1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: gaussman.lib,v 1.53 2001-08-27 16:25:32 Singular Exp $"; |
---|
3 | category="Singularities"; |
---|
4 | |
---|
5 | info=" |
---|
6 | LIBRARY: gaussman.lib Gauss-Manin Connection of a Singularity |
---|
7 | |
---|
8 | AUTHOR: Mathias Schulze, email: mschulze@mathematik.uni-kl.de |
---|
9 | |
---|
10 | OVERVIEW: A library to compute invariants related to the Gauss-Manin connection |
---|
11 | of a an isolated hypersurface singularity |
---|
12 | |
---|
13 | PROCEDURES: |
---|
14 | gmsring(t,s); Brieskorn lattice in Gauss-Manin system of t |
---|
15 | gmsnf(p,K[,Kmax]); Gauss-Manin system normal form |
---|
16 | gmscoeffs(p,K[,Kmax]); Gauss-Manin system basis representation |
---|
17 | monodromy(t); Jordan data of monodromy of t |
---|
18 | spectrum(t); spectrum of t |
---|
19 | sppnormalize(a,w[,m]); normalize spectral pairs |
---|
20 | sppairs(t); spectral pairs of t |
---|
21 | vfilt(t[,opt]); V-filtration on H''/H' or spectrum of t |
---|
22 | endfilt(t,V); endomorphism filtration of V-filtration V |
---|
23 | spprint(Sp); print spectrum Sp |
---|
24 | sppprint(Spp); print spectral pairs Spp |
---|
25 | spadd(Sp1,Sp2); sum of spectra Sp1 and Sp2 |
---|
26 | spsub(Sp1,Sp2); difference of spectra Sp1 and Sp2 |
---|
27 | spmul(Sp,k); product of spectrum Sp and integer k |
---|
28 | linear combination of spectra Sp with coeffs k |
---|
29 | spissemicont(Sp[,opt]); test spectrum Sp for semicontinuity |
---|
30 | spsemicont(Sp0,Sp[,opt]); semicontinuity of spectra Sp0 and Sp |
---|
31 | spmilnor(Sp); milnor number of spectrum Sp |
---|
32 | spgeomgenus(Sp); geometrical genus of spectrum Sp |
---|
33 | spgamma(Sp); gamma invariant of spectrum Sp |
---|
34 | |
---|
35 | SEE ALSO: mondromy_lib, spectrum_lib |
---|
36 | |
---|
37 | KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice; |
---|
38 | monodromy; spectrum; spectral pairs; |
---|
39 | Hodge filtration; V-filtration; weight filtration |
---|
40 | "; |
---|
41 | |
---|
42 | LIB "linalg.lib"; |
---|
43 | |
---|
44 | /////////////////////////////////////////////////////////////////////////////// |
---|
45 | |
---|
46 | static proc stdtrans(ideal I) |
---|
47 | { |
---|
48 | def R=basering; |
---|
49 | |
---|
50 | string os=ordstr(R); |
---|
51 | int j=find(os,",C"); |
---|
52 | if(j==0) |
---|
53 | { |
---|
54 | j=find(os,"C,"); |
---|
55 | } |
---|
56 | if(j==0) |
---|
57 | { |
---|
58 | j=find(os,",c"); |
---|
59 | } |
---|
60 | if(j==0) |
---|
61 | { |
---|
62 | j=find(os,"c,"); |
---|
63 | } |
---|
64 | if(j>0) |
---|
65 | { |
---|
66 | os[j..j+1]=" "; |
---|
67 | } |
---|
68 | |
---|
69 | execute("ring S="+charstr(R)+",(gmspoly,"+varstr(R)+"),(c,dp,"+os+");"); |
---|
70 | |
---|
71 | ideal I=homog(imap(R,I),gmspoly); |
---|
72 | module M=transpose(transpose(I)+freemodule(ncols(I))); |
---|
73 | M=std(M); |
---|
74 | |
---|
75 | setring(R); |
---|
76 | execute("map h=S,1,"+varstr(R)+";"); |
---|
77 | module M=h(M); |
---|
78 | |
---|
79 | for(int i=ncols(M);i>=1;i--) |
---|
80 | { |
---|
81 | for(j=ncols(M);j>=1;j--) |
---|
82 | { |
---|
83 | if(M[i][1]==0) |
---|
84 | { |
---|
85 | M[i]=0; |
---|
86 | } |
---|
87 | if(i!=j&&M[j][1]!=0) |
---|
88 | { |
---|
89 | if(lead(M[i][1])/lead(M[j][1])!=0) |
---|
90 | { |
---|
91 | M[i]=0; |
---|
92 | } |
---|
93 | } |
---|
94 | } |
---|
95 | } |
---|
96 | |
---|
97 | M=transpose(simplify(M,2)); |
---|
98 | I=M[1]; |
---|
99 | attrib(I,"isSB",1); |
---|
100 | M=M[2..ncols(M)]; |
---|
101 | module U=transpose(M); |
---|
102 | |
---|
103 | return(list(I,U)); |
---|
104 | } |
---|
105 | /////////////////////////////////////////////////////////////////////////////// |
---|
106 | |
---|
107 | proc gmsring(poly t,string s) |
---|
108 | "USAGE: gmsring(t,s); poly t, string s; |
---|
109 | ASSUME: basering with characteristic 0 and local degree ordering, |
---|
110 | t with isolated citical point 0 |
---|
111 | RETURN: |
---|
112 | @format |
---|
113 | ring G: C@{@{s@}@}*basering, |
---|
114 | poly gmspoly: image of t |
---|
115 | ideal gmsjacob: image of Jacobian ideal |
---|
116 | ideal gmsstd: image of standard basis of Jacobian ideal |
---|
117 | matrix gmsmatrix: matrix(gmsjacob)*gmsmatrix=matrix(gmsstd) |
---|
118 | ideal gmsbasis: image of monomial vector space basis of Jacobian algebra |
---|
119 | int gmsmaxweight: maximal weight of variables of basering |
---|
120 | @end format |
---|
121 | NOTE: do not modify gms variables if you want to use gms procedures |
---|
122 | KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice |
---|
123 | EXAMPLE: example gms; shows examples |
---|
124 | " |
---|
125 | { |
---|
126 | def R=basering; |
---|
127 | if(charstr(R)!="0") |
---|
128 | { |
---|
129 | ERROR("characteristic 0 expected"); |
---|
130 | } |
---|
131 | for(int i=nvars(R);i>=1;i--) |
---|
132 | { |
---|
133 | if(var(i)>1) |
---|
134 | { |
---|
135 | ERROR("local ordering expected"); |
---|
136 | } |
---|
137 | } |
---|
138 | |
---|
139 | ideal dt=jacob(t); |
---|
140 | list l=stdtrans(dt); |
---|
141 | ideal g=l[1]; |
---|
142 | if(vdim(g)<=0) |
---|
143 | { |
---|
144 | if(vdim(g)==0) |
---|
145 | { |
---|
146 | ERROR("singularity at 0 expected"); |
---|
147 | } |
---|
148 | else |
---|
149 | { |
---|
150 | ERROR("isolated citical point 0 expected"); |
---|
151 | } |
---|
152 | } |
---|
153 | matrix a=l[2]; |
---|
154 | ideal m=kbase(g); |
---|
155 | |
---|
156 | int gmsmaxweight; |
---|
157 | for(i=nvars(R);i>=1;i--) |
---|
158 | { |
---|
159 | if(deg(var(i))>gmsmaxweight) |
---|
160 | { |
---|
161 | gmsmaxweight=deg(var(i)); |
---|
162 | } |
---|
163 | } |
---|
164 | |
---|
165 | string os=ordstr(R); |
---|
166 | int j=find(os,",C"); |
---|
167 | if(j==0) |
---|
168 | { |
---|
169 | j=find(os,"C,"); |
---|
170 | } |
---|
171 | if(j==0) |
---|
172 | { |
---|
173 | j=find(os,",c"); |
---|
174 | } |
---|
175 | if(j==0) |
---|
176 | { |
---|
177 | j=find(os,"c,"); |
---|
178 | } |
---|
179 | if(j>0) |
---|
180 | { |
---|
181 | os[j..j+1]=" "; |
---|
182 | } |
---|
183 | |
---|
184 | execute("ring G="+string(charstr(R))+",("+s+","+varstr(R)+"),(ws("+ |
---|
185 | string(deg(highcorner(g))+2*gmsmaxweight)+"),"+os+",c);"); |
---|
186 | |
---|
187 | poly gmspoly=imap(R,t); |
---|
188 | ideal gmsjacob=imap(R,dt); |
---|
189 | ideal gmsstd=imap(R,g); |
---|
190 | matrix gmsmatrix=imap(R,a); |
---|
191 | ideal gmsbasis=imap(R,m); |
---|
192 | |
---|
