1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id$"; |
---|
3 | category="General purpose"; |
---|
4 | info=" |
---|
5 | LIBRARY: general.lib Elementary Computations of General Type |
---|
6 | |
---|
7 | PROCEDURES: |
---|
8 | A_Z(\"a\",n); string a,b,... of n comma separated letters |
---|
9 | ASCII([n,m]); string of printable ASCII characters (number n to m) |
---|
10 | absValue(c); absolute value of c |
---|
11 | binomial(n,m[,../..]); n choose m (type int), [type bigint] |
---|
12 | deleteSublist(iv,l); delete entries given by iv from list l |
---|
13 | factorial(n[,../..]); n factorial (=n!) (type int), [type bigint] |
---|
14 | fibonacci(n); nth Fibonacci number |
---|
15 | kmemory([n[,v]]); active [allocated] memory in kilobyte |
---|
16 | killall(); kill all user-defined variables |
---|
17 | number_e(n); compute exp(1) up to n decimal digits |
---|
18 | number_pi(n); compute pi (area of unit circle) up to n digits |
---|
19 | primes(n,m); intvec of primes p, n<=p<=m |
---|
20 | product(../..[,v]); multiply components of vector/ideal/...[indices v] |
---|
21 | sort(ideal/module); sort generators according to monomial ordering |
---|
22 | sum(vector/id/..[,v]); add components of vector/ideal/...[with indices v] |
---|
23 | watchdog(i,cmd); only wait for result of command cmd for i seconds |
---|
24 | primecoeffs(J[,q]); primefactors <= min(p,32003) of coeffs of J |
---|
25 | timeStd(i,d) std(i) if the standard basis computation finished |
---|
26 | after d-1 seconds and i otherwhise |
---|
27 | timeFactorize(p,d) factorize(p) if the factorization finished after d-1 |
---|
28 | seconds otherwhise f is considered to be irreducible |
---|
29 | factorH(p) changes variables to become the last variable the |
---|
30 | principal one in the multivariate factorization and |
---|
31 | factorizes then the polynomial |
---|
32 | |
---|
33 | (parameters in square brackets [] are optional) |
---|
34 | "; |
---|
35 | |
---|
36 | LIB "inout.lib"; |
---|
37 | LIB "poly.lib"; |
---|
38 | LIB "matrix.lib"; |
---|
39 | /////////////////////////////////////////////////////////////////////////////// |
---|
40 | |
---|
41 | proc A_Z (string s,int n) |
---|
42 | "USAGE: A_Z(\"a\",n); a any letter, n integer (-26<= n <=26, !=0) |
---|
43 | RETURN: string of n small (if a is small) or capital (if a is capital) |
---|
44 | letters, comma separated, beginning with a, in alphabetical |
---|
45 | order (or reverse alphabetical order if n<0) |
---|
46 | EXAMPLE: example A_Z; shows an example |
---|
47 | " |
---|
48 | { |
---|
49 | if ( n>=-26 and n<=26 and n!=0 ) |
---|
50 | { |
---|
51 | string alpha = |
---|
52 | "a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,"+ |
---|
53 | "a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,"+ |
---|
54 | "A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,"+ |
---|
55 | "A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z"; |
---|
56 | int ii; int aa; |
---|
57 | for(ii=1; ii<=51; ii=ii+2) |
---|
58 | { |
---|
59 | if( alpha[ii]==s ) { aa=ii; } |
---|
60 | } |
---|
61 | if ( aa==0) |
---|
62 | { |
---|
63 | for(ii=105; ii<=155; ii=ii+2) |
---|
64 | { |
---|
65 | if( alpha[ii]==s ) { aa=ii; } |
---|
66 | } |
---|
67 | } |
---|
68 | if( aa!=0 ) |
---|
69 | { |
---|
70 | string out; |
---|
71 | if (n > 0) { out = alpha[aa,2*(n)-1]; return (out); } |
---|
72 | if (n < 0) |
---|
73 | { |
---|
74 | string beta = |
---|
75 | "z,y,x,w,v,u,t,s,r,q,p,o,n,m,l,k,j,i,h,g,f,e,d,c,b,a,"+ |
---|
76 | "z,y,x,w,v,u,t,s,r,q,p,o,n,m,l,k,j,i,h,g,f,e,d,c,b,a,"+ |
---|
77 | "Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,"+ |
---|
78 | "Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A"; |
---|
79 | if ( aa < 52 ) { aa=52-aa; } |
---|
80 | if ( aa > 104 ) { aa=260-aa; } |
---|
81 | out = beta[aa,2*(-n)-1]; return (out); |
---|
82 | } |
---|
83 | } |
---|
84 | } |
---|
85 | } |
---|
86 | example |
---|
87 | { "EXAMPLE:"; echo = 2; |
---|
88 | A_Z("c",5); |
---|
89 | A_Z("Z",-5); |
---|
90 | string sR = "ring R = (0,"+A_Z("A",6)+"),("+A_Z("a",10)+"),dp;"; |
---|
91 | sR; |
---|
92 | execute(sR); |
---|
93 | R; |
---|
94 | } |
---|
95 | /////////////////////////////////////////////////////////////////////////////// |
---|
96 | proc ASCII (list #) |
---|
97 | "USAGE: ASCII([n,m]); n,m= integers (32 <= n <= m <= 126) |
---|
98 | RETURN: string of printable ASCII characters (no native language support)@* |
---|
99 | ASCII(): string of all ASCII characters with its numbers,@* |
---|
100 | ASCII(n): n-th ASCII character@* |
---|
101 | ASCII(n,m): n-th up to m-th ASCII character (inclusive) |
---|
102 | EXAMPLE: example ASCII; shows an example |
---|
103 | " |
---|
104 | { |
---|
105 | string s1 = |
---|
106 | " ! \" # $ % & ' ( ) * + , - . |
---|
107 | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---|
108 | / 0 1 2 3 4 5 6 7 8 9 : ; < = |
---|
109 | 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---|
110 | > ? @ A B C D E F G H I J K L |
---|
111 | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---|
112 | M N O P Q R S T U V W X Y Z [ |
---|
113 | 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---|
114 | \\ ] ^ _ ` a b c d e f g h i j |
---|
115 | 92 93 94 95 96 97 98 99 100 101 102 103 104 105 10 |
---|
116 | k l m n o p q r s t u v w x y |
---|
117 | 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---|
118 | z { | } ~ |
---|
119 | 122 123 124 125 126 "; |
---|
120 | |
---|
121 | string s2 = |
---|
122 | " !\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~"; |
---|
123 | |
---|
124 | if ( size(#) == 0 ) |
---|
125 | { |
---|
126 | return(s1); |
---|
127 | } |
---|
128 | if ( size(#) == 1 ) |
---|
129 | { |
---|
130 | return( s2[#[1]-31] ); |
---|
131 | } |
---|
132 | if ( size(#) == 2 ) |
---|
133 | { |
---|
134 | return( s2[#[1]-31,#[2]-#[1]+1] ); |
---|
135 | } |
---|
136 | } |
---|
137 | example |
---|
138 | { "EXAMPLE:"; echo = 2; |
---|
139 | ASCII();""; |
---|
140 | ASCII(42); |
---|
141 | ASCII(32,126); |
---|
142 | } |
---|
143 | /////////////////////////////////////////////////////////////////////////////// |
---|
144 | |
---|
145 | proc absValue(def c) |
---|
146 | "USAGE: absValue(c); c int, number or poly |
---|
147 | RETURN: absValue(c); the absolute value of c |
