1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: freegb.lib,v 1.12 2008-10-06 17:04:27 Singular Exp $"; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: freegb.lib Twosided Noncommutative Groebner bases in Free Algebras |
---|
6 | AUTHOR: Viktor Levandovskyy, levandov@math.rwth-aachen.de |
---|
7 | |
---|
8 | PROCEDURES: |
---|
9 | freegbRing(int d); creates a ring with d blocks of shifted original variables |
---|
10 | freegbasis(list L, int n); compute two-sided Groebner basis of ideal, encoded via L, up to degree n |
---|
11 | |
---|
12 | CONVERSION ROUTINES: |
---|
13 | |
---|
14 | lp2lstr(ideal K, def save): converts letter-place ideal to a list of modules |
---|
15 | lst2str(list L[,int n]); convert a list (of modules) into polynomials in free algebra |
---|
16 | mod2str(module M[,int n]); convert a module into a polynomial in free algebra |
---|
17 | vct2str(module M[,int n]); convert a vector into a word in free algebra |
---|
18 | " |
---|
19 | |
---|
20 | // this library computes two-sided GB of an ideal |
---|
21 | // in a free associative algebra |
---|
22 | |
---|
23 | // a monomial is encoded via a vector V |
---|
24 | // where V[1] = coefficient |
---|
25 | // V[1+i] = the corresponding symbol |
---|
26 | |
---|
27 | LIB "discretize.lib"; // for replace |
---|
28 | LIB "qhmoduli.lib"; // for Max |
---|
29 | |
---|
30 | |
---|
31 | // obsolete? |
---|
32 | |
---|
33 | proc lshift(module M, int s, string varing, def lpring) |
---|
34 | { |
---|
35 | // FINALLY IMPLEMENTED AS A PART OT THE CODE |
---|
36 | // shifts a poly from the ring @R to s positions |
---|
37 | // M lives in varing, the result in lpring |
---|
38 | // to be run from varing |
---|
39 | int i, j, k, sm, sv; |
---|
40 | vector v; |
---|
41 | // execute("setring "+lpring); |
---|
42 | setring lpring; |
---|
43 | poly @@p; |
---|
44 | ideal I; |
---|
45 | execute("setring "+varing); |
---|
46 | sm = ncols(M); |
---|
47 | for (i=1; i<=s; i++) |
---|
48 | { |
---|
49 | // modules, e.g. free polynomials |
---|
50 | for (j=1; j<=sm; j++) |
---|
51 | { |
---|
52 | //vectors, e.g. free monomials |
---|
53 | v = M[j]; |
---|
54 | sv = size(v); |
---|
55 | sp = "@@p = @@p + "; |
---|
56 | for (k=2; k<=sv; k++) |
---|
57 | { |
---|
58 | sp = sp + string(v[k])+"("+string(k-1+s)+")*"; |
---|
59 | } |
---|
60 | sp = sp + string(v[1])+";"; // coef; |
---|
61 | setring lpring; |
---|
62 | // execute("setring "+lpring); |
---|
63 | execute(sp); |
---|
64 | execute("setring "+varing); |
---|
65 | } |
---|
66 | setring lpring; |
---|
67 | // execute("setring "+lpring); |
---|
68 | I = I,@@p; |
---|
69 | @@p = 0; |
---|
70 | } |
---|
71 | setring lpring; |
---|
72 | //execute("setring "+lpring); |
---|
73 | export(I); |
---|
74 | // setring varing; |
---|
75 | execute("setring "+varing); |
---|
76 | } |
---|
77 | |
---|
78 | proc skip0(vector v) |
---|
79 | { |
---|
80 | // skips zeros in a vector, producing another vector |
---|
81 | int sv = nrows(v); |
---|
82 | int sw = size(v); |
---|
83 | if (sv == sw) |
---|
84 | { |
---|
85 | return(v); |
---|
86 | } |
---|
87 | int i; |
---|
88 | int j=1; |
---|
89 | vector w; |
---|
90 | for (i=1; i<=sv; i++) |
---|
91 | { |
---|
92 | if (v[i] != 0) |
---|
93 | { |
---|
94 | w = w + v[i]*gen(j); |
---|
95 | j++; |
---|
96 | } |
---|
97 | } |
---|
98 | return(w); |
---|
99 | } |
---|
100 | |
---|
101 | proc lst2str(list L, list #) |
---|
102 | "USAGE: lst2str(L[,n]); L a list of modules, n an optional integer |
---|
103 | RETURN: list (of strings) |
---|
104 | PURPOSE: convert a list (of modules) into polynomials in free algebra |
---|
105 | EXAMPLE: example lst2str; shows examples |
---|
106 | NOTE: if an optional integer is not 0, stars signs are used in multiplication |
---|
107 | " |
---|
108 | { |
---|
109 | // returns a list of strings |
---|
110 | // being sentences in words built from L |
---|
111 | // if #[1] = 1, use * between generators |
---|
112 | int useStar = 0; |
---|
113 | if ( size(#)>0 ) |
---|
114 | { |
---|
115 | if (#[1]) |
---|
116 | { |
---|
117 | useStar = 1; |
---|
118 | } |
---|
119 | } |
---|
120 | int i; |
---|
121 | int s = size(L); |
---|
122 | list N; |
---|
123 | for(i=1; i<=s; i++) |
---|
124 | { |
---|
125 | if ((typeof(L[i]) == "module") || (typeof(L[i]) == "matrix") ) |
---|
126 | { |
---|
127 | N[i] = mod2str(L[i],useStar); |
---|
128 | } |
---|
129 | else |
---|
130 | { |
---|
131 | "module or matrix expected in the list"; |
---|
132 | return(N); |
---|
133 | } |
---|
134 | } |
---|
135 | return(N); |
---|
136 | } |
---|
137 | example |
---|
138 | { |
---|
139 | "EXAMPLE:"; echo = 2; |
---|
140 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
141 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
142 | module N = [1,x,y,x,y],[-2,y,x,y,x],[6,x,y,y,x,y]; |
---|
143 | list L; L[1] = M; L[2] = N; |
---|
144 | lst2str(L); |
---|
145 | lst2str(L[1],1); |
---|
146 | } |
---|
147 | |
---|
148 | |
---|
149 | proc mod2str(module M, list #) |
---|
150 | "USAGE: mod2str(M[,n]); M a module, n an optional integer |
---|
151 | RETURN: string |
---|
152 | PURPOSE: convert a module into a polynomial in free algebra |
---|
153 | EXAMPLE: example mod2str; shows examples |
---|
154 | NOTE: if an optional integer is not 0, stars signs are used in multiplication |
---|
155 | " |
---|
156 | { |
---|
157 | // returns a string |
---|
158 | // a sentence in words built from M |
---|
159 | // if #[1] = 1, use * between generators |
---|
160 | int useStar = 0; |
---|
161 | if ( size(#)>0 ) |
---|
162 | { |
---|
163 | if (#[1]) |
---|
164 | { |
---|
165 | useStar = 1; |
---|
166 | } |
---|
167 | } |
---|
168 | int i; |
---|
169 | int s = ncols(M); |
---|
170 | string t; |
---|
171 | string mp; |
---|
172 | for(i=1; i<=s; i++) |
---|
173 | { |
---|
174 | mp = vct2str(M[i],useStar); |
---|
175 | if (mp[1] == "-") |
---|
176 | { |
---|
177 | t = t + mp; |
---|
178 | } |
---|
179 | else |
---|
180 | { |
---|
181 | t = t + "+" + mp; |
---|
182 | } |
---|
183 | } |
---|
184 | if (t[1]=="+") |
---|
185 | { |
---|
186 | t = t[2..size(t)]; // remove first "+" |
---|
187 | } |
---|
188 | return(t); |
---|
189 | } |
---|
190 | example |
---|
191 | { |
---|
192 | "EXAMPLE:"; echo = 2; |
---|
193 | ring r = 0,(x,y,z),(dp); |
---|
194 | module M = [1,x,y,x,y],[-2,y,x,y,x],[6,x,y,y,x,y]; |
---|
195 | mod2str(M); |
---|
196 | mod2str(M,1); |
---|
197 | } |
---|
198 | |
---|
199 | proc vct2str(vector v, list #) |
---|
200 | "USAGE: vct2str(v[,n]); v a vector, n an optional integer |
---|
201 | RETURN: string |
---|
202 | PURPOSE: convert a vector into a word in free algebra |
---|
203 | EXAMPLE: example vct2str; shows examples |
---|
204 | NOTE: if an optional integer is not 0, stars signs are used in multiplication |
---|
205 | " |
---|
206 | { |
---|
207 | // if #[1] = 1, use * between generators |
---|
208 | int useStar = 0; |
---|
209 | if ( size(#)>0 ) |
---|
210 | { |
---|
211 | if (#[1]) |
---|
212 | { |
---|
213 | useStar = 1; |
---|
214 | } |
---|
215 | } |
---|
216 | int ppl = printlevel-voice+2; |
---|
217 | // for a word, encoded by v |
---|
218 | // produces a string for it |
---|
219 | v = skip0(v); |
---|
220 | number cf = leadcoef(v[1]); |
---|
221 | int s = size(v); |
---|
222 | string vs,vv,vp,err; |
---|
223 | int i,j,p,q; |
---|
224 | for (i=1; i<=s-1; i++) |
---|
225 | { |
---|
226 | p = IsVar(v[i+1]); |
---|
227 | if (p==0) |
---|
228 | { |
---|
229 | err = "Error: monomial expected at" + string(i+1); |
---|
230 | dbprint(ppl,err); |
---|
231 | return("_"); |
---|
232 | } |
---|
233 | if (p==1) |
---|
234 | { |
---|
235 | if (useStar && (size(vs) >0)) { vs = vs + "*"; } |
---|
236 | vs = vs + string(v[i+1]); |
---|
237 | } |
---|
238 | else //power |
---|
239 | { |
---|
240 | vv = string(v[i+1]); |
---|
241 | q = find(vv,"^"); |
---|
242 | if (q==0) |
---|
243 | { |
---|
244 | q = find(vv,string(p)); |
---|
245 | if (q==0) |
---|
246 | { |
---|
247 | err = "error in find for string "+vv; |
---|
248 | dbprint(ppl,err); |
---|
249 | return("_"); |
---|
250 | } |
---|
251 | } |
---|
252 | // q>0 |
---|
253 | vp = vv[1..q-1]; |
---|
254 | for(j=1;j<=p;j++) |
---|
255 | { |
---|
256 | if (useStar && (size(vs) >0)) { vs = vs + "*"; } |
---|
257 | vs = vs + vp; |
---|
258 | } |
---|
259 | } |
---|
260 | } |
---|
261 | string scf; |
---|
262 | if (cf == -1) |
---|
263 | { |
---|
264 | scf = "-"; |
---|
265 | } |
---|
266 | else |
---|
267 | { |
---|
268 | scf = string(cf); |
---|
269 | if (cf == 1) |
---|
270 | { |
---|
271 | scf = ""; |
---|
272 | } |
---|
273 | } |
---|
274 | if (useStar && (size(scf) >0) && (scf!="-") ) { scf = scf + "*"; } |
---|
275 | vs = scf + vs; |
---|
276 | return(vs); |
---|
277 | } |
---|
278 | example |
---|
279 | { |
---|
280 | "EXAMPLE:"; echo = 2; |
---|
281 | ring r = (0,a),(x,y3,z(1)),dp; |
---|
282 | vector v = [-7,x,y3^4,x2,z(1)^3]; |
---|
283 | vct2str(v); |
---|
284 | vct2str(v,1); |
---|
285 | vector w = [-7a^5+6a,x,y3,y3,x,z(1),z(1)]; |
---|
