source: git/Singular/LIB/gradedModules.lib @ 540609

spielwiese
Last change on this file since 540609 was 540609, checked in by Oleksandr Motsak <motsak@…>, 9 years ago
Commented out erroneous places for smooth doc generation
  • Property mode set to 100644
File size: 194.7 KB
Line 
1//////////////////////////////////////////////////////////////////////////
2version="version gradedModules.lib 4.0.1.1 Jan_2015 "; // $Id$
3category="Commutative Algebra";
4info="
5LIBRARY: gradedModules.lib     Operations with graded modules/matrices/resolutions
6AUTHORS:  Oleksandr Motsak <U@D>, where U=motsak, D=mathematik.uni-kl.de
7@*        Hanieh Keneshlou <hkeneshlou@yahoo.com>
8KEYWORDS: graded modules, graded homomorphisms, syzygies
9OVERVIEW:
10    The library contains several procedures for constructing and manipulating graded modules/matrices/resolutions.
11    Basics about graded objects can be found in [DL].
12    Throughout this library graded objects are graded maps, that is,
13    matrices with polynomials, together with grading weights for source and
14    destination. Graded modules are implicitly given as coker of a graded map.
15    Note that in special cases we may also consider submodules in S^r generated
16    by columns of a graded polynomial matrix (or a graded map).
17NOTE:
18    set assumeLevel to positive integer value in order to auto-check all assumptions.
19    We denote the current basering by S.
20REFERENCES:
21[DL] Decker, W., Lossen, Ch.: Computing in Algebraic Geometry, Springer, 2006
22PROCEDURES:
23    grobj(M,w[,d])  construct a graded object (map) given by matrix M
24    grtest(A)       check whether A is a valid graded object
25    grisequal(A,B)  check whether A is exactly eqal to B? TODO: isomorphic!
26    grdeg(M)        compute graded degrees of columns of the map M
27    grview(M)       view the graded structure of map M
28    grshift(M,d)    shift graded module coker(M) by d
29    grzero()        presentation of S(0)^1
30    grtwist(r,d)    presentation of S(-d)^r
31    grtwists(v)     presentation of S(-v[1])+...+S(-v[size(v)])
32    grsum(M,N)      direct sum of two graded modules coker(M) + coker(N)
33    grpower(M,p)    direct p-th power of graded module coker(M)
34    grtranspose(M)  un-ordered graded transpose of map M       
35    grgens(M)       try to compute submodule generators of coker(M)
36    grpres(F)       presentation of submodule generated by columns of F
37    grorder(M)      reorder cols/rows of M for correct graded-block-structure
38    grtranspose1(M)  reordered graded transpose of map M
39    TestGRRes(n,I)  compute/order/transpose a graded resolution of ideal I
40    KeneshlouMatrixPresentation(v)  build some presentation with intvec v
41    grsyz(M)        syzygy of Im(M)
42    grres(M,l[,m])  resolution of Im(M) of length l... minimal?
43    grlift(A,B)     graded lift, gens!
44    grprod(A,B)     composition of graded maps (product of matrices?)
45    grgroebner(M)   Groebner Basis of Im(M) as a graded object
46    grconcat(M,N)   sum of maps into the same target module
47    grrndmat(s,d[,p,b])   generate random matrix compatible with src and dst gradings
48    grrndmap(S,D[,p,b])   generate random 0-deg homomorphism src(S) -> src(D)
49    grrndmap2(S,D[,p,b])   generate random 0-deg homomorphism dst(S) -> dst(D)
50    grlifting(A,B)     RND! chain lifting
51    grlifting2(A,B)    RND! chain lifting
52    mappingcone(M,N)   mapping cone?
53    mappingcone2(M,N)  mapping cone2?
54    grlifting3(A,B)    RND! chain lifting? probably wrong one
55    grlifting4(A,B)    RND! chain lifting? newer from #hani# for mappingcone3
56    mappingcone3(A,B)  mapping cone3? (using grlifting4 at the moment)
57    grrange(M)         get the row-weightings
58";
59
60LIB "matrix.lib"; // ?
61
62//////////////////////////////////////////////////////////////////////////////////////////////////////////
63// . view graded module/map
64// . reorder graded resolution
65// . transpose graded module/map?
66
67// draw helpers
68static proc repeat(int n, string c) { string r = ""; while( n > 0 ){ r = r + c; n--; } return(r); }
69static proc pad(int m, string s, string c){ string r = s; while( size(r) < m ){ r = c + r; } return(r); }
70static proc mstring( int m, string c){ if( m < 0 ) { return (c); }; return (string(m)); }
71
72static proc grsumstr(string R, intvec v)
73"direct sum_i=1^size R(-v[i]), for source and targets of graded objects"
74{
75  if (R  == "")
76  {
77    R = nameof(basering);
78  }
79
80  ASSUME(0, defined(R) && (R != "") );
81
82  int n = size(v);
83
84  if ( (n == 0) or (v == intvec(0)) ) { return (R); }
85
86  ASSUME(0, n > 0 );
87
88  v = -v; // NOTE: due to Mathematical meanings of Singular data
89 
90
91  int lst = v[1];
92  int cnt = 1;
93
94  string p = R + "(" + string(lst) + ")";
95
96  int k, d;
97  for (k = 2; k <= n; k++ )
98  {
99    d = v[k];
100    if( d == lst ) { cnt ++; }
101    else
102    {
103      if (cnt > 1){ p = p + "^" + string(cnt); }
104
105      cnt = 1; lst = d;
106
107      p = p + " + " + R + "(" + string(lst) + ")";
108    }
109  }
110  if (cnt > 1){ p = p + "^" + string(cnt); }
111
112  return (p);
113}
114
115// view helper
116static proc draw ( intmat D, int d )
117{
118//  print(D); return ();
119  int nc = ncols(D); int nr = nrows(D);
120  int s, r, c; int max = 0;
121  // get maximum string-length among all {D[r,c]}
122  for (r = nr; r > 0; r-- ) { for (c = nc; c > 0; c-- ) { s = size( string(D[r, c]) ); if( max < s ) { max = s; } } }
123  max = max + 1;
124  string head = ""; string foot = ""; string middle = "";
125  for ( c = d+1; c < (nc-d); c++ )
126  {
127    head = head + pad(max, string(D[1 , c]), ".") + " ";
128    foot = foot + pad(max, string(D[nr, c]), " ") + " ";
129  }
130  // last head/foot enties:
131  head = head + pad(max, string(D[1 , c]), ".");
132  foot = foot + pad(max, string(D[nr, c]), " ");
133  // head/foot dash lines:
134  string dash  = "-"; string dash2  = "=";
135  dash = repeat( (nc - 2*d) - 1 , repeat(max, dash) + " " ) + repeat(max, dash) + " "; // dash  = repeat( (max + 1) * (nc - 2*d) , dash );
136  dash2 = repeat( (nc - 2*d) - 1 , repeat(max, dash2) + " " ) + repeat(max, dash2) + " "; // dash2 = repeat( (max + 1) * (nc - 2*d) , dash2);
137  for ( r = d+1; r <= (nr-d); r++ )
138  {
139    middle = middle + pad(max, string(D[r,1]), " ") + " :";
140    for ( c = d+1; c < (nc-d); c++ ) { middle = middle + pad(max, mstring(D[r,c], "-"), " ") + " "; }
141    middle = middle + pad(max, mstring(D[r,nc-d], "-"), " ") + " |" + pad(max, string(D[r,nc]), ".") + newline;
142  }
143  string corner_id = repeat(max, ".");
144  string corner = repeat(max, " ");
145  // print everything all at once:
146  print                                     (
147      corner + "  " + head  + " ." + corner_id + newline +
148      corner + "  " + dash  + "+"  + corner_id + newline +
149                      middle                          +
150      corner + "  " + dash2 + " "  + corner + newline +
151      corner + "  " + foot +  "  " + corner );
152}
153
154proc grview(N)
155"USAGE:  grview(M), graded object M
156RETURN:  nothing
157PURPOSE: print the degree/grading data about the GRADED matrix/module/ideal/mapping object M
158ASSUME:  M must be graded
159EXAMPLE: example grview; shows an example
160"
161{
162//  if( size(N) == 0 ) { return (); }
163  string msg = "Graded";
164  string lst;
165
166  string arrow = " <- ";
167  string R = nameof(basering);
168
169  if( typeof( N ) == "list" )
170  {
171    msg = msg + " resolution";
172    if( size(R) >= 2 )
173    {
174      msg = msg + "(let R:="+R+")";
175      R = "R";
176    }
177
178
179    int i = 1;  int n = size(N);
180    string dst;
181   
182    msg = msg + ": " + newline + grsumstr(R, grrange(N[i])) + " <-- d_" + string(i) + " -- " ;
183    for( ; i < n; i++ )
184    {
185      dst = grsumstr(R, grdeg(N[i])) +  " <-- d_" + string(i+1) + " --";
186      msg = msg + newline + dst;
187    };
188
189    msg = msg + newline + grsumstr(R, grdeg(N[i])) + ", given by maps: ";
190
191    print(msg);
192
193    for( i = 1; i <= size(N); i++ )
194    {
195      "d_" + string(i) + " :"; grview(N[i]);
196    };
197
198    return ();
199  }
200
201//  typeof( N ) ;  attrib( N );  grrange(N);
202
203  ASSUME(1, grtest(N) );
204
205  intvec G = grdeg(N);
206  matrix M = module(N);
207
208  int nc = ncols(M); int nr = nrows(M);
209  int r,c;
210  int d = 1; // number of extra cols/rows for extra info around the central degree(N) block in D
211  intmat D[nr+2*d][nc+2*d];
212
213  for( c = nc; c > 0; c-- )
214  {
215    D[1, c+d] = c; // top row indeces
216    D[nr+2*d, c+d] = G[c]; // deg(v) + gr[ leadexp(v)[m] ]; // bottom row with computed column induced degrees
217  }
218
219  intvec gr = grrange(N); // grading weights?
220
221  for( r = nr; r > 0; r-- )
222  {
223    D[r+d, 1] = gr[r]; // left-most column with grading data
224    for( c = nc; c > 0; c-- )
225    {
226      D[r+d, c+d] = deg(M[r, c]); // central block with degrees (-1 means zero entry)
227    }
228    D[r+d, nc+2*d] = r; // right-most block with indeces
229  }
230
231  msg = msg + " homomorphism: ";
232  if( size(R) >= 2 )
233  {
234    msg = msg + "(let R:="+R+")";
235    R = "R";
236  }
237   
238  msg = msg + ": ";
239
240  string dst = grsumstr(R, gr);
241  string src = grsumstr(R, G);
242
243  lst = msg;
244
245  if( (size(lst) + size(dst) + size(src) + 4) > 80 )
246  {
247    if( (size(lst) + size(dst)) > 80 ) { msg = msg + newline; lst = ""; }
248
249    msg = msg + dst + arrow;
250    lst = lst + dst + arrow;
251
252    if( (size(lst) + size(src)) > 80 ) { msg = msg + newline; lst = ""; }
253
254    msg = msg + src;
255    lst = lst + src;
256  } else
257  {
258    msg = msg + dst + arrow + src;
259    lst = lst + dst + arrow + src;
260  }
261
262  if( size(lst) > 70 ) { msg = msg + newline; } // lst = "";
263  msg = msg + ", given by ";
264//  lst = lst + ", given by ";
265
266  if( size(N) == 0 )
267  {
268    msg = msg + "zero matrix.";
269    print(msg);
270  } else
271  {
272    if( nr == nc) // square matreix // detect diagonal?
273    {
274      for (c = nr; c > 0; c-- )
275      {
276        M[c,c] = 0;
277      }
278
279      if( size(module(M)) == 0 )
280      {
281        msg = msg + "a diagonal matrix";
282      } else
283      {
284        msg = msg + "a square matrix";
285      }
286
287    } else
288    {
289      msg = msg + "a matrix";
290    }
291    print(msg + ", with degrees: " );
292    draw(D, d); // print it nicely!   
293  }
294}
295example
296{ "EXAMPLE:"; echo = 2;
297
298  ring r=32003,(x,y,z),dp;
299
300  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
301  grview(A);
302
303  module B = grobj( module([0,x,y]), intvec(15,1,1) );
304  grview(B);
305
306  module D = grsum( grsum(grpower(A,2), grtwist(1,1)), grsum(grtwist(1,2), grpower(B,2)) );
307  grview(D);
308
309  ring R = 0,(w,x,y,z), dp; def I = grobj( ideal(y2-xz, xy-wz, x2z-wyz), intvec(0) );
310  list res1 = grres(I, 0); // non-minimal
311  grview(res1);
312  print(betti(res1,0), "betti");
313
314  list res2 = grres(grshift(I, -10), 0, 1); //  minimal!
315  grview(res2);
316  print(betti(res2,0), "betti");
317}
318
319static proc issorted( intvec g, int s )
320{
321  g = s * g; //  "g: ", g;
322  int i = size(g);
323
324  for(; i > 1; i--)
325  {
326    if( (g[i] - g[i-1]) < 0 )
327    {
328      return (0);
329    }
330  }
331
332  return (1);
333}
334
335static proc mysort( intvec gr, int s )
336"
337computes the permutation P of gr, such that (s*gr)[P] is ascendingly sorted
338NOTE: looks like a bubble sort (was taken from sort) and modified to ensure stability!
339TODO: replace with some kernel function if this turns out to be inefficient!!
340"
341{
342  gr = s * gr;
343  int m = size(gr);
344  intvec pivot;
345
346  int Bi;
347  // compute reordering permutation pivot such that gr[pivot] is (stably) sorted
348  for(Bi=m; Bi>0; Bi--) { pivot[Bi]=Bi; } // pivot = Id_m for starters
349
350  int Bn,Bb; int P, D;
351
352  int Bj = 0; int flag = 0;
353
354  // Bi == 0
355  while(Bj==0)
356  {
357    Bi++; Bj=1;
358    for(Bn=1; Bn <= (m-Bi); Bn++)
359    {
360      D = (gr[pivot[Bn]] - gr[pivot[Bn+1]]); // sort gr
361      P = (D > 0) or ( (D == 0) && ((pivot[Bn]-pivot[Bn+1]) > 0) ); // stability!?
362      if(P)
363      {
364        Bb=pivot[Bn];
365        pivot[Bn]=pivot[Bn+1];
366        pivot[Bn+1]=Bb;
367
368        Bj=0; flag = 1;
369      }
370    }
371  }
372
373/*
374  if( flag ) // output details in case of non-identical permutation?
375  {
376    // grades & ordering permutation : gr[pivot] should be sorted:
377    "s: ", s;
378    "gr: ", gr;
379    "pivot: ",    pivot;
380  }
381*/
382  ASSUME(1, issorted(intvec(gr[pivot]), 1));
383
384  return (pivot);
385}
386
387// Q@Wolfram: what should be done with zero gens!?
388proc grdeg(M)
389"USAGE:  grdeg(M), graded object M
390RETURN:  intvec of degrees
391PURPOSE: graded degrees of columns (generators) of M
392ASSUME:  M must be a graded object (matrix/module/ideal/mapping)
393NOTE:    if M has zero cols it shoud have attrib(M,'degHomog') set.
394EXAMPLE: example grdeg; shows an example
395"
396{
397  ASSUME(1, grtest(M) );
398
399  if ( typeof(attrib(M, "degHomog")) == "intvec" )
400  {
401    intvec t = attrib(M, "degHomog"); // graded degrees
402    ASSUME(0, ncols(M) == size(t) );
403
404    return (t);
405  }
406
407  ASSUME(0, ncols(M) == size(M) );
408
409  def w = grrange(M); // grading weights?
410
411  if( size(M) == 0 ){ return (w); } // TODO: Q@Wolfram!???
412
413  int m = ncols(M); // m > 0 in Singular!
414  int n = nvars(basering) + 1; // index of mod. column in the leadexp
415
416  module L = lead(M[1..m]); // leading module-terms for input column vectors
417  intvec d = deg(L[1..m]); // their degrees
418  intvec c = leadexp(L[1..m])[n]; // their module-components
419
420//   w = intvec(-6665), w; // 0?????
421  intvec gr = w[c]; //  + 1]; // weights?????
422
423  gr = gr + d; // finally we compute their graded degrees
424
425  return (gr);
426}
427example
428{ "EXAMPLE:"; echo = 2;
429
430  ring r=32003,(x,y,z),dp;
431
432  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
433  grview(A);
434
435  module B = grobj( module([0,x,y]), intvec(15,1,1) );
436  grview(B);
437
438  module D = grsum(
439                   grsum(grpower(A,2), grtwist(1,1)),
440                   grsum(grtwist(1,2), grpower(B,2))
441                  );
442
443  grview(D);
444  grdeg(D);
445
446  def D10 = grshift(D, 10);
447
448  grview(D10);
449  grdeg(D10);
450}
451
452static proc reorder(def M, int s)
453"
454Reorder gens of M: compute graded degrees and the permutation to sort them
455"
456{
457  // input should be graded:
458  ASSUME(1, grtest(M) );
459
460  intvec w = grrange(M); // grading weights
461
462  intvec gr = grdeg( M );
463
464//  intvec d = deg(M[1..nocls(M)]); // no need to deal with un-weighted degrees??!