---|
148 | NOTE: absValue(c)=c if c>=0; absValue=-c if c<=0. |
---|
149 | @* So the function can be applied to any type, for which comparison |
---|
150 | @* operators are defined. |
---|
151 | EXAMPLE: example absValue; shows an example |
---|
152 | " |
---|
153 | { |
---|
154 | if (c>=0) { return(c); } |
---|
155 | else { return(-c); } |
---|
156 | } |
---|
157 | example |
---|
158 | { "EXAMPLE:"; echo = 2; |
---|
159 | ring r1 = 0,x,dp; |
---|
160 | absValue(-2002); |
---|
161 | |
---|
162 | poly f=-4; |
---|
163 | absValue(f); |
---|
164 | } |
---|
165 | /////////////////////////////////////////////////////////////////////////////// |
---|
166 | |
---|
167 | proc binomial (int n, int k) |
---|
168 | "USAGE: binomial(n,k); n,k integers |
---|
169 | RETURN: binomial(n,k); binomial coefficient n choose k |
---|
170 | EXAMPLE: example binomial; shows an example |
---|
171 | " |
---|
172 | { |
---|
173 | bigint l; |
---|
174 | bigint r=1; |
---|
175 | bigint kk=k; |
---|
176 | bigint nn=n; |
---|
177 | if ( k > n-k ) |
---|
178 | { k = n-k; } |
---|
179 | if ( k<=0 or k>n ) //trivial cases |
---|
180 | { r = (k==0)*r; } |
---|
181 | for (l=1; l<=kk; l=l+1 ) |
---|
182 | { |
---|
183 | r=r*(nn+1-l)/l; |
---|
184 | } |
---|
185 | return(r); |
---|
186 | } |
---|
187 | example |
---|
188 | { "EXAMPLE:"; echo = 2; |
---|
189 | binomial(200,100);""; //type bigint |
---|
190 | int n,k = 200,100; |
---|
191 | bigint b1 = binomial(n,k); |
---|
192 | ring r = 0,x,dp; |
---|
193 | poly b2 = coeffs((x+1)^n,x)[k+1,1]; //coefficient of x^k in (x+1)^n |
---|
194 | b1-b2; //b1 and b2 should coincide |
---|
195 | } |
---|
196 | /////////////////////////////////////////////////////////////////////////////// |
---|
197 | |
---|
198 | /////////////////////////////////////////////////////////////////////////////// |
---|
199 | |
---|
200 | proc factorial (int n) |
---|
201 | "USAGE: factorial(n); n integer |
---|
202 | RETURN: factorial(n): n! of type bigint. |
---|
203 | SEE ALSO: prime |
---|
204 | EXAMPLE: example factorial; shows an example |
---|
205 | " |
---|
206 | { |
---|
207 | bigint r=1; |
---|
208 | //------------------------------ computation -------------------------------- |
---|
209 | for (int l=2; l<=n; l++) |
---|
210 | { |
---|
211 | r=r*l; |
---|
212 | } |
---|
213 | return(r); |
---|
214 | } |
---|
215 | example |
---|
216 | { "EXAMPLE:"; echo = 2; |
---|
217 | factorial(37); |
---|
218 | } |
---|
219 | /////////////////////////////////////////////////////////////////////////////// |
---|
220 | |
---|
221 | proc fibonacci (int n) |
---|
222 | "USAGE: fibonacci(n); n,p integers |
---|
223 | RETURN: fibonacci(n): nth Fibonacci number, f(0)=f(1)=1, f(i+1)=f(i-1)+f(i) |
---|
224 | @* - computed in characteristic 0, of type bigint |
---|
225 | SEE ALSO: prime |
---|
226 | EXAMPLE: example fibonacci; shows an example |
---|
227 | " |
---|
228 | { |
---|
229 | bigint f,g,h=1,1,1; |
---|
230 | //------------------------------ computation -------------------------------- |
---|
231 | for (int ii=3; ii<=n; ii++) |
---|
232 | { |
---|
233 | h = f+g; f = g; g = h; |
---|
234 | } |
---|
235 | return(h); |
---|
236 | } |
---|
237 | example |
---|
238 | { "EXAMPLE:"; echo = 2; |
---|
239 | fibonacci(42); |
---|
240 | } |
---|
241 | /////////////////////////////////////////////////////////////////////////////// |
---|
242 | |
---|
243 | proc kmemory (list #) |
---|
244 | "USAGE: kmemory([n,[v]]); n,v integers |
---|
245 | RETURN: memory in kilobyte of type bigint |
---|
246 | @* n=0: memory used by active variables (same as no parameters) |
---|
247 | @* n=1: total memory allocated by Singular |
---|
248 | DISPLAY: detailed information about allocated and used memory if v!=0 |
---|
249 | NOTE: kmemory uses internal function 'memory' to compute kilobyte, and |
---|
250 | is the same as 'memory' for n!=0,1,2 |
---|
251 | EXAMPLE: example kmemory; shows an example |
---|
252 | " |
---|
253 | { |
---|
254 | int n; |
---|
255 | int verb; |
---|
256 | if (size(#) != 0) |
---|
257 | { |
---|
258 | n=#[1]; |
---|
259 | if (size(#) >1) |
---|
260 | { verb=#[2]; } |
---|
261 | } |
---|
262 | |
---|
263 | if ( verb != 0) |
---|
264 | { |
---|
265 | if ( n==0) |
---|
266 | { dbprint(printlevel-voice+3, |
---|
267 | "// memory used, at the moment, by active variables (kilobyte):"); } |
---|
268 | if ( n==1 ) |
---|
269 | { dbprint(printlevel-voice+3, |
---|
270 | "// total memory allocated, at the moment, by SINGULAR (kilobyte):"); } |
---|
271 | } |
---|
272 | return ((memory(n)+1023) div 1024); |
---|
273 | } |
---|
274 | example |
---|
275 | { "EXAMPLE:"; echo = 2; |
---|
276 | kmemory(); |
---|
277 | kmemory(1,1); |
---|
278 | } |
---|
279 | /////////////////////////////////////////////////////////////////////////////// |
---|
280 | |
---|
281 | proc killall |
---|
282 | "USAGE: killall(); (no parameter) |
---|
283 | killall(\"type_name\"); |
---|
284 | killall(\"not\", \"type_name\"); |
---|
285 | RETURN: killall(); kills all user-defined variables except loaded procedures, |
---|
286 | no return value. |
---|
287 | @* - killall(\"type_name\"); kills all user-defined variables, |
---|
288 | of type \"type_name\" |
---|
289 | @* - killall(\"not\", \"type_name\"); kills all user-defined variables, |
---|
290 | except those of type \"type_name\" and except loaded procedures |
---|
291 | @* - killall(\"not\", \"name_1\", \"name_2\", ...); |
---|
292 | kills all user-defined variables, except those of name \"name_i\" |
---|
293 | and except loaded procedures |
---|
294 | NOTE: killall should never be used inside a procedure |
---|
295 | EXAMPLE: example killall; shows an example AND KILLS ALL YOUR VARIABLES |
---|
296 | " |
---|
297 | { |
---|
298 | list @marie=names(Top); |
---|
299 | int j, no_kill, @joni; |
---|
300 | for ( @joni=1; @joni<=size(#); @joni++) |
---|
301 | { |
---|
302 | if (typeof(#[@joni]) != "string") |
---|
303 | { |
---|
304 | ERROR("Need string as " + string(@joni) + "th argument"); |
---|
305 | } |
---|
306 | } |
---|
307 | |
---|
308 | // kills all user-defined variables but not loaded procedures |
---|
309 | if( size(#)==0 ) |
---|
310 | { |
---|
311 | for ( @joni=size(@marie); @joni>0; @joni-- ) |
---|