286 | vct2str(w); |
---|
287 | vct2str(w,1); |
---|
288 | } |
---|
289 | |
---|
290 | proc IsVar(poly p) |
---|
291 | { |
---|
292 | // checks whether p is a variable indeed |
---|
293 | // if it's a power of a variable, returns the power |
---|
294 | if (p==0) { return(0); } //"p=0"; |
---|
295 | poly q = leadmonom(p); |
---|
296 | if ( (p-lead(p)) !=0 ) { return(0); } // "p-lm(p)>0"; |
---|
297 | intvec v = leadexp(p); |
---|
298 | int s = size(v); |
---|
299 | int i=1; |
---|
300 | int cnt = 0; |
---|
301 | int pwr = 0; |
---|
302 | for (i=1; i<=s; i++) |
---|
303 | { |
---|
304 | if (v[i] != 0) |
---|
305 | { |
---|
306 | cnt++; |
---|
307 | pwr = v[i]; |
---|
308 | } |
---|
309 | } |
---|
310 | // "cnt:"; cnt; |
---|
311 | if (cnt==1) { return(pwr); } |
---|
312 | else { return(0); } |
---|
313 | } |
---|
314 | example |
---|
315 | { |
---|
316 | "EXAMPLE:"; echo = 2; |
---|
317 | ring r = 0,(x,y),dp; |
---|
318 | poly f = xy+1; |
---|
319 | IsVar(f); |
---|
320 | poly g = xy; |
---|
321 | IsVar(g); |
---|
322 | poly h = y^3; |
---|
323 | IsVar(h); |
---|
324 | poly i = 1; |
---|
325 | IsVar(i); |
---|
326 | } |
---|
327 | |
---|
328 | // new conversion routines |
---|
329 | |
---|
330 | proc id2words(ideal I, int d) |
---|
331 | { |
---|
332 | // NOT FINISHED |
---|
333 | // input: ideal I of polys in letter-place notation |
---|
334 | // in the ring with d real vars |
---|
335 | // output: the list of strings: associative words |
---|
336 | // extract names of vars |
---|
337 | int i,m,n; string s; string place = "(1)"; |
---|
338 | list lv; |
---|
339 | for(i=1; i<=d; i++) |
---|
340 | { |
---|
341 | s = string(var(i)); |
---|
342 | // get rid of place |
---|
343 | n = find(s, place); |
---|
344 | if (n>0) |
---|
345 | { |
---|
346 | s = s[1..n-1]; |
---|
347 | } |
---|
348 | lv[i] = s; |
---|
349 | } |
---|
350 | poly p,q; |
---|
351 | for (i=1; i<=ncols(I); i++) |
---|
352 | { |
---|
353 | if (I[i] != 0) |
---|
354 | { |
---|
355 | p = I[i]; |
---|
356 | while (p!=0) |
---|
357 | { |
---|
358 | q = leadmonom(p); |
---|
359 | } |
---|
360 | } |
---|
361 | } |
---|
362 | |
---|
363 | return(lv); |
---|
364 | } |
---|
365 | example |
---|
366 | { |
---|
367 | "EXAMPLE:"; echo = 2; |
---|
368 | ring r = 0,(x(1),y(1),z(1),x(2),y(2),z(2)),dp; |
---|
369 | ideal I = x(1)*y(2) -z(1)*x(2); |
---|
370 | id2words(I,3); |
---|
371 | } |
---|
372 | |
---|
373 | proc mono2word(poly p, int d) |
---|
374 | { |
---|
375 | } |
---|
376 | |
---|
377 | // given the element -7xy^2x, it is represented as [-7,x,y^2,x] or as [-7,x,y,y,x] |
---|
378 | // use the orig ord on (x,y,z) and expand it blockwise to (x(i),y(i),z(i)) |
---|
379 | |
---|
380 | // the correspondences: |
---|
381 | // monomial in K<x,y,z> <<--->> vector in R |
---|
382 | // polynomial in K<x,y,z> <<--->> list of vectors (matrix/module) in R |
---|
383 | // ideal in K<x,y,z> <<--->> list of matrices/modules in R |
---|
384 | |
---|
385 | |
---|
386 | // 1. form a new ring |
---|
387 | // 2. NOP |
---|
388 | // 3. compute GB -> with the kernel stuff |
---|
389 | // 4. skip shifted elts (check that no such exist?) |
---|
390 | // 5. go back to orig vars, produce strings/modules |
---|
391 | // 6. return the result |
---|
392 | |
---|
393 | proc freegbasis(list LM, int d) |
---|
394 | "USAGE: freegbasis(L, d); L a list of modules, d an integer |
---|
395 | RETURN: ring |
---|
396 | PURPOSE: compute the two-sided Groebner basis of an ideal, encoded by L in |
---|
397 | the free associative algebra, up to degree d |
---|
398 | EXAMPLE: example freegbasis; shows examples |
---|
399 | " |
---|
400 | { |
---|
401 | // d = up to degree, will be shifted to d+1 |
---|
402 | if (d<1) {"bad d"; return(0);} |
---|
403 | |
---|
404 | int ppl = printlevel-voice+2; |
---|
405 | string err = ""; |
---|
406 | |
---|
407 | int i,j,s; |
---|
408 | def save = basering; |
---|
409 | // determine max no of places in the input |
---|
410 | int slm = size(LM); // numbers of polys in the ideal |
---|
411 | int sm; |
---|
412 | intvec iv; |
---|
413 | module M; |
---|
414 | for (i=1; i<=slm; i++) |
---|
415 | { |
---|
416 | // modules, e.g. free polynomials |
---|
417 | M = LM[i]; |
---|
418 | sm = ncols(M); |
---|
419 | for (j=1; j<=sm; j++) |
---|
420 | { |
---|
421 | //vectors, e.g. free monomials |
---|
422 | iv = iv, size(M[j])-1; // 1 place is reserved by the coeff |
---|
423 | } |
---|
424 | } |
---|
425 | int D = Max(iv); // max size of input words |
---|
426 | if (d<D) {"bad d"; return(LM);} |
---|
427 | D = D + d-1; |
---|
428 | // D = d; |
---|
429 | list LR = ringlist(save); |
---|
430 | list L, tmp; |
---|
431 | L[1] = LR[1]; // ground field |
---|
432 | L[4] = LR[4]; // quotient ideal |
---|
433 | tmp = LR[2]; // varnames |
---|
434 | s = size(LR[2]); |
---|
435 | for (i=1; i<=D; i++) |
---|
436 | { |
---|
437 | for (j=1; j<=s; j++) |
---|
438 | { |
---|
439 | tmp[i*s+j] = string(tmp[j])+"("+string(i+1)+")"; |
---|
440 | } |
---|
441 | } |
---|
442 | for (i=1; i<=s; i++) |
---|
443 | { |
---|
444 | tmp[i] = string(tmp[i])+"("+string(1)+")"; |
---|
445 | } |
---|
446 | L[2] = tmp; |
---|
447 | list OrigNames = LR[2]; |
---|
448 | // ordering: d blocks of the ord on r |
---|
449 | // try to get whether the ord on r is blockord itself |
---|
450 | s = size(LR[3]); |
---|
451 | if (s==2) |
---|
452 | { |
---|
453 | // not a blockord, 1 block + module ord |
---|
454 | tmp = LR[3][s]; // module ord |
---|
455 | for (i=1; i<=D; i++) |
---|
456 | { |
---|
457 | LR[3][s-1+i] = LR[3][1]; |
---|
458 | } |
---|
459 | LR[3][s+D] = tmp; |
---|
460 | } |
---|
461 | if (s>2) |
---|
462 | { |
---|
463 | // there are s-1 blocks |
---|
464 | int nb = s-1; |
---|
465 | tmp = LR[3][s]; // module ord |
---|
466 | for (i=1; i<=D; i++) |
---|
467 | { |
---|
468 | for (j=1; j<=nb; j++) |
---|
469 | { |
---|
470 | LR[3][i*nb+j] = LR[3][j]; |
---|
471 | } |
---|
472 | } |
---|
473 | // size(LR[3]); |
---|
474 | LR[3][nb*(D+1)+1] = tmp; |
---|
475 | } |
---|
476 | L[3] = LR[3]; |
---|
477 | def @R = ring(L); |
---|
478 | setring @R; |
---|
479 | ideal I; |
---|
480 | poly @p; |
---|
481 | s = size(OrigNames); |
---|
482 | // "s:";s; |
---|
483 | // convert LM to canonical vectors (no powers) |
---|
484 | setring save; |
---|
485 | kill M; // M was defined earlier |
---|
486 | module M; |
---|
487 | slm = size(LM); // numbers of polys in the ideal |
---|
488 | int sv,k,l; |
---|
489 | vector v; |
---|
490 | // poly p; |
---|
491 | string sp; |
---|
492 | setring @R; |
---|
493 | poly @@p=0; |
---|
494 | setring save; |
---|
495 | for (l=1; l<=slm; l++) |
---|
496 | { |
---|
497 | // modules, e.g. free polynomials |
---|
498 | M = LM[l]; |
---|
499 | sm = ncols(M); // in intvec iv the sizes are stored |
---|
500 | // modules, e.g. free polynomials |
---|
501 | for (j=1; j<=sm; j++) |
---|
502 | { |
---|
503 | //vectors, e.g. free monomials |
---|
504 | v = M[j]; |
---|
505 | sv = size(v); |
---|
506 | // "sv:";sv; |
---|
507 | sp = "@@p = @@p + "; |
---|
508 | for (k=2; k<=sv; k++) |
---|
509 | { |
---|
510 | sp = sp + string(v[k])+"("+string(k-1)+")*"; |
---|
511 | } |
---|
512 | sp = sp + string(v[1])+";"; // coef; |
---|
513 | setring @R; |
---|
514 | execute(sp); |
---|
515 | setring save; |
---|
516 | } |
---|
517 | setring @R; |
---|
518 | // "@@p:"; @@p; |
---|
519 | I = I,@@p; |
---|
520 | @@p = 0; |
---|
521 | setring save; |
---|
522 | } |
---|
523 | kill sp; |
---|
524 | // 3. compute GB |
---|
525 | setring @R; |
---|
526 | dbprint(ppl,"computing GB"); |
---|
527 | ideal J = system("freegb",I,d,nvars(save)); |
---|
528 | // ideal J = slimgb(I); |
---|
529 | dbprint(ppl,J); |
---|
530 | // 4. skip shifted elts |
---|
531 | ideal K = select1(J,1..s); // s = size(OrigNames) |
---|
532 | dbprint(ppl,K); |
---|
533 | dbprint(ppl, "done with GB"); |
---|
534 | // K contains vars x(1),...z(1) = images of originals |
---|
535 | // 5. go back to orig vars, produce strings/modules |
---|
536 | if (K[1] == 0) |
---|
537 | { |
---|
538 | "no reasonable output, GB gives 0"; |
---|
539 | return(0); |
---|
540 | } |
---|
541 | int sk = size(K); |
---|
542 | int sp, sx, a, b; |
---|
543 | intvec x; |
---|
544 | poly p,q; |
---|
545 | poly pn; |
---|
546 | // vars in 'save' |
---|
547 | setring save; |
---|
548 | module N; |
---|
549 | list LN; |
---|
550 | vector V; |
---|
551 | poly pn; |
---|
552 | // test and skip exponents >=2 |
---|
553 | setring @R; |
---|
554 | for(i=1; i<=sk; i++) |
---|
555 | { |
---|
556 | p = K[i]; |
---|
557 | while (p!=0) |
---|
558 | { |
---|
559 | q = lead(p); |
---|
560 | // "processing q:";q; |
---|
561 | x = leadexp(q); |
---|
562 | sx = size(x); |
---|
563 | for(k=1; k<=sx; k++) |
---|
564 | { |
---|
565 | if ( x[k] >= 2 ) |
---|
566 | { |
---|
567 | err = "skip: the value x[k] is " + string(x[k]); |
---|
568 | dbprint(ppl,err); |
---|
569 | // return(0); |
---|
570 | K[i] = 0; |
---|
571 | p = 0; |
---|
572 | q = 0; |
---|
573 | break; |
---|
574 | } |
---|
575 | } |
---|
576 | p = p - q; |