193 | attrib(gmsstd,"isSB",1); |
---|
194 | export gmspoly,gmsjacob,gmsstd,gmsmatrix,gmsbasis,gmsmaxweight; |
---|
195 | |
---|
196 | return(G); |
---|
197 | } |
---|
198 | example |
---|
199 | { "EXAMPLE:"; echo=2; |
---|
200 | ring R=0,(x,y),ds; |
---|
201 | poly t=x5+x2y2+y5; |
---|
202 | def G=gmsring(t,"s"); |
---|
203 | setring(G); |
---|
204 | gmspoly; |
---|
205 | print(gmsjacob); |
---|
206 | print(gmsstd); |
---|
207 | print(gmsmatrix); |
---|
208 | print(gmsbasis); |
---|
209 | gmsmaxweight; |
---|
210 | } |
---|
211 | /////////////////////////////////////////////////////////////////////////////// |
---|
212 | |
---|
213 | proc gmsnf(ideal p,int K,list #) |
---|
214 | "USAGE: gmsnf(p,K[,Kmax]); poly p, int K[, int Kmax]; |
---|
215 | ASSUME: basering constructed by gmsring, K<=Kmax |
---|
216 | RETURN: |
---|
217 | @format |
---|
218 | list l: |
---|
219 | ideal l[1]: projection of p to H''=C@{@{s@}@}*gmsbasis mod s^@{K+1@} |
---|
220 | ideal l[2]: p=l[1]+l[2] mod s^(Kmax+1) |
---|
221 | @end format |
---|
222 | NOTE: by setting p=l[2] the computation can be continued up to order |
---|
223 | at most Kmax, by default Kmax=infinity |
---|
224 | KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice |
---|
225 | EXAMPLE: example gmsnf; shows examples |
---|
226 | " |
---|
227 | { |
---|
228 | int Kmax=-1; |
---|
229 | if(size(#)>0) |
---|
230 | { |
---|
231 | if(typeof(#[1])=="int") |
---|
232 | { |
---|
233 | Kmax=#[1]; |
---|
234 | if(K>Kmax) |
---|
235 | { |
---|
236 | Kmax=K; |
---|
237 | } |
---|
238 | } |
---|
239 | } |
---|
240 | |
---|
241 | intvec v=1; |
---|
242 | v[nvars(basering)]=0; |
---|
243 | |
---|
244 | int k; |
---|
245 | if(Kmax>=0) |
---|
246 | { |
---|
247 | p=jet(jet(p,K,v),(Kmax+1)*deg(var(1))-2*gmsmaxweight); |
---|
248 | } |
---|
249 | |
---|
250 | ideal r,q; |
---|
251 | r[ncols(p)]=0; |
---|
252 | q[ncols(p)]=0; |
---|
253 | |
---|
254 | poly s; |
---|
255 | int i,j; |
---|
256 | for(k=ncols(p);k>=1;k--) |
---|
257 | { |
---|
258 | while(p[k]!=0&°(lead(p[k]),v)<=K) |
---|
259 | { |
---|
260 | i=1; |
---|
261 | s=lead(p[k])/lead(gmsstd[i]); |
---|
262 | while(i<ncols(gmsstd)&&s==0) |
---|
263 | { |
---|
264 | i++; |
---|
265 | s=lead(p[k])/lead(gmsstd[i]); |
---|
266 | } |
---|
267 | if(s!=0) |
---|
268 | { |
---|
269 | p[k]=p[k]-s*gmsstd[i]; |
---|
270 | for(j=1;j<=nrows(gmsmatrix);j++) |
---|
271 | { |
---|
272 | if(Kmax>=0) |
---|
273 | { |
---|
274 | p[k]=p[k]+ |
---|
275 | jet(jet(diff(s*gmsmatrix[j,i],var(j+1))*var(1),Kmax,v), |
---|
276 | (Kmax+1)*deg(var(1))-2*gmsmaxweight); |
---|
277 | } |
---|
278 | else |
---|
279 | { |
---|
280 | p[k]=p[k]+diff(s*gmsmatrix[j,i],var(j+1))*var(1); |
---|
281 | } |
---|
282 | } |
---|
283 | } |
---|
284 | else |
---|
285 | { |
---|
286 | r[k]=r[k]+lead(p[k]); |
---|
287 | p[k]=p[k]-lead(p[k]); |
---|
288 | } |
---|
289 | while(deg(lead(p[k]))>(K+1)*deg(var(1))-2*gmsmaxweight&& |
---|
290 | deg(lead(p[k]),v)<=K) |
---|
291 | { |
---|
292 | q[k]=q[k]+lead(p[k]); |
---|
293 | p[k]=p[k]-lead(p[k]); |
---|
294 | } |
---|
295 | } |
---|
296 | q[k]=q[k]+p[k]; |
---|
297 | } |
---|
298 | |
---|
299 | return(list(r,q)); |
---|
300 | } |
---|
301 | example |
---|
302 | { "EXAMPLE:"; echo=2; |
---|
303 | ring R=0,(x,y),ds; |
---|
304 | poly t=x5+x2y2+y5; |
---|
305 | def G=gmsring(t,"s"); |
---|
306 | setring(G); |
---|
307 | list l0=gmsnf(gmspoly,0); |
---|
308 | print(l0[1]); |
---|
309 | list l1=gmsnf(gmspoly,1); |
---|
310 | print(l1[1]); |
---|
311 | list l=gmsnf(l0[2],1); |
---|
312 | print(l[1]); |
---|
313 | } |
---|
314 | /////////////////////////////////////////////////////////////////////////////// |
---|
315 | |
---|
316 | proc gmscoeffs(ideal p,int K,list #) |
---|
317 | "USAGE: gmscoeffs(p,K[,Kmax]); poly p, int K[, int Kmax]; |
---|
318 | ASSUME: basering constructed by gmsring, K<=Kmax |
---|
319 | RETURN: |
---|
320 | @format |
---|
321 | list l: |
---|
322 | matrix l[1]: projection of p to H''=C@{@{s@}@}*gmsbasis=C@{@{s@}@}^mu mod s^(K+1) |
---|
323 | ideal l[2]: p=matrix(gmsbasis)*l[1]+l[2] mod s^(Kmax+1) |
---|
324 | @end format |
---|
325 | NOTE: by setting p=l[2] the computation can be continued up to order |
---|
326 | at most Kmax, by default Kmax=infinity |
---|
327 | KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice |
---|
328 | EXAMPLE: example gmscoeffs; shows examples |
---|
329 | " |
---|
330 | { |
---|
331 | list l=gmsnf(p,K,#); |
---|
332 | ideal r,q=l[1..2]; |
---|
333 | poly v=1; |
---|
334 | for(int i=2;i<=nvars(basering);i++) |
---|
335 | { |
---|
336 | v=v*var(i); |
---|
337 | } |
---|
338 | matrix C=coeffs(r,gmsbasis,v); |
---|
339 | return(C,q); |
---|
340 | } |
---|
341 | example |
---|
342 | { "EXAMPLE:"; echo=2; |
---|
343 | ring R=0,(x,y),ds; |
---|
344 | poly t=x5+x2y2+y5; |
---|
345 | def G=gmsring(t,"s"); |
---|
346 | setring(G); |
---|
347 | list l0=gmscoeffs(gmspoly,0); |
---|
348 | print(l0[1]); |
---|
349 | list l1=gmscoeffs(gmspoly,1); |
---|
350 | print(l1[1]); |
---|
351 | list l=gmscoeffs(l0[2],1); |
---|
352 | print(l[1]); |
---|
353 | } |
---|
354 | /////////////////////////////////////////////////////////////////////////////// |
---|
355 | |
---|
356 | static proc min(ideal e) |
---|
357 | { |
---|
358 | int i; |
---|
359 | number m=number(e[1]); |
---|
360 | for(i=2;i<=ncols(e);i++) |
---|
361 | { |
---|
362 | if(number(e[i])<m) |
---|
363 | { |
---|
364 | m=number(e[i]); |
---|
365 | } |
---|
366 | } |
---|
367 | return(m); |
---|
368 | } |
---|
369 | /////////////////////////////////////////////////////////////////////////////// |
---|
370 | |
---|
371 | static proc max(ideal e) |
---|
372 | { |
---|
373 | int i; |
---|
374 | number m=number(e[1]); |
---|
375 | for(i=2;i<=ncols(e);i++) |
---|
376 | { |
---|
377 | if(number(e[i])>m) |
---|
378 | { |
---|
379 | m=number(e[i]); |
---|
380 | } |
---|
381 | } |
---|
382 | return(m); |
---|
383 | } |
---|
384 | /////////////////////////////////////////////////////////////////////////////// |
---|
385 | |
---|
386 | static proc saturate(int K0) |
---|
387 | { |
---|
388 | int mu=ncols(gmsbasis); |
---|
389 | ideal r=gmspoly*gmsbasis; |
---|
390 | matrix A0[mu][mu],C; |
---|
391 | module H0; |
---|
392 | module H,H1=freemodule(mu),freemodule(mu); |
---|
393 | int k=-1; |
---|
394 | list l; |
---|
395 | |
---|
396 | while(size(reduce(H,std(H0*s)))>0) |
---|
397 | { |
---|
398 | dbprint(printlevel-voice+2,"// compute matrix A of t"); |
---|