312 | { |
---|
313 | if( @marie[@joni]!="LIB" and typeof(`@marie[@joni]`)!="proc" |
---|
314 | and typeof(`@marie[@joni]`)!="package") |
---|
315 | { kill `@marie[@joni]`; } |
---|
316 | } |
---|
317 | } |
---|
318 | else |
---|
319 | { |
---|
320 | // kills all user-defined variables |
---|
321 | if( size(#)==1 ) |
---|
322 | { |
---|
323 | // of type proc |
---|
324 | if( #[1] == "proc" ) |
---|
325 | { |
---|
326 | for ( @joni=size(@marie); @joni>0; @joni-- ) |
---|
327 | { |
---|
328 | if( (@marie[@joni]!="General") |
---|
329 | and (@marie[@joni]!="Top") |
---|
330 | and (@marie[@joni]!="killall") |
---|
331 | and (@marie[@joni]!="LIB") and |
---|
332 | ((typeof(`@marie[@joni]`)=="package") or |
---|
333 | (typeof(`@marie[@joni]`)=="proc"))) |
---|
334 | { |
---|
335 | if (defined(`@marie[@joni]`)) {kill `@marie[@joni]`;} |
---|
336 | } |
---|
337 | if (!defined(@joni)) break; |
---|
338 | } |
---|
339 | if (defined(General)) |
---|
340 | { |
---|
341 | @marie=names(General); |
---|
342 | for ( @joni=size(@marie); @joni>0; @joni-- ) |
---|
343 | { |
---|
344 | if(@marie[@joni]!="killall" |
---|
345 | and typeof(`@marie[@joni]`)=="proc") |
---|
346 | { kill General::`@marie[@joni]`; } |
---|
347 | } |
---|
348 | kill General::killall; |
---|
349 | } |
---|
350 | } |
---|
351 | else |
---|
352 | { |
---|
353 | // other types |
---|
354 | for ( @joni=size(@marie); @joni>2; @joni-- ) |
---|
355 | { |
---|
356 | if(typeof(`@marie[@joni]`)==#[1] and @marie[@joni]!="LIB" |
---|
357 | and typeof(`@marie[@joni]`)!="proc") |
---|
358 | { kill `@marie[@joni]`; } |
---|
359 | } |
---|
360 | } |
---|
361 | } |
---|
362 | else |
---|
363 | { |
---|
364 | // kills all user-defined variables whose name or type is not #i |
---|
365 | for ( @joni=size(@marie); @joni>2; @joni-- ) |
---|
366 | { |
---|
367 | if ( @marie[@joni] != "LIB" && @marie[@joni] != "Top" |
---|
368 | && typeof(`@marie[@joni]`) != "proc") |
---|
369 | { |
---|
370 | no_kill = 0; |
---|
371 | for (j=2; j<= size(#); j++) |
---|
372 | { |
---|
373 | if (typeof(`@marie[@joni]`)==#[j] or @marie[@joni] == #[j]) |
---|
374 | { |
---|
375 | no_kill = 1; |
---|
376 | break; |
---|
377 | } |
---|
378 | } |
---|
379 | if (! no_kill) |
---|
380 | { |
---|
381 | kill `@marie[@joni]`; |
---|
382 | } |
---|
383 | } |
---|
384 | if (!defined(@joni)) break; |
---|
385 | } |
---|
386 | } |
---|
387 | } |
---|
388 | } |
---|
389 | example |
---|
390 | { "EXAMPLE:"; echo = 2; |
---|
391 | ring rtest; ideal i=x,y,z; string str="hi"; int j = 3; |
---|
392 | export rtest,i,str,j; //this makes the local variables global |
---|
393 | listvar(); |
---|
394 | killall("ring"); // kills all rings |
---|
395 | listvar(); |
---|
396 | killall("not", "int"); // kills all variables except int's (and procs) |
---|
397 | listvar(); |
---|
398 | killall(); // kills all vars except loaded procs |
---|
399 | listvar(); |
---|
400 | } |
---|
401 | /////////////////////////////////////////////////////////////////////////////// |
---|
402 | |
---|
403 | proc number_e (int n) |
---|
404 | "USAGE: number_e(n); n integer |
---|
405 | RETURN: Euler number e=exp(1) up to n decimal digits (no rounding) |
---|
406 | @* - of type string if no basering of char 0 is defined |
---|
407 | @* - of type number if a basering of char 0 is defined |
---|
408 | DISPLAY: decimal format of e if printlevel > 0 (default:printlevel=0 ) |
---|
409 | NOTE: procedure uses algorithm of A.H.J. Sale |
---|
410 | EXAMPLE: example number_e; shows an example |
---|
411 | " |
---|
412 | { |
---|
413 | int i,m,s,t; |
---|
414 | intvec u,e; |
---|
415 | u[n+2]=0; e[n+1]=0; e=e+1; |
---|
416 | if( defined(basering) ) |
---|
417 | { |
---|
418 | if( char(basering)==0 ) { number r=2; t=1; } |
---|
419 | } |
---|
420 | string result = "2."; |
---|
421 | for( i=1; i<=n+1; i=i+1 ) |
---|
422 | { |
---|
423 | e = e*10; |
---|
424 | for( m=n+1; m>=1; m=m-1 ) |
---|
425 | { |
---|
426 | s = e[m]+u[m+1]; |
---|
427 | u[m] = s div (m+1); |
---|
428 | e[m] = s%(m+1); |
---|
429 | } |
---|
430 | result = result+string(u[1]); |
---|
431 | if( t==1 ) { r = r+number(u[1])/number(10)^i; } |
---|
432 | } |
---|
433 | if( t==1 ) |
---|
434 | { dbprint(printlevel-voice+2,"// "+result[1,n+1]); |
---|
435 | return(r); |
---|
436 | } |
---|
437 | return(result[1,n+1]); |
---|
438 | } |
---|
439 | example |
---|
440 | { "EXAMPLE:"; echo = 2; |
---|
441 | number_e(30);""; |
---|
442 | ring R = 0,t,lp; |
---|
443 | number e = number_e(30); |
---|
444 | e; |
---|
445 | } |
---|
446 | /////////////////////////////////////////////////////////////////////////////// |
---|
447 | |
---|
448 | proc number_pi (int n) |
---|
449 | "USAGE: number_pi(n); n positive integer |
---|
450 | RETURN: pi (area of unit circle) up to n decimal digits (no rounding) |
---|
451 | @* - of type string if no basering of char 0 is defined, |
---|
452 | @* - of type number, if a basering of char 0 is defined |
---|
453 | DISPLAY: decimal format of pi if printlevel > 0 (default:printlevel=0 ) |
---|
454 | NOTE: procedure uses algorithm of S. Rabinowitz |
---|
455 | EXAMPLE: example number_pi; shows an example |
---|
456 | " |
---|
457 | { |
---|
458 | int i,m,t,e,q,N; |
---|
459 | intvec r,p,B,Prelim; |
---|
460 | string result,prelim; |
---|
461 | N = (10*n) div 3 + 2; |
---|
462 | p[N+1]=0; p=p+2; r=p; |
---|
463 | for( i=1; i<=N+1; i=i+1 ) { B[i]=2*i-1; } |
---|
464 | if( defined(basering) ) |
---|
465 | { |
---|
466 | if( char(basering)==0 ) { number pi; number pri; t=1; } |
---|
467 | } |
---|
468 | for( i=0; i<=n; i=i+1 ) |
---|
469 | { |
---|
470 | p = r*10; |
---|
471 | e = p[N+1]; |
---|
472 | for( m=N+1; m>=2; m=m-1 ) |
---|
473 | { |
---|
474 | r[m] = e%B[m]; |
---|
475 | q = e div B[m]; |
---|
476 | e = q*(m-1)+p[m-1]; |
---|
477 | } |
---|
478 | r[1] = e%10; |
---|
479 | q = e div 10; |
---|
480 | if( q!=10 and q!=9 ) |
---|
481 | { |
---|
482 | result = result+prelim; |
---|
483 | Prelim = q; |
---|
484 | prelim = string(q); |
---|
485 | } |
---|
486 | if( q==9 ) |
---|
487 | { |
---|
488 | Prelim = Prelim,9; |
---|
489 | prelim = prelim+"9"; |
---|
490 | } |
---|
491 | if( q==10 ) |
---|
492 | { |
---|
493 | Prelim = (Prelim+1)-((Prelim+1) div 10)*10; |
---|