---|
577 | } |
---|
578 | } |
---|
579 | K = simplify(K,2); |
---|
580 | sk = size(K); |
---|
581 | for(i=1; i<=sk; i++) |
---|
582 | { |
---|
583 | // setring save; |
---|
584 | // V = 0; |
---|
585 | setring @R; |
---|
586 | p = K[i]; |
---|
587 | while (p!=0) |
---|
588 | { |
---|
589 | q = lead(p); |
---|
590 | err = "processing q:" + string(q); |
---|
591 | dbprint(ppl,err); |
---|
592 | x = leadexp(q); |
---|
593 | sx = size(x); |
---|
594 | pn = leadcoef(q); |
---|
595 | setring save; |
---|
596 | pn = imap(@R,pn); |
---|
597 | V = V + leadcoef(pn)*gen(1); |
---|
598 | for(k=1; k<=sx; k++) |
---|
599 | { |
---|
600 | if (x[k] ==1) |
---|
601 | { |
---|
602 | a = k / s; // block number=a+1, a!=0 |
---|
603 | b = k % s; // remainder |
---|
604 | // printf("a: %s, b: %s",a,b); |
---|
605 | if (b == 0) |
---|
606 | { |
---|
607 | // that is it's the last var in the block |
---|
608 | b = s; |
---|
609 | a = a-1; |
---|
610 | } |
---|
611 | V = V + var(b)*gen(a+2); |
---|
612 | } |
---|
613 | // else |
---|
614 | // { |
---|
615 | // printf("error: the value x[k] is %s", x[k]); |
---|
616 | // return(0); |
---|
617 | // } |
---|
618 | } |
---|
619 | err = "V: " + string(V); |
---|
620 | dbprint(ppl,err); |
---|
621 | // printf("V: %s", string(V)); |
---|
622 | N = N,V; |
---|
623 | V = 0; |
---|
624 | setring @R; |
---|
625 | p = p - q; |
---|
626 | pn = 0; |
---|
627 | } |
---|
628 | setring save; |
---|
629 | LN[i] = simplify(N,2); |
---|
630 | N = 0; |
---|
631 | } |
---|
632 | setring save; |
---|
633 | return(LN); |
---|
634 | } |
---|
635 | example |
---|
636 | { |
---|
637 | "EXAMPLE:"; echo = 2; |
---|
638 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
639 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
640 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
641 | list L; L[1] = M; L[2] = N; |
---|
642 | lst2str(L); |
---|
643 | def U = freegbasis(L,5); |
---|
644 | lst2str(U); |
---|
645 | } |
---|
646 | |
---|
647 | proc crs(list LM, int d) |
---|
648 | "USAGE: crs(L, d); L a list of modules, d an integer |
---|
649 | RETURN: ring |
---|
650 | PURPOSE: create a ring and shift the ideal |
---|
651 | EXAMPLE: example crs; shows examples |
---|
652 | " |
---|
653 | { |
---|
654 | // d = up to degree, will be shifted to d+1 |
---|
655 | if (d<1) {"bad d"; return(0);} |
---|
656 | |
---|
657 | int ppl = printlevel-voice+2; |
---|
658 | string err = ""; |
---|
659 | |
---|
660 | int i,j,s; |
---|
661 | def save = basering; |
---|
662 | // determine max no of places in the input |
---|
663 | int slm = size(LM); // numbers of polys in the ideal |
---|
664 | int sm; |
---|
665 | intvec iv; |
---|
666 | module M; |
---|
667 | for (i=1; i<=slm; i++) |
---|
668 | { |
---|
669 | // modules, e.g. free polynomials |
---|
670 | M = LM[i]; |
---|
671 | sm = ncols(M); |
---|
672 | for (j=1; j<=sm; j++) |
---|
673 | { |
---|
674 | //vectors, e.g. free monomials |
---|
675 | iv = iv, size(M[j])-1; // 1 place is reserved by the coeff |
---|
676 | } |
---|
677 | } |
---|
678 | int D = Max(iv); // max size of input words |
---|
679 | if (d<D) {"bad d"; return(LM);} |
---|
680 | D = D + d-1; |
---|
681 | // D = d; |
---|
682 | list LR = ringlist(save); |
---|
683 | list L, tmp; |
---|
684 | L[1] = LR[1]; // ground field |
---|
685 | L[4] = LR[4]; // quotient ideal |
---|
686 | tmp = LR[2]; // varnames |
---|
687 | s = size(LR[2]); |
---|
688 | for (i=1; i<=D; i++) |
---|
689 | { |
---|
690 | for (j=1; j<=s; j++) |
---|
691 | { |
---|
692 | tmp[i*s+j] = string(tmp[j])+"("+string(i)+")"; |
---|
693 | } |
---|
694 | } |
---|
695 | for (i=1; i<=s; i++) |
---|
696 | { |
---|
697 | tmp[i] = string(tmp[i])+"("+string(0)+")"; |
---|
698 | } |
---|
699 | L[2] = tmp; |
---|
700 | list OrigNames = LR[2]; |
---|
701 | // ordering: d blocks of the ord on r |
---|
702 | // try to get whether the ord on r is blockord itself |
---|
703 | s = size(LR[3]); |
---|
704 | if (s==2) |
---|
705 | { |
---|
706 | // not a blockord, 1 block + module ord |
---|
707 | tmp = LR[3][s]; // module ord |
---|
708 | for (i=1; i<=D; i++) |
---|
709 | { |
---|
710 | LR[3][s-1+i] = LR[3][1]; |
---|
711 | } |
---|
712 | LR[3][s+D] = tmp; |
---|
713 | } |
---|
714 | if (s>2) |
---|
715 | { |
---|
716 | // there are s-1 blocks |
---|
717 | int nb = s-1; |
---|
718 | tmp = LR[3][s]; // module ord |
---|
719 | for (i=1; i<=D; i++) |
---|
720 | { |
---|
721 | for (j=1; j<=nb; j++) |
---|
722 | { |
---|
723 | LR[3][i*nb+j] = LR[3][j]; |
---|
724 | } |
---|
725 | } |
---|
726 | // size(LR[3]); |
---|
727 | LR[3][nb*(D+1)+1] = tmp; |
---|
728 | } |
---|
729 | L[3] = LR[3]; |
---|
730 | def @R = ring(L); |
---|
731 | setring @R; |
---|
732 | ideal I; |
---|
733 | poly @p; |
---|
734 | s = size(OrigNames); |
---|
735 | // "s:";s; |
---|
736 | // convert LM to canonical vectors (no powers) |
---|
737 | setring save; |
---|
738 | kill M; // M was defined earlier |
---|
739 | module M; |
---|
740 | slm = size(LM); // numbers of polys in the ideal |
---|
741 | int sv,k,l; |
---|
742 | vector v; |
---|
743 | // poly p; |
---|
744 | string sp; |
---|
745 | setring @R; |
---|
746 | poly @@p=0; |
---|
747 | setring save; |
---|
748 | for (l=1; l<=slm; l++) |
---|
749 | { |
---|
750 | // modules, e.g. free polynomials |
---|
751 | M = LM[l]; |
---|
752 | sm = ncols(M); // in intvec iv the sizes are stored |
---|
753 | for (i=0; i<=d-iv[l]; i++) |
---|
754 | { |
---|
755 | // modules, e.g. free polynomials |
---|
756 | for (j=1; j<=sm; j++) |
---|
757 | { |
---|
758 | //vectors, e.g. free monomials |
---|
759 | v = M[j]; |
---|
760 | sv = size(v); |
---|
761 | // "sv:";sv; |
---|
762 | sp = "@@p = @@p + "; |
---|
763 | for (k=2; k<=sv; k++) |
---|
764 | { |
---|
765 | sp = sp + string(v[k])+"("+string(k-2+i)+")*"; |
---|
766 | } |
---|
767 | sp = sp + string(v[1])+";"; // coef; |
---|
768 | setring @R; |
---|
769 | execute(sp); |
---|
770 | setring save; |
---|
771 | } |
---|
772 | setring @R; |
---|
773 | // "@@p:"; @@p; |
---|
774 | I = I,@@p; |
---|
775 | @@p = 0; |
---|
776 | setring save; |
---|
777 | } |
---|
778 | } |
---|
779 | setring @R; |
---|
780 | export I; |
---|
781 | return(@R); |
---|
782 | } |
---|
783 | example |
---|
784 | { |
---|
785 | "EXAMPLE:"; echo = 2; |
---|
786 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
787 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
788 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
789 | list L; L[1] = M; L[2] = N; |
---|
790 | lst2str(L); |
---|
791 | def U = crs(L,5); |
---|
792 | setring U; U; |
---|
793 | I; |
---|
794 | } |
---|
795 | |
---|
796 | proc polylen(ideal I) |
---|
797 | { |
---|
798 | // returns the ideal of length of polys |
---|
799 | int i; |
---|
800 | intvec J; |
---|
801 | number s = 0; |
---|
802 | for(i=1;i<=ncols(I);i++) |
---|
803 | { |
---|
804 | J[i] = size(I[i]); |
---|
805 | s = s + J[i]; |
---|
806 | } |
---|
807 | printf("the sum of length %s",s); |
---|
808 | // print(s); |
---|
809 | return(J); |
---|
810 | } |
---|
811 | |
---|
812 | proc freegbRing(int d) |
---|
813 | "USAGE: freegbRing(d); d an integer |
---|
814 | RETURN: ring |
---|
815 | PURPOSE: creates a ring with d blocks of shifted original variables |
---|
816 | EXAMPLE: example freegbRing; shows examples |
---|
817 | " |
---|
818 | { |
---|
819 | // d = up to degree, will be shifted to d+1 |
---|
820 | if (d<1) {"bad d"; return(0);} |
---|
821 | |
---|
822 | int ppl = printlevel-voice+2; |
---|
823 | string err = ""; |
---|
824 | |
---|
825 | int i,j,s; |
---|
826 | def save = basering; |
---|
827 | int D = d-1; |
---|
828 | list LR = ringlist(save); |
---|
829 | list L, tmp; |
---|
830 | L[1] = LR[1]; // ground field |
---|
831 | L[4] = LR[4]; // quotient ideal |
---|
832 | tmp = LR[2]; // varnames |
---|
833 | s = size(LR[2]); |
---|
834 | for (i=1; i<=D; i++) |
---|
835 | { |
---|
836 | for (j=1; j<=s; j++) |
---|
837 | { |
---|
838 | tmp[i*s+j] = string(tmp[j])+"("+string(i+1)+")"; |
---|
839 | } |
---|
840 | } |
---|
841 | for (i=1; i<=s; i++) |
---|
842 | { |
---|
843 | tmp[i] = string(tmp[i])+"("+string(1)+")"; |
---|
844 | } |
---|
845 | L[2] = tmp; |
---|
846 | list OrigNames = LR[2]; |
---|
847 | // ordering: d blocks of the ord on r |
---|
848 | // try to get whether the ord on r is blockord itself |
---|
849 | // TODO: make L(2) ordering! exponent is maximally 2 |
---|
850 | s = size(LR[3]); |
---|
851 | if (s==2) |
---|
852 | { |
---|
853 | // not a blockord, 1 block + module ord |
---|
854 | tmp = LR[3][s]; // module ord |
---|
855 | for (i=1; i<=D; i++) |
---|
856 | { |
---|
857 | LR[3][s-1+i] = LR[3][1]; |
---|
858 | } |
---|
859 | LR[3][s+D] = tmp; |
---|
860 | } |
---|
861 | if (s>2) |
---|
862 | { |
---|
863 | // there are s-1 blocks |
---|
864 | int nb = s-1; |
---|
865 | tmp = LR[3][s]; // module ord |
---|
866 | for (i=1; i<=D; i++) |
---|
867 | { |
---|
868 | for (j=1; j<=nb; j++) |
---|
869 | { |
---|
870 | LR[3][i*nb+j] = LR[3][j]; |
---|
871 | } |
---|
872 | } |
---|