465
466  intvec pivot = mysort(gr, s);
467
468  // grades & ordering permutation for N.  gr[pivot] should be sorted!
469  ASSUME(1, issorted(gr[pivot], s));
470
471  module N = grobj(module(M[pivot]), w, intvec(gr[pivot]));  // reorder the starting ideal/module
472
473//  "reorder: "; grview(N);
474
475  return (N, intvec(gr[pivot]));
476}
477
478proc grtranspose1(def M)
479"USAGE:  grtranspose1(M), graded object or list M
480RETURN:  same as input
481PURPOSE: graded transpose of graded object or chain complex M
482ASSUME:  M must be a graded object or a list of graded objects
483EXAMPLE: example grtranspose1; shows an example
484"
485{
486  if( typeof( M ) == "list" )
487  {
488    if( size(M) == 0 ) { return (); }
489
490    int j = size(M);
491
492    int i = 1;
493
494    // TODO: extra grading argument???
495    while( i < j )
496    {
497     if( size(M[i]) == 0 ){ break; }
498     ASSUME(0, typeof(grrange(M[i])) == "intvec");
499     i++;
500    }
501
502    if( size(M[i]) == 0 ) { i--; }
503
504    j = i; i = 1;
505
506    list L;
507    while( j > 0 )
508    {
509//      grview(M[i]);
510      L[j] = grtranspose1( grobj( M[i], grrange(M[i])) );
511//      grview(L[j]);
512
513      if( (i > 1) && (j > 0) )
514      {
515//        grview(L[j+1]);
516        ASSUME(2, size( module( matrix(L[j])*matrix(L[j+1]) ) ) == 0 );
517      };
518//      grview(L[j]);
519      j--; i++;
520    };
521    return (L); // ?
522  }
523
524//////
525// "a";  grview(M);
526  ASSUME(1, grtest(M) );
527
528 intvec d; module N;
529
530 (N,d) = reorder(M, -1);
531
532 kill M; module M = grobj(transpose(N), -d, -grrange(N));
533
534// "b";  grview(M);
535
536 kill N,d; module N; intvec d;
537 // reverse order:
538 (N,d) = reorder(M, 1); kill M;
539
540// "e"; grview( N );
541
542 ASSUME(1, issorted( grrange(N), 1) );
543 ASSUME(1, issorted(grdeg(N), 1) );
544
545
546 return (N);
547}
548example
549{ "EXAMPLE:"; echo = 2;
550
551  "Surface Name: 'k3.d10.g9.quart2' in P^4";
552  int @p=31991; ring R = (@p),(x,y,z,u,v), dp;
553  ideal J = x3yz2+31/15x2y2z2-7231xy3z2+99/37y4z2+28/95x3z3+97/32x2yz3+13247xy2z3+12717y3z3-113/31x2z4-61/30xyz4-6844y2z4+104/3xz5-13849yz5+43/39z6+13061x3yzu-8463x2y2zu+94/69xy3zu-8/61y4zu-13297x3z2u+7217x2yz2u-7830xy2z2u-75/14y3z2u+2839x2z3u-14657xyz3u-52/7y2z3u-6/89xz4u-6169yz4u+44/7z5u-98/33x3yu2+41/30x2y2u2-65/98xy3u2+122/13y4u2+9906x3zu2-11587x2yzu2+17/53xy2zu2+6504y3zu2+49/106x2z2u2+11480xyz2u2+97/71y2z2u2+12560xz3u2-114/83yz3u2-13761z4u2-67/112x3u3-18/49x2yu3+21/67xy2u3-44/43y3u3+123/116x2zu3+4459xyzu3-13841y2zu3-805xz2u3-1382yz2u3-5293z3u3+133x2u4-122/79xyu4+9724y2u4+61/24xzu4+113/119yzu4-19/108z2u4+15893xu5+57/22yu5+4600zu5-618u6-27/53x3yzv+44/103x2y2zv-142xy3zv+19/84y4zv+105/8x3z2v+10532x2yz2v-75/74xy2z2v-70/19y3z2v+31/80x2z3v-481xyz3v+47/30y2z3v+14318xz4v+51/28yz4v-15/113z5v-46/17x3yuv-99/100x2y2uv-106/5xy3uv+14384y4uv+7/100x3zuv-15/64x2yzuv-6976xy2zuv+12051y3zuv-67/42x2z2uv-2627xyz2uv-49/104y2z2uv+77/16xz3uv+15766yz3uv+85/117z4uv-107/101x3u2v-6699x2yu2v+2443xy2u2v-27/28y3u2v+11945x2zu2v-14467xyzu2v-4873y2zu2v-63/124xz2u2v-8270yz2u2v+11900z3u2v+47/14x2u3v+53/8xyu3v-10/51y2u3v-87/119xzu3v+114/73yzu3v+86/57z2u3v+52/63xu4v-11587yu4v+1/18zu4v-121/109u5v+116/11x3yv2+19/108x2y2v2-31/3xy3v2-43/9y4v2-81/100x3zv2-7728x2yzv2-1037xy2zv2+24/101y3zv2-61/103x2z2v2-8/51xyz2v2+117/109y2z2v2+98/23xz3v2+1646yz3v2-3356z4v2+105/59x3uv2+117/31x2yuv2+519xy2uv2+12633y3uv2+25/6x2zuv2-963xyzuv2-49/23y2zuv2-116/25xz2uv2+14146yz2uv2+11480z3uv2-95/8x2u2v2-10928xyu2v2-51/23y2u2v2-12770xzu2v2-92/91yzu2v2+3872z2u2v2+3183xu3v2+6871yu3v2+90/37zu3v2+10019u4v2-69/88x3v3-1398x2yv3-97/72xy2v3-46/97y3v3+107/14x2zv3-20/89xyzv3-11367y2zv3+120/29xz2v3-86/81yz2v3+107/69z3v3-39/17x2uv3+83/11xyuv3+169y2uv3-11/71xzuv3-22/17yzuv3-14862z2uv3-13009xu2v3-101/12yu2v3+10617zu2v3+2567u3v3-23/85x2v4+27/50xyv4+113/51y2v4+97/16xzv4+4438yzv4-11857z2v4+14580xuv4-6426yuv4+9421zuv4-10585u2v4+14670xv5+1807yv5+10298zv5-116/53uv5+7869v6,x3yzu+31/15x2y2zu-7231xy3zu+99/37y4zu+28/95x3z2u+97/32x2yz2u+13247xy2z2u+12717y3z2u-113/31x2z3u-61/30xyz3u-6844y2z3u+104/3xz4u-13849yz4u+43/39z5u-124/43x3yu2-90/13x2y2u2-13244xy3u2-78/73y4u2+118/43x3zu2+37/67x2yzu2-10426xy2zu2+2412y3zu2-32/113x2z2u2+35/104xyz2u2+3952y2z2u2+9028xz3u2-1990yz3u2-59/109z4u2+15499x3u3+116/23x2yu3+95/58xy2u3+8/47y3u3+59/109x2zu3-29xyzu3+12412y2zu3+20/81xz2u3+2200yz2u3-13809z3u3+3889x2u4-8136xyu4+8922y2u4-4/121xzu4+82/113yzu4-65/23z2u4+101/53xu5+103/113yu5-99/118zu5-9524u6-2749x3yzv-7814x2y2zv+73/113xy3zv+9937y4zv-59/62x3z2v-23/12x2yz2v-10245xy2z2v+7130y3z2v-4427x2z3v+6656xyz3v+3448y2z3v-46/79xz4v+1611yz4v+8453z5v+12013x3yuv+49/17x2y2uv-4/115xy3uv-121/91y4uv-63/29x3zuv+64/7x2yzuv-8785xy2zuv-87/14y3zuv+36/121x2z2uv+9525xyz2uv+4215y2z2uv-17/13xz3uv-117/125yz3uv+101/122z4uv+42/37x3u2v-8747x2yu2v-105/79xy2u2v+10799y3u2v-58/49x2zu2v-8/75xyzu2v-67/49y2zu2v-38/11xz2u2v+53/27yz2u2v+113/52z3u2v+18/59x2u3v+71/106xyu3v+47/2y2u3v-4594xzu3v+95/4yzu3v-121/46z2u3v-55/62xu4v-101/72yu4v+40/53zu4v+15227u5v-15553x3yv2+29/94x2y2v2-4076xy3v2-7133y4v2+27/125x3zv2+33/29x2yzv2-63/95xy2zv2+9166y3zv2-480x2z2v2+9941xyz2v2+107/46y2z2v2+13018xz3v2+53/98yz3v2+92/35z4v2+17/30x3uv2+77/95x2yuv2+11/67xy2uv2+8262y3uv2+65/11x2zuv2+2567xyzuv2-33/94y2zuv2+85/92xz2uv2+103/25yz2uv2-27/100z3uv2+13210x2u2v2-109/90xyu2v2+141y2u2v2-124/51xzu2v2-3/109yzu2v2-4910z2u2v2+205xu3v2+14357yu3v2+85/57zu3v2-109/28u4v2-68/39x3v3+10545x2yv3-2176xy2v3-8743y3v3+15111x2zv3+25/119xyzv3+8/103y2zv3-6046xz2v3+8658yz2v3+106/5z3v3-31/126x2uv3-7762xyuv3+2315y2uv3+124/67xzuv3-77/104yzuv3+95/71z2uv3+69/119xu2v3+13069yu2v3-8620zu2v3+105/41u3v3-15772x2v4-11212xyv4-61/36y2v4+38/125xzv4-15860yzv4+8/63z2v4+7519xuv4-94/41yuv4+45/32zuv4+9417u2v4-71/35xv5-6287yv5+6481zv5+106/99uv5+3/41v6,-8036x3yu2+7966x2y2u2-151xy3u2-14/111y4u2-111/76x3zu2-102/11x2yzu2+7956xy2zu2-7397y3zu2-113/16x2z2u2-8049xyz2u2+7230y2z2u2+3978xz3u2-36/113yz3u2-8147z4u2-107/83x3u3+78/97x2yu3+12700xy2u3+11/72y3u3+88/31x2zu3-63/40xyzu3+101/35y2zu3-220xz2u3+3/103yz2u3-49/45z3u3-21/113x2u4+104/123xyu4+98/47y2u4-56/61xzu4-87/50yzu4+5913z2u4-120/17xu5+64/11yu5-109/80zu5+10371u6-118/25x3yzv+58/99x2y2zv-5/64xy3zv+7/46y4zv-49/103x3z2v-77/106x2yz2v-44/7xy2z2v-7559y3z2v-17/35x2z3v+948xyz3v-15043y2z3v-3576xz4v-2/109yz4v+74/11z5v+6436x3yuv+7316x2y2uv+29/5xy3uv-1326y4uv+34/49x3zuv-122/27x2yzuv-632xy2zuv+46/49y3zuv-13463x2z2uv-808xyz2uv-17/32y2z2uv-13149xz3uv-117/88yz3uv-45/79z4uv-65/94x3u2v+6/67x2yu2v+34/39xy2u2v-14026y3u2v+42/107x2zu2v-3287xyzu2v-70/43y2zu2v+29/104xz2u2v-47/18yz2u2v-11038z3u2v+6262x2u3v-5255xyu3v-7/10y2u3v+7065xzu3v+5608yzu3v+4675z2u3v-73/90xu4v-15822yu4v-71/63zu4v+110/97u5v-69/5x3yv2+4315x2y2v2-124/45xy3v2-79/16y4v2-10739x3zv2-93/46x2yzv2+12499xy2zv2-73/86y3zv2+6367x2z2v2-12876xyz2v2-306y2z2v2-89xz3v2-70/51yz3v2+13120z4v2+61/57x3uv2+14782x2yuv2-91/9xy2uv2-2625y3uv2+14747x2zuv2-5899xyzuv2-12944y2zuv2-47/14xz2uv2-4551yz2uv2-99/101z3uv2-12618x2u2v2+1507xyu2v2-11951y2u2v2+68/49xzu2v2+49/39yzu2v2-56/103z2u2v2-31/85xu3v2-32/49yu3v2-65/14zu3v2+15/7u4v2+5749x3v3-3667x2yv3-107/29xy2v3+11301y3v3+95/18x2zv3-121/74xyzv3+75/26y2zv3+101/98xz2v3-111/76yz2v3-11335z3v3-15923x2uv3-36/83xyuv3-4134y2uv3-87/118xzuv3-41/11yzuv3+104/61z2uv3+12583xu2v3-50/23yu2v3-31/44zu2v3-29/23u3v3+108/107x2v4-8216xyv4-5009y2v4+101/26xzv4-9779yzv4+71/74z2v4-3358xuv4+83/84yuv4-34/39zuv4+44/47u2v4-112/83xv5+113/74yv5+82/79zv5-115/99uv5+12/109v6,-x4y-31/15x3y2+7231x2y3-99/37xy4-28/95x4z-53/107x3yz-4623x2y2z+5300xy3z-41/111y4z+12205x3z2+113/120x2yz2+54/49xy2z2-85/63y3z2+104/89x2z3-52/121xyz3-22/49y2z3+14367xz4+71/93yz4+55/56z5-5/81x4u-67/81x3yu-83/13x2y2u+98/55xy3u+15289y4u-94/111x3zu+40/29x2yzu-16/59xy2zu-107/14y3zu+2965x2z2u-459xyz2u-2/47y2z2u+35/22xz3u+119/39yz3u-12180z4u-13679x3u2+1534x2yu2+11305xy2u2-62/9y3u2-68/39x2zu2+11/90xyzu2-36/101y2zu2-2896xz2u2-15114yz2u2-49/114z3u2+19/16x2u3-11401xyu3-109/3y2u3+67/80xzu3+53/92yzu3+2894z2u3+119/74xu4+407yu4-65/53zu4+95/94u5-9309x4v+21/40x3yv+1436x2y2v+2194xy3v+6994y4v-116/81x3zv+13/2x2yzv-12/13xy2zv-23/84y3zv-61/83x2z2v+2023xyz2v+19/40y2z2v+43/26xz3v-59/113yz3v-47/53z4v+15580x3uv+21x2yuv+113/97xy2uv-15419y3uv-15243x2zuv+5128xyzuv-34/47y2zuv+13206xz2uv-4833yz2uv+107/91z3uv-1693x2u2v+54/53xyu2v-86/67y2u2v+98/9xzu2v+86/17yzu2v+64/89z2u2v+25/113xu3v+7884yu3v+14089zu3v-12027u4v-9471x3v2-36/85x2yv2-21/13xy2v2+15888y3v2+76/109x2zv2+4547xyzv2+115/12y2zv2-11/107xz2v2+6764yz2v2-8321z3v2+84/101x2uv2-202xyuv2+3251y2uv2+91/4xzuv2+7124yzuv2-53/81z2uv2+47/84xu2v2-8833yu2v2+117/14zu2v2-3/113u3v2+126/97x2v3-78/115xyv3+68/63y2v3-34/109xzv3+5913yzv3+6226z2v3-2365xuv3+91/120yuv3+14120zuv3-69/8u2v3+71/12xv4-13094yv4-7262zv4-33uv4+5367v5,-9533x4y-318x3y2+8/49x2y3+83/29xy4+13129y5+221x4z+115/48x3yz+12508x2y2z+97/52xy3z+11479y4z+8941x3z2+104/109x2yz2+9191xy2z2+103/64y3z2+10584x2z3-7728xyz3+3979y2z3+15/82xz4+5409yz4-1326z5+3756x4u-57/62x3yu+63/47x2y2u-14600xy3u+159y4u-11/4x3zu-113/57x2yzu-26/125xy2zu-32/87y3zu-10/21x2z2u+12927xyz2u-73/62y2z2u+115/99xz3u-13/3yz3u-126/25z4u-3969x3u2-122/57x2yu2-5003xy2u2-100/117y3u2-71/30x2zu2+7356xyzu2-2211y2zu2+31/40xz2u2-6722yz2u2-139z3u2+4426x2u3+1/115xyu3-72/85y2u3+15260xzu3+7938yzu3+4/115z2u3-33/89xu4+31/108yu4-50/83zu4+14/107u5+24/95x4v-113/17x3yv+81/14x2y2v-9957xy3v-10075y4v-122/113x3zv+65/118x2yzv-96/29xy2zv-19/41y3zv+113/35x2z2v+121/31xyz2v-9/68y2z2v+91/45xz3v-23/116yz3v-67/99z4v-5355x3uv-3112x2yuv-12824xy2uv-58/123y3uv-13/22x2zuv-19/85xyzuv-121/24y2zuv-14093xz2uv+99/95yz2uv+89/50z3uv+13096x2u2v-109/120xyu2v+121/61y2u2v+80/41xzu2v-39yzu2v-8/99z2u2v+5/17xu3v+112/69yu3v+14346zu3v-7173u4v+125/13x3v2+43/53x2yv2-78/103xy2v2-109/111y3v2+33/13x2zv2-15333xyzv2+87/49y2zv2-7212xz2v2+7729yz2v2-86/123z3v2-119/103x2uv2-71/122xyuv2-81/113y2uv2+6133xzuv2+55/72yzuv2+69/31z2uv2+12828xu2v2+94/15yu2v2-7588zu2v2+21/41u3v2-8712x2v3+74/9xyv3-11/87y2v3+1446xzv3-3/95yzv3-87/55z2v3-717xuv3-110/97yuv3-13/113zuv3-95/81u2v3-37/68xv4+5112yv4-56/11zv4-6/115uv4+7910v5,25/42x4y-42/79x3y2-59/21x2y3+2736xy4-107/115x4z-203x3yz+47/101x2y2z+7686xy3z-63/64y4z+103/57x3z2-12082x2yz2+11/102xy2z2-83/43y3z2+13/49x2z3-2685xyz3+123/44y2z3+31/12xz4+126/83yz4+14745z5+83/37x4u+7362x3yu-14615x2y2u-14109xy3u+49/47y4u+1929x3zu+83/71x2yzu-13640xy2zu-97/58y3zu-11141x2z2u-61/49xyz2u-3745y2z2u-74/21xz3u+3493yz3u-7540z4u-103/118x3u2-43/32x2yu2-9200xy2u2-23/65y3u2+15895x2zu2-13924xyzu2-14291y2zu2-11039xz2u2-31/37yz2u2-101/93z3u2-39/83x2u3-4536xyu3-78/47y2u3+75/44xzu3-24/121yzu3-81/113z2u3-81/89xu4+15825yu4-4111zu4+5850u5-12534x4v-69/94x3yv-10076x2y2v+3952xy3v+25/12y4v+21/34x3zv+11002x2yzv-54xy2zv+20/23y3zv+4991x2z2v+549xyz2v+2687y2z2v-110/9xz3v+11359yz3v+49/24z4v+62/107x3uv-27/41x2yuv-17/52xy2uv-10972y3uv+12/103x2zuv-