494 | for( m=size(Prelim); m>0; m=m-1) |
---|
495 | { |
---|
496 | prelim[m] = string(Prelim[m]); |
---|
497 | } |
---|
498 | result = result+prelim; |
---|
499 | if( t==1 ) { pi=pi+pri; } |
---|
500 | Prelim = 0; |
---|
501 | prelim = "0"; |
---|
502 | } |
---|
503 | if( t==1 ) { pi=pi+number(q)/number(10)^i; } |
---|
504 | } |
---|
505 | result = result,prelim[1]; |
---|
506 | result = "3."+result[2,n-1]; |
---|
507 | if( t==1 ) |
---|
508 | { dbprint(printlevel-voice+2,"// "+result); |
---|
509 | return(pi); |
---|
510 | } |
---|
511 | return(result); |
---|
512 | } |
---|
513 | example |
---|
514 | { "EXAMPLE:"; echo = 2; |
---|
515 | number_pi(11);""; |
---|
516 | ring r = (real,10),t,dp; |
---|
517 | number pi = number_pi(11); pi; |
---|
518 | } |
---|
519 | /////////////////////////////////////////////////////////////////////////////// |
---|
520 | |
---|
521 | proc primes (int n, int m) |
---|
522 | "USAGE: primes(n,m); n,m integers |
---|
523 | RETURN: intvec, consisting of all primes p, prime(n)<=p<=m, in increasing |
---|
524 | order if n<=m, resp. prime(m)<=p<=n, in decreasing order if m<n. |
---|
525 | NOTE: prime(n); returns the biggest prime number <= min(n,32003) |
---|
526 | if n>=2, else 2 |
---|
527 | EXAMPLE: example primes; shows an example |
---|
528 | " |
---|
529 | { int change; |
---|
530 | if ( n>m ) { change=n; n=m ; m=change; change=1; } |
---|
531 | int q,p = prime(m),prime(n); intvec v = q; q = q-1; |
---|
532 | while ( q>=p ) { q = prime(q); v = q,v; q = q-1; } |
---|
533 | if ( change==1 ) { v = v[size(v)..1]; } |
---|
534 | return(v); |
---|
535 | } |
---|
536 | example |
---|
537 | { "EXAMPLE:"; echo = 2; |
---|
538 | primes(50,100);""; |
---|
539 | intvec v = primes(37,1); v; |
---|
540 | } |
---|
541 | /////////////////////////////////////////////////////////////////////////////// |
---|
542 | |
---|
543 | proc product (id, list #) |
---|
544 | "USAGE: product(id[,v]); id ideal/vector/module/matrix/intvec/intmat/list, |
---|
545 | v intvec (default: v=1..number of entries of id) |
---|
546 | ASSUME: list members can be multiplied. |
---|
547 | RETURN: The product of all entries of id [with index given by v] of type |
---|
548 | depending on the entries of id. |
---|
549 | NOTE: If id is not a list, id is treated as a list of polys resp. integers. |
---|
550 | A module m is identified with the corresponding matrix M (columns |
---|
551 | of M generate m). |
---|
552 | @* If v is outside the range of id, we have the empty product and the |
---|
553 | result will be 1 (of type int). |
---|
554 | EXAMPLE: example product; shows an example |
---|
555 | " |
---|
556 | { |
---|
557 | //-------------------- initialization and special feature --------------------- |
---|
558 | int n,j,tt; |
---|
559 | string ty; //will become type of id |
---|
560 | list l; |
---|
561 | |
---|
562 | // We wish to allow something like product(x(1..10)) if x(1),...,x(10) are |
---|
563 | // variables. x(1..10) is a list of polys and enters the procedure with |
---|
564 | // id=x(1) and # a list with 9 polys, #[1]= x(2),...,#[9]= x(10). Hence, in |
---|
565 | // this case # is never empty. If an additional intvec v is given, |
---|
566 | // it is added to #, so we have to separate it first and make |
---|
567 | // the rest a list which has to be multiplied. |
---|
568 | |
---|
569 | int s = size(#); |
---|
570 | if( s!=0 ) |
---|
571 | { if ( typeof(#[s])=="intvec" or typeof(#[s])=="int") |
---|
572 | { |
---|
573 | intvec v = #[s]; |
---|
574 | tt=1; |
---|
575 | s=s-1; |
---|
576 | if ( s>0 ) { # = #[1..s]; } |
---|
577 | } |
---|
578 | } |
---|
579 | if ( s>0 ) |
---|
580 | { |
---|
581 | l = list(id)+#; |
---|
582 | kill id; |
---|
583 | list id = l; //case: id = list |
---|
584 | ty = "list"; |
---|
585 | n = size(id); |
---|
586 | } |
---|
587 | else |
---|
588 | { |
---|
589 | ty = typeof(id); |
---|
590 | if( ty == "list" ) |
---|
591 | { n = size(id); } |
---|
592 | } |
---|
593 | //------------------------------ reduce to 3 cases --------------------------- |
---|
594 | if( ty=="poly" or ty=="ideal" or ty=="vector" |
---|
595 | or ty=="module" or ty=="matrix" ) |
---|
596 | { |
---|
597 | ideal i = ideal(matrix(id)); |
---|
598 | kill id; |
---|
599 | ideal id = i; //case: id = ideal |
---|
600 | n = ncols(id); |
---|
601 | } |
---|
602 | if( ty=="int" or ty=="intvec" or ty=="intmat" ) |
---|
603 | { |
---|
604 | if ( ty == "int" ) { intmat S =id; } |
---|
605 | else { intmat S = intmat(id); } |
---|
606 | intvec i = S[1..nrows(S),1..ncols(S)]; |
---|
607 | kill id; |
---|
608 | intvec id = i; //case: id = intvec |
---|
609 | n = size(id); |
---|
610 | } |
---|
611 | //--------------- consider intvec v and empty product ----------------------- |
---|
612 | if( tt!=0 ) |
---|
613 | { |
---|
614 | for (j=1; j<=size(v); j++) |
---|
615 | { |
---|
616 | if ( v[j] <= 0 or v[j] > n ) //v outside range of id |
---|
617 | { |
---|
618 | return(1); //empty product is 1 |
---|
619 | } |
---|
620 | } |
---|
621 | id = id[v]; //consider part of id |
---|
622 | } //corresponding to v |
---|
623 | //--------------------- special case: one factor is zero --------------------- |
---|
624 | if ( typeof(id) == "ideal") |
---|
625 | { |
---|
626 | if( size(id) < ncols(id) ) |
---|
627 | { |
---|
628 | poly f; return(f); |
---|
629 | } |
---|
630 | } |
---|
631 | //-------------------------- finally, multiply objects ----------------------- |
---|
632 | n = size(id); |
---|
633 | def f(1) = id[1]; |
---|
634 | for( j=2; j<=n; j=j+1 ) { def f(j)=f(j-1)*id[j]; } |
---|
635 | return(f(n)); |
---|
636 | } |
---|
637 | example |
---|
638 | { "EXAMPLE:"; echo = 2; |
---|
639 | ring r= 0,(x,y,z),dp; |
---|
640 | ideal m = maxideal(1); |
---|
641 | product(m); |
---|
642 | product(m[2..3]); |
---|
643 | matrix M[2][3] = 1,x,2,y,3,z; |
---|
644 | product(M); |
---|
645 | intvec v=2,4,6; |
---|
646 | product(M,v); |
---|
647 | intvec iv = 1,2,3,4,5,6,7,8,9; |
---|
648 | v=1..5,7,9; |
---|
649 | product(iv,v); |
---|
650 | intmat A[2][3] = 1,1,1,2,2,2; |
---|
651 | product(A,3..5); |
---|
652 | } |
---|
653 | /////////////////////////////////////////////////////////////////////////////// |
---|
654 | |
---|
655 | proc sort (id, list #) |
---|