873 | // size(LR[3]); |
---|
874 | LR[3][nb*(D+1)+1] = tmp; |
---|
875 | } |
---|
876 | L[3] = LR[3]; |
---|
877 | def @R = ring(L); |
---|
878 | // setring @R; |
---|
879 | return (@R); |
---|
880 | } |
---|
881 | example |
---|
882 | { |
---|
883 | "EXAMPLE:"; echo = 2; |
---|
884 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
885 | def A = freegbRing(2); |
---|
886 | setring A; |
---|
887 | A; |
---|
888 | } |
---|
889 | |
---|
890 | proc ex_shift() |
---|
891 | { |
---|
892 | LIB "freegb.lib"; |
---|
893 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
894 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
895 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
896 | list L; L[1] = M; L[2] = N; |
---|
897 | lst2str(L); |
---|
898 | def U = crs(L,5); |
---|
899 | setring U; U; |
---|
900 | I; |
---|
901 | poly p = I[2]; // I[8]; |
---|
902 | p; |
---|
903 | system("stest",p,7,7,3); // error -> the world is ok |
---|
904 | poly q1 = system("stest",p,1,7,3); //ok |
---|
905 | poly q6 = system("stest",p,6,7,3); //ok |
---|
906 | system("btest",p,3); //ok |
---|
907 | system("btest",q1,3); //ok |
---|
908 | system("btest",q6,3); //ok |
---|
909 | } |
---|
910 | |
---|
911 | proc test_shrink() |
---|
912 | { |
---|
913 | LIB "freegb.lib"; |
---|
914 | ring r =0,(x,y,z),dp; |
---|
915 | int d = 5; |
---|
916 | def R = freegbRing(d); |
---|
917 | setring R; |
---|
918 | poly p1 = x(1)*y(2)*z(3); |
---|
919 | poly p2 = x(1)*y(4)*z(5); |
---|
920 | poly p3 = x(1)*y(1)*z(3); |
---|
921 | poly p4 = x(1)*y(2)*z(2); |
---|
922 | poly p5 = x(3)*z(5); |
---|
923 | poly p6 = x(1)*y(1)*x(3)*z(5); |
---|
924 | poly p7 = x(1)*y(2)*x(3)*y(4)*z(5); |
---|
925 | poly p8 = p1+p2+p3+p4+p5 + p6 + p7; |
---|
926 | p1; system("shrinktest",p1,3); |
---|
927 | p2; system("shrinktest",p2,3); |
---|
928 | p3; system("shrinktest",p3,3); |
---|
929 | p4; system("shrinktest",p4,3); |
---|
930 | p5; system("shrinktest",p5,3); |
---|
931 | p6; system("shrinktest",p6,3); |
---|
932 | p7; system("shrinktest",p7,3); |
---|
933 | p8; system("shrinktest",p8,3); |
---|
934 | poly p9 = p1 + 2*p2 + 5*p5 + 7*p7; |
---|
935 | p9; system("shrinktest",p9,3); |
---|
936 | } |
---|
937 | |
---|
938 | proc ex2() |
---|
939 | { |
---|
940 | option(prot); |
---|
941 | LIB "freegb.lib"; |
---|
942 | ring r = 0,(x,y),dp; |
---|
943 | module M = [-1,x,y],[3,x,x]; // 3x^2 - xy |
---|
944 | def U = freegb(M,7); |
---|
945 | lst2str(U); |
---|
946 | } |
---|
947 | |
---|
948 | proc ex_nonhomog() |
---|
949 | { |
---|
950 | option(prot); |
---|
951 | LIB "freegb.lib"; |
---|
952 | ring r = 0,(x,y,h),dp; |
---|
953 | list L; |
---|
954 | module M; |
---|
955 | M = [-1,y,y],[1,x,x,x]; // x3-y2 |
---|
956 | L[1] = M; |
---|
957 | M = [1,x,h],[-1,h,x]; // xh-hx |
---|
958 | L[2] = M; |
---|
959 | M = [1,y,h],[-1,h,y]; // yh-hy |
---|
960 | L[3] = M; |
---|
961 | def U = freegb(L,4); |
---|
962 | lst2str(U); |
---|
963 | // strange elements in the basis |
---|
964 | } |
---|
965 | |
---|
966 | proc ex_nonhomog_comm() |
---|
967 | { |
---|
968 | option(prot); |
---|
969 | LIB "freegb.lib"; |
---|
970 | ring r = 0,(x,y),dp; |
---|
971 | module M = [-1,y,y],[1,x,x,x]; |
---|
972 | def U = freegb(M,5); |
---|
973 | lst2str(U); |
---|
974 | } |
---|
975 | |
---|
976 | proc ex_nonhomog_h() |
---|
977 | { |
---|
978 | option(prot); |
---|
979 | LIB "freegb.lib"; |
---|
980 | ring r = 0,(x,y,h),(a(1,1),dp); |
---|
981 | module M = [-1,y,y,h],[1,x,x,x]; // x3 - y2h |
---|
982 | def U = freegb(M,6); |
---|
983 | lst2str(U); |
---|
984 | } |
---|
985 | |
---|
986 | proc ex_nonhomog_h2() |
---|
987 | { |
---|
988 | option(prot); |
---|
989 | LIB "freegb.lib"; |
---|
990 | ring r = 0,(x,y,h),(dp); |
---|
991 | list L; |
---|
992 | module M; |
---|
993 | M = [-1,y,y,h],[1,x,x,x]; // x3 - y2h |
---|
994 | L[1] = M; |
---|
995 | M = [1,x,h],[-1,h,x]; // xh - hx |
---|
996 | L[2] = M; |
---|
997 | M = [1,y,h],[-1,h,y]; // yh - hy |
---|
998 | L[3] = M; |
---|
999 | def U = freegbasis(L,3); |
---|
1000 | lst2str(U); |
---|
1001 | // strange answer CHECK |
---|
1002 | } |
---|
1003 | |
---|
1004 | |
---|
1005 | proc ex_nonhomog_3() |
---|
1006 | { |
---|
1007 | option(prot); |
---|
1008 | LIB "./freegb.lib"; |
---|
1009 | ring r = 0,(x,y,z),(dp); |
---|
1010 | list L; |
---|
1011 | module M; |
---|
1012 | M = [1,z,y],[-1,x]; // zy - x |
---|
1013 | L[1] = M; |
---|
1014 | M = [1,z,x],[-1,y]; // zx - y |
---|
1015 | L[2] = M; |
---|
1016 | M = [1,y,x],[-1,z]; // yx - z |
---|
1017 | L[3] = M; |
---|
1018 | lst2str(L); |
---|
1019 | list U = freegb(L,4); |
---|
1020 | lst2str(U); |
---|
1021 | // strange answer CHECK |
---|
1022 | } |
---|
1023 | |
---|
1024 | proc ex_densep_2() |
---|
1025 | { |
---|
1026 | option(prot); |
---|
1027 | LIB "freegb.lib"; |
---|
1028 | ring r = (0,a,b,c),(x,y),(Dp); // deglex |
---|
1029 | module M = [1,x,x], [a,x,y], [b,y,x], [c,y,y]; |
---|
1030 | lst2str(M); |
---|
1031 | list U = freegb(M,5); |
---|
1032 | lst2str(U); |
---|
1033 | // a=b is important -> finite basis!!! |
---|
1034 | module M = [1,x,x], [a,x,y], [a,y,x], [c,y,y]; |
---|
1035 | lst2str(M); |
---|
1036 | list U = freegb(M,5); |
---|
1037 | lst2str(U); |
---|
1038 | } |
---|
1039 | |
---|
1040 | |
---|
1041 | // 1. form a new ring |
---|
1042 | // 2. produce shifted generators |
---|
1043 | // 3. compute GB |
---|
1044 | // 4. skip shifted elts |
---|
1045 | // 5. go back to orig vars, produce strings/modules |
---|
1046 | // 6. return the result |
---|
1047 | |
---|
1048 | proc freegbold(list LM, int d) |
---|
1049 | "USAGE: freegbold(L, d); L a list of modules, d an integer |
---|
1050 | RETURN: ring |
---|
1051 | PURPOSE: compute the two-sided Groebner basis of an ideal, encoded by L in |
---|
1052 | the free associative algebra, up to degree d |
---|
1053 | EXAMPLE: example freegbold; shows examples |
---|
1054 | " |
---|
1055 | { |
---|
1056 | // d = up to degree, will be shifted to d+1 |
---|
1057 | if (d<1) {"bad d"; return(0);} |
---|
1058 | |
---|
1059 | int ppl = printlevel-voice+2; |
---|
1060 | string err = ""; |
---|
1061 | |
---|
1062 | int i,j,s; |
---|
1063 | def save = basering; |
---|
1064 | // determine max no of places in the input |
---|
1065 | int slm = size(LM); // numbers of polys in the ideal |
---|
1066 | int sm; |
---|
1067 | intvec iv; |
---|
1068 | module M; |
---|
1069 | for (i=1; i<=slm; i++) |
---|
1070 | { |
---|
1071 | // modules, e.g. free polynomials |
---|
1072 | M = LM[i]; |
---|
1073 | sm = ncols(M); |
---|
1074 | for (j=1; j<=sm; j++) |
---|
1075 | { |
---|
1076 | //vectors, e.g. free monomials |
---|
1077 | iv = iv, size(M[j])-1; // 1 place is reserved by the coeff |
---|
1078 | } |
---|
1079 | } |
---|
1080 | int D = Max(iv); // max size of input words |
---|
1081 | if (d<D) {"bad d"; return(LM);} |
---|
1082 | D = D + d-1; |
---|
1083 | // D = d; |
---|
1084 | list LR = ringlist(save); |
---|
1085 | list L, tmp; |
---|
1086 | L[1] = LR[1]; // ground field |
---|
1087 | L[4] = LR[4]; // quotient ideal |
---|
1088 | tmp = LR[2]; // varnames |
---|
1089 | s = size(LR[2]); |
---|
1090 | for (i=1; i<=D; i++) |
---|
1091 | { |
---|
1092 | for (j=1; j<=s; j++) |
---|
1093 | { |
---|
1094 | tmp[i*s+j] = string(tmp[j])+"("+string(i+1)+")"; |
---|
1095 | } |
---|
1096 | } |
---|
1097 | for (i=1; i<=s; i++) |
---|
1098 | { |
---|
1099 | tmp[i] = string(tmp[i])+"("+string(1)+")"; |
---|
1100 | } |
---|
1101 | L[2] = tmp; |
---|
1102 | list OrigNames = LR[2]; |
---|
1103 | // ordering: d blocks of the ord on r |
---|
1104 | // try to get whether the ord on r is blockord itself |
---|
1105 | // TODO: make L(2) ordering! exponent is maximally 2 |
---|
1106 | s = size(LR[3]); |
---|
1107 | if (s==2) |
---|
1108 | { |
---|
1109 | // not a blockord, 1 block + module ord |
---|
1110 | tmp = LR[3][s]; // module ord |
---|
1111 | for (i=1; i<=D; i++) |
---|
1112 | { |
---|
1113 | LR[3][s-1+i] = LR[3][1]; |
---|
1114 | } |
---|
1115 | LR[3][s+D] = tmp; |
---|
1116 | } |
---|
1117 | if (s>2) |
---|
1118 | { |
---|
1119 | // there are s-1 blocks |
---|
1120 | int nb = s-1; |
---|
1121 | tmp = LR[3][s]; // module ord |
---|
1122 | for (i=1; i<=D; i++) |
---|
1123 | { |
---|
1124 | for (j=1; j<=nb; j++) |
---|
1125 | { |
---|
1126 | LR[3][i*nb+j] = LR[3][j]; |
---|
1127 | } |
---|
1128 | } |
---|
1129 | // size(LR[3]); |
---|
1130 | LR[3][nb*(D+1)+1] = tmp; |
---|
1131 | } |
---|
1132 | L[3] = LR[3]; |
---|
1133 | def @R = ring(L); |
---|
1134 | setring @R; |
---|
1135 | ideal I; |
---|
1136 | poly @p; |
---|
1137 | s = size(OrigNames); |
---|
1138 | // "s:";s; |
---|
1139 | // convert LM to canonical vectors (no powers) |
---|
1140 | setring save; |
---|
1141 | kill M; // M was defined earlier |
---|
1142 | module M; |
---|
1143 | slm = size(LM); // numbers of polys in the ideal |
---|
1144 | int sv,k,l; |
---|
1145 | vector v; |
---|
1146 | // poly p; |
---|
1147 | string sp; |
---|
1148 | setring @R; |
---|
1149 | poly @@p=0; |
---|
1150 | setring save; |
---|