318xyzuv-77/40y2zuv-114/53xz2uv+17/28yz2uv-8084z3uv+85/36x2u2v+7/100xyu2v-5772y2u2v-89/114xzu2v-40/121yzu2v+3340z2u2v+36/113xu3v-38/93yu3v+2519zu3v-7084u4v+8136x3v2-55/23x2yv2+27/7xy2v2+74/39y3v2+63/16x2zv2-8661xyzv2+2/91y2zv2+3773xz2v2-75/122yz2v2+447z3v2-59/109x2uv2-119/9xyuv2-67/49y2uv2-11334xzuv2-10482yzuv2-60/91z2uv2+94/65xu2v2-108/17yu2v2-69/70zu2v2-23/20u3v2+8/115x2v3+29/41xyv3+8/15y2v3-95/6xzv3-9714yzv3+2550z2v3-121/80xuv3+67/18yuv3+43/5zuv3+23/124u2v3-12509xv4-104/79yv4-73/21zv4-1238uv4+9038v5,94/107x4y+47/14x3y2-6362x2y3-20/59xy4-43/120y5-3028x4z-15141x3yz-2028x2y2z+84/115xy3z-3024y4z+2811x3z2+47/45x2yz2+121/101xy2z2-100/57y3z2+8/115x2z3+1/101xyz3-13/112y2z3+3618xz4+88/67yz4-52/63z5+102/97x4u-12/89x3yu-102x2y2u-3846xy3u-61/86y4u+85/54x3zu+78/29x2yzu-13381xy2zu-49/95y3zu-77/2x2z2u-5784xyz2u+1557y2z2u-9163xz3u-114/121yz3u-57/103z4u+36/31x3u2-9062x2yu2-23/111xy2u2+7362y3u2-7671x2zu2+14945xyzu2+7901y2zu2+51/5xz2u2-109/48yz2u2+7696z3u2+11280x2u3-44/57xyu3-13736y2u3-13458xzu3-14723yzu3-707z2u3+899xu4-10381yu4+99/25zu4-7788u5-237x4v+45/43x3yv-7666x2y2v-4/109xy3v+4303y4v-13107x3zv-108/91x2yzv-7707xy2zv-73/47y3zv+61/118x2z2v-11/65xyz2v+2970y2z2v-104/37xz3v-15408yz3v-64/55z4v+47/113x3uv+2185x2yuv+7941xy2uv-61/37y3uv+6482x2zuv-11/70xyzuv+83/110y2zuv-109/83xz2uv-86/95yz2uv-7583z3uv+83/45x2u2v+89/38xyu2v-2/11y2u2v+3577xzu2v+124/125yzu2v-1151z2u2v+109/85xu3v+70/13yu3v+37/104zu3v-210u4v+51/29x3v2-104/111x2yv2+105/58xy2v2-13459y3v2-80/79x2zv2-3006xyzv2-115/16y2zv2+8208xz2v2+35/38yz2v2+49/27z3v2-1647x2uv2+10482xyuv2-34/93y2uv2+97/18xzuv2+101/20yzuv2+1711z2uv2+91/36xu2v2-96/23yu2v2+7006zu2v2+86/31u3v2-10734x2v3-43/18xyv3-4597y2v3-11174xzv3-7334yzv3+7/96z2v3+4/97xuv3-5/82yuv3-15600zuv3-69/94u2v3-71/25xv4+21/97yv4+117/23zv4-6557uv4-67/83v5,8164x4y+19/73x3y2-1592x2y3-28/87xy4-63/103x4z+11/42x3yz-52/67x2y2z-13766xy3z+11378y4z+10/37x3z2+115/41x2yz2+11/100xy2z2-49/40y3z2+86/111x2z3+124/5xyz3-25/79y2z3-14525xz4+11380yz4-53/42z5-12169x4u-14/51x3yu+68/33x2y2u-3/62xy3u-31/22y4u-74/93x3zu+12924x2yzu-103/123xy2zu-74/97y3zu-2789x2z2u-95/32xyz2u+45/13y2z2u+40/71xz3u+49/110yz3u+34/75z4u+9829x3u2-59/92x2yu2+106/65xy2u2+123/86y3u2+7133x2zu2-73/46xyzu2-7/29y2zu2-937xz2u2-65/67yz2u2-88/111z3u2-61/119x2u3+975xyu3-54/7y2u3-37/33xzu3+61/59yzu3+51/115z2u3+117/43xu4+8506yu4+13941zu4-14945u5-115/63x4v-14237x3yv-74/87x2y2v+104/47xy3v-95/104y4v+11535x3zv-119/75x2yzv-44xy2zv+11299y3zv-21/113x2z2v-2852xyz2v+95/77y2z2v-75/19xz3v-4864yz3v-79/88z4v+139x3uv-10068x2yuv+2049xy2uv+7515y3uv+97/56x2zuv+109/113xyzuv+7778y2zuv-71/11xz2uv-80/19yz2uv+55/59z3uv-69/98x2u2v-15679xyu2v+114/11y2u2v+69/65xzu2v+879yzu2v+45/104z2u2v+47/97xu3v-1373yu3v+15885zu3v+11121u4v-5042x3v2+4/25x2yv2-8607xy2v2-25/33y3v2+93/55x2zv2+68xyzv2-4167y2zv2+14180xz2v2-115/47yz2v2-81/67z3v2-12099x2uv2+34/107xyuv2+122/59y2uv2+775xzuv2-91yzuv2-85/96z2uv2-59/95xu2v2+174yu2v2+11/16zu2v2+66/37u3v2-121/36x2v3+6070xyv3-83/52y2v3-121/59xzv3-55/12yzv3+8088z2v3-20/29xuv3+76/125yuv3-10858zuv3+1833u2v3-103/50xv4+76/93yv4-119/18zv4+37/114uv4+51/7v5,85/56x4y-7839x3y2+12/37x2y3+6558xy4-8191x4z+115/7x3yz+81/23x2y2z-4121xy3z-1131y4z-23/37x3z2-71/32x2yz2+30/97xy2z2+5070y3z2-49/123x2z3+103/88xyz3-45/19y2z3+5132xz4+7277yz4+1896z5-103/75x4u-12020x3yu+12337x2y2u+6248xy3u+14290y4u-87/44x3zu-5364x2yzu-11801xy2zu-59/37y3zu+34/109x2z2u-14482xyz2u-10338y2z2u+118/73xz3u+7/8yz3u+158z4u+10590x3u2-5182x2yu2+83/62xy2u2+11557y3u2-92/119x2zu2-37/94xyzu2+5383y2zu2-365xz2u2+7/62yz2u2-7965z3u2-10/43x2u3+119/101xyu3-113/83y2u3-121/41xzu3+61/104yzu3+37/60z2u3-74/95xu4-113/66yu4-205zu4+4787u5-94/93x4v+14871x3yv-14723x2y2v+10730xy3v+112/17y4v-35/19x3zv-3487x2yzv-65/43xy2zv-7445y3zv-79/124x2z2v+7423xyz2v+91/2y2z2v+91/34xz3v-6970yz3v-50/113z4v+75/43x3uv-127x2yuv+11978xy2uv+48/113y3uv+113/62x2zuv-8941xyzuv-101/112y2zuv-5737xz2uv-31/123yz2uv+9490z3uv+19/92x2u2v-107/73xyu2v-23/121y2u2v+38/65xzu2v-672yzu2v+13/77z2u2v+46/119xu3v-103/18yu3v+107/59zu3v-52/21u4v-94/87x3v2-74/31x2yv2-9/22xy2v2-2896y3v2+113/3x2zv2-5386xyzv2-11391y2zv2+42/97xz2v2+77/64yz2v2-1610z3v2-102/43x2uv2+124/39xyuv2+14829y2uv2+88/113xzuv2-10411yzuv2-51/43z2uv2-36/121xu2v2+9487yu2v2-5589zu2v2+4335u3v2-5/91x2v3+6084xyv3-56/39y2v3-84/101xzv3-81/85yzv3-6521z2v3-2432xuv3+14317yuv3-43/82zuv3+121/8u2v3+14783xv4-92/45yv4+112/27zv4-8410uv4+31/105v5,-6691x4y-10158x3y2-5372x2y3+4132xy4+106/9y5+15600x4z-803x3yz+43/29x2y2z+9/91xy3z-92/61y4z+4807x3z2-12562x2yz2+14234xy2z2-91/17y3z2-91/30x2z3-10615xyz3-4206y2z3-29/45xz4-11/86yz4-115/9z5+125/112x4u+52/59x3yu+92/49x2y2u+121/85xy3u-51/14y4u-73/48x3zu-1/110x2yzu+12/65xy2zu+15045y3zu+12826x2z2u-123/89xyz2u+9465y2z2u-67/31xz3u-5080yz3u-7944z4u-107/72x3u2+1473x2yu2+7965xy2u2+15753y3u2-95/98x2zu2-9827xyzu2-25/53y2zu2-83/54xz2u2-13217yz2u2-117/110z3u2+230x2u3-12120xyu3+11/36y2u3-2071xzu3+109/59yzu3+6909z2u3-15/64xu4+45/82yu4-3091zu4-15711u5+5957x4v-45/86x3yv+26/29x2y2v-40/57xy3v+25/43y4v+126/37x3zv-38/33x2yzv+65/109xy2zv-33/68y3zv-7287x2z2v-4842xyz2v+35/118y2z2v+6157xz3v-97/89yz3v-91/50z4v-70/27x3uv+32/9x2yuv+78/125xy2uv+38/7y3uv-3214x2zuv-68/101xyzuv+87/55y2zuv-69/98xz2uv+5805yz2uv+41/102z3uv-43/54x2u2v-42/73xyu2v-13/49y2u2v+11864xzu2v+121/37yzu2v-100/109z2u2v-12609xu3v-9114yu3v-8746zu3v+11659u4v+3799x3v2-9581x2yv2+60/91xy2v2+2029y3v2+12075x2zv2+210xyzv2-1/22y2zv2+17/58xz2v2+1212yz2v2+118/27z3v2-3571x2uv2-3139xyuv2-23/100y2uv2-1240xzuv2+71/49yzuv2-21/103z2uv2-110/71xu2v2-40/77yu2v2-103/29zu2v2+10737u3v2+2828x2v3+14/39xyv3+7564y2v3+113/50xzv3+38/79yzv3+59/66z2v3+2726xuv3+91/94yuv3-15730zuv3-13408u2v3-97/42xv4+54/29yv4-33/73zv4+4823uv4+57/71v5,-14556x3yz-9751x2y2z-45/28xy3z+85/23y4z+5623x3z2+5369x2yz2-19/60xy2z2-36/5y3z2-95/36x2z3+5862xyz3-5/93y2z3+2949xz4+11357yz4-5679z5-52/45x3yu+4448x2y2u-9/22xy3u+2427y4u+3296x3zu+16/39x2yzu+53/57xy2zu+15/41y3zu+9473x2z2u+37xyz2u-58/69y2z2u-23/56xz3u-13/90yz3u-54/29z4u-41/67x3u2+10258x2yu2+23/44xy2u2-12952y3u2+2124x2zu2-1677xyzu2+12911y2zu2+22/45xz2u2+17/84yz2u2+5910z3u2+4782x2u3+119/39xyu3-17/84y2u3-120/91xzu3+35/59yzu3+17/77z2u3-4467xu4-77/4yu4-26/53zu4-3580u5-11977x3yv-118/77x2y2v+6040xy3v+9724y4v-47/5x3zv+59/101x2yzv+1212xy2zv-7/121y3zv+93/53x2z2v-56/23xyz2v-4470y2z2v+110/111xz3v-41/99yz3v-81/10z4v-71/24x3uv+26/115x2yuv+59/39xy2uv-10029y3uv+11748x2zuv+5749xyzuv+6887y2zuv+38/3xz2uv-116/61yz2uv-55/118z3uv+105/22x2u2v+70/87xyu2v-28/13y2u2v-109/123xzu2v-102/47yzu2v-52/71z2u2v+101/95xu3v+51/16yu3v+15/97zu3v-78/125u4v+35/46x3v2-9526x2yv2+10781xy2v2-119/44y3v2-23/10x2zv2+59/29xyzv2-15144y2zv2+29/120xz2v2-53/126yz2v2-93/85z3v2+53/8x2uv2-487xyuv2-12143y2uv2+13825xzuv2+55/6yzuv2-4250z2uv2+4237xu2v2-109/9yu2v2+67/53zu2v2+82/33u3v2+8660x2v3+15046xyv3-79/84y2v3-10310xzv3+110yzv3-7636z2v3+57/92xuv3-22/119yuv3-95/103zuv3+5138u2v3+123/49xv4-7587yv4+30/41zv4-124/121uv4+54/71v5,-29/60x4y-108/77x3y2-109/37x2y3-3619xy4+109/6x4z-37/67x3yz+53/45x2y2z+5291xy3z-2927y4z+34/5x3z2+87/17x2yz2+100/89xy2z2-114/29y3z2-4057x2z3-1/42xyz3-14/61y2z3-398xz4-122/73yz4+66/37z5+99/37x4u-5691x3yu-8778x2y2u+17/115xy3u+51/113y4u-71/101x3zu+85/91x2yzu-92/9xy2zu-3442y3zu+109/26x2z2u+50/37xyz2u+77/94y2z2u+16/35xz3u+9985yz3u+5/102z4u-5932x3u2+89/125x2yu2-895xy2u2-12455y3u2-630x2zu2-64/47xyzu2+25/9y2zu2+7906xz2u2+6827yz2u2+9808z3u2-113/118x2u3+79/8xyu3+9484y2u3+62/39xzu3+6/85yzu3-23/49z2u3-93/115xu4-11/93yu4-15177zu4-13/2u5-7623x4v-103/73x3yv-96/115x2y2v+39/76xy3v+80/79y4v+43/68x3zv+45/97x2yzv+101/87xy2zv+4632y3zv-918x2z2v+8248xyz2v-4276y2z2v+8853xz3v-39/61yz3v-121/87z4v+9968x3uv+473x2yuv+117/56xy2uv-19/21y3uv+121/119x2zuv+3/98xyzuv-65/42y2zuv-3723xz2uv+7/34yz2uv-112/87z3uv+103x2u2v+25/41xyu2v-14459y2u2v-56/41xzu2v-59/81yzu2v-109/102z2u2v-87/16xu3v-13011yu3v+49/123zu3v+106/89u4v-61/51x3v2+14107x2yv2+8035xy2v2-8853y3v2+5723x2zv2+123/53xyzv2-9727y2zv2-102/83xz2v2+1111yz2v2-15745z3v2+83/118x2uv2-57/35xyuv2-48/73y2uv2-28/37xzuv2-27/97yzuv2-27/58z2uv2+71/93xu2v2+117/8yu2v2+12344zu2v2-2497u3v2-118/71x2v3-11/19xyv3+21/104y2v3+32/113xzv3+15544yzv3+31/18z2v3+5909xuv3-67/58yuv3+27/35zuv3+115/9u2v3+79/13xv4+6722yv4-37/114zv4-71/124uv4+4657v5,-77/61x4y-88/101x3y2+93/88x2y3-11/70xy4+9806y5+7896x4z-4699x3yz+55/122x2y2z-63/122xy3z-125/74y4z+47/45x3z2+101/17x2yz2+92/47xy2z2+69/82y3z2+12402x2z3+113/98xyz3-101/33y2z3-15376xz4+47/71yz4-73/10z5+65/74x4u-14409x3yu-14478x2y2u+13593xy3u+102/97y4u+39/62x3zu-34/125x2yzu-83/9xy2zu+45/113y3zu+14484x2z2u-15293xyz2u-26/55y2z2u-958xz3u+67/35yz3u-93/19z4u+25/16x3u2+107/52x2yu2-4599xy2u2-86/51y3u2-9885x2zu2-77/47xyzu2+33/65y2zu2+90/109xz2u2-61/26yz2u2+6198z3u2-38/37x2u3-13935xyu3-142y2u3-64/5xzu3-7228yzu3+1251z2u3+1556xu4+117/121yu4-92/35zu4+99/92u5+13493x4v+12654x3yv+32/101x2y2v-11118xy3v+43/51y4v-575x3zv+103/21x2yzv+85/24xy2zv+1788y3zv+85/3x2z2v-64/25xyz2v+57/35y2z2v+37/120xz3v-69/110yz3v+48/49z4v+55/114x3uv-6439x2yuv+31/51xy2uv-90/49y3uv-45/104x2zuv-12018xyzuv+6/119y2zuv+40/63xz2uv+20/91yz2uv+50/43z3uv+1/26x2u2v-109/47xyu2v+99/7y2u2v+72/83xzu2v+61/118yzu2v+3530z2u2v+6146xu3v+117yu3v-9921zu3v-8708u4v-10/47x3v2-15294x2yv2-7336xy2v2+1/66y3v2-3057x2zv2+74/123xyzv2+146y2zv2-103/34xz2v2-117/76yz2v2+8472z3v2-7/92x2uv2+10033xyuv2+43/53y2uv2+4694xzuv2-49/2yzuv2-71/73z2uv2-125/17xu2v2-9817yu2v2+7218zu2v2+6897u3v2-19/90x2v3+11899xyv3-11779y2v3-5456xzv3+17/42yzv3+15340z2v3+12/7xuv3+9580yuv3-502zuv3-14069u2v3-4371xv4+14452yv4-9423zv4-117/122uv4+1126v5,49/108x4-39/4x3y-67/21x2y2-8/69xy3-9779y4+57/14x3z-11145x2yz+6928xy2z-7824y3z+1/79x2z2+5173xyz2-62/15y2z2-123/112xz3+88/79yz3+1/125z4+57/23x3u-11856x2yu-7444xy2u+115/8y3u-11133x2zu+71/73xyzu-7941y2zu+69/65xz2u+22/75yz2u+65/121z3u+9471x2u2+9167xyu2+51/59y2u2+12835xzu2+15047yzu2+11102z2u2-10059xu3+19/28yu3+65/21zu3-39/28u4-3/73x3v+94/61x2yv+8778xy2v-12922y3v-8711x2zv-37/97xyzv+14270y2zv+4487xz2v-59/112yz2v-14183z3v+15553x2uv+3579xyuv+114/91y2uv-4/97xzuv+13/85yzuv-89/15z2uv+58/75xu2v-34/7yu2v-90/61zu2v+90/101u3v-14673x2v2+90/19xyv2-45/37y2v2+23/49xzv2-71/11yzv2+119/8z2v2+89/10xuv2+109/91yuv2+36/49zuv2-7/31u2v2-40/113xv3-21/121yv3+9910zv3+33/14uv3-23/79v4,93/70x4-43/125x3y+9582x2y2+7565xy3-11511y4-3/79x3z-36/107x2yz-2038xy2z+879y3z-4700x2z2+103/14xyz2+102/79y2z2-67/68xz3-44/25yz3+105/79z4-29/24x3u-74/83x2yu+67/43xy2u+49/12y3u-115/11x2zu+23/67xyzu-61/27y2zu+12257xz2u+14068yz2u+23/15z3u+607x2u2+73/8xyu2+14237y2u2-13/33xzu2+110/71yzu2+41/101z2u2+5708xu3+88/67yu3+1460zu3-2472u4-1629x3v-51/70x2yv-88/73xy2v-36/97y3v+38/11x2zv+15899xyzv+54/19y2zv+9460xz2v-5150yz2v+3462z3v+5522x2uv-19/123xyuv+14871y2uv+53/5xzuv-7535yzuv-13430z2uv+107/47xu2v-8307yu2v-55/79zu2v-11945u3v-16/83x2v2+115/48xyv2+12389y2v2+11545xzv2-25/26yzv2-3755z2v2+4724xuv2-31/21yuv2+7872zuv2+89/45u2v2+87/47xv3+7625yv3+13494zv3-15376uv3-25/126v4;
554
555  def I = grobj( groebner(J), intvec(0) ); // ASSUME: no zero entries in J!