656 | "USAGE: sort(id[,v,o,n]); id = ideal/module/intvec/list(of intvec's or int's) |
---|
657 | @* sort may be called with 1, 2 or 3 arguments in the following way: |
---|
658 | @* sort(id[,v,n]); v=intvec of positive integers, n=integer, |
---|
659 | @* sort(id[,o,n]); o=string (any allowed ordstr of a ring), n=integer |
---|
660 | RETURN: a list l of two elements: |
---|
661 | @format |
---|
662 | l[1]: object of same type as input but sorted in the following way: |
---|
663 | - if id=ideal/module: generators of id are sorted w.r.t. intvec v |
---|
664 | (id[v[1]] becomes 1-st, id[v[2]] 2-nd element, etc.). If no v is |
---|
665 | present, id is sorted w.r.t. ordering o (if o is given) or w.r.t. |
---|
666 | actual monomial ordering (if no o is given): |
---|
667 | NOTE: generators with SMALLER(!) leading term come FIRST |
---|
668 | (e.g. sort(id); sorts backwards to actual monomial ordering) |
---|
669 | - if id=list of intvec's or int's: consider a list element, say |
---|
670 | id[1]=3,2,5, as exponent vector of the monomial x^3*y^2*z^5; |
---|
671 | the corresponding monomials are ordered w.r.t. intvec v (s.a.). |
---|
672 | If no v is present, the monomials are sorted w.r.t. ordering o |
---|
673 | (if o is given) or w.r.t. lexicographical ordering (if no o is |
---|
674 | given). The corresponding ordered list of exponent vectors is |
---|
675 | returned. |
---|
676 | (e.g. sort(id); sorts lexicographically, smaller int's come first) |
---|
677 | WARNING: Since negative exponents create the 0 polynomial in |
---|
678 | Singular, id should not contain negative integers: the result |
---|
679 | might not be as expected |
---|
680 | - if id=intvec: id is treated as list of integers |
---|
681 | - if n!=0 the ordering is inverse, i.e. w.r.t. v(size(v)..1) |
---|
682 | default: n=0 |
---|
683 | l[2]: intvec, describing the permutation of the input (hence l[2]=v |
---|
684 | if v is given (with positive integers)) |
---|
685 | @end format |
---|
686 | NOTE: If v is given id may be any simply indexed object (e.g. any list or |
---|
687 | string); if v[i]<0 and i<=size(id) v[i] is set internally to i; |
---|
688 | entries of v must be pairwise distinct to get a permutation id. |
---|
689 | Zero generators of ideal/module are deleted |
---|
690 | If 'o' is given, the input is sorted by considering leading terms |
---|
691 | w.r.t. the new ring ordering given by 'o' |
---|
692 | EXAMPLE: example sort; shows an example |
---|
693 | " |
---|
694 | { int ii,jj,s,n = 0,0,1,0; |
---|
695 | intvec v; |
---|
696 | if ( defined(basering) ) { def P = basering; } |
---|
697 | if ( size(#)==0 and (typeof(id)=="ideal" or typeof(id)=="module" |
---|
698 | or typeof(id)=="matrix")) |
---|
699 | { |
---|
700 | id = simplify(id,2); |
---|
701 | for ( ii=1; ii<ncols(id); ii++ ) |
---|
702 | { |
---|
703 | if ( id[ii]!=id[ii+1] ) { break;} |
---|
704 | } |
---|
705 | if ( ii != ncols(id) ) { v = sortvec(id); } |
---|
706 | else { v = ncols(id)..1; } |
---|
707 | } |
---|
708 | if ( size(#)>=1 and (typeof(id)=="ideal" or typeof(id)=="module" |
---|
709 | or typeof(id)=="matrix") ) |
---|
710 | { |
---|
711 | if ( typeof(#[1])=="string" ) |
---|
712 | { |
---|
713 | execute("ring r1 =("+charstr(P)+"),("+varstr(P)+"),("+#[1]+");"); |
---|
714 | def i = imap(P,id); |
---|
715 | v = sortvec(i); |
---|
716 | setring P; |
---|
717 | n=2; |
---|
718 | } |
---|
719 | } |
---|
720 | if ( typeof(id)=="intvec" or typeof(id)=="list" and n==0 ) |
---|
721 | { |
---|
722 | string o; |
---|
723 | if ( size(#)==0 ) { o = "lp"; n=1; } |
---|
724 | if ( size(#)>=1 ) |
---|
725 | { |
---|
726 | if ( typeof(#[1])=="string" ) { o = #[1]; n=1; } |
---|
727 | } |
---|
728 | } |
---|
729 | if ( typeof(id)=="intvec" or typeof(id)=="list" and n==1 ) |
---|
730 | { |
---|
731 | if ( typeof(id)=="list" ) |
---|
732 | { |
---|
733 | for (ii=1; ii<=size(id); ii++) |
---|
734 | { |
---|
735 | if (typeof(id[ii]) != "intvec" and typeof(id[ii]) != "int") |
---|
736 | { ERROR("// list elements must be intvec/int"); } |
---|
737 | else |
---|
738 | { s=size(id[ii])*(s < size(id[ii])) + s*(s >= size(id[ii])); } |
---|
739 | } |
---|
740 | } |
---|
741 | execute("ring r=0,x(1..s),("+o+");"); |
---|
742 | ideal i; |
---|
743 | poly f; |
---|
744 | for (ii=1; ii<=size(id); ii++) |
---|
745 | { |
---|
746 | f=1; |
---|
747 | for (jj=1; jj<=size(id[ii]); jj++) |
---|
748 | { |
---|
749 | f=f*x(jj)^(id[ii])[jj]; |
---|
750 | } |
---|
751 | i[ii]=f; |
---|
752 | } |
---|
753 | v = sort(i)[2]; |
---|
754 | } |
---|
755 | if ( size(#)!=0 and n==0 ) { v = #[1]; } |
---|
756 | if( size(#)==2 ) |
---|
757 | { |
---|
758 | if ( #[2] != 0 ) { v = v[size(v)..1]; } |
---|
759 | } |
---|
760 | s = size(v); |
---|
761 | if( size(id) < s ) { s = size(id); } |
---|
762 | def m = id; |
---|
763 | if ( size(m) != 0 ) |
---|
764 | { |
---|
765 | for ( jj=1; jj<=s; jj++) |
---|
766 | { |
---|
767 | if ( v[jj]<=0 ) { v[jj]=jj; } |
---|
768 | m[jj] = id[v[jj]]; |
---|
769 | } |
---|
770 | } |
---|
771 | if ( v == 0 ) { v = 1; } |
---|
772 | list L=m,v; |
---|
773 | return(L); |
---|
774 | } |
---|
775 | example |
---|
776 | { "EXAMPLE:"; echo = 2; |
---|
777 | ring r0 = 0,(x,y,z,t),lp; |
---|
778 | ideal i = x3,z3,xyz; |
---|
779 | sort(i); //sorts using lex ordering, smaller polys come first |
---|
780 | |
---|
781 | sort(i,3..1); |
---|
782 | |
---|
783 | sort(i,"ls")[1]; //sort w.r.t. negative lex ordering |
---|
784 | |
---|
785 | intvec v =1,10..5,2..4;v; |
---|
786 | sort(v)[1]; // sort v lexicographically |
---|
787 | |
---|
788 | sort(v,"Dp",1)[1]; // sort v w.r.t (total sum, reverse lex) |
---|
789 | |
---|
790 | // Note that in general: lead(sort(M)) != sort(lead(M)), e.g: |
---|
791 | module M = [0, 1, 1, 0], [1, 0, 0, 1]; M; |
---|
792 | sort(lead(M), "c, dp")[1]; |
---|
793 | lead(sort(M, "c, dp")[1]); |
---|
794 | |
---|
795 | // In order to sort M wrt a NEW ordering by considering OLD leading |
---|
796 | // terms use one of the following equivalent commands: |
---|
797 | module( M[ sort(lead(M), "c,dp")[2] ] ); |
---|
798 | sort( M, sort(lead(M), "c,dp")[2] )[1]; |
---|
799 | |
---|
800 | // BUG: Please, don't use this sort for integer vectors or lists |
---|
801 | // with them if there can be negative integers! |