1151 | for (l=1; l<=slm; l++) |
---|
1152 | { |
---|
1153 | // modules, e.g. free polynomials |
---|
1154 | M = LM[l]; |
---|
1155 | sm = ncols(M); // in intvec iv the sizes are stored |
---|
1156 | for (i=0; i<=d-iv[l]; i++) |
---|
1157 | { |
---|
1158 | // modules, e.g. free polynomials |
---|
1159 | for (j=1; j<=sm; j++) |
---|
1160 | { |
---|
1161 | //vectors, e.g. free monomials |
---|
1162 | v = M[j]; |
---|
1163 | sv = size(v); |
---|
1164 | // "sv:";sv; |
---|
1165 | sp = "@@p = @@p + "; |
---|
1166 | for (k=2; k<=sv; k++) |
---|
1167 | { |
---|
1168 | sp = sp + string(v[k])+"("+string(k-1+i)+")*"; |
---|
1169 | } |
---|
1170 | sp = sp + string(v[1])+";"; // coef; |
---|
1171 | setring @R; |
---|
1172 | execute(sp); |
---|
1173 | setring save; |
---|
1174 | } |
---|
1175 | setring @R; |
---|
1176 | // "@@p:"; @@p; |
---|
1177 | I = I,@@p; |
---|
1178 | @@p = 0; |
---|
1179 | setring save; |
---|
1180 | } |
---|
1181 | } |
---|
1182 | kill sp; |
---|
1183 | // 3. compute GB |
---|
1184 | setring @R; |
---|
1185 | dbprint(ppl,"computing GB"); |
---|
1186 | // ideal J = groebner(I); |
---|
1187 | ideal J = slimgb(I); |
---|
1188 | dbprint(ppl,J); |
---|
1189 | // 4. skip shifted elts |
---|
1190 | ideal K = select1(J,1..s); // s = size(OrigNames) |
---|
1191 | dbprint(ppl,K); |
---|
1192 | dbprint(ppl, "done with GB"); |
---|
1193 | // K contains vars x(1),...z(1) = images of originals |
---|
1194 | // 5. go back to orig vars, produce strings/modules |
---|
1195 | if (K[1] == 0) |
---|
1196 | { |
---|
1197 | "no reasonable output, GB gives 0"; |
---|
1198 | return(0); |
---|
1199 | } |
---|
1200 | int sk = size(K); |
---|
1201 | int sp, sx, a, b; |
---|
1202 | intvec x; |
---|
1203 | poly p,q; |
---|
1204 | poly pn; |
---|
1205 | // vars in 'save' |
---|
1206 | setring save; |
---|
1207 | module N; |
---|
1208 | list LN; |
---|
1209 | vector V; |
---|
1210 | poly pn; |
---|
1211 | // test and skip exponents >=2 |
---|
1212 | setring @R; |
---|
1213 | for(i=1; i<=sk; i++) |
---|
1214 | { |
---|
1215 | p = K[i]; |
---|
1216 | while (p!=0) |
---|
1217 | { |
---|
1218 | q = lead(p); |
---|
1219 | // "processing q:";q; |
---|
1220 | x = leadexp(q); |
---|
1221 | sx = size(x); |
---|
1222 | for(k=1; k<=sx; k++) |
---|
1223 | { |
---|
1224 | if ( x[k] >= 2 ) |
---|
1225 | { |
---|
1226 | err = "skip: the value x[k] is " + string(x[k]); |
---|
1227 | dbprint(ppl,err); |
---|
1228 | // return(0); |
---|
1229 | K[i] = 0; |
---|
1230 | p = 0; |
---|
1231 | q = 0; |
---|
1232 | break; |
---|
1233 | } |
---|
1234 | } |
---|
1235 | p = p - q; |
---|
1236 | } |
---|
1237 | } |
---|
1238 | K = simplify(K,2); |
---|
1239 | sk = size(K); |
---|
1240 | for(i=1; i<=sk; i++) |
---|
1241 | { |
---|
1242 | // setring save; |
---|
1243 | // V = 0; |
---|
1244 | setring @R; |
---|
1245 | p = K[i]; |
---|
1246 | while (p!=0) |
---|
1247 | { |
---|
1248 | q = lead(p); |
---|
1249 | err = "processing q:" + string(q); |
---|
1250 | dbprint(ppl,err); |
---|
1251 | x = leadexp(q); |
---|
1252 | sx = size(x); |
---|
1253 | pn = leadcoef(q); |
---|
1254 | setring save; |
---|
1255 | pn = imap(@R,pn); |
---|
1256 | V = V + leadcoef(pn)*gen(1); |
---|
1257 | for(k=1; k<=sx; k++) |
---|
1258 | { |
---|
1259 | if (x[k] ==1) |
---|
1260 | { |
---|
1261 | a = k / s; // block number=a+1, a!=0 |
---|
1262 | b = k % s; // remainder |
---|
1263 | // printf("a: %s, b: %s",a,b); |
---|
1264 | if (b == 0) |
---|
1265 | { |
---|
1266 | // that is it's the last var in the block |
---|
1267 | b = s; |
---|
1268 | a = a-1; |
---|
1269 | } |
---|
1270 | V = V + var(b)*gen(a+2); |
---|
1271 | } |
---|
1272 | // else |
---|
1273 | // { |
---|
1274 | // printf("error: the value x[k] is %s", x[k]); |
---|
1275 | // return(0); |
---|
1276 | // } |
---|
1277 | } |
---|
1278 | err = "V: " + string(V); |
---|
1279 | dbprint(ppl,err); |
---|
1280 | // printf("V: %s", string(V)); |
---|
1281 | N = N,V; |
---|
1282 | V = 0; |
---|
1283 | setring @R; |
---|
1284 | p = p - q; |
---|
1285 | pn = 0; |
---|
1286 | } |
---|
1287 | setring save; |
---|
1288 | LN[i] = simplify(N,2); |
---|
1289 | N = 0; |
---|
1290 | } |
---|
1291 | setring save; |
---|
1292 | return(LN); |
---|
1293 | } |
---|
1294 | example |
---|
1295 | { |
---|
1296 | "EXAMPLE:"; echo = 2; |
---|
1297 | ring r = 0,(x,y,z),(dp(1),dp(2)); |
---|
1298 | module M = [-1,x,y],[-7,y,y],[3,x,x]; |
---|
1299 | module N = [1,x,y,x],[-1,y,x,y]; |
---|
1300 | list L; L[1] = M; L[2] = N; |
---|
1301 | lst2str(L); |
---|
1302 | def U = freegbold(L,5); |
---|
1303 | lst2str(U); |
---|
1304 | } |
---|
1305 | |
---|
1306 | proc sgb(ideal I, int d) |
---|
1307 | { |
---|
1308 | // new code |
---|
1309 | // map x_i to x_i(1) via map() |
---|
1310 | //LIB "freegb.lib"; |
---|
1311 | def save = basering; |
---|
1312 | //int d =7;// degree |
---|
1313 | int nv = nvars(save); |
---|
1314 | def R = freegbRing(d); |
---|
1315 | setring R; |
---|
1316 | int i; |
---|
1317 | ideal Imap; |
---|
1318 | for (i=1; i<=nv; i++) |
---|
1319 | { |
---|
1320 | Imap[i] = var(i); |
---|
1321 | } |
---|
1322 | //ideal I = x(1)*y(2), y(1)*x(2)+z(1)*z(2); |
---|
1323 | ideal I = x(1)*x(2),x(1)*y(2) + z(1)*x(2); |
---|
1324 | option(prot); |
---|
1325 | //option(teach); |
---|
1326 | ideal J = system("freegb",I,d,nv); |
---|
1327 | } |
---|
1328 | |
---|
1329 | |
---|
1330 | |
---|
1331 | static proc checkCeq() |
---|
1332 | { |
---|
1333 | ring r = 0,(x,y),Dp; |
---|
1334 | def A = freegbRing(4); |
---|
1335 | setring A; |
---|
1336 | A; |
---|
1337 | // I = x2-xy |
---|
1338 | ideal I = x(1)*x(2) - x(1)*y(2), x(2)*x(3) - x(2)*y(3), x(3)*x(4) - x(3)*y(4); |
---|
1339 | ideal C = x(2)-x(1),x(3)-x(2),x(4)-x(3),y(2)-y(1),y(3)-y(2),y(4)-y(3); |
---|
1340 | ideal K = I,C; |
---|
1341 | groebner(K); |
---|
1342 | } |
---|
1343 | |
---|
1344 | |
---|
1345 | proc exHom1() |
---|
1346 | { |
---|
1347 | // we start with |
---|
1348 | // z*y - x, z*x - y, y*x - z |
---|
1349 | LIB "freegb.lib"; |
---|
1350 | LIB "elim.lib"; |
---|
1351 | ring r = 0,(x,y,z,h),dp; |
---|
1352 | list L; |
---|
1353 | module M; |
---|
1354 | M = [1,z,y],[-1,x,h]; // zy - xh |
---|
1355 | L[1] = M; |
---|
1356 | M = [1,z,x],[-1,y,h]; // zx - yh |
---|
1357 | L[2] = M; |
---|
1358 | M = [1,y,x],[-1,z,h]; // yx - zh |
---|
1359 | L[3] = M; |
---|
1360 | lst2str(L); |
---|
1361 | def U = crs(L,4); |
---|
1362 | setring U; |
---|
1363 | I = I, |
---|
1364 | y(2)*h(3)+z(2)*x(3), y(3)*h(4)+z(3)*x(4), |
---|
1365 | y(2)*x(3)-z(2)*h(3), y(3)*x(4)-z(3)*h(4); |
---|
1366 | I = simplify(I,2); |
---|
1367 | ring r2 = 0,(x(0..4),y(0..4),z(0..4),h(0..4)),dp; |
---|
1368 | ideal J = imap(U,I); |
---|
1369 | // ideal K = homog(J,h); |
---|
1370 | option(redSB); |
---|
1371 | option(redTail); |
---|
1372 | ideal L = groebner(J); //(K); |
---|
1373 | ideal LL = sat(L,ideal(h))[1]; |
---|
1374 | ideal M = subst(LL,h,1); |
---|
1375 | M = simplify(M,2); |
---|
1376 | setring U; |
---|
1377 | ideal M = imap(r2,M); |
---|
1378 | lst2str(U); |
---|
1379 | } |
---|
1380 | |
---|
1381 | static proc test1() |
---|
1382 | { |
---|
1383 | LIB "freegb.lib"; |
---|
1384 | ring r = 0,(x,y),Dp; |
---|
1385 | int d = 10; // degree |
---|
1386 | def R = freegbRing(d); |
---|
1387 | setring R; |
---|
1388 | ideal I = x(1)*x(2) - y(1)*y(2); |
---|
1389 | option(prot); |
---|
1390 | option(teach); |
---|
1391 | ideal J = system("freegb",I,d,2); |
---|
1392 | J; |
---|
1393 | } |
---|
1394 | |
---|
1395 | static proc test2() |
---|
1396 | { |
---|
1397 | LIB "freegb.lib"; |
---|
1398 | ring r = 0,(x,y),Dp; |
---|
1399 | int d = 10; // degree |
---|
1400 | def R = freegbRing(d); |
---|
1401 | setring R; |
---|
1402 | ideal I = x(1)*x(2) - x(1)*y(2); |
---|
1403 | option(prot); |
---|
1404 | option(teach); |
---|
1405 | ideal J = system("freegb",I,d,2); |
---|
1406 | J; |
---|
1407 | } |
---|
1408 | |
---|
1409 | static proc test3() |
---|
1410 | { |
---|
1411 | LIB "freegb.lib"; |
---|
1412 | ring r = 0,(x,y,z),dp; |
---|
1413 | int d =5; // degree |
---|
1414 | def R = freegbRing(d); |
---|
1415 | setring R; |
---|
1416 | ideal I = x(1)*y(2), y(1)*x(2)+z(1)*z(2); |
---|
1417 | option(prot); |
---|
1418 | option(teach); |
---|
1419 | ideal J = system("freegb",I,d,3); |
---|
1420 | } |
---|
1421 | |
---|
1422 | proc schur2-3() |
---|
1423 | { |
---|
1424 | // nonhomog: |
---|
1425 | // h^4-10*h^2+9,f*e-e*f+h, h*2-e*h-2*e,h*f-f*h+2*f |
---|
1426 | // homogenized with t |
---|
1427 | // h^4-10*h^2*t^2+9*t^4,f*e-e*f+h*t, h*2-e*h-2*e*t,h*f-f*h+2*f*t, |
---|
1428 | // t*h - h*t, t*f - f*t, t*e - e*t |
---|
1429 | } |
---|
1430 | |
---|
1431 | proc adem(int i, int j) |
---|
1432 | { |
---|
1433 | // produces Adem relations for i<2j in char 0 |
---|
1434 | // assume: 0<i<2j |
---|
1435 | // requires presence of vars up to i+j |
---|
1436 | if ( (i<0) || (i >= 2*j) ) |
---|
1437 | { |
---|
1438 | ERROR("arguments out of range"); return(0); |
---|
1439 | } |
---|
1440 | ring @r = 0,(s(i+j..0)),lp; |
---|
1441 | poly p,q; |
---|
1442 | number n; |