399 | k++; |
---|
400 | dbprint(printlevel-voice+2,"// k="+string(k)); |
---|
401 | l=gmscoeffs(r,k,mu+K0); |
---|
402 | C,r=l[1..2]; |
---|
403 | A0=A0+C; |
---|
404 | |
---|
405 | dbprint(printlevel-voice+2,"// compute saturation of H''"); |
---|
406 | H0=H; |
---|
407 | H1=jet(module(A0*H1+s^2*diff(matrix(H1),s)),k); |
---|
408 | H=H*s+H1; |
---|
409 | } |
---|
410 | |
---|
411 | A0=A0-k*s; |
---|
412 | dbprint(printlevel-voice+2,"// compute basis of saturation of H''"); |
---|
413 | H=std(H0); |
---|
414 | int d0=maxdeg1(H); |
---|
415 | |
---|
416 | dbprint(printlevel-voice+2,"// transform H'' to saturation of H''"); |
---|
417 | l=division(H,freemodule(mu)*s^k); |
---|
418 | H0=l[1]; |
---|
419 | |
---|
420 | return(A0,r,H,H0); |
---|
421 | } |
---|
422 | /////////////////////////////////////////////////////////////////////////////// |
---|
423 | |
---|
424 | static proc tmatrix(matrix A0,ideal r,module H,int K,int K0) |
---|
425 | { |
---|
426 | dbprint(printlevel-voice+2,"// compute matrix A of t"); |
---|
427 | int d0=maxdeg1(H); |
---|
428 | dbprint(printlevel-voice+2,"// k="+string(K+d0+1)); |
---|
429 | list l=gmscoeffs(r,K+d0+1,K0+d0+1); |
---|
430 | matrix C; |
---|
431 | C,r=l[1..2]; |
---|
432 | A0=A0+C; |
---|
433 | |
---|
434 | dbprint(printlevel-voice+2,"// transform A to saturation of H''"); |
---|
435 | l=division(H*s,A0*H+s^2*diff(matrix(H),s)); |
---|
436 | matrix A=jet(l[1],l[2],K); |
---|
437 | |
---|
438 | return(A,A0,r); |
---|
439 | } |
---|
440 | /////////////////////////////////////////////////////////////////////////////// |
---|
441 | |
---|
442 | static proc eigenvals(matrix A0,ideal r,module H,int K0) |
---|
443 | { |
---|
444 | dbprint(printlevel-voice+2, |
---|
445 | "// compute eigenvalues e with multiplicities m of A"); |
---|
446 | matrix A; |
---|
447 | A,A0,r=tmatrix(A0,r,H,0,K0); |
---|
448 | list l=eigenvalues(A); |
---|
449 | def e,m=l[1..2]; |
---|
450 | dbprint(printlevel-voice+2,"// e="+string(e)); |
---|
451 | dbprint(printlevel-voice+2,"// m="+string(m)); |
---|
452 | |
---|
453 | return(e,m,A0,r); |
---|
454 | } |
---|
455 | /////////////////////////////////////////////////////////////////////////////// |
---|
456 | |
---|
457 | static proc transform(ideal e,intvec m,matrix A,matrix A0,ideal r,module H,module H0,int K,int K0) |
---|
458 | { |
---|
459 | dbprint(printlevel-voice+2,"// compute minimum e0 and maximum e1 of e"); |
---|
460 | number e0,e1=min(e),max(e); |
---|
461 | dbprint(printlevel-voice+2,"// e0="+string(e0)); |
---|
462 | dbprint(printlevel-voice+2,"// e1="+string(e1)); |
---|
463 | int d1=int(e1-e0); |
---|
464 | A,A0,r=tmatrix(A0,r,H,K+d1,K0+d1); |
---|
465 | |
---|
466 | if(e1>=e0+1) |
---|
467 | { |
---|
468 | int i,j,i0,j0,i1,j1; |
---|
469 | module U,V; |
---|
470 | list l; |
---|
471 | |
---|
472 | while(e1>=e0+1) |
---|
473 | { |
---|
474 | dbprint(printlevel-voice+2,"// transform to separate eigenvalues"); |
---|
475 | A0=jet(A,0); |
---|
476 | U=0; |
---|
477 | for(i=ncols(e);i>=1;i--) |
---|
478 | { |
---|
479 | U=U+syz(power(A0-e[i],m[i])); |
---|
480 | } |
---|
481 | V=inverse(U); |
---|
482 | A=V*A*U; |
---|
483 | H0=V*H0; |
---|
484 | |
---|
485 | dbprint(printlevel-voice+2,"// transform to reduce e1 by 1"); |
---|
486 | for(i0,i=1,1;i0<=ncols(e);i0++) |
---|
487 | { |
---|
488 | for(i1=1;i1<=m[i0];i1,i=i1+1,i+1) |
---|
489 | { |
---|
490 | for(j0,j=1,1;j0<=ncols(e);j0++) |
---|
491 | { |
---|
492 | for(j1=1;j1<=m[j0];j1,j=j1+1,j+1) |
---|
493 | { |
---|
494 | if(e[i0]<e0+1&&e[j0]>=e0+1) |
---|
495 | { |
---|
496 | A[i,j]=A[i,j]/s; |
---|
497 | } |
---|
498 | if(e[i0]>=e0+1&&e[j0]<e0+1) |
---|
499 | { |
---|
500 | A[i,j]=A[i,j]*s; |
---|
501 | } |
---|
502 | } |
---|
503 | } |
---|
504 | } |
---|
505 | } |
---|
506 | |
---|
507 | H0=transpose(H0); |
---|
508 | for(i0,i=1,1;i0<=ncols(e);i0++) |
---|
509 | { |
---|
510 | if(e[i0]>=e0+1) |
---|
511 | { |
---|
512 | for(i1=1;i1<=m[i0];i1,i=i1+1,i+1) |
---|
513 | { |
---|
514 | A[i,i]=A[i,i]-1; |
---|
515 | H0[i]=H0[i]*s; |
---|
516 | } |
---|
517 | e[i0]=e[i0]-1; |
---|
518 | } |
---|
519 | } |
---|
520 | H0=transpose(H0); |
---|
521 | |
---|
522 | l=spnormalize(e,m); |
---|
523 | e,m=l[1..2]; |
---|
524 | |
---|
525 | e1=e1-1; |
---|
526 | dbprint(printlevel-voice+2,"// e1="+string(e1)); |
---|
527 | } |
---|
528 | |
---|
529 | A=jet(A,K); |
---|
530 | } |
---|
531 | |
---|
532 | return(e,m,A,A0,r,H0); |
---|
533 | } |
---|
534 | /////////////////////////////////////////////////////////////////////////////// |
---|
535 | |
---|
536 | proc monodromy(poly t,list #) |
---|
537 | "USAGE: monodromy(t); poly t |
---|
538 | ASSUME: basering with characteristic 0 and local degree ordering, |
---|
539 | t with isolated citical point 0 |
---|
540 | RETURN: list l: Jordan data jordan(M) of a monodromy matrix exp(-2*pi*i*M) |
---|
541 | SEE ALSO: mondromy_lib |
---|
542 | KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice; monodromy |
---|
543 | EXAMPLE: example monodromy; shows examples |
---|
544 | " |
---|
545 | { |
---|
546 | def R=basering; |
---|
547 | int n=nvars(R)-1; |
---|
548 | def G=gmsring(t,"s"); |
---|
549 | setring(G); |
---|
550 | |
---|
551 | int mu=ncols(gmsbasis); |
---|
552 | matrix A; |
---|
553 | ideal e; |
---|
554 | intvec m; |
---|
555 | |
---|
556 | def A0,r,H,H0=saturate(n); |
---|
557 | e,m,A0,r=eigenvals(A0,r,H,n); |
---|
558 | e,m,A,A0,r,H0=transform(e,m,A,A0,r,H,H0,0,0); |
---|
559 | |
---|
560 | setring(R); |
---|
561 | matrix A=imap(G,A); |
---|
562 | ideal e=imap(G,e); |
---|
563 | |
---|
564 | return(jordan(A,e,m)); |
---|
565 | } |
---|
566 | example |
---|
567 | { "EXAMPLE:"; echo=2; |
---|
568 | ring R=0,(x,y),ds; |
---|
569 | poly f=x5+x2y2+y5; |
---|
570 | print(monodromy(f)); |
---|
571 | } |
---|
572 | /////////////////////////////////////////////////////////////////////////////// |
---|
573 | |
---|
574 | proc spectrum(poly t) |
---|
575 | "USAGE: spectrum(t); poly t |
---|
576 | ASSUME: basering with characteristic 0 and local degree ordering, |
---|
577 | t with isolated citical point 0 |
---|
578 | RETURN: |
---|
579 | @format |
---|
580 | list Sp: spectrum of t |
---|
581 | ideal Sp[1]: spectral numbers in increasing order |
---|
582 | intvec Sp[2]: |
---|
583 | int Sp[2][i]: multiplicity of spectral number Sp[1][i] |
---|
584 | @end format |
---|
585 | SEE ALSO: spectrum_lib |
---|
586 | KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice; spectrum |