---|
802 | // TODO: for some HiWi |
---|
803 | sort(3..-3)[1]; |
---|
804 | sort(list(-v, v))[1]; |
---|
805 | |
---|
806 | } |
---|
807 | /////////////////////////////////////////////////////////////////////////////// |
---|
808 | |
---|
809 | static proc lsum (int n, list l) |
---|
810 | { if (n>10) |
---|
811 | { return( lsum(n/2,list(l[1..(n/2)])) + lsum(n-n/2, list(l[(n/2+1)..n])) ); |
---|
812 | } |
---|
813 | else |
---|
814 | { def Summe=l[1]; |
---|
815 | for (int i=2;i<=n;i++) |
---|
816 | { Summe=Summe+l[i]; |
---|
817 | } |
---|
818 | return(Summe); |
---|
819 | } |
---|
820 | } |
---|
821 | |
---|
822 | /////////////////////////////////////////////////////////////////////////////// |
---|
823 | |
---|
824 | proc sum (id, list #) |
---|
825 | "USAGE: sum(id[,v]); id ideal/vector/module/matrix/intvec/intmat/list, |
---|
826 | v intvec (default: v=1..number of entries of id) |
---|
827 | ASSUME: list members can be added. |
---|
828 | RETURN: The sum of all entries of id [with index given by v] of type |
---|
829 | depending on the entries of id. |
---|
830 | NOTE: If id is not a list, id is treated as a list of polys resp. integers. |
---|
831 | A module m is identified with the corresponding matrix M (columns |
---|
832 | of M generate m). |
---|
833 | @* If v is outside the range of id, we have the empty sum and the |
---|
834 | result will be 0 (of type int). |
---|
835 | EXAMPLE: example sum; shows an example |
---|
836 | " |
---|
837 | { |
---|
838 | //-------------------- initialization and special feature --------------------- |
---|
839 | int n,j,tt; |
---|
840 | string ty; // will become type of id |
---|
841 | list l; |
---|
842 | |
---|
843 | // We wish to allow something like sum(x(1..10)) if x(1),...,x(10) are |
---|
844 | // variables. x(1..10) is a list of polys and enters the procedure with |
---|
845 | // id=x(1) and # a list with 9 polys, #[1]= x(2),...,#[9]= x(10). Hence, in |
---|
846 | // this case # is never empty. If an additional intvec v is given, |
---|
847 | // it is added to #, so we have to separate it first and make |
---|
848 | // the rest a list which has to be added. |
---|
849 | |
---|
850 | int s = size(#); |
---|
851 | if( s!=0 ) |
---|
852 | { if ( typeof(#[s])=="intvec" or typeof(#[s])=="int") |
---|
853 | { intvec v = #[s]; |
---|
854 | tt=1; |
---|
855 | s=s-1; |
---|
856 | if ( s>0 ) { # = #[1..s]; } |
---|
857 | } |
---|
858 | } |
---|
859 | if ( s>0 ) |
---|
860 | { |
---|
861 | l = list(id)+#; |
---|
862 | kill id; |
---|
863 | list id = l; //case: id = list |
---|
864 | ty = "list"; |
---|
865 | } |
---|
866 | else |
---|
867 | { |
---|
868 | ty = typeof(id); |
---|
869 | } |
---|
870 | //------------------------------ reduce to 3 cases --------------------------- |
---|
871 | if( ty=="poly" or ty=="ideal" or ty=="vector" |
---|
872 | or ty=="module" or ty=="matrix" ) |
---|
873 | { //case: id = ideal |
---|
874 | ideal i = ideal(matrix(id)); |
---|
875 | kill id; |
---|
876 | ideal id = simplify(i,2); //delete 0 entries |
---|
877 | } |
---|
878 | if( ty=="int" or ty=="intvec" or ty=="intmat" ) |
---|
879 | { //case: id = intvec |
---|
880 | if ( ty == "int" ) { intmat S =id; } |
---|
881 | else { intmat S = intmat(id); } |
---|
882 | intvec i = S[1..nrows(S),1..ncols(S)]; |
---|
883 | kill id; |
---|
884 | intvec id = i; |
---|
885 | } |
---|
886 | //------------------- consider intvec v and empty sum ----------------------- |
---|
887 | if( tt!=0 ) |
---|
888 | { |
---|
889 | for (j=1; j<=size(v); j++) |
---|
890 | { |
---|
891 | if ( v[j] <= 0 or v[j] > size(id) ) //v outside range of id |
---|
892 | { |
---|
893 | return(0); //empty sum is 0 |
---|
894 | } |
---|
895 | } |
---|
896 | id = id[v]; //consider part of id |
---|
897 | } //corresponding to v |
---|
898 | |
---|
899 | //-------------------------- finally, add objects --------------------------- |
---|
900 | n = size(id); |
---|
901 | if (n>10) |
---|
902 | { return( lsum(n/2,list(id[1..(n/2)])) + lsum(n-n/2, list(id[(n/2+1)..n])) ); |
---|
903 | } |
---|
904 | else |
---|
905 | { def Summe=id[1]; |
---|
906 | for (int lauf=2;lauf<=n;lauf++) |
---|
907 | { Summe=Summe+id[lauf]; |
---|
908 | } |
---|
909 | return(Summe); |
---|
910 | } |
---|
911 | } |
---|
912 | example |
---|
913 | { "EXAMPLE:"; echo = 2; |
---|
914 | ring r1 = 0,(x,y,z),dp; |
---|
915 | vector pv = [xy,xz,yz,x2,y2,z2]; |
---|
916 | sum(pv); |
---|
917 | sum(pv,2..5); |
---|
918 | matrix M[2][3] = 1,x,2,y,3,z; |
---|
919 | intvec w=2,4,6; |
---|
920 | sum(M,w); |
---|
921 | intvec iv = 1,2,3,4,5,6,7,8,9; |
---|
922 | sum(iv,2..4); |
---|
923 | iv = intvec(1..100); |
---|
924 | sum(iv); |
---|
925 | ring r2 = 0,(x(1..10)),dp; |
---|
926 | sum(x(3..7),intvec(1,3,5)); |
---|
927 | } |
---|
928 | /////////////////////////////////////////////////////////////////////////////// |
---|
929 | |
---|
930 | |
---|
931 | /////////////////////////////////////////////////////////////////////////////// |
---|
932 | |
---|
933 | proc watchdog(int i, string cmd) |
---|
934 | "USAGE: watchdog(i,cmd); i integer, cmd string |
---|
935 | RETURN: Result of cmd, if the result can be computed in i seconds. |
---|
936 | Otherwise the computation is interrupted after i seconds, |
---|
937 | the string "Killed" is returned and the global variable |
---|
938 | 'watchdog_interrupt' is defined. |
---|
939 | NOTE: * the MP package must be enabled |
---|
940 | * the current basering should not be watchdog_rneu, since |
---|
941 | watchdog_rneu will be killed |
---|
942 | * if there are variable names of the structure x(i) all |
---|
943 | polynomials have to be put into eval(...) in order to be |
---|
944 | interpreted correctly |
---|
945 | * a second Singular process is started by this procedure |
---|
946 | EXAMPLE: example watchdog; shows an example |
---|
947 | " |
---|
948 | { |
---|
949 | string rname=nameof(basering); |
---|
950 | def rsave=basering; |
---|
951 | if (defined(watchdog_rneu)) |
---|
952 | { |
---|
953 | kill watchdog_rneu; |
---|
954 | } |
---|
955 | // If we do not have MP-links, watchdog cannot be used |
---|
956 | if (system("with","MP")) |
---|
957 | { |
---|
958 | if ( i > 0 ) |
---|
959 | { |
---|
960 | int j=10; |