---|
1443 | int ii = i div 2; int k; |
---|
1444 | // k=0 => s(0)=1 |
---|
1445 | n = binomial(j-1,i); |
---|
1446 | q = n*s(i+j)*s(0); |
---|
1447 | printf("k=0, term=%s",q); |
---|
1448 | p = p + q; |
---|
1449 | for (k=1; k<= ii; k++) |
---|
1450 | { |
---|
1451 | n = binomial(j-k-1,i-2*k); |
---|
1452 | q = n*s(i+j-k)*s(k);; |
---|
1453 | printf("k=%s, term=%s",k,q); |
---|
1454 | p = p + q; |
---|
1455 | } |
---|
1456 | poly AdemRel = p; |
---|
1457 | export AdemRel; |
---|
1458 | return(@r); |
---|
1459 | } |
---|
1460 | example |
---|
1461 | { |
---|
1462 | "EXAMPLE:"; echo = 2; |
---|
1463 | def A = adem(2,5); |
---|
1464 | setring A; |
---|
1465 | AdemRel; |
---|
1466 | } |
---|
1467 | |
---|
1468 | /* |
---|
1469 | 1,1: 0 |
---|
1470 | 1,2: s(3)*s(0) == s(3) -> def for s(3):=s(1)s(2) |
---|
1471 | 2,1: adm |
---|
1472 | 2,2: s(3)*s(1) == s(1)s(2)s(1) |
---|
1473 | 1,3: 0 ( since 2*s(4)*s(0) = 0 mod 2) |
---|
1474 | 3,1: adm |
---|
1475 | 2,3: s(5)*s(0)+s(4)*s(1) == s(5)+s(4)*s(1) |
---|
1476 | 3,2: 0 |
---|
1477 | 3,3: s(5)*s(1) |
---|
1478 | 1,4: 3*s(5)*s(0) == s(5) -> def for s(5):=s(1)*s(4) |
---|
1479 | 4,1: adm |
---|
1480 | 2,4: 3*s(6)*s(0)+s(5)*s(1) == s(6) + s(5)*s(1) == s(6) + s(1)*s(4)*s(1) |
---|
1481 | 4,2: adm |
---|
1482 | 4,3: s(5)*s(2) |
---|
1483 | 3,4: s(7)*s(0)+2*s(6)*s(1) == s(7) -> def for s(7):=s(3)*s(4) |
---|
1484 | 4,4: s(7)*s(1)+s(6)*s(2) |
---|
1485 | */ |
---|
1486 | |
---|
1487 | /* s1,s2: |
---|
1488 | s1*s1 =0, s2*s2 = s1*s2*s1 |
---|
1489 | */ |
---|
1490 | |
---|
1491 | /* |
---|
1492 | try char 0: |
---|
1493 | s1,s2: |
---|
1494 | s1*s1 =0, s2*s2 = s1*s2*s1, s(1)*s(3)== s(1)*s(1)*s(3) == 0 = 2*s(4) ->def for s(4) |
---|
1495 | hence 2==0! only in char 2 |
---|
1496 | */ |
---|
1497 | |
---|
1498 | proc adem2mod(int n) |
---|
1499 | { |
---|
1500 | // Adem rels modulo 2 |
---|
1501 | } |
---|
1502 | |
---|
1503 | proc stringpoly2lplace(string s) |
---|
1504 | { |
---|
1505 | // decomposes sentence into terms |
---|
1506 | s = replace(s,newline,""); // get rid of newlines |
---|
1507 | s = replace(s," ",""); // get rid of empties |
---|
1508 | //arith symbols: +,- |
---|
1509 | // decompose into words with coeffs |
---|
1510 | list LS; |
---|
1511 | int i,j,ie,je,k,cnt; |
---|
1512 | // s[1]="-" situation |
---|
1513 | if (s[1]=="-") |
---|
1514 | { |
---|
1515 | LS = stringpoly2lplace(string(s[2..size(s)])); |
---|
1516 | LS[1] = string("-"+string(LS[1])); |
---|
1517 | return(LS); |
---|
1518 | } |
---|
1519 | i = find(s,"-",2); |
---|
1520 | // i==1 might happen if the 1st symbol coeff is negative |
---|
1521 | j = find(s,"+"); |
---|
1522 | list LL; |
---|
1523 | if (i==j) |
---|
1524 | { |
---|
1525 | "return a monomial"; |
---|
1526 | // that is both are 0 -> s is a monomial |
---|
1527 | LS[1] = s; |
---|
1528 | return(LS); |
---|
1529 | } |
---|
1530 | if (i==0) |
---|
1531 | { |
---|
1532 | "i==0 situation"; |
---|
1533 | // no minuses at all => pluses only |
---|
1534 | cnt++; |
---|
1535 | LS[cnt] = string(s[1..j-1]); |
---|
1536 | s = s[j+1..size(s)]; |
---|
1537 | while (s!= "") |
---|
1538 | { |
---|
1539 | j = find(s,"+"); |
---|
1540 | cnt++; |
---|
1541 | if (j==0) |
---|
1542 | { |
---|
1543 | LS[cnt] = string(s); |
---|
1544 | s = ""; |
---|
1545 | } |
---|
1546 | else |
---|
1547 | { |
---|
1548 | LS[cnt] = string(s[1..j-1]); |
---|
1549 | s = s[j+1..size(s)]; |
---|
1550 | } |
---|
1551 | } |
---|
1552 | return(LS); |
---|
1553 | } |
---|
1554 | if (j==0) |
---|
1555 | { |
---|
1556 | "j==0 situation"; |
---|
1557 | // no pluses at all except the lead coef => the rest are minuses only |
---|
1558 | cnt++; |
---|
1559 | LS[cnt] = string(s[1..i-1]); |
---|
1560 | s = s[i..size(s)]; |
---|
1561 | while (s!= "") |
---|
1562 | { |
---|
1563 | i = find(s,"-",2); |
---|
1564 | cnt++; |
---|
1565 | if (i==0) |
---|
1566 | { |
---|
1567 | LS[cnt] = string(s); |
---|
1568 | s = ""; |
---|
1569 | } |
---|
1570 | else |
---|
1571 | { |
---|
1572 | LS[cnt] = string(s[1..i-1]); |
---|
1573 | s = s[i..size(s)]; |
---|
1574 | } |
---|
1575 | } |
---|
1576 | return(LS); |
---|
1577 | } |
---|
1578 | // now i, j are nonzero |
---|
1579 | if (i>j) |
---|
1580 | { |
---|
1581 | "i>j situation"; |
---|
1582 | // + comes first, at place j |
---|
1583 | cnt++; |
---|
1584 | // "cnt:"; cnt; "j:"; j; |
---|
1585 | LS[cnt] = string(s[1..j-1]); |
---|
1586 | s = s[j+1..size(s)]; |
---|
1587 | LL = stringpoly2lplace(s); |
---|
1588 | LS = LS + LL; |
---|
1589 | kill LL; |
---|
1590 | return(LS); |
---|
1591 | } |
---|
1592 | else |
---|
1593 | { |
---|
1594 | "j>i situation"; |
---|
1595 | // - might come first, at place i |
---|
1596 | if (i>1) |
---|
1597 | { |
---|
1598 | cnt++; |
---|
1599 | LS[cnt] = string(s[1..i-1]); |
---|
1600 | s = s[i..size(s)]; |
---|
1601 | } |
---|
1602 | else |
---|
1603 | { |
---|
1604 | // i==1-> minus at leadcoef |
---|
1605 | ie = find(s,"-",i+1); |
---|
1606 | je = find(s,"+",i+1); |
---|
1607 | if (je == ie) |
---|
1608 | { |
---|
1609 | "ie=je situation"; |
---|
1610 | //monomial |
---|
1611 | cnt++; |
---|
1612 | LS[cnt] = s; |
---|
1613 | return(LS); |
---|
1614 | } |
---|
1615 | if (je < ie) |
---|
1616 | { |
---|
1617 | "je<ie situation"; |
---|
1618 | // + comes first |
---|
1619 | cnt++; |
---|
1620 | LS[cnt] = s[1..je-1]; |
---|
1621 | s = s[je+1..size(s)]; |
---|
1622 | } |
---|
1623 | else |
---|
1624 | { |
---|
1625 | // ie < je |
---|
1626 | "ie<je situation"; |
---|
1627 | cnt++; |
---|
1628 | LS[cnt] = s[1..ie-1]; |
---|
1629 | s = s[ie..size(s)]; |
---|
1630 | } |
---|
1631 | } |
---|
1632 | "going into recursion with "+s; |
---|
1633 | LL = stringpoly2lplace(s); |
---|
1634 | LS = LS + LL; |
---|
1635 | return(LS); |
---|
1636 | } |
---|
1637 | } |
---|
1638 | example |
---|
1639 | { |
---|
1640 | "EXAMPLE:"; echo = 2; |
---|
1641 | string s = "x*y+y*z+z*t"; // + only |
---|
1642 | stringpoly2lplace(s); |
---|
1643 | string s2 = "x*y - y*z-z*t*w*w"; // +1, - only |
---|
1644 | stringpoly2lplace(s2); |
---|
1645 | string s3 = "-x*y + y - 2*x +7*w*w*w"; |
---|
1646 | stringpoly2lplace(s3); |
---|
1647 | } |
---|
1648 | |
---|
1649 | proc addplaces(list L) |
---|
1650 | { |
---|
1651 | // adds places to the list of strings |
---|
1652 | // according to their order in the list |
---|
1653 | int s = size(L); |
---|
1654 | int i; |
---|
1655 | for (i=1; i<=s; i++) |
---|
1656 | { |
---|
1657 | if (typeof(L[i]) == "string") |
---|
1658 | { |
---|
1659 | L[i] = L[i] + "(" + string(i) + ")"; |
---|
1660 | } |
---|
1661 | else |
---|
1662 | { |
---|
1663 | ERROR("entry of type string expected"); |
---|
1664 | return(0); |
---|
1665 | } |
---|
1666 | } |
---|
1667 | return(L); |
---|
1668 | } |
---|
1669 | example |
---|
1670 | { |
---|
1671 | "EXAMPLE:"; echo = 2; |
---|
1672 | string a = "f1"; string b = "f2"; |
---|
1673 | list L = a,b,a; |
---|
1674 | addplaces(L); |
---|
1675 | } |
---|
1676 | |
---|
1677 | proc sent2lplace(string s) |
---|
1678 | { |
---|
1679 | // SENTence of words TO LetterPLACE |
---|
1680 | list L = stringpoly2lplace(s); |
---|
1681 | int i; int ss = size(L); |
---|
1682 | for(i=1; i<=ss; i++) |
---|
1683 | { |
---|
1684 | L[i] = str2lplace(L[i]); |
---|
1685 | } |
---|
1686 | return(L); |
---|
1687 | } |
---|
1688 | example |
---|
1689 | { |
---|
1690 | "EXAMPLE:"; echo = 2; |
---|
1691 | ring r = 0,(f2,f1),dp; |
---|
1692 | string s = "f2*f1*f1 - 2*f1*f2*f1+ f1*f1*f2"; |
---|
1693 | sent2lplace(s); |
---|
1694 | } |
---|
1695 | |
---|
1696 | proc testnumber(string s) |
---|
1697 | { |
---|
1698 | string t; |
---|
1699 | if (s[1]=="-") |
---|
1700 | { |
---|
1701 | // two situations: either there's a negative number |
---|
1702 | t = s[2..size(s)]; |
---|
1703 | if (testnumber(t)) |
---|
1704 | { |
---|
1705 | //a negative number |
---|
1706 | } |
---|
1707 | else |
---|
1708 | { |
---|
1709 | // a variable times -1 |
---|
1710 | } |
---|
1711 | // or just a "-" for -1 |
---|
1712 | } |
---|
1713 | t = "ring @r=("; |
---|
1714 | t = t + charstr(basering)+"),"; |
---|
1715 | t = t + string(var(1))+",dp;"; |
---|
1716 | // write(":w tstnum.tst",t); |
---|
1717 | t = t+ "number @@Nn = " + s + ";"+"$"; |
---|
1718 | write(":w tstnum.tst",t); |
---|
1719 | string runsing = system("Singular"); |
---|
1720 | int k; |
---|
1721 | t = runsing+ " -teq <tstnum.tst >tstnum.out"; |
---|
1722 | k = system("sh",t); |
---|
1723 | if (k!=0) |
---|
1724 | { |
---|
1725 | ERROR("Problems running Singular"); |
---|
1726 | } |
---|
1727 | int i = system("sh", "grep error tstnum.out > /dev/NULL"); |
---|
1728 | if (i!=0) |
---|
1729 | { |
---|
1730 | // no error: s is a number |
---|
1731 | i = 1; |
---|
1732 | } |
---|
1733 | k = system("sh","rm tstnum.tst tstnum.out > /dev/NULL"); |
---|
1734 | return(i); |
---|
1735 | } |
---|
1736 | example |
---|
1737 | { |
---|
1738 | "EXAMPLE:"; echo = 2; |
---|
1739 | ring r = (0,a),x,dp; |
---|
1740 | string s = "a^2+7*a-2"; |
---|
1741 | testnumber(s); |
---|
1742 | s = "b+a"; |
---|