---|
587 | EXAMPLE: example spnumbers; shows examples |
---|
588 | " |
---|
589 | { |
---|
590 | list l=sppairs(t); |
---|
591 | return(spnormalize(l[1],l[3])); |
---|
592 | } |
---|
593 | example |
---|
594 | { "EXAMPLE:"; echo=2; |
---|
595 | ring R=0,(x,y),ds; |
---|
596 | poly t=x5+x2y2+y5; |
---|
597 | spprint(spectrum(t)); |
---|
598 | } |
---|
599 | /////////////////////////////////////////////////////////////////////////////// |
---|
600 | |
---|
601 | static proc sppappend(list l,number a,int w,int m) |
---|
602 | { |
---|
603 | if(size(l)==0) |
---|
604 | { |
---|
605 | l=list(ideal(a),intvec(w),intvec(m)); |
---|
606 | } |
---|
607 | else |
---|
608 | { |
---|
609 | int n=ncols(l[1]); |
---|
610 | l[1][n+1]=a; |
---|
611 | l[2][n+1]=w; |
---|
612 | l[3][n+1]=m; |
---|
613 | } |
---|
614 | return(l); |
---|
615 | } |
---|
616 | /////////////////////////////////////////////////////////////////////////////// |
---|
617 | |
---|
618 | proc sppnormalize(ideal a,intvec w,list #) |
---|
619 | "USAGE: sppnormalize(a,w[,m]); |
---|
620 | RETURN: |
---|
621 | @format |
---|
622 | list Spp: normalized spectral pairs (a,w,m) |
---|
623 | ideal Spp[1]: numbers in a in increasing order |
---|
624 | intvec Spp[2]: integers in w in decreasing order |
---|
625 | intvec Spp[3]: |
---|
626 | int Spp[3][i]: multiplicity of pair (Spp[1][i],Spp[2][i]) in a,w |
---|
627 | @end format |
---|
628 | EXAMPLE: example sppnormalize; shows examples |
---|
629 | " |
---|
630 | { |
---|
631 | intvec m; |
---|
632 | int i,j; |
---|
633 | if(size(#)==0) |
---|
634 | { |
---|
635 | for(i=ncols(a);i>=1;i--) |
---|
636 | { |
---|
637 | m[i]=1; |
---|
638 | } |
---|
639 | } |
---|
640 | else |
---|
641 | { |
---|
642 | m=#[1]; |
---|
643 | } |
---|
644 | |
---|
645 | list l; |
---|
646 | number a0; |
---|
647 | int w0,m0; |
---|
648 | for(i=ncols(a);i>=1;i--) |
---|
649 | { |
---|
650 | if(m[i]!=0) |
---|
651 | { |
---|
652 | for(j=i-1;j>=1;j--) |
---|
653 | { |
---|
654 | if(m[j]!=0) |
---|
655 | { |
---|
656 | if(number(a[i])>number(a[j])|| |
---|
657 | (number(a[i])==number(a[j])&&w[i]<w[j])) |
---|
658 | { |
---|
659 | a0=number(a[i]); |
---|
660 | a[i]=a[j]; |
---|
661 | a[j]=a0; |
---|
662 | w0=w[i]; |
---|
663 | w[i]=w[j]; |
---|
664 | w[j]=w0; |
---|
665 | m0=m[i]; |
---|
666 | m[i]=m[j]; |
---|
667 | m[j]=m0; |
---|
668 | } |
---|
669 | if(number(a[i])==number(a[j])&&w[i]==w[j]) |
---|
670 | { |
---|
671 | m[i]=m[i]+m[j]; |
---|
672 | m[j]=0; |
---|
673 | } |
---|
674 | } |
---|
675 | } |
---|
676 | l=sppappend(l,number(a[i]),w[i],m[i]); |
---|
677 | } |
---|
678 | } |
---|
679 | |
---|
680 | return(l); |
---|
681 | } |
---|
682 | example |
---|
683 | { "EXAMPLE:"; echo=2; |
---|
684 | } |
---|
685 | /////////////////////////////////////////////////////////////////////////////// |
---|
686 | |
---|
687 | proc sppairs(poly t) |
---|
688 | "USAGE: sppairs(t); poly t |
---|
689 | ASSUME: basering with characteristic 0 and local degree ordering, |
---|
690 | t with isolated citical point 0 |
---|
691 | RETURN: list Spp: |
---|
692 | @format |
---|
693 | ideal Spp[1]: spectral numbers in increasing order |
---|
694 | intvec Spp[2]: weight filtration indices in decreasing order |
---|
695 | intvec Spp[3]: |
---|
696 | int Spp[3][i]: multiplicity of spectral pair (Spp[1][i],Spp[2][i]) |
---|
697 | @end format |
---|
698 | SEE ALSO: spectrum_lib |
---|
699 | KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice; |
---|
700 | spectrum; spectral pairs |
---|
701 | EXAMPLE: example sppairs; shows examples |
---|
702 | " |
---|
703 | { |
---|
704 | def R=basering; |
---|
705 | int n=nvars(R)-1; |
---|
706 | def G=gmsring(t,"s"); |
---|
707 | setring(G); |
---|
708 | |
---|
709 | int mu=ncols(gmsbasis); |
---|
710 | matrix A; |
---|
711 | ideal e; |
---|
712 | intvec m; |
---|
713 | |
---|
714 | def A0,r,H,H0=saturate(n); |
---|
715 | e,m,A0,r=eigenvals(A0,r,H,n); |
---|
716 | e,m,A,A0,r,H0=transform(e,m,A,A0,r,H,H0,0,0); |
---|
717 | |
---|
718 | dbprint(printlevel-voice+2,"// compute weight filtration basis"); |
---|
719 | list l=jordanbasis(A,e,m); |
---|
720 | def U,v=l[1..2]; |
---|
721 | module V=inverse(U); |
---|
722 | A0=V*A*U; |
---|
723 | vector u; |
---|
724 | int i,j,k; |
---|
725 | for(i=ncols(A0);i>=2;i--) |
---|
726 | { |
---|
727 | for(j=i-1;j>=1;j--) |
---|
728 | { |
---|
729 | if(A0[i,i]==A0[j,j]&&v[i]>v[j]) |
---|
730 | { |
---|
731 | k=v[i]; |
---|
732 | v[i]=v[j]; |
---|
733 | v[i]=k; |
---|
734 | u=U[i]; |
---|
735 | U[i]=U[j]; |
---|
736 | U[j]=u; |
---|
737 | } |
---|
738 | } |
---|
739 | } |
---|
740 | |
---|
741 | dbprint(printlevel-voice+2,"// transform to weight filtration basis"); |
---|
742 | V=inverse(U); |
---|
743 | A=V*A*U; |
---|
744 | dbprint(printlevel-voice+2,"// compute normal form of H''"); |
---|
745 | H0=std(V*H0); |
---|
746 | |
---|
747 | dbprint(printlevel-voice+2,"// compute spectral pairs"); |
---|
748 | ideal a; |
---|
749 | intvec w; |
---|
750 | for(i=1;i<=mu;i++) |
---|
751 | { |
---|
752 | j=leadexp(H0[i])[nvars(basering)+1]; |
---|
753 | a[i]=A[j,j]+deg(lead(H0[i]))/deg(s)-1; |
---|
754 | w[i]=v[j]+n; |
---|
755 | } |
---|
756 | |
---|
757 | setring(R); |
---|
758 | |
---|
759 | return(sppnormalize(imap(G,a),w)); |
---|
760 | } |
---|
761 | example |
---|
762 | { "EXAMPLE:"; echo=2; |
---|
763 | ring R=0,(x,y),ds; |
---|
764 | poly t=x5+x2y2+y5; |
---|
765 | sppprint(sppairs(t)); |
---|
766 | } |
---|
767 | /////////////////////////////////////////////////////////////////////////////// |
---|
768 | |
---|
769 | proc vfilt(poly t,list #) |
---|
770 | "USAGE: vfilt(t[,opt]); poly t, int opt |
---|
771 | ASSUME: basering with characteristic 0 and local degree ordering, |
---|
772 | t with isolated citical point 0 |
---|
773 | RETURN: |
---|
774 | @format |
---|
775 | list V: V-filtration of t on H''/H' |
---|
776 | intvec V[1]: spectral numbers in increasing order |
---|
777 | intvec V[2]: |
---|
778 | int V[2][i]: multiplicity of spectral number V[1][i]/V[2][i] |
---|
779 | if opt>=1: |
---|
780 | list V[4]: |
---|
781 | module V[3][i]: vector space basis of V[1][i]/V[2][i]-th graded part |
---|
782 | in terms of V[5] |
---|
783 | ideal V[4]: monomial vector space basis of H''/H' |
---|
784 | ideal V[5]: standard basis of Jacobian ideal |
---|
785 | default: opt=1 |
---|
786 | @end format |
---|
787 | NOTE: H' and H'' denote the Brieskorn lattices |
---|
788 | SEE ALSO: spectrum_lib |