---|
961 | int k=999999; |
---|
962 | // fork, get the pid of the child and send it the command |
---|
963 | link l_fork="MPtcp:fork"; |
---|
964 | open(l_fork); |
---|
965 | write(l_fork,quote(system("pid"))); |
---|
966 | int pid=read(l_fork); |
---|
967 | execute("write(l_fork,quote(" + cmd + "));"); |
---|
968 | |
---|
969 | |
---|
970 | // sleep in small, but growing intervals for appr. 1 second |
---|
971 | while(j < k) |
---|
972 | { |
---|
973 | if (status(l_fork, "read", "ready", j)) {break;} |
---|
974 | j = j + j; |
---|
975 | } |
---|
976 | |
---|
977 | // sleep in intervals of one second |
---|
978 | j = 1; |
---|
979 | if (!status(l_fork,"read","ready")) |
---|
980 | { |
---|
981 | while (j < i) |
---|
982 | { |
---|
983 | if (status(l_fork, "read", "ready", k)) {break;} |
---|
984 | j = j + 1; |
---|
985 | } |
---|
986 | } |
---|
987 | // check, whether we have a result, and return it |
---|
988 | if (status(l_fork, "read", "ready")) |
---|
989 | { |
---|
990 | def result = read(l_fork); |
---|
991 | if (nameof(basering)!=rname) |
---|
992 | { |
---|
993 | def watchdog_rneu=basering; |
---|
994 | setring rsave; |
---|
995 | if (!defined(result)) |
---|
996 | { |
---|
997 | def result=fetch(watchdog_rneu,result); |
---|
998 | } |
---|
999 | } |
---|
1000 | if(defined(watchdog_interrupt)) |
---|
1001 | { |
---|
1002 | kill watchdog_interrupt; |
---|
1003 | } |
---|
1004 | close(l_fork); |
---|
1005 | } |
---|
1006 | else |
---|
1007 | { |
---|
1008 | string result="Killed"; |
---|
1009 | if(!defined(watchdog_interrupt)) |
---|
1010 | { |
---|
1011 | int watchdog_interrupt=1; |
---|
1012 | export watchdog_interrupt; |
---|
1013 | } |
---|
1014 | close(l_fork); |
---|
1015 | j = system("sh","kill " + string(pid)); |
---|
1016 | } |
---|
1017 | return(result); |
---|
1018 | } |
---|
1019 | else |
---|
1020 | { |
---|
1021 | ERROR("First argument of watchdog has to be a positive integer."); |
---|
1022 | } |
---|
1023 | } |
---|
1024 | else |
---|
1025 | { |
---|
1026 | ERROR("MP-support is not enabled in this version of Singular."); |
---|
1027 | } |
---|
1028 | } |
---|
1029 | example |
---|
1030 | { "EXAMPLE:"; echo=2; |
---|
1031 | ring r=0,(x,y,z),dp; |
---|
1032 | poly f=x^30+y^30; |
---|
1033 | watchdog(1,"factorize(eval("+string(f)+"))"); |
---|
1034 | watchdog(100,"factorize(eval("+string(f)+"))"); |
---|
1035 | } |
---|
1036 | /////////////////////////////////////////////////////////////////////////////// |
---|
1037 | |
---|
1038 | proc deleteSublist(intvec v,list l) |
---|
1039 | "USAGE: deleteSublist(v,l); intvec v; list l |
---|
1040 | where the entries of the integer vector v correspond to the |
---|
1041 | positions of the elements to be deleted |
---|
1042 | RETURN: list without the deleted elements |
---|
1043 | EXAMPLE: example deleteSublist; shows an example" |
---|
1044 | { |
---|
1045 | list k; |
---|
1046 | int i,j,skip; |
---|
1047 | j=1; |
---|
1048 | skip=0; |
---|
1049 | intvec vs=sort(v)[1]; |
---|
1050 | for ( i=1 ; i <=size(vs) ; i++) |
---|
1051 | { |
---|
1052 | while ((j+skip) < vs[i]) |
---|
1053 | { |
---|
1054 | k[j] = l[j+skip]; |
---|
1055 | j++; |
---|
1056 | } |
---|
1057 | skip++; |
---|
1058 | } |
---|
1059 | if(vs[size(vs)]<size(l)) |
---|
1060 | { |
---|
1061 | k=k+list(l[(vs[size(vs)]+1)..size(l)]); |
---|
1062 | } |
---|
1063 | return(k); |
---|
1064 | } |
---|
1065 | example |
---|
1066 | { "EXAMPLE:"; echo=2; |
---|
1067 | list l=1,2,3,4,5; |
---|
1068 | intvec v=1,3,4; |
---|
1069 | l=deleteSublist(v,l); |
---|
1070 | l; |
---|
1071 | } |
---|
1072 | |
---|
1073 | /////////////////////////////////////////////////////////////////////////////// |
---|
1074 | proc primecoeffs(J, list #) |
---|
1075 | "USAGE: primecoeffs(J[,p]); J any type which can be converted to a matrix |
---|
1076 | e.g. ideal, matrix, vector, module, int, intvec |
---|
1077 | p = integer |
---|
1078 | COMPUTE: primefactors <= p of coeffs of J (default p = 32003) |
---|
1079 | RETURN: a list, say l, of two intvectors:@* |
---|
1080 | l[1] : the different primefactors of all coefficients of J@* |
---|
1081 | l[2] : the different remaining factors |
---|
1082 | EXAMPLE: example primecoeffs; shows an example |
---|
1083 | " |
---|
1084 | { |
---|
1085 | int q,ii,n,mark;; |
---|
1086 | if (size(#) == 0) |
---|
1087 | { |
---|
1088 | q=32003; |
---|
1089 | } |
---|
1090 | else |
---|
1091 | { |
---|
1092 | if( typeof(#[1]) != "int") |
---|
1093 | { |
---|
1094 | ERROR("2nd parameter must be of type int"+newline); |
---|
1095 | } |
---|
1096 | q=#[1]; |
---|
1097 | if (q > 32003) { q = 32003; } |
---|
1098 | } |
---|
1099 | |
---|
1100 | if (defined(basering) == 0) |
---|
1101 | { |
---|
1102 | mark=1; |
---|
1103 | ring r = 0,x,dp; |
---|
1104 | } |
---|
1105 | def I = ideal(matrix(J)); |
---|
1106 | poly p = product(maxideal(1)); |
---|
1107 | matrix Coef=coef(I[1],p); |
---|
1108 | ideal id, jd, rest; |
---|
1109 | intvec v,re; |
---|
1110 | list result,l; |
---|
1111 | for(ii=2; ii<=ncols(I); ii++) |
---|
1112 | { |
---|
1113 | Coef=concat(Coef,coef(I[ii],p)); |
---|
1114 | } |
---|
1115 | id = Coef[2,1..ncols(Coef)]; |
---|
1116 | id = simplify(id,6); |
---|
1117 | for (ii=1; ii<=size(id); ii++) |
---|
1118 | { |
---|
1119 | l = primefactors(number(id[ii]),q); |
---|
1120 | list jdl=l[1]; |
---|
1121 | jd = jd,jdl[1..size(jdl)]; |
---|
1122 | kill jdl; |
---|
1123 | rest=rest, l[3]; |
---|
1124 | } |
---|
1125 | jd = simplify(jd,6); |
---|
1126 | for (ii=1; ii<=size(jd); ii++) |
---|
1127 | { |
---|
1128 | v[ii]=int(jd[ii]); |
---|
1129 | } |
---|
1130 | v = sort(v)[1]; |
---|
1131 | rest = simplify(rest,6); |
---|
1132 | id = sort(id)[1]; |
---|
1133 | if (mark) |
---|
1134 | { |
---|
1135 | for (ii=1; ii<=size(rest); ii++) |
---|
1136 | { |
---|
1137 | re[ii] = int(rest[ii]); |
---|
1138 | } |
---|
1139 | result = v,re; |
---|
1140 | } |
---|
1141 | else |
---|
1142 | { |
---|
1143 | result = v,rest; |
---|
1144 | } |
---|
1145 | return(result); |
---|
1146 | } |
---|
1147 | example |
---|
1148 | { "EXAMPLE:"; echo = 2; |
---|
1149 | primecoeffs(intvec(7*8*121,7*8));""; |
---|
1150 | ring r = 0,(b,c,t),dp; |
---|
1151 | ideal I = -13b6c3t+4b5c4t,-10b4c2t-5b4ct2; |
---|
1152 | primecoeffs(I); |