556  ASSUME(0, grtest(I));
557  "Input degrees: "; grview(I);
558
559  def RR = grres(I, 0, 1); list L = RR;
560
561  " = Non-minimal betti numbers: "; print(betti(L, 0), "betti");
562
563  "Graded (original) structure of 'res(Input,0)': "; grview(L);
564
565  "Graded transpose of the previous resolution "; list LLL = grtranspose1( L ); grview( LLL );
566
567  "Its non-minimal betti numbers: "; print(betti(LLL, 0), "betti");
568
569}
570
571proc grorder(def M)
572"USAGE:  grorder(M), graded object or list M
573RETURN:  same as input
574PURPOSE: reorder/transform graded object or chain complex M into block form
575ASSUME:  M must be a graded object or a list of graded objects
576EXAMPLE: example grorder; shows an example
577"
578{
579  if( typeof(M) == "list" )
580  { // TODO: extra grading argument???
581    if( size(M) == 0 ) { return (); }
582
583    int j = size(M);  int i = 1;
584
585    while( i < j )
586    {
587      if( size(M[i]) == 0 ){ break; }
588      ASSUME(0, typeof(grrange(M[i])) == "intvec");
589      i++;
590    }
591
592    if( size(M[i]) == 0 ) { i--; }
593
594    list L; module Z = 0; L[i] = Z; j = i;
595
596    while( i > 0 )
597    {
598//      "i: ", i;      "A"; grview(M[i]);
599      L[i] = grorder( grobj( M[i], grrange(M[i])) );
600//      "B"; grview(L[i]);
601      if( i < j )
602      {
603        ASSUME(2, size( module( matrix(transpose(L[i+1]))*matrix(transpose(L[i])) ) ) == 0 );
604      };
605
606      i--;
607    };
608
609    return (L); // ?
610  }
611
612  ASSUME(1, grtest(M) );
613
614// "a";  grview(M);
615
616  intvec d; module N;
617
618  (N,d) = reorder(M, 1); kill M;
619
620  module M = grobj(transpose(N), -d, -grrange(N)); kill N,d;
621
622// "b";  grview(M);
623
624  module N; intvec d;
625  // reverse order:
626  (N,d) = reorder(M, -1); kill M;
627
628  module M = grobj(transpose(N), -d, -grrange(N));
629
630// "c";  grview(M);
631
632  ASSUME(1, issorted(grrange(M), 1) );
633  ASSUME(1, issorted(grdeg(M), 1) );
634
635  return (M);
636}
637example
638{ "EXAMPLE:"; echo = 2;
639
640  "Surface Name: 'rat.d10.g9.quart2' in P^4";
641  int @p=31991; ring R = (@p),(x,y,z,u,v), dp;
642  ideal J = x3yu2-48/11x2y2u2-8356xy3u2+35/121y4u2+31/66x3zu2-54/83x2yzu2-61/18xy2zu2+11526y3zu2+7372x2z2u2-91/60xyz2u2-95/97y2z2u2-45/71xz3u2+71/115yz3u2+25/54z4u2-61/102x3u3-12668x2yu3+6653xy2u3+41/54y3u3+87/50x2zu3-5004xyzu3+13924y2zu3+2310xz2u3-93/14yz2u3-2/93z3u3-97/125x2u4-58/11xyu4+46/73y2u4-4417xzu4+60/101yzu4+56/75z2u4-113/118xu5+115/4yu5-40zu5-8554u6-54/83x3yuv-9770x2y2uv-590xy3uv+15/49y4uv+94/69x3zuv+121/105x2yzuv+95/88xy2zuv+3186y3zuv+11/6x2z2uv-44/81xyz2uv+637y2z2uv+109/121xz3uv-33yz3uv-94/115z4uv-49/95x3u2v-11/109x2yu2v+45/113xy2u2v+97/84y3u2v+5257x2zu2v+99/49xyzu2v+12584y2zu2v-4294xz2u2v+1137yz2u2v-58/69z3u2v-4749x2u3v+120/97xyu3v-31/103y2u3v+62/97xzu3v-107/74yzu3v+53/59z2u3v+91/33xu4v+1291yu4v+23/34zu4v+58/77u5v+16/17x3yv2-750x2y2v2+86/89xy3v2+123/46y4v2+53/123x3zv2-61/99x2yzv2+12389xy2zv2+10419y3zv2+43/11x2z2v2-146xyz2v2-116/51y2z2v2+13/62xz3v2-5524yz3v2-111/118z4v2-56/55x3uv2-3038x2yuv2+14/27xy2uv2-43/64y3uv2+3385x2zuv2+25/11xyzuv2+92/41y2zuv2+28/113xz2uv2-2049yz2uv2+89/37z3uv2-13094x2u2v2-2774xyu2v2+15474y2u2v2-15791xzu2v2-71/116yzu2v2+77/41z2u2v2-83/68xu3v2-33/106yu3v2+71/37zu3v2-41/17u4v2+12052x3v3+1906x2yv3+13825xy2v3+80/7y3v3-125/96x2zv3-9661xyzv3+85/116y2zv3-72/91xz2v3+13/112yz2v3-126/97z3v3-1637x2uv3+34/103xyuv3+3844y2uv3+77/10xzuv3+6359yzuv3-11185z2uv3-124/121xu2v3+66/91yu2v3-14636zu2v3-1051u3v3+9/64x2v4-12924xyv4-119/41y2v4+74/23xzv4+1622yzv4+73/37z2v4-60/101xuv4+111/22yuv4-45/124zuv4+59/37u2v4-66/37xv5-71/99yv5+12409zv5-113/64uv5-5267v6,-x4y-22/79x3y2-125/42x2y3-116/7xy4+98/111y5-31/66x4z-118/75x3yz+110/93x2y2z-43/92xy3z-788y4z-7372x3z2-2701x2yz2-67/124xy2z2-117/62y3z2+45/71x2z3-8396xyz3-10343y2z3-25/54xz4+30/59yz4+61/102x4u+11736x3yu+12726x2y2u+41/118xy3u-15832y4u-87/50x3zu-130x2yzu+41/8xy2zu-10300y3zu-2310x2z2u-101/5xyz2u+6205y2z2u+2/93xz3u+8679yz3u+97/125x3u2-43/37x2yu2-39/80xy2u2+12139y3u2+4417x2zu2+4294xyzu2+11/58y2zu2-56/75xz2u2+8338yz2u2+113/118x2u3-10190xyu3-37/16y2u3+40xzu3+74/23yzu3+8554xu4+115/22yu4-39/79x4v+61/72x3yv+8048x2y2v-9201xy3v+16/121y4v+113/93x3zv+109/75x2yzv+12700xy2zv-10607y3zv+50/11x2z2v+1223xyz2v-103/79y2z2v-123/58xz3v+31/26yz3v-15/122z4v+122/25x3uv-99/17x2yuv+1723xy2uv-38/121y3uv+11016x2zuv-25/102xyzuv-14970y2zuv-61/6xz2uv-14981yz2uv+15900z3uv+3268x2u2v-75/19xyu2v-1436y2u2v-1764xzu2v-57/41yzu2v+12741z2u2v-14615xu3v+119/61yu3v-115/119zu3v+10501u4v-8502x3v2-51/76x2yv2-6281xy2v2+17/49y3v2-106/7x2zv2+63/101xyzv2-27/95y2zv2-1606xz2v2+9245yz2v2+1912z3v2+11155x2uv2+223xyuv2-13/18y2uv2+110/43xzuv2+76/81yzuv2-6291z2uv2+1400xu2v2-95/23yu2v2-9701zu2v2+106/105u3v2+72/47x2v3-13118xyv3+14409y2v3+37/86xzv3+44/69yzv3-325z2v3+113/71xuv3+16/81yuv3+6/19zuv3-119/39u2v3-89/9xv4+72/53yv4+112/55zv4-8587uv4-6604v5,-x3y2+48/11x2y3+8356xy4-35/121y5-12750x3yz+100/111x2y2z+45/74xy3z+99/74y4z-6/7x3z2-47/67x2yz2+11465xy2z2-11865y3z2+7776x2z3+124/45xyz3-98/115y2z3+117/85xz4-59/120yz4-8748z5+61/102x3yu+12668x2y2u-6653xy3u-41/54y4u+13408x3zu-2185x2yzu-1240xy2zu+1161y3zu+44/27x2z2u-11164xyz2u-13388y2z2u-107/13xz3u+90/71yz3u+4204z4u+97/125x2yu2+58/11xy2u2-46/73y3u2+55/48x2zu2+121/31xyzu2+126/61y2zu2-55/69xz2u2+5988yz2u2+3755z3u2+113/118xyu3-115/4y2u3+3390xzu3-5762yzu3+30/61z2u3+8554yu4-14317zu4+99/116x3yv-113/119x2y2v+50/23xy3v-37/79y4v-8668x3zv+14049x2yzv+111/35xy2zv+61/28y3zv-10171x2z2v+68/21xyz2v+2023y2z2v-9/109xz3v+8520yz3v-2683z4v-13547x3uv+28/65x2yuv-5988xy2uv+61/111y3uv+12314x2zuv+29/44xyzuv+6141y2zuv+11280xz2uv+79/22yz2uv-38/111z3uv+19/51x2u2v+5093xyu2v-10291y2u2v-5009xzu2v-111/49yzu2v+3813z2u2v-61/37xu3v+15914yu3v-3218zu3v-12915u4v-118/101x3v2-7/57x2yv2+13128xy2v2+11606y3v2+42/101x2zv2-54/17xyzv2-43/49y2zv2-119/110xz2v2+9742yz2v2-43/4z3v2-55/8x2uv2-29/88xyuv2+12042y2uv2+101/37xzuv2-57/62yzuv2+106/97z2uv2+38/83xu2v2+8152yu2v2-5492zu2v2-47/79u3v2+15112x2v3+69/44xyv3-6/71y2v3+113/54xzv3-13210yzv3-707z2v3-119/8xuv3+3845yuv3-19/20zuv3+4852u2v3+15761xv4-12372yv4+74/69zv4-2100uv4-12833v5,-x3yz+48/11x2y2z+8356xy3z-35/121y4z-31/66x3z2+54/83x2yz2+61/18xy2z2-11526y3z2-7372x2z3+91/60xyz3+95/97y2z3+45/71xz4-71/115yz4-25/54z5+15/52x3yu+6039x2y2u+74/99xy3u-17/40y4u+29/50x3zu-7775x2yzu+6368xy2zu+14170y3zu+52/41x2z2u+7003xyz2u-5787y2z2u-101/37xz3u-23/28yz3u-20/63z4u+41/77x3u2+8650x2yu2-15922xy2u2-16/83y3u2+7278x2zu2+31/30xyzu2-2/107y2zu2+35/122xz2u2+85/58yz2u2-757z3u2+2/101x2u3+86/17xyu3+95/59y2u3+123/22xzu3-6869yzu3-9311z2u3-105/97xu4+5699yu4+15925zu4+13528u5-154x3yv+4187x2y2v+56/107xy3v-15932y4v-5137x3zv-37/56x2yzv+9401xy2zv+92/123y3zv-79/97x2z2v+9201xyz2v+19/53y2z2v+107/20xz3v+17/77yz3v-15306z4v+3215x3uv-79/117x2yuv-9/76xy2uv-6352y3uv+93/13x2zuv-65/89xyzuv-115/4y2zuv-34/57xz2uv+39/107yz2uv+31/9z3uv+107/48x2u2v+2632xyu2v+29/96y2u2v-125/89xzu2v+29/113yzu2v+3940z2u2v-116/111xu3v+6145yu3v-105/62zu3v+101/17u4v-9281x3v2-49/107x2yv2-12154xy2v2+4/19y3v2-114/71x2zv2-15/118xyzv2+4372y2zv2+45/121xz2v2+46/111yz2v2+6614z3v2+17x2uv2+10806xyuv2-10617y2uv2-25/111xzuv2-116/27yzuv2-7/58z2uv2-686xu2v2+3/13yu2v2-17/49zu2v2-40/107u3v2+47/90x2v3-83/43xyv3-6326y2v3+49/64xzv3+113/76yzv3-122/73z2v3+10232xuv3-116/109yuv3-1990zuv3+70/51u2v3-118/19xv4-27/55yv4+21/19zv4-23/57uv4-11721v5,-3399x4y+1849x3y2-3/29x2y3+28/87xy4+10/29y5-9788x4z-49/73x3yz+13829x2y2z+118/73xy3z+13129y4z-618x3z2+92/13x2yz2+101/117xy2z2-162y3z2+24/5x2z3-29/74xyz3+2687y2z3-74/39xz4+2/57yz4+68/73x4u-13787x3yu-11659x2y2u+14729xy3u+92/53y4u+15/71x3zu-62/15x2yzu+21/85xy2zu+4938y3zu-120/37x2z2u-77/102xyz2u-4785y2z2u-83/70xz3u-12128yz3u-13592z4u-123/20x3u2+2607x2yu2+40/19xy2u2+6361y3u2-3091x2zu2+89/113xyzu2+149y2zu2-2890xz2u2-8374yz2u2+11886z3u2-49/43x2u3-9854xyu3-6943y2u3+10743xzu3-122/45yzu3-13902z2u3-103/19xu4-48/59yu4+27/86zu4+46/35u5-117/17x4v-15/7x3yv+8409x2y2v-83/28xy3v+86/35y4v+37/45x3zv+4/3x2yzv+35/38xy2zv+4015y3zv-49/111x2z2v-1260xyz2v-25/33y2z2v+116/19xz3v+93/8yz3v+5755z4v-25/89x3uv-11669x2yuv-64/107xy2uv+2993y3uv+7767x2zuv-17/95xyzuv-103/80y2zuv-14576xz2uv+80/47yz2uv+25/107z3uv+103/2x2u2v+125/117xyu2v-2/89y2u2v-5298xzu2v-50/27yzu2v-71/53z2u2v+2652xu3v+15761yu3v+2124zu3v+11/82u4v+100/63x3v2+4180x2yv2+11/39xy2v2-1221y3v2+108/125x2zv2+97/126xyzv2-7698y