---|
789 | KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice; |
---|
790 | Hodge filtration; V-filtration; spectrum |
---|
791 | EXAMPLE: example vfilt; shows examples |
---|
792 | " |
---|
793 | { |
---|
794 | int opt=1; |
---|
795 | if(size(#)>0) |
---|
796 | { |
---|
797 | if(typeof(#[1])=="int") |
---|
798 | { |
---|
799 | opt=#[1]; |
---|
800 | } |
---|
801 | } |
---|
802 | |
---|
803 | def R=basering; |
---|
804 | int n=nvars(R)-1; |
---|
805 | def G=gmsring(t,"s"); |
---|
806 | setring G; |
---|
807 | |
---|
808 | int mu=ncols(gmsbasis); |
---|
809 | ideal r=gmspoly*gmsbasis; |
---|
810 | list l; |
---|
811 | matrix A[mu][mu],C; |
---|
812 | module H,H1=freemodule(mu),freemodule(mu); |
---|
813 | module H0; |
---|
814 | int k=-1; |
---|
815 | int N=n+1; |
---|
816 | |
---|
817 | while(size(reduce(H,std(H0*s)))>0) |
---|
818 | { |
---|
819 | k++; |
---|
820 | dbprint(printlevel-voice+2,"// k="+string(k)); |
---|
821 | dbprint(printlevel-voice+2,"// compute matrix A of t"); |
---|
822 | l=gmscoeffs(r,k); |
---|
823 | C,r=l[1..2]; |
---|
824 | A=A+C; |
---|
825 | |
---|
826 | dbprint(printlevel-voice+2,"// compute saturation of H''"); |
---|
827 | H0=H; |
---|
828 | H1=jet(module(A*H1+s^2*diff(matrix(H1),s)),k); |
---|
829 | H=H*s+H1; |
---|
830 | } |
---|
831 | A=A-k*s; |
---|
832 | |
---|
833 | dbprint(printlevel-voice+2,"// compute basis of saturation of H''"); |
---|
834 | H=std(H0); |
---|
835 | int d0=maxdeg1(H); |
---|
836 | dbprint(printlevel-voice+2,"// k="+string(d0+N)); |
---|
837 | dbprint(printlevel-voice+2,"// compute matrix A of t"); |
---|
838 | l=gmscoeffs(r,d0+N,d0+N); |
---|
839 | C,r=l[1..2]; |
---|
840 | A=A+C; |
---|
841 | |
---|
842 | dbprint(printlevel-voice+2,"// transform H'' to saturation of H''"); |
---|
843 | l=division(H,freemodule(mu)*s^k); |
---|
844 | H0=jet(l[1],l[2],N-1); |
---|
845 | |
---|
846 | dbprint(printlevel-voice+2,"// compute vector spaces"); |
---|
847 | poly p; |
---|
848 | int i0,j0,i1,j1; |
---|
849 | matrix V0[mu*N][mu*N]; |
---|
850 | matrix V1[mu*N][mu*(N-1)]; |
---|
851 | for(i0=mu;i0>=1;i0--) |
---|
852 | { |
---|
853 | for(i1=mu;i1>=1;i1--) |
---|
854 | { |
---|
855 | p=H0[i1,i0]; |
---|
856 | while(p!=0) |
---|
857 | { |
---|
858 | j1=leadexp(p)[1]; |
---|
859 | for(j0=N-j1-1;j0>=0;j0--) |
---|
860 | { |
---|
861 | V0[i1+(j1+j0)*mu,i0+j0*mu]=V0[i1+(j1+j0)*mu,i0+j0*mu]+leadcoef(p); |
---|
862 | if(j1+j0+1<N) |
---|
863 | { |
---|
864 | V1[i1+(j1+j0+1)*mu,i0+j0*mu]= |
---|
865 | V1[i1+(j1+j0+1)*mu,i0+j0*mu]+leadcoef(p); |
---|
866 | } |
---|
867 | } |
---|
868 | p=p-lead(p); |
---|
869 | } |
---|
870 | } |
---|
871 | } |
---|
872 | |
---|
873 | dbprint(printlevel-voice+2,"// transform A to saturation of H''"); |
---|
874 | l=division(H*s,A*H+s^2*diff(matrix(H),s)); |
---|
875 | A=jet(l[1],l[2],N-1); |
---|
876 | |
---|
877 | dbprint(printlevel-voice+2,"// compute matrix M of A"); |
---|
878 | matrix M[mu*N][mu*N]; |
---|
879 | for(i0=mu;i0>=1;i0--) |
---|
880 | { |
---|
881 | for(i1=mu;i1>=1;i1--) |
---|
882 | { |
---|
883 | p=A[i1,i0]; |
---|
884 | while(p!=0) |
---|
885 | { |
---|
886 | j1=leadexp(p)[1]; |
---|
887 | for(j0=N-j1-1;j0>=0;j0--) |
---|
888 | { |
---|
889 | M[i1+(j0+j1)*mu,i0+j0*mu]=leadcoef(p); |
---|
890 | } |
---|
891 | p=p-lead(p); |
---|
892 | } |
---|
893 | } |
---|
894 | } |
---|
895 | for(i0=mu;i0>=1;i0--) |
---|
896 | { |
---|
897 | for(j0=N-1;j0>=0;j0--) |
---|
898 | { |
---|
899 | M[i0+j0*mu,i0+j0*mu]=M[i0+j0*mu,i0+j0*mu]+j0; |
---|
900 | } |
---|
901 | } |
---|
902 | |
---|
903 | dbprint(printlevel-voice+2,"// compute eigenvalues eA of A"); |
---|
904 | ideal eA=eigenvals(jet(A,0))[1]; |
---|
905 | dbprint(printlevel-voice+2,"// eA="+string(eA)); |
---|
906 | |
---|
907 | dbprint(printlevel-voice+2,"// compute eigenvalues eM of M"); |
---|
908 | ideal eM; |
---|
909 | k=0; |
---|
910 | intvec u; |
---|
911 | for(int i=N;i>=1;i--) |
---|
912 | { |
---|
913 | u[i]=1; |
---|
914 | } |
---|
915 | i0=1; |
---|
916 | while(u[N]<=ncols(eA)) |
---|
917 | { |
---|
918 | for(i,i1=i0+1,i0;i<=N;i++) |
---|
919 | { |
---|
920 | if(eA[u[i]]+i<eA[u[i1]]+i1) |
---|
921 | { |
---|
922 | i1=i; |
---|
923 | } |
---|
924 | } |
---|
925 | k++; |
---|
926 | eM[k]=eA[u[i1]]+i1-1; |
---|
927 | u[i1]=u[i1]+1; |
---|
928 | if(u[i1]>ncols(eA)) |
---|
929 | { |
---|
930 | i0=i1+1; |
---|
931 | } |
---|
932 | } |
---|
933 | dbprint(printlevel-voice+2,"// eM="+string(eM)); |
---|
934 | |
---|
935 | dbprint(printlevel-voice+2,"// compute V-filtration on H''/sH''"); |
---|
936 | ideal a; |
---|
937 | k=0; |
---|
938 | list V; |
---|
939 | V[ncols(eM)+1]=interred(V1); |
---|
940 | intvec d; |
---|
941 | if(opt<=0) |
---|
942 | { |
---|
943 | for(i=ncols(eM);number(eM[i])-1>number(n-1)/2;i--) |
---|
944 | { |
---|
945 | dbprint(printlevel-voice+2,"// compute V["+string(i)+"]"); |
---|
946 | V1=module(V1)+syz(power(M-eM[i],n+1)); |
---|
947 | V[i]=interred(intersect(V1,V0)); |
---|
948 | |
---|
949 | if(size(V[i])>size(V[i+1])) |
---|
950 | { |
---|
951 | k++; |
---|
952 | a[k]=eM[i]-1; |
---|
953 | d[k]=size(V[i])-size(V[i+1]); |
---|
954 | } |
---|
955 | } |
---|
956 | |
---|
957 | dbprint(printlevel-voice+2,"// symmetry index found"); |
---|
958 | int j=k; |
---|
959 | |
---|
960 | if(number(eM[i])-1==number(n-1)/2) |
---|
961 | { |
---|
962 | dbprint(printlevel-voice+2,"// compute V["+string(i)+"]"); |
---|
963 | V1=module(V1)+syz(power(M-eM[i],n+1)); |
---|
964 | V[i]=interred(intersect(V1,V0)); |
---|
965 | |
---|
966 | if(size(V[i])>size(V[i+1])) |
---|
967 | { |
---|
968 | k++; |
---|
969 | a[k]=eM[i]-1; |
---|
970 | d[k]=size(V[i])-size(V[i+1]); |
---|
971 | } |
---|
972 | } |
---|
973 | |
---|
974 | dbprint(printlevel-voice+2,"// apply symmetry"); |
---|
975 | while(j>=1) |
---|
976 | { |
---|
977 | k++; |
---|
978 | a[k]=a[j]; |
---|
979 | a[j]=n-1-a[k]; |
---|
980 | d[k]=d[j]; |
---|
981 | j--; |
---|
982 | } |
---|
983 | |
---|
984 | setring(R); |
---|
985 | ideal a=imap(G,a); |
---|
986 | return(list(a,d)); |
---|
987 | } |
---|
988 | else |
---|
989 | { |
---|
990 | list v; |
---|
991 | int j=-1; |
---|
992 | for(i=ncols(eM);i>=1;i--) |
---|
993 | { |
---|
994 | dbprint(printlevel-voice+2,"// compute V["+string(i)+"]"); |
---|
995 | V1=module(V1)+syz(power(M-eM[i],n+1)); |
---|
996 | V[i]=interred(intersect(V1,V0)); |
---|
997 | |
---|
998 | if(size(V[i])>size(V[i+1])) |
---|
999 | { |
---|
1000 | if(number(eM[i]-1)>=number(n-1)/2) |
