(fnm); fnm a string |
---|
2286 | RETURN: ideal |
---|
2287 | PURPOSE: convert the contents of the file fnm into ideal of polynomials in free algebra |
---|
2288 | EXAMPLE: example file2lplace; shows examples |
---|
2289 | " |
---|
2290 | { |
---|
2291 | // format: from the usual string to letterplace |
---|
2292 | string s = read(fname); |
---|
2293 | // assume: file is a comma-sep list of polys |
---|
2294 | // the vars are declared before |
---|
2295 | // the file ends with ";" |
---|
2296 | string t; int i; |
---|
2297 | ideal I; |
---|
2298 | list tst; |
---|
2299 | while (s!="") |
---|
2300 | { |
---|
2301 | i = find(s,","); |
---|
2302 | "i"; i; |
---|
2303 | if (i==0) |
---|
2304 | { |
---|
2305 | i = find(s,";"); |
---|
2306 | if (i==0) |
---|
2307 | { |
---|
2308 | // no ; ?? |
---|
2309 | "no colon or semicolon found anymore"; |
---|
2310 | return(I); |
---|
2311 | } |
---|
2312 | // no "," but ";" on the i-th place |
---|
2313 | t = s[1..i-1]; |
---|
2314 | s = ""; |
---|
2315 | "processing: "; t; |
---|
2316 | tst = sent2lplace(t); |
---|
2317 | tst; |
---|
2318 | I = I, strList2poly(tst); |
---|
2319 | return(I); |
---|
2320 | } |
---|
2321 | // here i !=0 |
---|
2322 | t = s[1..i-1]; |
---|
2323 | s = s[i+1..size(s)]; |
---|
2324 | "processing: "; t; |
---|
2325 | tst = sent2lplace(t); |
---|
2326 | tst; |
---|
2327 | I = I, strList2poly(tst); |
---|
2328 | } |
---|
2329 | return(I); |
---|
2330 | } |
---|
2331 | example |
---|
2332 | { |
---|
2333 | "EXAMPLE:"; echo = 2; |
---|
2334 | ring r =0,(x,y,z,t),dp; |
---|
2335 | def A = freegbRing(4); |
---|
2336 | setring A; |
---|
2337 | string fn = "myfile"; |
---|
2338 | string s1 = "z*y*y*y - 3*y*z*x*y + 3*y*y*z*y - y*x*y*z,"; |
---|
2339 | string s2 = "-2*y*x*y*z + y*y*z*z - z*z*y*y + 2*z*y*z*y,"; |
---|
2340 | string s3 = "z*y*x*t - 2*y*z*y*t + y*y*z*t - t*z*y*y + 2*t*y*z*y - t*x*y*z;"; |
---|
2341 | write(":w "+fn,s1); write(":a "+fn,s2); write(":a "+fn,s3); |
---|
2342 | read(fn); |
---|
2343 | ideal I = file2lplace(fn); |
---|
2344 | I; |
---|
2345 | } |
---|
2346 | |
---|
2347 | /* EXAMPLES AGAIN: |
---|
2348 | //static proc get_ls3nilp() |
---|
2349 | { |
---|
2350 | //first app of file2lplace |
---|
2351 | ring r =0,(x,y,z,t),dp; |
---|
2352 | int d = 10; |
---|
2353 | def A = freegbRing(d); |
---|
2354 | setring A; |
---|
2355 | ideal I = file2lplace("./ls3nilp.bg"); |
---|
2356 | // and now test the correctness: go back from lplace to strings |
---|
2357 | lp2lstr(I,r); |
---|
2358 | setring r; |
---|
2359 | lst2str(LN,1); // agree! |
---|
2360 | } |
---|
2361 | |
---|
2362 | //static proc doc_example() |
---|
2363 | { |
---|
2364 | LIB "freegb.lib"; |
---|
2365 | ring r = 0,(x,y,z),dp; |
---|
2366 | int d =4; // degree bound |
---|
2367 | def R = freegbRing(d); |
---|
2368 | setring R; |
---|
2369 | ideal I = x(1)*y(2) + y(1)*z(2), x(1)*x(2) + x(1)*y(2) - y(1)*x(2) - y(1)*y(2); |
---|
2370 | option(redSB);option(redTail); |
---|
2371 | ideal J = system("freegb",I,d,nvars(r)); |
---|
2372 | J; |
---|
2373 | // visualization: |
---|
2374 | lp2lstr(J,r); // export an object called LN to the ring r |
---|
2375 | setring r; // change to the ring r |
---|
2376 | lst2str(LN,1); // output the strings |
---|
2377 | } |
---|
2378 | |
---|
2379 | */ |
---|
2380 | |
---|
2381 | // TODO: |
---|
2382 | // multiply two letterplace polynomials, lpMult |
---|
2383 | // reduction/ Normalform? needs kernel stuff |
---|
2384 | |
---|