2zv2+13984xz2v2+1342yz2v2-84/121z3v2-26/73x2uv2-14/15xyuv2-22/37y2uv2-71/82xzuv2+12430yzuv2+103/52z2uv2-13095xu2v2+10114yu2v2-8/73zu2v2-33/97u3v2+83/105x2v3+22/45xyv3-7961y2v3-9654xzv3-54/55yzv3-3/71z2v3-10148xuv3-117/98yuv3+101/102zuv3-606u2v3+97/43xv4-68/21yv4+63/16zv4+42/17uv4+5834v5,-3399x3y2-32/113x2y3+14/99xy4+15001y5-121/115x3yz+4604x2y2z+7/2xy3z+9532y4z-3267x3z2+97/118x2yz2-14238xy2z2-80/21y3z2-12332x2z3-19/69xyz3+116/15y2z3-103/32xz4+15340yz4+10509z5+112/109x3yu-97x2y2u-40/11xy3u+90/29y4u-95/106x3zu-114/67x2yzu+113/48xy2zu+12080y3zu-44x2z2u+18/17xyz2u-4814y2z2u-103/100xz3u-96/61yz3u-205z4u-87/82x3u2-97/108x2yu2+3230xy2u2+104/83y3u2+41/86x2zu2+116/49xyzu2-59/110y2zu2+14/59xz2u2-6962yz2u2-2185z3u2+59/91x2u3+2497xyu3+3/37y2u3-13010xzu3+6/83yzu3-11448z2u3+13/72xu4-69/62yu4-2869zu4+23/73u5-20/43x3yv+5074x2y2v+28/125xy3v-2706y4v+13010x3zv-17/109x2yzv+21/4xy2zv+59/93y3zv-2406x2z2v+117/11xyz2v-14978y2z2v+70/89xz3v-33/7yz3v-13676z4v-13690x3uv+9825x2yuv-117/107xy2uv+12760y3uv-93/98x2zuv-113/64xyzuv+113/103y2zuv-9748xz2uv+11016yz2uv-10729z3uv+90/13x2u2v-13/47xyu2v-11/39y2u2v+20/69xzu2v+5531yzu2v+125/49z2u2v-11025xu3v-9621yu3v+113/109zu3v+4710u4v-107/7x3v2+110/119x2yv2-10025xy2v2-6644y3v2-5041x2zv2+5/96xyzv2+11472y2zv2-5128xz2v2+2927yz2v2+121/18z3v2-125/89x2uv2+12936xyuv2-71/47y2uv2+34/47xzuv2-75/103yzuv2-2654z2uv2-2350xu2v2-7707yu2v2+47/72zu2v2-952u3v2-21/67x2v3+58/37xyv3-8757y2v3+3615xzv3+44/123yzv3-13027z2v3-9/10xuv3+75/43yuv3+115/18zuv3+8071u2v3-26/3xv4-67/65yv4+14186zv4-41/122uv4+33/28v5,-3399x3yz-32/113x2y2z+14/99xy3z+15001y4z-9788x3z2+37/96x2yz2+7743xy2z2+31/55y3z2-618x2z3-8171xyz3+82/109y2z3+24/5xz4+88/85yz4-74/39z5-13165x3yu+3407x2y2u-12509xy3u-23/45y4u-11774x3zu-10/67x2yzu+69/79xy2zu-10/123y3zu-7636x2z2u+83/32xyz2u+51/112y2z2u+19/8xz3u+9309yz3u-44/49z4u+4089x3u2-374x2yu2-919xy2u2+98/107y3u2+2776x2zu2+85/26xyzu2+31/13y2zu2-103/82xz2u2+35/76yz2u2+59/45z3u2+2950x2u3+27/44xyu3+88/71y2u3+7/114xzu3-72/77yzu3+12917z2u3-34/67xu4-85/82yu4-55/84zu4+4690u5+11/42x3yv-19/125x2y2v-8288xy3v+9199y4v-12929x3zv+13357x2yzv-4903xy2zv-584y3zv-10/33x2z2v+59/113xyz2v+103/92y2z2v+101/69xz3v+8708yz3v-8/7z4v+13560x3uv-43/49x2yuv-121/98xy2uv+75/79y3uv-39x2zuv-88/69xyzuv-89/78y2zuv+110/67xz2uv+61/4yz2uv-98/45z3uv+82/7x2u2v-85/41xyu2v+6548y2u2v+9367xzu2v-59/81yzu2v-14408z2u2v+2363xu3v-80/11yu3v-50/17zu3v-14799u4v-53/21x3v2+9437x2yv2-117/80xy2v2+81/85y3v2-8/45x2zv2-6428xyzv2+15126y2zv2+68/89xz2v2+7/122yz2v2+9639z3v2+113/4x2uv2-8678xyuv2-104/45y2uv2-79/90xzuv2+39/101yzuv2-7234z2uv2-28/43xu2v2+1251yu2v2-97/56zu2v2+17/41u3v2+107/24x2v3+2747xyv3+9933y2v3-4199xzv3+53/83yzv3+6364z2v3-5456xuv3+618yuv3-123/55zuv3+2375u2v3+63/76xv4-115/106yv4-8811zv4-31/75uv4+10/109v5,13/89x4y+77/31x3y2+36/83x2y3-11411xy4+6936y5-12223x4z+7400x3yz+33/118x2y2z-12146xy3z+108/79y4z+82/99x3z2-9877x2yz2-79/70xy2z2-19/123y3z2-1491x2z3+7953xyz3-43/126y2z3+60/17xz4+98/57yz4-13317x4u-77/27x3yu-6811x2y2u-69/61xy3u+6144y4u+5404x3zu+121/120x2yzu-91/23xy2zu-71/106y3zu+1435x2z2u-120/13xyz2u-12019y2z2u-68/7xz3u-113/82yz3u+11526z4u-8706x3u2-89/53x2yu2-14804xy2u2+120/107y3u2+71/94x2zu2-1/70xyzu2+1532y2zu2+4470xz2u2+13/60yz2u2-115/102z3u2-82/21x2u3+27/121xyu3-4439y2u3-101/47xzu3-3186yzu3-106/101z2u3-10169xu4+19/58yu4-96/73zu4-7959u5-10526x4v-107/92x3yv+47/6x2y2v-23/43xy3v-69/62y4v+59/65x3zv-28/95x2yzv+5479xy2zv-39/77y3zv+11/69x2z2v-11713xyz2v+43/79y2z2v-15602xz3v+16/73yz3v-13952z4v+61/82x3uv-2219x2yuv-91/106xy2uv+5/37y3uv-148x2zuv+31/51xyzuv+18/101y2zuv+97/68xz2uv-73/32yz2uv+47/2z3uv+2/41x2u2v-13009xyu2v-7/60y2u2v+15779xzu2v+72/7yzu2v-11/73z2u2v-119/44xu3v-9067yu3v+3249zu3v+61/51u4v+12525x3v2-118/9x2yv2-3270xy2v2-4/25y3v2-5075x2zv2+77/40xyzv2-89/65y2zv2+17/58xz2v2-15609yz2v2+95/54z3v2-75/79x2uv2-4907xyuv2+12418y2uv2-57/17xzuv2-8746yzuv2+13/95z2uv2-124/67xu2v2+16/13yu2v2+28/23zu2v2-10847u3v2-645x2v3+106/75xyv3+6/115y2v3-8495xzv3+58/35yzv3-9398z2v3-101/72xuv3-71/20yuv3-124/65zuv3-8971u2v3+27/28xv4+12/29yv4-4276zv4+10858uv4+29/12v5,13/89x3y2+12068x2y3-15543xy4-77/79y5+6626x3yz+64/53x2y2z-6/23xy3z-47/125y4z+14403x3z2-43/78x2yz2-31/115xy2z2+94/59y3z2-118/117x2z3-11229xyz3+2268y2z3-116/85xz4+25/58yz4+3085z5+59/27x3yu+67/82x2y2u+11/6xy3u+103/47y4u-63/80x3zu-81/47x2yzu+7760xy2zu-115/56y3zu-10/17x2z2u+101/5xyz2u+15634y2z2u+1/107xz3u-9282yz3u+43/62z4u+62/55x3u2+100/113x2yu2-9205xy2u2-46/13y3u2+43/96x2zu2+10159xyzu2+692y2zu2+859xz2u2-19/74yz2u2+123/47z3u2-9/20x2u3-11391xyu3-2375y2u3+109/24xzu3-57/53yzu3-925z2u3-82/45xu4+97/34yu4+13/82zu4-108/29u5+63/10x3yv+38/17x2y2v-19/115xy3v+3150y4v+22/69x3zv+26/57x2yzv+110/27xy2zv+87/77y3zv+85/18x2z2v+39/47xyz2v-48/17y2z2v-7/27xz3v-13/100yz3v-11662z4v-17/8x3uv+37/11x2yuv+29/11xy2uv-109/88y3uv-2817x2zuv-61/44xyzuv+10/31y2zuv+10010xz2uv+51/86yz2uv-97/83z3uv-89/96x2u2v+4030xyu2v-58/77y2u2v-114/43xzu2v-37/10yzu2v-2011z2u2v+14483xu3v-109/101yu3v+121/102zu3v-79/92u4v+15113x3v2+10781x2yv2-14259xy2v2-113/48y3v2-7/94x2zv2-17/74xyzv2-5/117y2zv2-59/75xz2v2+13188yz2v2+103/43z3v2+4/125x2uv2-52/59xyuv2+85/92y2uv2-1/46xzuv2-9106yzuv2-83/11z2uv2-23/94xu2v2+6742yu2v2-35/107zu2v2-14596u3v2-117/43x2v3+1026xyv3+90/19y2v3+14671xzv3-101/100yzv3+6962z2v3+61/68xuv3+108/37yuv3-4157zuv3-3974u2v3+15677xv4+8661yv4+8459zv4-16/23uv4-37/119v5,13/89x3yz+12068x2y2z-15543xy3z-77/79y4z-12223x3z2-13941x2yz2+115/84xy2z2+13/98y3z2+82/99x2z3+7751xyz3+122/17y2z3-1491xz4+1327yz4+60/17z5+15363x3yu+9780x2y2u+19/117xy3u-1924y4u-14600x3zu+46/41x2yzu-5466xy2zu-73/12y3zu+10838x2z2u-8302xyz2u-89/113y2z2u+53/69xz3u-9224yz3u+47/33z4u-7399x3u2+89/77x2yu2+9312xy2u2-41/80y3u2-732x2zu2-6781xyzu2-8608y2zu2-9270xz2u2-117/58yz2u2-115/68z3u2-48/31x2u3-9067xyu3+97/107y2u3+73/57xzu3-2719yzu3-110/59z2u3-37/86xu4-15796yu4-61/4zu4-115/72u5+6161x3yv+4134x2y2v+677xy3v-8375y4v+1150x3zv+1551x2yzv+4157xy2zv+112/87y3zv+8171x2z2v+6040xyz2v+15651y2z2v-7/66xz3v-47/61yz3v+77/64z4v+14848x3uv+48/119x2yuv-9534xy2uv-117/95y3uv+5/4x2zuv+122xyzuv+90/31y2zuv-41/26xz2uv+31/30yz2uv-10428z3uv-9896x2u2v-71/21xyu2v-55/38y2u2v-29/22xzu2v-11092yzu2v+39/122z2u2v+93/73xu3v+22/49yu3v-21/106zu3v+56u4v+8565x3v2-1695x2yv2+2/17xy2v2+1/78y3v2-113/71x2zv2-41/100xyzv2+55/14y2zv2+15286xz2v2+17/53yz2v2+126/71z3v2-79/87x2uv2+109/97xyuv2-28/31y2uv2-6533xzuv2+22/5yzuv2-10449z2uv2+10830xu2v2-15516yu2v2+28/57zu2v2-81/22u3v2+4198x2v3+5667xyv3-7133y2v3-8408xzv3+11066yzv3-26/125z2v3-808xuv3+95/54yuv3-64/17zuv3-5267u2v3-15333xv4+42/89yv4+63/85zv4+119/113uv4-2011v5,5583x4y+1725x3y2-8652x2y3-91/25xy4-8495x4z-13731x3yz+9298x2y2z-41/111xy3z-15503y4z-13805x3z2+3962x2yz2-2/63xy2z2+3314y3z2+2522x2z3-10/87xyz3-408y2z3+7/16xz4+69/22yz4-7254z5-59/21x4u+115/7x3yu-1718x2y2u+7851xy3u+2632y4u-82/3x3zu+37/86x2yzu+101/113xy2zu+6747y3zu-109/113x2z2u+7399xyz2u+24/103y2z2u+89/9xz3u-14630yz3u+15066z4u-12561x3u2+113/115x2yu2+87/97xy2u2-126/67y3u2-48/7x2zu2+123/103xyzu2-11/107y2zu2-2747xz2u2+8158yz2u2-3/107z3u2+41/6x2u3+12767xyu3+3873y2u3+74/83xzu3-55/119yzu3-24/83z2u3+55xu4-7/95yu4+57/44zu4+2/101u5-6928x4v-121/57x3yv+111/104x2y2v+946xy3v-29y4v+3057x3zv-14/25x2yzv+43/31xy2zv-105/2y3zv+2336x2z2v+61/77xyz2v-7880y2z2v+5/58xz3v+10593yz3v+7094z4v+63/59x3uv-5/69x2yuv-11/81xy2uv-4157y3uv+73/65x2zuv-1676xyzuv-2376y2zuv-85/63xz2uv-95/2yz2uv-14903z3uv-119/110x2u2v-115/24xyu2v+125/9y2u2v+106/87xzu2v-13/12yzu2v-4/19z2u2v+7838xu3v-43/111yu3v+7/113zu3v-12500u4v+7743x3v2-2023x2yv2-85/83xy2v2+49/41y3v2+20/87x2zv2+3932xyzv2-77/6y2zv2+47/90xz2v2-15580yz2v2+39/4z3v2-61/8x2uv2+2518xyuv2+29/98y2uv2+11057xzuv2-18/107yzuv2+708z2uv2+14720xu2v2-3175yu2v2-113/59zu2v2-14735u3v2+7/69x2v3-4029xyv3+54/91y2v3+12372xzv3+67/2yzv3+8856z2v3-2178xuv3+995yuv3+64/95zuv3+4039u2v3-37/44xv4+23/17yv4-3035zv4-103/124uv4+69/64v5,-5583x3y2-1725x2y3+8652xy4+91/25y5+6201x3yz-73/49x2y2z-3844xy3z+10548y4z-11057x3z2-105/122x2yz2+31/53xy2z2+79/89y3z2-24/101x2z3+107/119xyz3-126y2z3+8164xz4+2/77yz4-51/8z5-14941x3yu-106x2y2u+8695xy3u+125/62y4u+4328x3zu+29/117x2yzu-6249xy2zu-2791y3zu+67/49x2z2u-38/29xyz2u+122/41y2z2u+10603xz3u-3029yz3u+5578z4u+14754x3u2-108/79x2yu2+4408xy2u2-12401y3u2-1426x2zu2-1741xyzu2-83/86y2zu2+79/95xz2u2+122/121yz2u2+81/2z3u2-1172x2u3-41/68xyu3-70/3y2u3+24/107xzu3+120/79yzu3+18/119z2u3-65/122xu4+1018yu4+22/107zu4+15189u5+5/8x3yv-12060x2y2v+3/62xy3v-227y4v+60/41x3zv-123/115x2yzv+110/123xy2zv+12864y3zv-86/121x2z2v-69/94xyz2v+14/79y2z2