---|
1001 | { |
---|
1002 | k++; |
---|
1003 | a[k]=eM[i]-1; |
---|
1004 | v[k]=matrix(freemodule(ncols(V[i])),mu,mu*N)*division(V0,V[i])[1]; |
---|
1005 | } |
---|
1006 | else |
---|
1007 | { |
---|
1008 | if(j<0) |
---|
1009 | { |
---|
1010 | if(a[k]==number(n-1)/2) |
---|
1011 | { |
---|
1012 | j=k-1; |
---|
1013 | } |
---|
1014 | else |
---|
1015 | { |
---|
1016 | j=k; |
---|
1017 | } |
---|
1018 | } |
---|
1019 | k++; |
---|
1020 | a[k]=a[j]; |
---|
1021 | a[j]=eM[i]-1; |
---|
1022 | v[k]=v[j]; |
---|
1023 | v[j]=matrix(freemodule(ncols(V[i])),mu,mu*N)*division(V0,V[i])[1]; |
---|
1024 | j--; |
---|
1025 | } |
---|
1026 | } |
---|
1027 | } |
---|
1028 | |
---|
1029 | dbprint(printlevel-voice+2,"// compute graded parts"); |
---|
1030 | for(k=1;k<size(v);k++) |
---|
1031 | { |
---|
1032 | v[k]=interred(reduce(v[k],std(v[k+1]))); |
---|
1033 | d[k]=size(v[k]); |
---|
1034 | } |
---|
1035 | v[k]=interred(v[k]); |
---|
1036 | d[k]=size(v[k]); |
---|
1037 | |
---|
1038 | setring(R); |
---|
1039 | ideal a=imap(G,a); |
---|
1040 | list v=imap(G,v); |
---|
1041 | ideal m=imap(G,gmsbasis); |
---|
1042 | ideal g=imap(G,gmsstd); |
---|
1043 | attrib(g,"isSB",1); |
---|
1044 | return(list(a,d,v,m,g)); |
---|
1045 | } |
---|
1046 | } |
---|
1047 | example |
---|
1048 | { "EXAMPLE:"; echo=2; |
---|
1049 | ring R=0,(x,y),ds; |
---|
1050 | poly t=x5+x2y2+y5; |
---|
1051 | vfilt(t); |
---|
1052 | } |
---|
1053 | /////////////////////////////////////////////////////////////////////////////// |
---|
1054 | |
---|
1055 | proc endfilt(list V) |
---|
1056 | "USAGE: endfilt(V); list V |
---|
1057 | ASSUME: V computed by vfilt |
---|
1058 | RETURN: |
---|
1059 | @format |
---|
1060 | list V1: endomorphim filtration of V on the Jacobian algebra |
---|
1061 | ideal V1[1]: spectral numbers in increasing order |
---|
1062 | intvec V1[2]: |
---|
1063 | int V1[2][i]: multiplicity of spectral number V1[1][i] |
---|
1064 | list V1[3]: |
---|
1065 | module V1[3][i]: vector space basis of the V1[1][i]-th graded part |
---|
1066 | in terms of V1[4] |
---|
1067 | ideal V1[4]: monomial vector space basis |
---|
1068 | @end format |
---|
1069 | SEE ALSO: spectrum_lib |
---|
1070 | KEYWORDS: singularities; Gauss-Manin connection; Brieskorn lattice; spectrum; |
---|
1071 | Hodge filtration; V-filtration |
---|
1072 | EXAMPLE: example endfilt; shows examples |
---|
1073 | " |
---|
1074 | { |
---|
1075 | def a,d,v,m,g=V[1..5]; |
---|
1076 | int mu=ncols(m); |
---|
1077 | |
---|
1078 | module V0=v[1]; |
---|
1079 | for(int i=2;i<=size(v);i++) |
---|
1080 | { |
---|
1081 | V0=V0,v[i]; |
---|
1082 | } |
---|
1083 | |
---|
1084 | dbprint(printlevel-voice+2,"// compute multiplication in Jacobian algebra"); |
---|
1085 | list M; |
---|
1086 | module U=freemodule(ncols(m)); |
---|
1087 | for(i=ncols(m);i>=1;i--) |
---|
1088 | { |
---|
1089 | M[i]=division(V0,coeffs(reduce(m[i]*m,U,g),m)*V0)[1]; |
---|
1090 | } |
---|
1091 | |
---|
1092 | int j,k,i0,j0,i1,j1; |
---|
1093 | number b0=number(a[1]-a[ncols(a)]); |
---|
1094 | number b1,b2; |
---|
1095 | matrix M0; |
---|
1096 | module L; |
---|
1097 | list v0=freemodule(ncols(m)); |
---|
1098 | ideal a0=b0; |
---|
1099 | |
---|
1100 | while(b0<number(a[ncols(a)]-a[1])) |
---|
1101 | { |
---|
1102 | dbprint(printlevel-voice+2,"// find next possible index"); |
---|
1103 | b1=number(a[ncols(a)]-a[1]); |
---|
1104 | for(j=ncols(a);j>=1;j--) |
---|
1105 | { |
---|
1106 | for(i=ncols(a);i>=1;i--) |
---|
1107 | { |
---|
1108 | b2=number(a[i]-a[j]); |
---|
1109 | if(b2>b0&&b2<b1) |
---|
1110 | { |
---|
1111 | b1=b2; |
---|
1112 | } |
---|
1113 | else |
---|
1114 | { |
---|
1115 | if(b2<=b0) |
---|
1116 | { |
---|
1117 | i=0; |
---|
1118 | } |
---|
1119 | } |
---|
1120 | } |
---|
1121 | } |
---|
1122 | b0=b1; |
---|
1123 | |
---|
1124 | list l=ideal(); |
---|
1125 | for(k=ncols(m);k>=2;k--) |
---|
1126 | { |
---|
1127 | l=l+list(ideal()); |
---|
1128 | } |
---|
1129 | |
---|
1130 | dbprint(printlevel-voice+2,"// collect conditions for V1["+string(b0)+"]"); |
---|
1131 | j=ncols(a); |
---|
1132 | j0=mu; |
---|
1133 | while(j>=1) |
---|
1134 | { |
---|
1135 | i0=1; |
---|
1136 | i=1; |
---|
1137 | while(i<ncols(a)&&a[i]<a[j]+b0) |
---|
1138 | { |
---|
1139 | i0=i0+d[i]; |
---|
1140 | i++; |
---|
1141 | } |
---|
1142 | if(a[i]<a[j]+b0) |
---|
1143 | { |
---|
1144 | i0=i0+d[i]; |
---|
1145 | i++; |
---|
1146 | } |
---|
1147 | for(k=1;k<=ncols(m);k++) |
---|
1148 | { |
---|
1149 | M0=M[k]; |
---|
1150 | if(i0>1) |
---|
1151 | { |
---|
1152 | l[k]=l[k],M0[1..i0-1,j0-d[j]+1..j0]; |
---|
1153 | } |
---|
1154 | } |
---|
1155 | j0=j0-d[j]; |
---|
1156 | j--; |
---|
1157 | } |
---|
1158 | |
---|
1159 | dbprint(printlevel-voice+2,"// compose condition matrix"); |
---|
1160 | L=transpose(module(l[1])); |
---|
1161 | for(k=2;k<=ncols(m);k++) |
---|
1162 | { |
---|
1163 | L=L,transpose(module(l[k])); |
---|
1164 | } |
---|
1165 | |
---|
1166 | dbprint(printlevel-voice+2,"// compute kernel of condition matrix"); |
---|
1167 | v0=v0+list(syz(L)); |
---|
1168 | a0=a0,b0; |
---|
1169 | } |
---|
1170 | |
---|
1171 | dbprint(printlevel-voice+2,"// compute graded parts"); |
---|
1172 | option(redSB); |
---|
1173 | for(i=1;i<size(v0);i++) |
---|
1174 | { |
---|
1175 | v0[i+1]=std(v0[i+1]); |
---|
1176 | v0[i]=std(reduce(v0[i],v0[i+1])); |
---|
1177 | } |
---|
1178 | |
---|
1179 | dbprint(printlevel-voice+2,"// remove trivial graded parts"); |
---|
1180 | i=1; |
---|
1181 | while(size(v0[i])==0) |
---|
1182 | { |
---|
1183 | i++; |
---|
1184 | } |
---|
1185 | list v1=v0[i]; |
---|
1186 | intvec d1=size(v0[i]); |
---|
1187 | ideal a1=a0[i]; |
---|
1188 | i++; |
---|
1189 | while(i<=size(v0)) |
---|
1190 | { |
---|
1191 | if(size(v0[i])>0) |
---|
1192 | { |
---|
1193 | v1=v1+list(v0[i]); |
---|
1194 | d1=d1,size(v0[i]); |
---|
1195 | a1=a1,a0[i]; |
---|
1196 | } |
---|
1197 | i++; |
---|
1198 | } |
---|
1199 | return(list(a1,d1,v1,m)); |
---|
1200 | } |
---|
1201 | example |
---|
1202 | { "EXAMPLE:"; echo=2; |
---|
1203 | ring R=0,(x,y),ds; |
---|
1204 | poly t=x5+x2y2+y5; |
---|
1205 | endfilt(vfilt(t)); |
---|
1206 | } |
---|
1207 | /////////////////////////////////////////////////////////////////////////////// |
---|
1208 | |
---|
1209 | proc spprint(list Sp) |
---|
1210 | "USAGE: spprint(Sp); list Sp |
---|
1211 | RETURN: string: spectrum Sp |
---|
1212 | EXAMPLE: example spprint; shows examples |
---|
1213 | " |
---|
1214 | { |