---|
1153 | } |
---|
1154 | /////////////////////////////////////////////////////////////////////////////// |
---|
1155 | proc timeFactorize(poly i,list #) |
---|
1156 | "USAGE: timeFactorize(p,d); poly p , integer d |
---|
1157 | RETURN: factorize(p) if the factorization finished after d-1 |
---|
1158 | seconds otherwhise f is considered to be irreducible |
---|
1159 | EXAMPLE: example timeFactorize; shows an example |
---|
1160 | " |
---|
1161 | { |
---|
1162 | def P=basering; |
---|
1163 | if (size(#) > 0) |
---|
1164 | { |
---|
1165 | if (system("with", "MP")) |
---|
1166 | { |
---|
1167 | if ((typeof(#[1]) == "int")&&(#[1])) |
---|
1168 | { |
---|
1169 | int wait = #[1]; |
---|
1170 | int j = 10; |
---|
1171 | |
---|
1172 | string bs = nameof(basering); |
---|
1173 | link l_fork = "MPtcp:fork"; |
---|
1174 | open(l_fork); |
---|
1175 | write(l_fork, quote(system("pid"))); |
---|
1176 | int pid = read(l_fork); |
---|
1177 | write(l_fork, quote(timeFactorize(eval(i)))); |
---|
1178 | |
---|
1179 | // sleep in small intervalls for appr. one second |
---|
1180 | if (wait > 0) |
---|
1181 | { |
---|
1182 | while(j < 1000000) |
---|
1183 | { |
---|
1184 | if (status(l_fork, "read", "ready", j)) {break;} |
---|
1185 | j = j + j; |
---|
1186 | } |
---|
1187 | } |
---|
1188 | |
---|
1189 | // sleep in intervalls of one second from now on |
---|
1190 | j = 1; |
---|
1191 | while (j < wait) |
---|
1192 | { |
---|
1193 | if (status(l_fork, "read", "ready", 1000000)) {break;} |
---|
1194 | j = j + 1; |
---|
1195 | } |
---|
1196 | |
---|
1197 | if (status(l_fork, "read", "ready")) |
---|
1198 | { |
---|
1199 | def result = read(l_fork); |
---|
1200 | if (bs != nameof(basering)) |
---|
1201 | { |
---|
1202 | def PP = basering; |
---|
1203 | setring P; |
---|
1204 | def result = imap(PP, result); |
---|
1205 | kill PP; |
---|
1206 | } |
---|
1207 | kill l_fork; |
---|
1208 | } |
---|
1209 | else |
---|
1210 | { |
---|
1211 | list result; |
---|
1212 | intvec v=1,1; |
---|
1213 | result[1]=list(1,i); |
---|
1214 | result[2]=v; |
---|
1215 | j = system("sh", "kill " + string(pid)); |
---|
1216 | } |
---|
1217 | return (result); |
---|
1218 | } |
---|
1219 | } |
---|
1220 | } |
---|
1221 | return(factorH(i)); |
---|
1222 | } |
---|
1223 | example |
---|
1224 | { "EXAMPLE:"; echo = 2; |
---|
1225 | ring r=0,(x,y),dp; |
---|
1226 | poly p=((x2+y3)^2+xy6)*((x3+y2)^2+x10y); |
---|
1227 | p=p^2; |
---|
1228 | //timeFactorize(p,2); |
---|
1229 | //timeFactorize(p,20); |
---|
1230 | } |
---|
1231 | |
---|
1232 | proc timeStd(ideal i,list #) |
---|
1233 | "USAGE: timeStd(i,d), i ideal, d integer |
---|
1234 | RETURN: std(i) if the standard basis computation finished after |
---|
1235 | d-1 seconds and i otherwhise |
---|
1236 | EXAMPLE: example timeStd; shows an example |
---|
1237 | " |
---|
1238 | { |
---|
1239 | def P=basering; |
---|
1240 | if (size(#) > 0) |
---|
1241 | { |
---|
1242 | if (system("with", "MP")) |
---|
1243 | { |
---|
1244 | if ((typeof(#[1]) == "int")&&(#[1])) |
---|
1245 | { |
---|
1246 | int wait = #[1]; |
---|
1247 | int j = 10; |
---|
1248 | |
---|
1249 | string bs = nameof(basering); |
---|
1250 | link l_fork = "MPtcp:fork"; |
---|
1251 | open(l_fork); |
---|
1252 | write(l_fork, quote(system("pid"))); |
---|
1253 | int pid = read(l_fork); |
---|
1254 | write(l_fork, quote(timeStd(eval(i)))); |
---|
1255 | |
---|
1256 | // sleep in small intervalls for appr. one second |
---|
1257 | if (wait > 0) |
---|
1258 | { |
---|
1259 | while(j < 1000000) |
---|
1260 | { |
---|
1261 | if (status(l_fork, "read", "ready", j)) {break;} |
---|
1262 | j = j + j; |
---|
1263 | } |
---|
1264 | } |
---|
1265 | j = 1; |
---|
1266 | while (j < wait) |
---|
1267 | { |
---|
1268 | if (status(l_fork, "read", "ready", 1000000)) {break;} |
---|
1269 | j = j + 1; |
---|
1270 | } |
---|
1271 | if (status(l_fork, "read", "ready")) |
---|
1272 | { |
---|
1273 | def result = read(l_fork); |
---|
1274 | if (bs != nameof(basering)) |
---|
1275 | { |
---|
1276 | def PP = basering; |
---|
1277 | setring P; |
---|
1278 | def result = imap(PP, result); |
---|
1279 | kill PP; |
---|
1280 | } |
---|
1281 | kill l_fork; |
---|
1282 | } |
---|
1283 | else |
---|
1284 | { |
---|
1285 | ideal result=i; |
---|
1286 | j = system("sh", "kill " + string(pid)); |
---|
1287 | } |
---|
1288 | return (result); |
---|
1289 | } |
---|
1290 | } |
---|
1291 | } |
---|
1292 | return(std(i)); |
---|
1293 | } |
---|
1294 | example |
---|
1295 | { "EXAMPLE:"; echo = 2; |
---|
1296 | ring r=32003,(a,b,c,d,e),dp; |
---|
1297 | int n=6; |
---|
1298 | ideal i= |
---|
1299 | a^n-b^n, |
---|
1300 | b^n-c^n, |
---|
1301 | c^n-d^n, |
---|
1302 | d^n-e^n, |
---|
1303 | a^(n-1)*b+b^(n-1)*c+c^(n-1)*d+d^(n-1)*e+e^(n-1)*a; |
---|
1304 | timeStd(i,2); |
---|
1305 | timeStd(i,20); |
---|
1306 | } |
---|
1307 | |
---|
1308 | proc factorH(poly p) |
---|
1309 | "USAGE: factorH(p) p poly |
---|
1310 | RETURN: factorize(p) |
---|
1311 | NOTE: changes variables to make the last variable the principal |
---|
1312 | one in the multivariate factorization and factorizes then |
---|
1313 | the polynomial |
---|
1314 | EXAMPLE: example factorH; shows an example |
---|
1315 | " |
---|
1316 | { |
---|
1317 | def R=basering; |
---|
1318 | int i,j; |
---|
1319 | int n=1; |
---|
1320 | int d=nrows(coeffs(p,var(1))); |
---|
1321 | for(i=1;i<=nvars(R);i++) |
---|
1322 | { |
---|
1323 | j=nrows(coeffs(p,var(i))); |
---|
1324 | if(d>j) |
---|
1325 | { |
---|
1326 | n=i; |
---|
1327 | d=j; |
---|
1328 | } |
---|
1329 | } |
---|
1330 | ideal ma=maxideal(1); //die letzte Variable ist die Hauptvariable |
---|
1331 | ma[nvars(R)]=var(n); |
---|
1332 | ma[n]=var(nvars(R)); |
---|
1333 | map phi=R,ma; |
---|
1334 | list fac=factorize(phi(p)); |
---|
1335 | list re=phi(fac); |
---|
1336 | return(re); |
---|
1337 | } |
---|
1338 | example |
---|
1339 | { "EXAMPLE:"; echo = 2; |
---|
1340 | system("random",992851144); |
---|
1341 | ring r=32003,(x,y,z,w,t),lp; |
---|
1342 | poly p=y2w9+yz7t-yz5w4-z2w4t4-w8t3; |
---|
1343 | factorize(p); //fast |
---|
1344 | system("random",992851262); |
---|
1345 | //factorize(p); //slow |
---|
1346 | system("random",992851262); |
---|
1347 | factorH(p); |
---|
1348 | } |
---|