v+118/45xz3v+10842yz3v-37/58z4v+100/69x3uv-47/65x2yuv-7/67xy2uv-93/100y3uv-6262x2zuv-4/75xyzuv+2082y2zuv-9117xz2uv+12450yz2uv-84/67z3uv+123/26x2u2v-51/89xyu2v+19/74y2u2v-104/77xzu2v+318yzu2v+12402z2u2v+95/8xu3v-81/26yu3v-4486zu3v+3872u4v+72/91x3v2-83/63x2yv2+93/92xy2v2-15924y3v2-53/62x2zv2+6046xyzv2+1408y2zv2+60/107xz2v2-1150yz2v2-126/19z3v2-7429x2uv2+2554xyuv2+3602y2uv2+10738xzuv2-57/64yzuv2+86/69z2uv2+8172xu2v2+91/113yu2v2+92/65zu2v2+118/37u3v2+47/83x2v3+12750xyv3+10851y2v3+4216xzv3+6/101yzv3-108z2v3+2920xuv3-101/102yuv3-157zuv3+7742u2v3-7234xv4-2/111yv4+59/33zv4-93/91uv4+24/19v5,1592x4y+75/121x3y2+40/19x2y3-2651xy4+9934x4z+245x3yz+11665x2y2z+30/41xy3z+1823y4z+89/88x3z2-105/46x2yz2+79/58xy2z2-4191y3z2-76/61x2z3-21/32xyz3-9516y2z3-14896xz4-85/77yz4+51/109z5+61/30x4u-10/101x3yu+11796x2y2u+76/101xy3u+123/88y4u-5932x3zu-11857x2yzu+7128xy2zu-45/79y3zu+119/18x2z2u+9/74xyz2u+7042y2z2u-1114xz3u-11/82yz3u-1466z4u-6/85x3u2+27/106x2yu2+14246xy2u2-6216y3u2+47/6x2zu2-45/59xyzu2+89/41y2zu2+41/80xz2u2-7583yz2u2-75/113z3u2-14808x2u3-10873xyu3-90/67y2u3-11081xzu3-7369yzu3-7131z2u3-1402xu4-15386yu4-108/73zu4-5039u5+120/113x4v+10617x3yv-50/87x2y2v-2395xy3v-20/69y4v-8587x3zv+12960x2yzv-41/50xy2zv-13844y3zv-65/32x2z2v-77/122xyz2v-85/66y2z2v+13/100xz3v-20/51yz3v-13676z4v+76/97x3uv+1046x2yuv-8059xy2uv-117/59y3uv-29/105x2zuv+7287xyzuv-107/119y2zuv-35/118xz2uv+79/86yz2uv-2211z3uv+5448x2u2v+62/35xyu2v-2275y2u2v+29/121xzu2v-1674yzu2v-56/43z2u2v-3377xu3v-43/110yu3v+23/10zu3v-24/61u4v+121/53x3v2-4745x2yv2-57/64xy2v2+9554y3v2-12741x2zv2+10449xyzv2+37/108y2zv2+8621xz2v2-11/57yz2v2+1566z3v2+125/49x2uv2-121/118xyuv2+109/84y2uv2-335xzuv2+10167yzuv2-59/109z2uv2-103/119xu2v2+43/13yu2v2-73/87zu2v2+2037u3v2+13002x2v3+83/48xyv3-10713y2v3+1026xzv3-105/64yzv3-37/6z2v3+14779xuv3-6448yuv3+19/69zuv3-1/110u2v3+10010xv4+79/12yv4+12/19zv4-35/61uv4-11/57v5,-1592x3y2-75/121x2y3-40/19xy4+2651y5+39/121x3yz+122/77x2y2z-114/31xy3z+1544y4z+2/3x3z2-10271x2yz2-8373xy2z2+56/61y3z2+55/48x2z3-116xyz3-25/7y2z3-108/113xz4-34/53yz4+5548z5-122x3yu-9690x2y2u+43/87xy3u-5/19y4u+97/54x3zu-17/19x2yzu+4355xy2zu+12/5y3zu-1/100x2z2u+12754xyz2u+13600y2z2u+17/45xz3u-12091yz3u+5145z4u-63/64x3u2-84/31x2yu2-97/41xy2u2+7/13y3u2-79/62x2zu2-80/103xyzu2-69/14y2zu2+119/4xz2u2-35/87yz2u2-13840z3u2+14101x2u3+7952xyu3-1857y2u3-9861xzu3+3180yzu3+75/107z2u3-250xu4-15134yu4+4717zu4-2/41u5+22/27x3yv-8983x2y2v+10520xy3v-113/2y4v+10/73x3zv-1986x2yzv-110/13xy2zv+1550y3zv+32/111x2z2v-111/35xyz2v+101/98y2z2v+8045xz3v-2/89yz3v+2924z4v-79/11x3uv-15178x2yuv+10874xy2uv+54/11y3uv-8950x2zuv+70/53xyzuv-2403y2zuv-8249xz2uv+6935yz2uv+20/89z3uv+885x2u2v-76/71xyu2v-4/17y2u2v-31/52xzu2v-4/99yzu2v+10333z2u2v-93/104xu3v+82/101yu3v-71/37zu3v+9397u4v-15/112x3v2-6614x2yv2+119/2xy2v2+88/119y3v2+306x2zv2+2790xyzv2+10992y2zv2-115/74xz2v2-14711yz2v2+11612z3v2-1788x2uv2-75/97xyuv2+79/30y2uv2+99/59xzuv2-11439yzuv2-121/113z2uv2+108/37xu2v2+37/36yu2v2-3/65zu2v2-55/42u3v2+13/100x2v3-209xyv3-1272y2v3-117/68xzv3+63/94yzv3+32/59z2v3+1013xuv3-3463yuv3+6946zuv3-37/86u2v3+67/117xv4+85/28yv4-3024zv4-82/9uv4-32/65v5,-35/52x4y-12140x3y2+23/83x2y3+69/5xy4-80/79y5+120/43x4z-11865x3yz-3487x2y2z+53/59xy3z+53/102y4z-14083x3z2-14430x2yz2-2442xy2z2-33/104y3z2-91/38x2z3+4/87xyz3-26/57y2z3+4097xz4-9/122yz4+6364z5+9634x4u-97/95x3yu-46/99x2y2u+3847xy3u+121/106y4u+12765x3zu-5292x2yzu+1607xy2zu-67/121y3zu-12/35x2z2u+4/55xyz2u-17/27y2z2u+91/122xz3u-23/31yz3u+65/49z4u+73/46x3u2-124/27x2yu2-9933xy2u2+46/75y3u2+53/114x2zu2+3503xyzu2-14147y2zu2-11283xz2u2+11889yz2u2+99/104z3u2+3117x2u3+12624xyu3-10060y2u3+2193xzu3-80/47yzu3-77/13z2u3+11/31xu4-47/90yu4+49/48zu4-2/105u5-92/61x4v+7443x3yv+35/76x2y2v+114/67xy3v-73/126y4v+97/107x3zv+9464x2yzv+10869xy2zv+15718y3zv-37/33x2z2v+124/13xyz2v-11/26y2z2v-61/40xz3v+91/100yz3v-18/103z4v+60/29x3uv+21/125x2yuv-11117xy2uv+11748y3uv-16/117x2zuv+18/103xyzuv-1711y2zuv+1872xz2uv-109/123yz2uv-18/113z3uv-26/103x2u2v+14140xyu2v+11065y2u2v+8686xzu2v-5/111yzu2v+30/101z2u2v-10501xu3v-36/113yu3v-73/74zu3v+12753u4v-43/52x3v2-76/15x2yv2-5793xy2v2+18/13y3v2+1/79x2zv2+84/23xyzv2-172y2zv2+86/77xz2v2+15/37yz2v2+11835z3v2-6482x2uv2+94/113xyuv2+10727y2uv2-102/41xzuv2+15914yzuv2-12973z2uv2-9038xu2v2-13107yu2v2+1533zu2v2+12549u3v2-13528x2v3+903xyv3+23/114y2v3-123/64xzv3-81/5yzv3+111/103z2v3+4734xuv3-33/20yuv3-7954zuv3-2478u2v3+15518xv4-6723yv4-14/31zv4-3482uv4+10919v5,-3/94x4y-12936x3y2+2/11x2y3+32/23xy4-15921y5+61/93x4z+82/111x3yz-93/2x2y2z-6659xy3z-97/90y4z+402x3z2-14586x2yz2-121/39xy2z2+68/7y3z2+1212x2z3-2980xyz3+49/52y2z3-72/89xz4+92/47yz4+8478z5+2733x4u-103/89x3yu+1166x2y2u-7/53xy3u-106/23y4u+677x3zu+907x2yzu+7891xy2zu-9014y3zu+76/47x2z2u+49/116xyz2u-49/78y2z2u+12261xz3u+118/105yz3u-126/13z4u-8812x3u2-97/120x2yu2-9534xy2u2+92/5y3u2-54/71x2zu2+94/103xyzu2+2256y2zu2+4182xz2u2-5798yz2u2-31/115z3u2-73/98x2u3+15822xyu3+1004y2u3-578xzu3+9494yzu3-6779z2u3+14506xu4+10/121yu4+58/27zu4-2817u5-19/119x4v+7128x3yv+75/64x2y2v-65/109xy3v+5129y4v-53/55x3zv+54/125x2yzv-3009xy2zv+6144y3zv+15601x2z2v+123/55xyz2v-58/77y2z2v-56/61xz3v+121/10yz3v-103/86z4v-93/25x3uv+94/123x2yuv-25/107xy2uv+14807y3uv+65/7x2zuv+87/44xyzuv+6605y2zuv+23/99xz2uv-413yz2uv-17/15z3uv-79/46x2u2v+15240xyu2v-42/67y2u2v+8932xzu2v-5888yzu2v-4204z2u2v+7002xu3v-36/97yu3v-1634zu3v+61/102u4v-14/33x3v2-6520x2yv2+9004xy2v2-67/36y3v2-7/8x2zv2-24/11xyzv2-9373y2zv2+1556xz2v2-79/74yz2v2-6691z3v2+108x2uv2-76/61xyuv2+220y2uv2-1191xzuv2-4/9yzuv2+4546z2uv2+12205xu2v2+9/22yu2v2+64/93zu2v2-44/125u3v2+292x2v3+41/74xyv3+16/79y2v3-15892xzv3+5733yzv3+6796z2v3-42/55xuv3+71/79yuv3-19/104zuv3-38/15u2v3+6436xv4+28/15yv4+87/55zv4+2270uv4-30/41v5,-117/4x3y+97/122x2y2-3618xy3+6566y4+97/113x3z-12634x2yz+9865xy2z-1764y3z+114/31x2z2+5006xyz2+7/44y2z2-15040xz3+8/125yz3+11134z4-12980x3u-79/41x2yu-79/98xy2u+89/65y3u-1217x2zu+89/87xyzu+83/66y2zu+115/11xz2u+123/107yz2u+10920z3u-86/73x2u2-11/94xyu2-14054y2u2+6752xzu2-123/124yzu2+12129z2u2-13310xu3-52/63yu3+12847zu3-1545u4-11064x3v+11499x2yv-37/64xy2v+50/103y3v+123/94x2zv-126xyzv-111/44y2zv+95/14xz2v+113/83yz2v-77/103z3v+41/64x2uv+91/90xyuv-4932y2uv+103/31xzuv+62/63yzuv+1161z2uv-99/106xu2v-3181yu2v-11741zu2v-33/8u3v-3/118x2v2-9369xyv2+527y2v2-113/39xzv2-88/49yzv2-113/101z2v2+95/68xuv2-5930yuv2-20/43zuv2+7/41u2v2+109/93xv3-107/61yv3-8352zv3-5255uv3+12021v4,-2159x4-94/3x3y-4602x2y2+1609xy3+10721y4+28/9x3z-99/35x2yz+1/110xy2z+113/114y3z-118/75x2z2-103/93xyz2-68/67y2z2+13687xz3-1531yz3+61/107z4+6076x3u+9004x2yu+2211xy2u+110/53y3u+47/102x2zu+8495xyzu-9238y2zu+57/121xz2u-8543yz2u+8/19z3u-13527x2u2-13293xyu2+1138y2u2+26/115xzu2+78/53yzu2-12556z2u2+7299xu3+70/19yu3-14687zu3+13559u4+113/9x3v-85/126x2yv-83/3xy2v-3/46y3v+1814x2zv+28/79xyzv+103/51y2zv+78/31xz2v-14387yz2v+1/88z3v+116/75x2uv-101/59xyuv-70/3y2uv+109/71xzuv+13/88yzuv-147z2uv-113/76xu2v-9661yu2v+13855zu2v-6162u3v-1857x2v2-8208xyv2-4634y2v2-6178xzv2-7352yzv2-8247z2v2-113/15xuv2+99/40yuv2+21/97zuv2+11/37u2v2-6605xv3+8964yv3+35/121zv3+8543uv3-6008v4;
643
644  def I = grobj( groebner(J), intvec(0) ); // ASSUME: no zero entries in J!
645  ASSUME(0, grtest(I));
646
647  "Input degrees: "; grview(I);
648
649  def RR = grres(I, 0, 1);
650  list L = RR;
651
652  " = Non-minimal betti numbers: ";  print(betti(L, 0), "betti");
653  "Graded reordered structure of 'res(Input,0)': ";  grview(grorder(L));
654}
655
656proc TestGRRes(Name, J)
657"USAGE:  TestGRRes(name, I), string name, ideal I
658RETURN:  nothing
659PURPOSE: compute/test/output/order/transpose a graded resolution of I
660EXAMPLE: example TestGRRes; shows an example
661"
662{
663  "==============================================";
664  "";
665  "=== Example: [", Name, "]";
666  " = Ring: ", string(basering);
667
668  def I = grobj( groebner(J), intvec(0) ); // ASSUME: no zero entries in J!
669  ASSUME(0, grtest(I));
670//  " = Input degrees: "; grview(I);
671
672  " ! Resolution via 'grres': ";
673  def R = grres(I, 0, 1); // sres, lres: no grading! // nres, mres - graded (with attrib(, "isHomog"))
674
675  " = Non-minimal betti numbers: ";
676  print(betti(R, 0), "betti");
677
678  list L = R ; // SRES_list(R); //  " = Degrees of maps: "; grview(L); // MUST BE GRADED!!!
679
680  " = Degrees of (ordered) maps: ";
681  def LL = grorder(L); // MUST BE GRADED
682
683  // ordres(L, intvec(0)); // ?