---|
1215 | string s; |
---|
1216 | for(int i=1;i<size(Sp[2]);i++) |
---|
1217 | { |
---|
1218 | s=s+"("+string(Sp[1][i])+","+string(Sp[2][i])+"),"; |
---|
1219 | } |
---|
1220 | s=s+"("+string(Sp[1][i])+","+string(Sp[2][i])+")"; |
---|
1221 | return(s); |
---|
1222 | } |
---|
1223 | example |
---|
1224 | { "EXAMPLE:"; echo=2; |
---|
1225 | ring R=0,(x,y),ds; |
---|
1226 | list Sp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1)); |
---|
1227 | spprint(Sp); |
---|
1228 | } |
---|
1229 | /////////////////////////////////////////////////////////////////////////////// |
---|
1230 | |
---|
1231 | proc sppprint(list Spp) |
---|
1232 | "USAGE: sppprint(Sp); list Spp |
---|
1233 | RETURN: string: spectral pairs Spp |
---|
1234 | EXAMPLE: example sppprint; shows examples |
---|
1235 | " |
---|
1236 | { |
---|
1237 | string s; |
---|
1238 | for(int i=1;i<size(Spp[3]);i++) |
---|
1239 | { |
---|
1240 | s=s+"(("+string(Spp[1][i])+","+string(Spp[2][i])+"),"+string(Spp[3][i])+"),"; |
---|
1241 | } |
---|
1242 | s=s+"(("+string(Spp[1][i])+","+string(Spp[2][i])+"),"+string(Spp[3][i])+")"; |
---|
1243 | return(s); |
---|
1244 | } |
---|
1245 | example |
---|
1246 | { "EXAMPLE:"; echo=2; |
---|
1247 | ring R=0,(x,y),ds; |
---|
1248 | list Spp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(2,1,1,1,1,1,0),intvec(1,2,2,1,2,2,1)); |
---|
1249 | sppprint(Spp); |
---|
1250 | } |
---|
1251 | /////////////////////////////////////////////////////////////////////////////// |
---|
1252 | |
---|
1253 | proc spadd(list Sp1,list Sp2) |
---|
1254 | "USAGE: spadd(Sp1,Sp2); list Sp1,Sp2 |
---|
1255 | RETURN: list: sum of spectra Sp1 and Sp2 |
---|
1256 | EXAMPLE: example spadd; shows examples |
---|
1257 | " |
---|
1258 | { |
---|
1259 | ideal s; |
---|
1260 | intvec m; |
---|
1261 | int i,i1,i2=1,1,1; |
---|
1262 | while(i1<=size(Sp1[2])||i2<=size(Sp2[2])) |
---|
1263 | { |
---|
1264 | if(i1<=size(Sp1[2])) |
---|
1265 | { |
---|
1266 | if(i2<=size(Sp2[2])) |
---|
1267 | { |
---|
1268 | if(number(Sp1[1][i1])<number(Sp2[1][i2])) |
---|
1269 | { |
---|
1270 | s[i]=Sp1[1][i1]; |
---|
1271 | m[i]=Sp1[2][i1]; |
---|
1272 | i++; |
---|
1273 | i1++; |
---|
1274 | } |
---|
1275 | else |
---|
1276 | { |
---|
1277 | if(number(Sp1[1][i1])>number(Sp2[1][i2])) |
---|
1278 | { |
---|
1279 | s[i]=Sp2[1][i2]; |
---|
1280 | m[i]=Sp2[2][i2]; |
---|
1281 | i++; |
---|
1282 | i2++; |
---|
1283 | } |
---|
1284 | else |
---|
1285 | { |
---|
1286 | if(Sp1[2][i1]+Sp2[2][i2]!=0) |
---|
1287 | { |
---|
1288 | s[i]=Sp1[1][i1]; |
---|
1289 | m[i]=Sp1[2][i1]+Sp2[2][i2]; |
---|
1290 | i++; |
---|
1291 | } |
---|
1292 | i1++; |
---|
1293 | i2++; |
---|
1294 | } |
---|
1295 | } |
---|
1296 | } |
---|
1297 | else |
---|
1298 | { |
---|
1299 | s[i]=Sp1[1][i1]; |
---|
1300 | m[i]=Sp1[2][i1]; |
---|
1301 | i++; |
---|
1302 | i1++; |
---|
1303 | } |
---|
1304 | } |
---|
1305 | else |
---|
1306 | { |
---|
1307 | s[i]=Sp2[1][i2]; |
---|
1308 | m[i]=Sp2[2][i2]; |
---|
1309 | i++; |
---|
1310 | i2++; |
---|
1311 | } |
---|
1312 | } |
---|
1313 | return(list(s,m)); |
---|
1314 | } |
---|
1315 | example |
---|
1316 | { "EXAMPLE:"; echo=2; |
---|
1317 | ring R=0,(x,y),ds; |
---|
1318 | list Sp1=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1)); |
---|
1319 | spprint(Sp1); |
---|
1320 | list Sp2=list(ideal(-1/6,1/6),intvec(1,1)); |
---|
1321 | spprint(Sp2); |
---|
1322 | spprint(spadd(Sp1,Sp2)); |
---|
1323 | } |
---|
1324 | /////////////////////////////////////////////////////////////////////////////// |
---|
1325 | |
---|
1326 | proc spsub(list Sp1,list Sp2) |
---|
1327 | "USAGE: spsub(Sp1,Sp2); list Sp1,Sp2 |
---|
1328 | RETURN: list: difference of spectra Sp1 and Sp2 |
---|
1329 | EXAMPLE: example spsub; shows examples |
---|
1330 | " |
---|
1331 | { |
---|
1332 | return(spadd(Sp1,spmul(Sp2,-1))); |
---|
1333 | } |
---|
1334 | example |
---|
1335 | { "EXAMPLE:"; echo=2; |
---|
1336 | ring R=0,(x,y),ds; |
---|
1337 | list Sp1=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1)); |
---|
1338 | spprint(Sp1); |
---|
1339 | list Sp2=list(ideal(-1/6,1/6),intvec(1,1)); |
---|
1340 | spprint(Sp2); |
---|
1341 | spprint(spsub(Sp1,Sp2)); |
---|
1342 | } |
---|
1343 | /////////////////////////////////////////////////////////////////////////////// |
---|
1344 | |
---|
1345 | proc spmul(list #) |
---|
1346 | "USAGE: |
---|
1347 | @format |
---|
1348 | 1) spmul(Sp,k); list Sp, int k |
---|
1349 | 2) spmul(Sp,k); list Sp, intvec k |
---|
1350 | @end format |
---|
1351 | RETURN: |
---|
1352 | @format |
---|
1353 | 1) list: product of spectrum Sp and integer k |
---|
1354 | 2) list: linear combination of spectra Sp with coefficients k |
---|
1355 | @end format |
---|
1356 | EXAMPLE: example spmul; shows examples |
---|
1357 | " |
---|
1358 | { |
---|
1359 | if(size(#)==2) |
---|
1360 | { |
---|
1361 | if(typeof(#[1])=="list") |
---|
1362 | { |
---|
1363 | if(typeof(#[2])=="int") |
---|
1364 | { |
---|
1365 | return(list(#[1][1],#[1][2]*#[2])); |
---|
1366 | } |
---|
1367 | if(typeof(#[2])=="intvec") |
---|
1368 | { |
---|
1369 | list Sp0=list(ideal(),intvec(0)); |
---|
1370 | for(int i=size(#[2]);i>=1;i--) |
---|
1371 | { |
---|
1372 | Sp0=spadd(Sp0,spmul(#[1][i],#[2][i])); |
---|
1373 | } |
---|
1374 | return(Sp0); |
---|
1375 | } |
---|
1376 | } |
---|
1377 | } |
---|
1378 | return(list(ideal(),intvec(0))); |
---|
1379 | } |
---|
1380 | example |
---|
1381 | { "EXAMPLE:"; echo=2; |
---|
1382 | ring R=0,(x,y),ds; |
---|
1383 | list Sp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1)); |
---|
1384 | spprint(Sp); |
---|
1385 | spprint(spmul(Sp,2)); |
---|
1386 | list Sp1=list(ideal(-1/6,1/6),intvec(1,1)); |
---|
1387 | spprint(Sp1); |
---|
1388 | list Sp2=list(ideal(-1/3,0,1/3),intvec(1,2,1)); |
---|
1389 | spprint(Sp2); |
---|
1390 | spprint(spmul(list(Sp1,Sp2),intvec(1,2))); |
---|
1391 | } |
---|
1392 | /////////////////////////////////////////////////////////////////////////////// |
---|
1393 | |
---|
1394 | proc spissemicont(list Sp,list #) |
---|
1395 | "USAGE: spissemicont(Sp[,opt]); list Sp, int opt |
---|
1396 | RETURN: |
---|
1397 | @format |
---|
1398 | int k= |
---|
1399 | if opt=0: |
---|
1400 | 1, if sum of spectrum Sp over all intervals [a,a+1) is positive |
---|
1401 | 0, if sum of spectrum Sp over some interval [a,a+1) is negative |
---|
1402 | if opt=1: |
---|
1403 | 1, if sum of spectrum Sp over all intervals [a,a+1) and (a,a+1) is positive |
---|