1743 | testnumber(s); |
---|
1744 | } |
---|
1745 | |
---|
1746 | proc str2lplace(string s) |
---|
1747 | { |
---|
1748 | // converts a word (monomial) with coeff into letter-place |
---|
1749 | // string: coef*var1^exp1*var2^exp2*...varN^expN |
---|
1750 | s = strpower2rep(s); // expand powers |
---|
1751 | if (size(s)==0) { return(0); } |
---|
1752 | int i,j,k,insC; |
---|
1753 | string a,b,c,d,t; |
---|
1754 | // 1. get coeff |
---|
1755 | i = find(s,"*"); |
---|
1756 | if (i==0) { return(s); } |
---|
1757 | list VN; |
---|
1758 | c = s[1..i-1]; // incl. the case like (-a^2+1) |
---|
1759 | int tn = testnumber(c); |
---|
1760 | if (tn == 0) |
---|
1761 | { |
---|
1762 | // failed test |
---|
1763 | if (c[1]=="-") |
---|
1764 | { |
---|
1765 | // two situations: either there's a negative number |
---|
1766 | t = c[2..size(c)]; |
---|
1767 | if (testnumber(t)) |
---|
1768 | { |
---|
1769 | //a negative number |
---|
1770 | // nop here |
---|
1771 | } |
---|
1772 | else |
---|
1773 | { |
---|
1774 | // a variable times -1 |
---|
1775 | c = "-1"; |
---|
1776 | j++; VN[j] = t; //string(c[2..size(c)]); |
---|
1777 | insC = 1; |
---|
1778 | } |
---|
1779 | } |
---|
1780 | else |
---|
1781 | { |
---|
1782 | // just a variable with coeff 1 |
---|
1783 | j++; VN[j] = string(c); |
---|
1784 | c = "1"; |
---|
1785 | insC = 1; |
---|
1786 | } |
---|
1787 | } |
---|
1788 | // get vars |
---|
1789 | t = s; |
---|
1790 | // t = s[i+1..size(s)]; |
---|
1791 | k = size(t); //j = 0; |
---|
1792 | while (k>0) |
---|
1793 | { |
---|
1794 | t = t[i+1..size(t)]; //next part |
---|
1795 | i = find(t,"*"); // next * |
---|
1796 | if (i==0) |
---|
1797 | { |
---|
1798 | // last monomial |
---|
1799 | j++; |
---|
1800 | VN[j] = t; |
---|
1801 | k = size(t); |
---|
1802 | break; |
---|
1803 | } |
---|
1804 | b = t[1..i-1]; |
---|
1805 | // print(b); |
---|
1806 | j++; |
---|
1807 | VN[j] = b; |
---|
1808 | k = size(t); |
---|
1809 | } |
---|
1810 | VN = addplaces(VN); |
---|
1811 | VN[size(VN)+1] = string(c); |
---|
1812 | return(VN); |
---|
1813 | } |
---|
1814 | example |
---|
1815 | { |
---|
1816 | "EXAMPLE:"; echo = 2; |
---|
1817 | ring r = (0,a),(f2,f1),dp; |
---|
1818 | str2lplace("-2*f2^2*f1^2*f2"); |
---|
1819 | str2lplace("-f1*f2"); |
---|
1820 | str2lplace("(-a^2+7a)*f1*f2"); |
---|
1821 | } |
---|
1822 | |
---|
1823 | proc strpower2rep(string s) |
---|
1824 | { |
---|
1825 | // makes x*x*x*x out of x^4 ., rep statys for repetitions |
---|
1826 | // looks for "-" problem |
---|
1827 | // exception: "-" as coeff |
---|
1828 | string ex,t; |
---|
1829 | int i,j,k; |
---|
1830 | |
---|
1831 | i = find(s,"^"); // first ^ |
---|
1832 | if (i==0) { return(s); } // no ^ signs |
---|
1833 | |
---|
1834 | if (s[1] == "-") |
---|
1835 | { |
---|
1836 | // either -coef or -1 |
---|
1837 | // got the coeff: |
---|
1838 | i = find(s,"*"); |
---|
1839 | if (i==0) |
---|
1840 | { |
---|
1841 | // no *'s => coef == -1 or s == -23 |
---|
1842 | i = size(s)+1; |
---|
1843 | } |
---|
1844 | t = string(s[2..i-1]); // without "-" |
---|
1845 | if ( testnumber(t) ) |
---|
1846 | { |
---|
1847 | // a good number |
---|
1848 | t = strpower2rep(string(s[2..size(s)])); |
---|
1849 | t = "-"+t; |
---|
1850 | return(t); |
---|
1851 | } |
---|
1852 | else |
---|
1853 | { |
---|
1854 | // a variable |
---|
1855 | t = strpower2rep(string(s[2..size(s)])); |
---|
1856 | t = "-1*"+ t; |
---|
1857 | return(t); |
---|
1858 | } |
---|
1859 | } |
---|
1860 | // the case when leadcoef is a number in () |
---|
1861 | if (s[1] == "(") |
---|
1862 | { |
---|
1863 | i = find(s,")",2); // must be nonzero |
---|
1864 | t = s[2..i-1]; |
---|
1865 | if ( testnumber(t) ) |
---|
1866 | { |
---|
1867 | // a good number |
---|
1868 | } |
---|
1869 | else {"strpower2rep: bad number as coef";} |
---|
1870 | ex = string(s[i+2..size(s)]); // 2 because of * |
---|
1871 | ex = strpower2rep(ex); |
---|
1872 | t = "("+t+")*"+ex; |
---|
1873 | return(t); |
---|
1874 | } |
---|
1875 | |
---|
1876 | i = find(s,"^"); // first ^ |
---|
1877 | j = find(s,"*",i+1); // next * == end of ^ |
---|
1878 | if (j==0) |
---|
1879 | { |
---|
1880 | ex = s[i+1..size(s)]; |
---|
1881 | } |
---|
1882 | else |
---|
1883 | { |
---|
1884 | ex = s[i+1..j-1]; |
---|
1885 | } |
---|
1886 | execute("int @exp = " + ex + ";"); //@exp = exponent |
---|
1887 | // got varname |
---|
1888 | for (k=i-1; k>0; k--) |
---|
1889 | { |
---|
1890 | if (s[k] == "*") break; |
---|
1891 | } |
---|
1892 | string varn = s[k+1..i-1]; |
---|
1893 | // "varn:"; varn; |
---|
1894 | string pref; |
---|
1895 | if (k>0) |
---|
1896 | { |
---|
1897 | pref = s[1..k]; // with * on the k-th place |
---|
1898 | } |
---|
1899 | // "pref:"; pref; |
---|
1900 | string suf; |
---|
1901 | if ( (j>0) && (j+1 <= size(s)) ) |
---|
1902 | { |
---|
1903 | suf = s[j+1..size(s)]; // without * on the 1st place |
---|
1904 | } |
---|
1905 | // "suf:"; suf; |
---|
1906 | string toins; |
---|
1907 | for (k=1; k<=@exp; k++) |
---|
1908 | { |
---|
1909 | toins = toins + varn+"*"; |
---|
1910 | } |
---|
1911 | // "toins: "; toins; |
---|
1912 | if (size(suf) == 0) |
---|
1913 | { |
---|
1914 | toins = toins[1..size(toins)-1]; // get rid of trailing * |
---|
1915 | } |
---|
1916 | else |
---|
1917 | { |
---|
1918 | suf = strpower2rep(suf); |
---|
1919 | } |
---|
1920 | ex = pref + toins + suf; |
---|
1921 | return(ex); |
---|
1922 | // return(strpower2rep(ex)); |
---|
1923 | } |
---|
1924 | example |
---|
1925 | { |
---|
1926 | "EXAMPLE:"; echo = 2; |
---|
1927 | ring r = (0,a),(x,y,z,t),dp; |
---|
1928 | strpower2rep("-x^4"); |
---|
1929 | strpower2rep("-2*x^4*y^3*z*t^2"); |
---|
1930 | strpower2rep("-a^2*x^4"); |
---|
1931 | } |
---|
1932 | |
---|
1933 | proc Liebr(poly a, poly b, list #) |
---|
1934 | { |
---|
1935 | // alias ppLiebr; |
---|
1936 | //if int N is given compute [a,[...[a,b]]]] left normed bracket |
---|
1937 | poly q; |
---|
1938 | int N=1; |
---|
1939 | if (size(#)>0) |
---|
1940 | { |
---|
1941 | if (typeof(#[1])=="int") |
---|
1942 | { |
---|
1943 | N = int(#[1]); |
---|
1944 | } |
---|
1945 | } |
---|
1946 | if (N<=0) { return(q); } |
---|
1947 | while (b!=0) |
---|
1948 | { |
---|
1949 | q = q + pmLiebr(a,lead(b)); |
---|
1950 | b = b - lead(b); |
---|
1951 | } |
---|
1952 | int i; |
---|
1953 | if (N >1) |
---|
1954 | { |
---|
1955 | for(i=1; i<=N; i++) |
---|
1956 | { |
---|
1957 | q = Liebr(a,q); |
---|
1958 | } |
---|
1959 | } |
---|
1960 | return(q); |
---|
1961 | } |
---|
1962 | example |
---|
1963 | { |
---|
1964 | "EXAMPLE:"; echo = 2; |
---|
1965 | ring r = 0,(x(1),y(1),x(2),y(2),x(3),y(3),x(4),y(4)),dp; |
---|
1966 | poly a = x(1)*y(2); poly b = y(1); |
---|
1967 | int uptodeg=4; int lV=2; |
---|
1968 | export uptodeg; export lV; |
---|
1969 | Liebr(a,b); |
---|
1970 | Liebr(x(1),y(1),2); |
---|
1971 | } |
---|
1972 | |
---|
1973 | proc pmLiebr(poly a, poly b) |
---|
1974 | { |
---|
1975 | // a poly, b mono |
---|
1976 | poly s; |
---|
1977 | while (a!=0) |
---|
1978 | { |
---|
1979 | s = s + mmLiebr(lead(a),lead(b)); |
---|
1980 | a = a - lead(a); |
---|
1981 | } |
---|
1982 | return(s); |
---|
1983 | } |
---|
1984 | |
---|
1985 | //proc pshift(poly a, int i, int uptodeg, int lV) |
---|
1986 | proc pshift(poly a, int i) |
---|
1987 | { |
---|
1988 | // shifts a monomial a by i |
---|
1989 | // calls pLPshift(p,sh,uptodeg,lVblock); |
---|
1990 | return(system("stest",a,i,uptodeg,lV)); |
---|
1991 | } |
---|
1992 | |
---|
1993 | proc mmLiebr(poly a, poly b) |
---|
1994 | { |
---|
1995 | // a,b, monomials |
---|
1996 | a = lead(a); |
---|
1997 | b = lead(b); |
---|
1998 | int sa = deg(a); |
---|
1999 | int sb = deg(b); |
---|
2000 | poly v = a*pshift(b,sa) - b*pshift(a,sb); |
---|
2001 | return(v); |
---|
2002 | } |
---|
2003 | |
---|
2004 | static proc test_shift() |
---|
2005 | { |
---|
2006 | LIB "freegb.lib"; |
---|
2007 | ring r = 0,(a,b),dp; |
---|
2008 | int d =5; |
---|
2009 | def R = freegbRing(d); |
---|
2010 | setring R; |
---|
2011 | int uptodeg = d; export uptodeg; |
---|
2012 | int lV = 2; export lV; |
---|
2013 | poly p = mmLiebr(a(1),b(1)); |
---|
2014 | poly p = Liebr(a(1),b(1)); |
---|
2015 | } |
---|
2016 | |
---|
2017 | proc Serre(intmat A, int zu) |
---|
2018 | { |
---|
2019 | // zu = 1 -> with commutators [f_i,f_j]; zu == 0 without them |
---|
2020 | // suppose that A is cartan matrix |
---|
2021 | // then Serre's relations are |
---|
2022 | // (ad f_j)^{1-A_{ij}} ( f_i) |
---|
2023 | int ppl = printlevel-voice+2; |
---|
2024 | int n = ncols(A); // hence n variables |
---|
2025 | int i,j,k,l; |
---|
2026 | poly p,q; |
---|
2027 | ideal I; |
---|
2028 | for (i=1; i<=n; i++) |
---|
2029 | { |
---|
2030 | for (j=1; j<=n; j++) |
---|
2031 | { |
---|
2032 | l = 1 - A[i,j]; |
---|
2033 | // printf("i:%s, j: %s, l: %s",i,j,l); |
---|
2034 | dbprint(ppl,"i, j, l: ",i,j,l); |
---|
2035 | // if ((i!=j) && (l >0)) |
---|
2036 | // if ( (i!=j) && ( ((zu ==0) && (l >=2)) || ((zu ==1) && (l >=1)) ) ) |
---|
2037 | if ((i!=j) && (l >0)) |