1404 | 0, if sum of spectrum Sp over some interval [a,a+1) or (a,a+1) is negative |
---|
1405 | default: opt=0 |
---|
1406 | @end format |
---|
1407 | EXAMPLE: example spissemicont; shows examples |
---|
1408 | " |
---|
1409 | { |
---|
1410 | int opt=0; |
---|
1411 | if(size(#)>0) |
---|
1412 | { |
---|
1413 | if(typeof(#[1])=="int") |
---|
1414 | { |
---|
1415 | opt=1; |
---|
1416 | } |
---|
1417 | } |
---|
1418 | int i,j,k=1,1,0; |
---|
1419 | while(j<=size(Sp[2])) |
---|
1420 | { |
---|
1421 | while(j+1<=size(Sp[2])&&Sp[1][j]<Sp[1][i]+1) |
---|
1422 | { |
---|
1423 | k=k+Sp[2][j]; |
---|
1424 | j++; |
---|
1425 | } |
---|
1426 | if(j==size(Sp[2])&&Sp[1][j]<Sp[1][i]+1) |
---|
1427 | { |
---|
1428 | k=k+Sp[2][j]; |
---|
1429 | j++; |
---|
1430 | } |
---|
1431 | if(k<0) |
---|
1432 | { |
---|
1433 | return(0); |
---|
1434 | } |
---|
1435 | k=k-Sp[2][i]; |
---|
1436 | if(k<0&&opt==1) |
---|
1437 | { |
---|
1438 | return(0); |
---|
1439 | } |
---|
1440 | i++; |
---|
1441 | } |
---|
1442 | return(1); |
---|
1443 | } |
---|
1444 | example |
---|
1445 | { "EXAMPLE:"; echo=2; |
---|
1446 | ring R=0,(x,y),ds; |
---|
1447 | list Sp1=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1)); |
---|
1448 | spprint(Sp1); |
---|
1449 | list Sp2=list(ideal(-1/6,1/6),intvec(1,1)); |
---|
1450 | spprint(Sp2); |
---|
1451 | spissemicont(spsub(Sp1,spmul(Sp2,5))); |
---|
1452 | spissemicont(spsub(Sp1,spmul(Sp2,5)),1); |
---|
1453 | spissemicont(spsub(Sp1,spmul(Sp2,6))); |
---|
1454 | } |
---|
1455 | /////////////////////////////////////////////////////////////////////////////// |
---|
1456 | |
---|
1457 | proc spsemicont(list Sp0,list Sp,list #) |
---|
1458 | "USAGE: spsemicont(Sp,k[,opt]); list Sp0, list Sp, int opt |
---|
1459 | RETURN: list of intvecs l: |
---|
1460 | spissemicont(sub(Sp0,spmul(Sp,k)),opt)==1 iff k<=l[i] for some i |
---|
1461 | NOTE: if the spectra Sp occur with multiplicities k in a deformation |
---|
1462 | of the [quasihomogeneous] spectrum Sp0 then |
---|
1463 | spissemicont(sub(Sp0,spmul(Sp,k))[,1])==1 |
---|
1464 | EXAMPLE: example spsemicont; shows examples |
---|
1465 | " |
---|
1466 | { |
---|
1467 | list l,l0; |
---|
1468 | int i,j,k; |
---|
1469 | while(spissemicont(Sp0,#)) |
---|
1470 | { |
---|
1471 | if(size(Sp)>1) |
---|
1472 | { |
---|
1473 | l0=spsemicont(Sp0,list(Sp[1..size(Sp)-1])); |
---|
1474 | for(i=1;i<=size(l0);i++) |
---|
1475 | { |
---|
1476 | if(size(l)>0) |
---|
1477 | { |
---|
1478 | j=1; |
---|
1479 | while(j<size(l)&&l[j]!=l0[i]) |
---|
1480 | { |
---|
1481 | j++; |
---|
1482 | } |
---|
1483 | if(l[j]==l0[i]) |
---|
1484 | { |
---|
1485 | l[j][size(Sp)]=k; |
---|
1486 | } |
---|
1487 | else |
---|
1488 | { |
---|
1489 | l0[i][size(Sp)]=k; |
---|
1490 | l=l+list(l0[i]); |
---|
1491 | } |
---|
1492 | } |
---|
1493 | else |
---|
1494 | { |
---|
1495 | l=l0; |
---|
1496 | } |
---|
1497 | } |
---|
1498 | } |
---|
1499 | Sp0=spsub(Sp0,Sp[size(Sp)]); |
---|
1500 | k++; |
---|
1501 | } |
---|
1502 | if(size(Sp)>1) |
---|
1503 | { |
---|
1504 | return(l); |
---|
1505 | } |
---|
1506 | else |
---|
1507 | { |
---|
1508 | return(list(intvec(k-1))); |
---|
1509 | } |
---|
1510 | } |
---|
1511 | example |
---|
1512 | { "EXAMPLE:"; echo=2; |
---|
1513 | ring R=0,(x,y),ds; |
---|
1514 | list Sp0=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1)); |
---|
1515 | spprint(Sp0); |
---|
1516 | list Sp1=list(ideal(-1/6,1/6),intvec(1,1)); |
---|
1517 | spprint(Sp1); |
---|
1518 | list Sp2=list(ideal(-1/3,0,1/3),intvec(1,2,1)); |
---|
1519 | spprint(Sp2); |
---|
1520 | list Sp=Sp1,Sp2; |
---|
1521 | list l=spsemicont(Sp0,Sp); |
---|
1522 | l; |
---|
1523 | spissemicont(spsub(Sp0,spmul(Sp,l[1]))); |
---|
1524 | spissemicont(spsub(Sp0,spmul(Sp,l[1]-1))); |
---|
1525 | spissemicont(spsub(Sp0,spmul(Sp,l[1]+1))); |
---|
1526 | } |
---|
1527 | /////////////////////////////////////////////////////////////////////////////// |
---|
1528 | |
---|
1529 | proc spmilnor(list Sp) |
---|
1530 | "USAGE: spmilnor(Sp); list Sp |
---|
1531 | RETURN: int: Milnor number of spectrum Sp |
---|
1532 | EXAMPLE: example spmilnor; shows examples |
---|
1533 | " |
---|
1534 | { |
---|
1535 | return(sum(Sp[2])); |
---|
1536 | } |
---|
1537 | example |
---|
1538 | { "EXAMPLE:"; echo=2; |
---|
1539 | ring R=0,(x,y),ds; |
---|
1540 | list Sp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1)); |
---|
1541 | spprint(Sp); |
---|
1542 | spmilnor(Sp); |
---|
1543 | } |
---|
1544 | /////////////////////////////////////////////////////////////////////////////// |
---|
1545 | |
---|
1546 | proc spgeomgenus(list Sp) |
---|
1547 | "USAGE: spgeomgenus(Sp); list Sp |
---|
1548 | RETURN: int: geometrical genus of spectrum Sp |
---|
1549 | EXAMPLE: example spgeomgenus; shows examples |
---|
1550 | " |
---|
1551 | { |
---|
1552 | int g=0; |
---|
1553 | int i=1; |
---|
1554 | while(i+1<=size(Sp[2])&&number(Sp[1][i])<=number(0)) |
---|
1555 | { |
---|
1556 | g=g+Sp[2][i]; |
---|
1557 | i++; |
---|
1558 | } |
---|
1559 | if(i==size(Sp[2])&&number(Sp[1][i])<=number(0)) |
---|
1560 | { |
---|
1561 | g=g+Sp[2][i]; |
---|
1562 | } |
---|
1563 | return(g); |
---|
1564 | } |
---|
1565 | example |
---|
1566 | { "EXAMPLE:"; echo=2; |
---|
1567 | ring R=0,(x,y),ds; |
---|
1568 | list Sp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1)); |
---|
1569 | spprint(Sp); |
---|
1570 | spgeomgenus(Sp); |
---|
1571 | } |
---|
1572 | /////////////////////////////////////////////////////////////////////////////// |
---|
1573 | |
---|
1574 | proc spgamma(list Sp) |
---|
1575 | "USAGE: spgamma(Sp); list Sp |
---|
1576 | RETURN: number: gamma invariant of spectrum Sp |
---|
1577 | EXAMPLE: example spgamma; shows examples |
---|
1578 | " |
---|
1579 | { |
---|
1580 | int i,j; |
---|
1581 | number g=0; |
---|
1582 | for(i=1;i<=ncols(Sp[1]);i++) |
---|
1583 | { |
---|
1584 | for(j=1;j<=Sp[2][i];j++) |
---|
1585 | { |
---|
1586 | g=g+(number(Sp[1][i])-number(nvars(basering)-2)/2)^2; |
---|
1587 | } |
---|
1588 | } |
---|
1589 | g=-g/4+sum(Sp[2])*number(Sp[1][ncols(Sp[1])]-Sp[1][1])/48; |
---|
1590 | return(g); |
---|
1591 | } |
---|
1592 | example |
---|
1593 | { "EXAMPLE:"; echo=2; |
---|
1594 | ring R=0,(x,y),ds; |
---|
1595 | list Sp=list(ideal(-1/2,-3/10,-1/10,0,1/10,3/10,1/2),intvec(1,2,2,1,2,2,1)); |
---|
1596 | spprint(Sp); |
---|
1597 | spgamma(Sp); |
---|
1598 | } |
---|
1599 | /////////////////////////////////////////////////////////////////////////////// |
---|