---|
2038 | { |
---|
2039 | q = Liebr(var(j),var(i)); |
---|
2040 | // printf("first bracket: %s",q); |
---|
2041 | dbprint(ppl,"first bracket: ",q); |
---|
2042 | // if (l >=2) |
---|
2043 | // { |
---|
2044 | for (k=1; k<=l-1; k++) |
---|
2045 | { |
---|
2046 | q = Liebr(var(j),q); |
---|
2047 | // printf("further bracket: %s",q); |
---|
2048 | dbprint(ppl,"further bracket:",q); |
---|
2049 | } |
---|
2050 | // } |
---|
2051 | } |
---|
2052 | if (q!=0) { I = I,q; q=0;} |
---|
2053 | } |
---|
2054 | } |
---|
2055 | I = simplify(I,2); |
---|
2056 | return(I); |
---|
2057 | } |
---|
2058 | example |
---|
2059 | { |
---|
2060 | "EXAMPLE:"; echo = 2; |
---|
2061 | intmat A[2][2] = 2, -1, -1, 2; // sl_3 == A_2 |
---|
2062 | ring r = 0,(f1,f2),dp; |
---|
2063 | int uptodeg = 3; int lV = 2; |
---|
2064 | export uptodeg; export lV; |
---|
2065 | def R = freegbRing(uptodeg); |
---|
2066 | setring R; |
---|
2067 | ideal I = Serre(A,1); |
---|
2068 | I; |
---|
2069 | Serre(A,0); |
---|
2070 | } |
---|
2071 | |
---|
2072 | proc lp2lstr(ideal K, def save) |
---|
2073 | "USAGE: lp2lstr(K,save); K an ideal, save a ring |
---|
2074 | RETURN: nothing (exports object LN into save) |
---|
2075 | PURPOSE: converts letter-place ideal to list of modules |
---|
2076 | EXAMPLE: example lp2lstr; shows examples |
---|
2077 | " |
---|
2078 | { |
---|
2079 | def @R = basering; |
---|
2080 | string err; |
---|
2081 | int s = nvars(save); |
---|
2082 | int i,j,k; |
---|
2083 | // K contains vars x(1),...z(1) = images of originals |
---|
2084 | // 5. go back to orig vars, produce strings/modules |
---|
2085 | int sk = size(K); |
---|
2086 | int sp, sx, a, b; |
---|
2087 | intvec x; |
---|
2088 | poly p,q; |
---|
2089 | poly pn; |
---|
2090 | // vars in 'save' |
---|
2091 | setring save; |
---|
2092 | module N; |
---|
2093 | list LN; |
---|
2094 | vector V; |
---|
2095 | poly pn; |
---|
2096 | // test and skip exponents >=2 |
---|
2097 | setring @R; |
---|
2098 | for(i=1; i<=sk; i++) |
---|
2099 | { |
---|
2100 | p = K[i]; |
---|
2101 | while (p!=0) |
---|
2102 | { |
---|
2103 | q = lead(p); |
---|
2104 | // "processing q:";q; |
---|
2105 | x = leadexp(q); |
---|
2106 | sx = size(x); |
---|
2107 | for(k=1; k<=sx; k++) |
---|
2108 | { |
---|
2109 | if ( x[k] >= 2 ) |
---|
2110 | { |
---|
2111 | err = "skip: the value x[k] is " + string(x[k]); |
---|
2112 | dbprint(ppl,err); |
---|
2113 | // return(0); |
---|
2114 | K[i] = 0; |
---|
2115 | p = 0; |
---|
2116 | q = 0; |
---|
2117 | break; |
---|
2118 | } |
---|
2119 | } |
---|
2120 | p = p - q; |
---|
2121 | } |
---|
2122 | } |
---|
2123 | K = simplify(K,2); |
---|
2124 | sk = size(K); |
---|
2125 | for(i=1; i<=sk; i++) |
---|
2126 | { |
---|
2127 | // setring save; |
---|
2128 | // V = 0; |
---|
2129 | setring @R; |
---|
2130 | p = K[i]; |
---|
2131 | while (p!=0) |
---|
2132 | { |
---|
2133 | q = lead(p); |
---|
2134 | err = "processing q:" + string(q); |
---|
2135 | dbprint(ppl,err); |
---|
2136 | x = leadexp(q); |
---|
2137 | sx = size(x); |
---|
2138 | pn = leadcoef(q); |
---|
2139 | setring save; |
---|
2140 | pn = imap(@R,pn); |
---|
2141 | V = V + leadcoef(pn)*gen(1); |
---|
2142 | for(k=1; k<=sx; k++) |
---|
2143 | { |
---|
2144 | if (x[k] ==1) |
---|
2145 | { |
---|
2146 | a = k / s; // block number=a+1, a!=0 |
---|
2147 | b = k % s; // remainder |
---|
2148 | // printf("a: %s, b: %s",a,b); |
---|
2149 | if (b == 0) |
---|
2150 | { |
---|
2151 | // that is it's the last var in the block |
---|
2152 | b = s; |
---|
2153 | a = a-1; |
---|
2154 | } |
---|
2155 | V = V + var(b)*gen(a+2); |
---|
2156 | } |
---|
2157 | } |
---|
2158 | err = "V: " + string(V); |
---|
2159 | dbprint(ppl,err); |
---|
2160 | // printf("V: %s", string(V)); |
---|
2161 | N = N,V; |
---|
2162 | V = 0; |
---|
2163 | setring @R; |
---|
2164 | p = p - q; |
---|
2165 | pn = 0; |
---|
2166 | } |
---|
2167 | setring save; |
---|
2168 | LN[i] = simplify(N,2); |
---|
2169 | N = 0; |
---|
2170 | } |
---|
2171 | setring save; |
---|
2172 | export LN; |
---|
2173 | // return(LN); |
---|
2174 | } |
---|
2175 | example |
---|
2176 | { |
---|
2177 | "EXAMPLE:"; echo = 2; |
---|
2178 | intmat A[2][2] = 2, -1, -1, 2; // sl_3 == A_2 |
---|
2179 | ring r = 0,(f1,f2),dp; |
---|
2180 | int uptodeg = 3; int lV = 2; |
---|
2181 | export uptodeg; export lV; |
---|
2182 | def R = freegbRing(uptodeg); |
---|
2183 | setring R; |
---|
2184 | ideal I = Serre(A,1); |
---|
2185 | lp2lstr(I,r); |
---|
2186 | setring r; |
---|
2187 | lst2str(LN,1); |
---|
2188 | kill uptodeg; kill lV; |
---|
2189 | } |
---|
2190 | |
---|
2191 | proc strList2poly(list L) |
---|
2192 | { |
---|
2193 | // list L comes from sent2lplace (which takes a poly on the input) |
---|
2194 | // each entry of L is a sublist with the coef on the last place |
---|
2195 | int s = size(L); int t; |
---|
2196 | int i,j; |
---|
2197 | list M; |
---|
2198 | poly p,q; |
---|
2199 | string Q; |
---|
2200 | for(i=1; i<=s; i++) |
---|
2201 | { |
---|
2202 | M = L[i]; |
---|
2203 | t = size(M); |
---|
2204 | // q = M[t]; // a constant |
---|
2205 | Q = string(M[t]); |
---|
2206 | for(j=1; j<t; j++) |
---|
2207 | { |
---|
2208 | // q = q*M[j]; |
---|
2209 | Q = Q+"*"+string(M[j]); |
---|
2210 | } |
---|
2211 | execute("q="+Q+";"); |
---|
2212 | // q; |
---|
2213 | p = p + q; |
---|
2214 | } |
---|
2215 | kill Q; |
---|
2216 | return(p); |
---|
2217 | } |
---|
2218 | example |
---|
2219 | { |
---|
2220 | "EXAMPLE:"; echo = 2; |
---|
2221 | ring r =0,(x,y,z,t),Dp; |
---|
2222 | def A = freegbRing(4); |
---|
2223 | setring A; |
---|
2224 | string t = "-2*y*z*y*z + y*t*z*z - z*x*x*y + 2*z*y*z*y"; |
---|
2225 | list L = sent2lplace(t); |
---|
2226 | L; |
---|
2227 | poly p = strList2poly(L); |
---|
2228 | p; |
---|
2229 | } |
---|
2230 | |
---|
2231 | proc file2lplace(string fname) |
---|
2232 | { |
---|
2233 | // format: from the usual string to letterplace |
---|
2234 | string s = read(fname); |
---|
2235 | // assume: file is a comma-sep list of polys |
---|
2236 | // the vars are declared before |
---|
2237 | // the file ends with ";" |
---|
2238 | string t; int i; |
---|
2239 | ideal I; |
---|
2240 | list tst; |
---|
2241 | while (s!="") |
---|
2242 | { |
---|
2243 | i = find(s,","); |
---|
2244 | "i"; i; |
---|
2245 | if (i==0) |
---|
2246 | { |
---|
2247 | i = find(s,";"); |
---|
2248 | if (i==0) |
---|
2249 | { |
---|
2250 | // no ; ?? |
---|
2251 | "no colon or semicolon found anymore"; |
---|
2252 | return(I); |
---|
2253 | } |
---|
2254 | // no "," but ";" on the i-th place |
---|
2255 | t = s[1..i-1]; |
---|
2256 | s = ""; |
---|
2257 | "processing: "; t; |
---|
2258 | tst = sent2lplace(t); |
---|
2259 | tst; |
---|
2260 | I = I, strList2poly(tst); |
---|
2261 | return(I); |
---|
2262 | } |
---|
2263 | // here i !=0 |
---|
2264 | t = s[1..i-1]; |
---|
2265 | s = s[i+1..size(s)]; |
---|
2266 | "processing: "; t; |
---|
2267 | tst = sent2lplace(t); |
---|
2268 | tst; |
---|
2269 | I = I, strList2poly(tst); |
---|
2270 | } |
---|
2271 | return(I); |
---|
2272 | } |
---|
2273 | example |
---|
2274 | { |
---|
2275 | "EXAMPLE:"; echo = 2; |
---|
2276 | ring r =0,(x,y,z,t),dp; |
---|
2277 | def A = freegbRing(4); |
---|
2278 | setring A; |
---|
2279 | string fn = "myfile"; |
---|
2280 | string s1 = "z*y*y*y - 3*y*z*x*y + 3*y*y*z*y - y*x*y*z,"; |
---|
2281 | string s2 = "-2*y*x*y*z + y*y*z*z - z*z*y*y + 2*z*y*z*y,"; |
---|
2282 | string s3 = "z*y*x*t - 2*y*z*y*t + y*y*z*t - t*z*y*y + 2*t*y*z*y - t*x*y*z;"; |
---|
2283 | write(":w "+fn,s1); write(":a "+fn,s2); write(":a "+fn,s3); |
---|
2284 | read(fn); |
---|
2285 | ideal I = file2lplace(fn); |
---|
2286 | I; |
---|
2287 | } |
---|
2288 | |
---|
2289 | static proc get_ls3nilp() |
---|
2290 | { |
---|
2291 | //first app of file2lplace |
---|
2292 | ring r =0,(x,y,z,t),dp; |
---|
2293 | int d = 10; |
---|
2294 | def A = freegbRing(d); |
---|
2295 | setring A; |
---|
2296 | ideal I = file2lplace("./ls3nilp.bg"); |
---|
2297 | // and now test the correctness: go back from lplace to strings |
---|
2298 | lp2lstr(I,r); |
---|
2299 | setring r; |
---|
2300 | lst2str(LN,1); // agree! |
---|
2301 | } |
---|
2302 | |
---|
2303 | static proc doc_example |
---|
2304 | { |
---|
2305 | LIB "freegb.lib"; |
---|
2306 | ring r = 0,(x,y,z),dp; |
---|
2307 | int d =4; // degree bound |
---|
2308 | def R = freegbRing(d); |
---|
2309 | setring R; |
---|
2310 | ideal I = x(1)*y(2) + y(1)*z(2), x(1)*x(2) + x(1)*y(2) - y(1)*x(2) - y(1)*y(2); |
---|
2311 | option(redSB);option(redTail); |
---|
2312 | ideal J = system("freegb",I,d,nvars(r)); |
---|
2313 | J; |
---|
2314 | // visualization: |
---|
2315 | lp2lstr(J,r); // export an object called LN to the ring r |
---|
2316 | setring r; // change to the ring r |
---|
2317 | lst2str(LN,1); // output the strings |
---|
2318 | } |
---|
2319 | |
---|
2320 | |
---|
2321 | |
---|
2322 | // TODO: |
---|
2323 | // multiply two letterplace polynomials, lpMult |
---|
2324 | // reduction/ Normalform? needs kernel stuff |
---|
2325 | |
---|