684
685  grview( LL ); " = TRANSPOSE'd complex: %%%%%%%%%%%%%%";
686  list LLL = grtranspose1( LL ); //  resolution RR = LLL;
687  print(betti(LLL, 0), "betti");
688
689  grview( LLL ); ""; //  "==============================================";
690
691  kill L, R;
692}
693example
694{ "EXAMPLE:"; echo = 2;
695//  if( defined(assumeLevel) ){ int assumeLevel0 = assumeLevel; } else { int assumeLevel; export(assumeLevel); }; assumeLevel = 5; // store the state of aL
696
697  // note: data from random generation 2
698  string Name = "castelnuovo"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = 5153xy2-98/23y3-101/51xyz+33/41y2z+99/79xz2+7136yz2-106/111z3+119/53xyu+34/57y2u-77/92xzu+84/73yzu-109/78z2u-27/56xu2+10023yu2+82/103zu2-34/25u3+3/2xyv-68/25y2v+12721xzv+4/63yzv-73/21z2v-7291xuv-91/53yuv-4/79zuv-34/91u2v-122/53xv2+123/70yv2-64/73zv2+44/65uv2+14/31v3,xy2-15202y3+10613xyz+13640y2z-107/103xz2+5292yz2+19/119z3-10042xyu+2770y2u+7957xzu+14008yzu+92/121z2u-92/51xu2+1178yu2+1/117zu2-12726u3+82/101xyv-92/17y2v-107/56xzv+14233yzv+79/28z2v+51/50xuv-31/5yuv+95/91zuv+19/108u2v+12151xv2-69/110yv2+37/89zv2-63/116uv2-88/23v3,-5153x2+37/23xy+8706y2-13160xz+68/115yz+5548z2-22/61xu-113/98yu+11818zu+2114u2-101/97xv+89/22yv-3355zv-113/5uv-5521v2;TestGRRes(Name, I); kill R, Name, @p;  "";
699
700  string Name = "ell.d8.g7"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = x2y2-47/69xy3+6059y4+78/85x2yz+55/124xy2z+13641y3z+8/17x2z2+7817xyz2-2746y2z2+85/124xz3+87yz3+13182z4+109/93x2yu-69/17xy2u+12089y3u+8769x2zu-53/36xyzu-14834y2zu+123/23xz2u+103/77yz2u-2344z3u-43/104x2u2-6198xyu2+47/115y2u2-39/19xzu2-29/24yzu2+51/89z2u2-65/37xu3-95/94yu3+11302zu3-53/57u4-2874x2yv+4347xy2v-25/77y3v+13819x2zv+29/34xyzv+474y2zv+33/107xz2v-3517yz2v+10617z3v+1834x2uv+54/113xyuv-8751y2uv+111/70xzuv-66/61yzuv+9195z2uv-14289xu2v-13/110yu2v+103/9zu2v+5113u3v+116/89x2v2+15142xyv2+13078y2v2-38/41xzv2-13/113yzv2-12824z2v2-57/11xuv2-114/17yuv2-125/31zuv2+11939u2v2+44/13xv3+56/69yv3+12/125zv3+643uv3+3530v4,-3454x2y-1285xy2-6182y3-8/69x2z+9/19xyz+64/49y2z+98/67xz2-13809yz2+21/44z3+77/47x2u+748xyu-41/77y2u+7318xzu+4217yzu+12562z2u-98/69xu2-14/85yu2+119/46zu2-61/121u3+5582x2v+108/77xyv-93/4y2v-65/49xzv-4135yzv+2477z2v+11114xuv+85/14yuv+51/125zuv-7572u2v-115/52xv2-7647yv2+4647zv2-5684uv2-1/55v3,3454x3-6645x2y-43/34xy2+14590y3+8/11x2z-117/112xyz+109/54y2z+6566xz2+23/57yz2-13078z3+95/61x2u+67/40xyu-4544y2u-95/72xzu-8/103yzu+100/77z2u+23/63xu2+69/61yu2-94/105zu2+8619u3+68/123x2v+8/117xyv+101/77y2v+124/125xzv+17/84yzv+23/67z2v+18/59xuv+3216yuv-77/59zuv-9/50u2v+96/109xv2-2491yv2+14089zv2+14067uv2-56/113v3;TestGRRes(Name, I); kill R, Name, @p;  "";
701
702  string Name = "ell.d7.g6"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = 4971xy3+3/101y4-12318xy2z-12835y3z+97/98xyz2+63y2z2-8056xz3+23/91yz3-9662z4-7398xy2u+69/71y3u-53/68xyzu-49/67y2zu-113/122xz2u-9/61yz2u+71/88z3u+11358xyu2-38/29y2u2-10232xzu2+14490yzu2+2274z2u2+3501xu3+10427yu3-109/38zu3-99/5u4-6605xy2v-1555y3v-648xyzv-2083y2zv-61/41xz2v+75/17yz2v-69/55z3v-6104xyuv-9582y2uv+69/2xzuv-12551yzuv+47/49z2uv-118/13xu2v+34/105yu2v+105/41zu2v+6533u3v+122/25xyv2+2/43y2v2+16/61xzv2+11524yzv2+113/99z2v2-71/26xuv2+7809yuv2-4865zuv2-2122u2v2+53/118xv3-13209yv3-11106zv3-49/79uv3+3006v4,xy3+15492y4-13742xy2z+112/117y3z+6/47xyz2+28/41y2z2+71/111xz3+49/57yz3-61/44z4-11759xy2u+4242y3u-109/18xyzu+2260y2zu-6873xz2u-41/112yz2u+12574z3u-10939xyu2+119/38y2u2-62/33xzu2-3699yzu2+2651z2u2-13194xu3-15185yu3-11/116zu3-61/83u4-10094xy2v+13/4y3v-74/73xyzv+43/20y2zv-11547xz2v+53/43yz2v-92/93z3v+32/41xyuv+118/33y2uv-121/39xzuv-15913yzuv+53/11z2uv+97/76xu2v+85/29yu2v-5183zu2v+8520u3v+121/28xyv2+64/51y2v2-15810xzv2+1/43yzv2-6160z2v2+13988xuv2+9/40yuv2+123/4zuv2+15024u2v2+73/95xv3+80/97yv3+57/25zv3-109/81uv3-121/87v4,-4971x2+14389xy+1607y2+59/119xz+12020yz+103/122z2+8894xu+7091yu+54/19zu-50/77u2+28/25xv-113/56yv+68/29zv-14620uv+79/107v2;TestGRRes(Name, I); kill R, Name, @p;  "";
703
704  string Name = "k3.d7.g5"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = -97/108x2y-31/118xy2-73/61y3-79/14x2z-15930xyz-2324y2z+1842xz2+656yz2-8852z3-89/38x2u-102/43xyu+14719y2u+70/67xzu+7335yzu+27/56z2u-10744xu2-55/83yu2+120/73zu2+120/61u3-126/125x2v+691xyv-15385y2v+117/16xzv-17/97yzv+80/121z2v-48/119xuv+21/34yuv-103/65zuv-49/32u2v-41/42xv2+11/75yv2-502zv2-7583uv2+26/69v3,97/108x3+77/114x2y+71/21xy2+13679y3-1645x2z-1/33xyz-79/7y2z-52/53xz2+11940yz2-5800z3+109/13x2u-115/64xyu-125/56y2u-2365xzu+2103yzu+56/87z2u-84/79xu2+107/106yu2-79/70zu2-419u3+5354x2v+92/53xyv-32/19y2v+11/74xzv+4193yzv+45/79z2v-113/72xuv+17/71yuv+11164zuv-17/33u2v+103/66xv2+55/79yv2+118/15zv2-2646uv2+57/106v3,x3-61/113x2y-64/21xy2-107/8y3-13/60x2z+43/35xyz+41/114y2z-13683xz2-5829yz2+71/38z3+90/17x2u-39/29xyu+42/5y2u-61/55xzu+111/77yzu-87/100z2u+10735xu2-83/91yu2-4884zu2-7965u3-65/12x2v+109/86xyv+10606y2v-14164xzv-6678yzv+83/18z2v-93/10xuv+120/49yuv-1592zuv-8710u2v-73/57xv2+10762yv2-2956zv2-89/63uv2-12/7v3;TestGRRes(Name, I); kill R, Name, @p;  "";
705
706  string Name = "rat.d8.g6"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = -19/125x2y2-87/119xy3-97/21y4+36/53x2yz+2069xy2z-59/50y3z-65/33x2z2-14322xyz2+79/60y2z2-9035xz3-14890yz3+87/47z4-23/48x2yu+45/44xy2u+1972y3u+79/118x2zu-5173xyzu+115/121y2zu+1239xz2u-115/17yz2u-15900z3u-78/95x2u2+67/101xyu2-12757y2u2+12752xzu2+68/21yzu2+103/90z2u2-12917xu3+97/92yu3-24/49zu3-13/79u4-51/61x2yv-3103xy2v+77/117y3v+73/115x2zv-79/33xyzv+123/110y2zv+11969xz2v-31/95yz2v-123/95z3v-105/124x2uv+12624xyuv+2/63y2uv+6579xzuv+13/62yzuv+4388z2uv-12747xu2v-26/105yu2v-78/61zu2v-125/53u3v-5/71xyv2+62/77y2v2+21/44xzv2-9806yzv2+3/91z2v2+361xuv2+568yuv2+2926zuv2+53/38u2v2-14523yv3+2082zv3+113/115uv3,108/73x2y2+4028xy3+38/43y4-1944x2yz+39/80xy2z+8/109y3z+52/27x2z2+103/45xyz2+5834y2z2+63/101xz3+107/80yz3+1178z4-1/6x2yu+78/25xy2u-21/43y3u+50/71x2zu-14693xyzu+15074y2zu+9/103xz2u-7396yz2u-14493z3u+93/25x2u2+61/4xyu2-11306y2u2-79/81xzu2+59/82yzu2-5/106z2u2+89/71xu3-34/11yu3+15/103zu3-115/52u4-54/65x2yv+67/16xy2v-7/68y3v-10/13x2zv+32/85xyzv+1/91y2zv+107/118xz2v+7594yz2v-98/103z3v+9919x2uv-965xyuv+53/34y2uv+119/11xzuv-3400yzuv-8329z2uv+75/98xu2v-24yu2v+55/87zu2v-82/71u3v-73/115x2v2+85/19xyv2-213y2v2-7704xzv2-15347yzv2+14960z2v2+15065xuv2-125/17yuv2+32/83zuv2-14/73u2v2-21/44xv3+79/2yv3-61/32zv3+46/119uv3-2082v4,9/20x2y2+113/71xy3-88/65y4+9983x2yz-6722xy2z+87/68y3z+1893x2z2+65/32xyz2+51/55y2z2-102/53xz3+58/5yz3-7187z4-96/7x2yu-14/87xy2u-3532y3u+95/54x2zu+19/65xyzu-6728y2zu+31/121xz2u+73/106yz2u-91/5z3u-12928x2u2+707xyu2-55/48y2u2-96/25xzu2+15869yzu2-20/107z2u2-10030xu3-13786yu3-122/9zu3+19/59u4-7/52x2yv+101/74xy2v+83/6y3v-91/55x2zv-5266xyzv+85/61y2zv+126/95xz2v+56/51yz2v+13073z3v-50/21x2uv-13553xyuv-116/53y2uv+68/71xzuv-111/98yzuv-11037z2uv+68/121xu2v-124/53yu2v+54/55zu2v+5862u3v+12318x2v2-119/29xyv2+101/17y2v2-51/40xzv2-82/33yzv2-30/41z2v2-29/52xuv2+7817yuv2+8121zuv2-28/99u2v2+1125xv3-73/55yv3-14141zv3+8742uv3-1203v4,x2y2+11357xy3+295y4+144x2yz-31/54xy2z+89/119y3z+1/46x2z2+29/26xyz2+1384y2z2+1461xz3+113/91yz3+9494z4-7/32x2yu+12850xy2u-3626y3u-33/106x2zu-7/60xyzu-5935y2zu-8597xz2u+5527yz2u+1708z3u+6182x2u2-15780xyu2+4669y2u2-38/69xzu2+8412yzu2+9265z2u2-5679xu3-67/18yu3-34/67zu3-7178u4+113/56x2yv-3669xy2v+17/113y3v-87/35x2zv-4871xyzv-111/11y2zv-1131xz2v-72/13yz2v+838z3v-115/4x2uv+3395xyuv-43/68y2uv-82/13xzuv+7042yzuv-88/119z2uv+100/19xu2v+24/11yu2v+89/3zu2v+7395u3v-119/109x2v2+1/104xyv2+18/25y2v2+700xzv2-59/9yzv2-92/87z2v2+2486xuv2-67/103yuv2+1469zuv2-101/91u2v2-79/33xv3+10838yv3+81/4zv3-11843uv3+7204v4,19/125x3-15698x2y-22/117xy2-95/107y3+2027x2z-7750xyz+85/104y2z-15326xz2+31/101yz2+67/81z3-7879x2u-112/115xyu+124/81y2u+99/61xzu-7458yzu+40/33z2u-1502xu2+6591yu2-7/73zu2-42/95u3+93/83x2v-15/112xyv-84/95y2v+35/36xzv+5/24yzv-12768z2v+13232xuv-76/103yuv-79/52zuv-7217u2v+75/92xv2-49/64yv2+17/14zv2-6109uv2+1695v3;TestGRRes(Name, I); kill R, Name, @p; "";
707
708  string Name = "k3.d14.g19"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = x4y2+52/25x3y3+73/79x2y4+33/83xy5-116/65y6+23/39x4yz-45/11x3y2z-45/16x2y3z+73/8xy4z+107/70y5z+115/8x4z2-4619x3yz2+13504x2y2z2+9/118xy3z2-113/64y4z2+10731x3z3-7/13x2yz3-26/17xy2z3+3/59y3z3-4602x2z4+71/44xyz4-66/43y2z4-37/70xz5-6988yz5-123/29z6-6158x4yu+9171x3y2u+71/122x2y3u-119/73xy4u-15409y5u+85/3x4zu+104/59x3yzu-3336x2y2zu-50/107xy3zu-10232y4zu-8965x3z2u-2736x2yz2u+4/61xy2z2u+49/92y3z2u+13261x2z3u+64/31xyz3u-89/70y2z3u+11080xz4u+10139yz4u+13653z5u+34/25x4u2-5678x3yu2+43/13x2y2u2+4119xy3u2+72/109y4u2-77/64x3zu2+15044x2yzu2+97/53xy2zu2+9036y3zu2-10599x2z2u2-107/126xyz2u2+43/12y2z2u2-4690xz3u2-43/75yz3u2-15886z4u2-113/7x3u3-242x2yu3+85/19xy2u3-20/57y3u3+109/37x2zu3+6103xyzu3-51/43y2zu3-89/92xz2u3-14/87yz2u3+59/111z3u3-40/63x2u4+113/86xyu4-17/109y2u4-11039xzu4+107/31yzu4+121/47z2u4-123/5xu5+83/97yu5+110/23zu5-122/83u6-15/17x4yv+96/65x3y2v-1491x2y3v+3885xy4v+26/87y5v-51/89x4zv-123/88x3yzv-2315x2y2zv-4119xy3zv-3390y4zv-68/5x3z2v-57/67x2yz2v-116/77xy2z2v+109/54y3z2v+23/89x2z3v+19/77xyz3v+32/107y2z3v-85/121xz4v+9325yz4v+87/32z5v-65/81x4uv-39/19x3yuv+4671x2y2uv+54/77xy3uv+8/47y4uv+1194x3zuv+5/14x2yzuv+1151xy2zuv+90/103y3zuv-55/8x2z2uv-44/101xyz2uv-4713y2z2uv-1/7xz3uv+13344yz3uv-11451z4uv-101/108x3u2v+42/55x2yu2v+4810xy2u2v-3/40y3u2v+4699x2zu2v+114/53xyzu2v+49/116y2zu2v-9/74xz2u2v-84/109yz2u2v-119/97z3u2v+15282x2u3v-109/71xyu3v+2490y2u3v-119/47xzu3v+43/40yzu3v-105/86z2u3v-101/70xu4v+10041yu4v-93/53zu4v+4204u5v+83/43x4v2+15199x3yv2+26/43x2y2v2-6627xy3v2+59/113y4v2+10482x3zv2-8354x2yzv2-78/79xy2zv2+7126y3zv2+68/25x2z2v2+94/59xyz2v2+83/45y2z2v2-59/60xz3v2+15768yz3v2+15/29z4v2-43/100x3uv2-11939x2yuv2+1832xy2uv2+29/6y3uv2+115/76x2zuv2+51/106xyzuv2+7/23y2zuv2+19/107xz2uv2-13797yz2uv2+16/109z3uv2-7519x2u2v2+3472xyu2v2-28/107y2u2v2-11283xzu2v2+12707yzu2v2+54/47z2u2v2+1841xu3v2-3037yu3v2+9239zu3v2+3729u4v2+7476x3v3+59/81x2yv3-49/85xy2v3-91/60y3v3+20/77x2zv3-2761xyzv3+4245y2zv3+97/75xz2v3+42/121yz2v3+1822z3v3-97/16x2uv3-47/10xyuv3-11222y2uv3-2194xzuv3+116/21yzuv3+118/47z2uv3-89/23xu2v3+7317yu2v3-10812zu2v3+70/13u3v3-5855x2v4-9755xyv4+14875y2v4+59/117xzv4-33/109yzv4+48/59z2v4+62/57xuv4-56/73yuv4-3601zuv4+2155u2v4-77/107xv5+12478yv5+7028zv5-3652uv5+81/28v6,-50/87x4yz-2298x3y2z+9266x2y3z-55/16xy4z+31/76y5z+13/46x4z2-11/100x3yz2+90/119x2y2z2-65/54xy3z2-102/77y4z2-76/109x3z3-6558x2yz3-60/19xy2z3-17/113y3z3-74/43x2z4+8092xyz4-13313y2z4-13/107xz5-47/82yz5+5501z6+39/17x4yu-11/13x3y2u-4407x2y3u+89/117xy4u+118/101y5u-37/57x4zu+100/33x3yzu-99/46x2y2zu-2772xy3zu-75/94y4zu-6429x3z2u-7628x2yz2u+10112xy2z2u+85/32y3z2u-4068x2z3u+81/95xyz3u+97/89y2z3u-12700xz4u+19/113yz4u+14306z5u+13878x4u2-22/21x3yu2+107/41x2y2u2-16/97xy3u2-2426y4u2-12247x3zu2+71/41x2yzu2+16/69xy2zu2+37/113y3zu2-12195x2z2u2-8354xyz2u2-6177y2z2u2-10139xz3u2+9118yz3u2-113/115z4u2-8042x3u3+37/97x2yu3+7/30xy2u3+90/73y3u3-14676x2zu3+630xyzu3+7824y2zu3-5947xz2u3-12019yz2u3+99/19z3u3+17/117x2u4+1943xyu4-47/45y2u4-79/98xzu4+46/119yzu4-98/25z2u4-20/69xu5+45/28yu5-123/14zu5-20/29u6+83/41x4yv+32/19x3y2v+5/107x2y3v+9/95xy4v+35/33y5v+14385x4zv+2237x3yzv+109/11x2y2zv-6489xy3zv-96/107y4zv+1749x3z2v+23/64x2yz2v+105/17xy2z2v+11/70y3z2v-4677x2z3v-4/119xyz3v+8243y2z3v-7538xz4v-45/58yz4v+1768z5v-10804x4uv-102/89x3yuv-80/17x2y2uv-103/66xy3uv-14/55y4uv-5981x3zuv+2/35x2yzuv+24/71xy2zuv-17/62y3zuv-59/52x2z2uv+468xyz2uv+61/110y2z2uv-1265xz3uv-11317yz3uv+15610z4uv+61/116x3u2v+1972x2yu2v+26/121xy2u2v+9787y3u2v-91/62x2zu2v+101/65xyzu2v-85/111y2zu2v+99/95xz2u2v-125/51yz2u2v+10324z3u2v+95/73x2u3v-705xyu3v-6165y2u3v+2215xzu3v-109/12yzu3v+72/95z2u3v-149xu4v+14154yu4v+412zu4v+2747u5v+113/25x4v2+5988x3yv2-119/107x2y2v2-70/41xy3v2+2891y4v2+85/103x3zv2-9398x2yzv2-116/117xy2zv2-12527y3zv2-8408x2z2v2-76/47xyz2v2+13729y2z2v2-65/77xz3v2+23/94yz3v2+61/77z4v2+18/121x3uv2-8520x2yuv2+103/34xy2uv2+17/40y3uv2+23/104x2zuv2+7/29xyzuv2-5908y2zuv2-7791xz2uv2-12032yz2uv2+125/82z3uv2-89/126x2u2v2+22/75xyu2v2-118/67y2u2v2+34/29xzu2v2+30/109yzu2v2-64/37z2u2v2-113/87xu3v2+110/109yu3v2+81/23zu3v2-40/99u4v2-14204x3v3+5939x2yv3-7749xy2v3+2924y3v3-3662x2zv3-51/122xyzv3-7218y2zv3-13482xz2v3+12673yz2v3-9675z3v3+6567x2uv3-14008xyuv3+14242y2uv3-4310xzuv3+757yzuv3-9110z2uv3+27/14xu2v3-81/40yu2v3-42/29zu2v3+7287u3v3+119/94x2v4-11926xyv4-82/117y2v4+4138xzv4-67/70yzv4+79/49z2v4-113/50xuv4+102/113yuv4-4791zuv4-11/97u2v4-19/18xv5+6866yv5+63/101zv5+4646uv5-374v6,109/29x4yz+94/43x3y2z-13879x2y3z-53/73xy4z+9074y5z+846x4z2-107/44x3yz2+62/71x2y2z2-121/68xy3z2+14200y4z2-78/89x3z3+51/94x2yz3+123/5xy2z3-731y3z3-15645x2z4-91/25xyz4+39/17y2z4+10343xz5-14671yz5+101/71z6+10467x4yu-3/64x3y2u+75/31x2y3u-43/66xy4u-118/55y5u+7/25x4zu-59/95x3yzu+11830x2y2zu-76/121xy3zu+95/72y4zu-121/53x3z2u+120/7x2yz2u-7033xy2z2u+89/2y3z2u+86/47x2z3u-13/99xyz3u-1447y2z3u+6253xz4u-9082yz4u-4518z5u+31/111x4u2+68/79x3yu2-3532x2y2u2+61/94xy3u2+1210y4u2-11697x3zu2-9386x2yzu2-8263xy2zu2+11759y3zu2+113/118x2z2u2-6488xyz2u2+41/30y2z2u2-15179xz3u2-10848yz3u2-14/51z4u2-13/123x3u3-21/10x2yu3-4018xy2u3-11558y3u3-68/13x2zu3+41/119xyzu3-94/31y2zu3+97/101xz2u3+2551yz2u3+51/73z3u3-10862x2u4-44/125xyu4+113/13y2u4-5704xzu4+65/116yzu4-9578z2u4-95/58xu5+8033yu5-79/124zu5-107/76u6+7293x4yv+15260x3y2v+32/35x2y3v+8519xy4v-50/83y5v+83/40x4zv-6104x3yzv+83/121x2y2zv+230xy3zv+9/50y4zv+1507x3z2v-75/112x2yz2v-20/7xy2z2v-12689y3z2v-75/112x2z3v-8673xyz3v+79/69y2z3v-12453xz4v-4805yz4v-125/11z5v-22/97x4uv-11396x3yuv+67/88x2y2uv-75/122xy3uv-30/29y4uv-837x3zuv-71/12x2yzuv+37/77xy2zuv+78/59y3zuv-13742x2z2uv+13080xyz2uv+643y2z2uv-7517xz3uv-15577yz3uv+52/75z4uv+12922x3u2v-14629x2yu2v-10188xy2u2v-5113y3u2v+67/51x2zu2v-15273xyzu2v-13388y2zu2v+121/109xz2u2v-64/83yz2u2v+69/20z3u2v-117/44x2u3v-7091xyu3v-118/45y2u3v+73/26xzu3v-117/38yzu3v+1448z2u3v+71/19xu4v-12698yu4v+107/81zu4v+21/43u5v-94/79x4v2-1660x3yv2-15179x2y2v2-10/71xy3v2+9523y4v2+6/115x3zv2-15x2yzv2+15142xy2zv2+6157y3zv2+5/79x2z2v2+126/47xyz2v2+14/107y2z2v2+35/11xz3v2-65/51yz3v2-7246z4v2-2652x3uv2-79/69x2yuv2-21/59xy2uv2-14050y3uv2-89/81x2zuv2+91/55xyzuv2-7501y2zuv2-7688xz2uv2-73/102yz2uv2-27/13z3uv2-2186x2u2v2+120/31xyu2v2+45/43y2u2v2-101/16xzu2v2-69/83yzu2v2-12658z2u2v2-7658xu3v2-53/103yu3v2+11620zu3v2+672u4v2-10795x3v3+10972x2yv3-7178xy2v3+81/2y3v3+67/43x2zv3-113/12xyzv3-3947y2zv3-17/5xz2v3-102/49yz2v3-67/26z3v3+5/6x2uv3-95/4xyuv3+2582y2uv3+72/23xzuv3+8490yzuv3-46/111z2uv3+224xu2v3+658yu2v3-98/89zu2v3+7954u3v3+87/35x2v4+7260xyv4+91/40y2v4+11611xzv4+9076yzv4+6444z2v4-8/95xuv4-12845yuv4+86/61zuv4-59/113u2v4-115/84xv5-116/41yv5-119/62zv5+15120uv5-37/51v6,21/122x4yz-9662x3y2z-11556x2y3z+67/18xy4z-10712y5z-4891x4z2+113/118x3yz2-94/83x2y2z2+61/90xy3z2+108/101y4z2+9905x3z3+12/29x2yz3+13047xy2z3-55/46y3z3+59/88x2z4+59/78xyz4+11951y2z4-1357xz5-75/77yz5+15673z6+40/113x4yu+9/55x3y2u-62/83x2y3u+65/111xy4u+4184y5u-9578x4zu+124/17x3yzu+91/85x2y2zu-1/66xy3zu+4184y4zu+101/77x3z2u-12238x2yz2u-5394xy2z2u+82/9y3z2u-73/113x2z3u+3736xyz3u+52/81y2z3u+10426xz4u+11/120yz4u+89/123z5u-99/74x4u2-9/46x3yu2-57/29x2y2u2-24/125xy3u2+115/119y4u2-10/103x3zu2-66/17x2yzu2-662xy2zu2-31/17y3zu2-56/27x2z2u2-4728xyz2u2-86/59y2z2u2-19/34xz3u2+61/13yz3u2-14093z4u2-9068x3u3-115/94x2yu3+15912xy2u3-79/66y3u3-3631x2zu3+1074xyzu3-113/105y2zu3-89/109xz2u3-80/91yz2u3+119/12z3u3+19/87x2u4-42/25xyu4+116/55y2u4+10/77xzu4+74/79yzu4-77/81z2u4-90/121xu5-43/31yu5+107/122zu5+76/113u6+60/17x4yv-6269x3y2v-124/75x2y3v+89/48xy4v-69/2y5v+8832x4zv+13984x3yzv+35/29x2y2zv-65/88xy3zv+53/74y4zv-55/79x3z2v-104/105x2yz2v+50/29xy2z2v-118/119y3z2v-25/88x2z3v+69/82xyz3v-56/69y2z3v-10495xz4v-73/50yz4v+1872z5v-62/19x4uv+99/89x3yuv+3156x2y2uv+5804xy3uv+85/91y4uv+10928x3zuv-4/83x2yzuv+2839xy2zuv+11/38y3zuv+55/126x2z2uv+15613xyz2uv+69/28y2z2uv+75/17xz3uv+115/51yz3uv-111/68z4uv-9781x3u2v+2/105x2yu2v-29/10xy2u2v+90/53y3u2v-12840x2zu2v+85/71xyzu2v-91/80y2zu2v+15904xz2u2v-82/69yz2u2v-32/75z3u2v-91/2x2u3v-77/61xyu3v-9757y2u3v-97/52xzu3v-32/9yzu3v-7457z2u3v-113/100xu4v-13367yu4v-16zu4v+17/53u5v+90/103x4v2-9338x3yv2-42/61x2y2v2+57/124xy3v2-17/6y4v2+6201x3zv2+75/8x2yzv2+13205xy2zv2-21/23y3zv2+6724x2z2v2-1646xyz2v2-3/41y2z2v2+13206xz3v2+14595yz3v2+3100z4v2-94/107x3uv2+106/99x2yuv2+53/24xy2uv2-10113y3uv2+13103x2zuv2+121/124xyzuv2-104/103y2zuv2+59/62xz2uv2+13343yz2uv2-73/72z3uv2-35/123x2u2v2+91/33xyu2v2+75/58y2u2v2-69/73xzu2v2-15760yzu2v2+684z2u2v2-12551xu3v2-99/79yu3v2+74/87zu3v2+9255u4v2-9727x3v3+1222x2yv3+31/115xy2v3+37/50y3v3-86/125x2zv3-5/82xyzv3+7/2y2zv3+69/88xz2v3-25/119yz2v3-120/101z3v3-48/113x2uv3-25/97xyuv3-14896y2uv3+13431xzuv3+13246yzuv3+7556z2uv3-103/111xu2v3+13/108yu2v3+9471zu2v3+31/114u3v3-121/23x2v4-65/69xyv4+66/95y2v4+30/59xzv4-111/40yzv4+55/4z2v4+114/121xuv4+7610yuv4-9205zuv4+85/81u2v4-88/59xv5-4248yv5+95/91zv5+156uv5-71/90v6,7698x4y-93/32x3y2+95/37x2y3+29/104xy4+10/23y5-11774x4z+4544x3yz-9/85x2y2z-45/49xy3z+110/41y4z-44/91x3z2-6083x2yz2+116/111xy2z2+47/68y3z2-11603x2z3-4229xyz3-13462y2z3-31/19xz4+4222yz4-700z5-34/11x4u-20/17x3yu-2471x2y2u-11235xy3u+13259y4u-111x3zu-109x2yzu-89/61xy2zu-28/11y3zu+74/97x2z2u+5554xyz2u+75/47y2z2u-68/77xz3u+15754yz3u-7/51z4u-53/98x3u2+9699x2yu2-9/104xy2u2+64/87y3u2-95/4x2zu2-595xyzu2+4/19y2zu2-18/95xz2u2-13449yz2u2+2931z3u2-11155x2u3-83/29xyu3+7830y2u3+108/91xzu3+13161yzu3+37/42z2u3-16/79xu4-10604yu4-15832zu4+40/39u5-6020x4v+910x3yv+13/110x2y2v+7/86xy3v-97/101y4v-3286x3zv+80/91x2yzv+12467xy2zv+115/99y3zv+79/60x2z2v-8/19xyz2v+105/71y2z2v+60/119xz3v-71/15yz3v+15272z4v-7397x3uv+125/7x2yuv-9507xy2uv+5301y3uv-5605x2zuv-32/35xyzuv-5523y2zuv+67/88xz2uv+15144yz2uv+3/8z3uv-33/56x2u2v+37/29xyu2v+49/19y2u2v-10604xzu2v+37/44yzu2v-8754z2u2v+4184xu3v-56/89yu3v-23/32zu3v+74/101u4v-23/123x3v2-13803x2yv2+54/95xy2v2+9751y3v2+55/119x2zv2+75/32xyzv2+10091y2zv2+1108xz2v2-13283yz2v2+98/111z3v2+5/109x2uv2+28/79xyuv2-95/6y2uv2-7880xzuv2-12659yzuv2+14820z2uv2+4279xu2v2+79/51yu2v2-67/49zu2v2+11207u3v2+85/54x2v3-78/43xyv3-3/95y2v3-86/65xzv3+1/114yzv3+27/74z2v3-102/31xuv3-11/59yuv3-33/29zuv3-3/110u2v3-8455xv4+77/100yv4-6225zv4-70/9uv4-10939v5,-7698x5-16/39x4y+51/61x3y2+59/33x2y3+12841xy4-11040y5+14163x4z-79/55x3yz-83/18x2y2z+121/67xy3z+52/35y4z+26/15x3z2+12770x2yz2-67/15xy2z2-12895y3z2-11/16x2z3-82/45xyz3+2446y2z3+116/9xz4+6/61yz4+83/98z5+9973x4u+67/101x3yu+25/19x2y2u+7517xy3u-59/117y4u-1/86x3zu-10/119x2yzu+2552xy2zu-2448y3zu-112/45x2z2u+35/71xyz2u+12328y2z2u+124/65xz3u-15531yz3u-39/16z4u+4678x3u2-44/103x2yu2-9303xy2u2+59/20y3u2-45/97x2zu2+2707xyzu2+65/61y2zu2+75/68xz2u2+2853yz2u2-12748z3u2-17/18x2u3-115/121xyu3+72/71y2u3-12194xzu3-14204yzu3-63/17z2u3+5772xu4-99/16yu4-51/43zu4+49/43u5-2588x4v+89/44x3yv+32/107x2y2v-117/76xy3v-84/115y4v+113/30x3zv-13/68x2yzv+15120xy2zv-59/28y3zv+61/52x2z2v+12390xyz2v+11436y2z2v+109/40xz3v+40/61yz3v+65/31z4v+12764x3uv+15885x2yuv-11299xy2uv-113/66y3uv+2887x2zuv-918xyzuv+12579y2zuv+39/10xz2uv-119/53yz2uv-62/115z3uv-10887x2u2v+115/122xyu2v-8863y2u2v-30/79xzu2v-26/5yzu2v+15294z2u2v-15701xu3v-11/19yu3v+25/14zu3v-48/55u4v+1341x3v2-4973x2yv2+55/117xy2v2-1787y3v2-115/57x2zv2+28/29xyzv2-184y2zv2+11738xz2v2-8375yz2v2-5962z3v2+52/55x2uv2+17/48xyuv2-103/52y2uv2-53/25xzuv2-101/3yzuv2-123/35z2uv2-14815xu2v2-103/14yu2v2-68/81zu2v2-81/22u3v2-121/56x2v3-12609xyv3+5555y2v3+8/17xzv3-741yzv3-73/103z2v3-12550xuv3-17/78yuv3+7817zuv3+6534u2v3-15384xv4+1807yv4-4677zv4-101/115uv4-83/19v5,-53/83x5+107/75x4y+26/51x3y2+45/109x2y3-3009xy4-27/61y5+16/85x4z-14859x3yz-20/27x2y2z+6326xy3z-4508y4z-10006x3z2-11979x2yz2+8579xy2z2+14669y3z2+67/79x2z3-2551xyz3-61/124y2z3+83/10xz4+12698yz4+15/113z5+123/86x4u-77/6x3yu+15113x2y2u+79/117xy3u-115/88y4u+101/95x3zu+56/13x2yzu-25/62xy2zu+1955y3zu+70/33x2z2u+7470xyz2u-2148y2z2u-14263xz3u-3962yz3u+47/35z4u+441x3u2+14944x2yu2-2/77xy2u2+68/23y3u2-121/43x2zu2-14321xyzu2-35/32y2zu2+34/21xz2u2+11645yz2u2+7131z3u2-3615x2u3-2748xyu3-15200y2u3+81/101xzu3+39/64yzu3-3967z2u3-10346xu4+55/18yu4-8/9zu4+33/68u5-13957x4v+31/116x3yv+58/81x2y2v+36/71xy3v-5706y4v-95/48x3zv+3214x2yzv+14729xy2zv+71/109y3zv+15365x2z2v-5109xyz2v-20/107y2z2v-6/11xz3v+74/55yz3v-76/11z4v+41/72x3uv+7215x2yuv-18/59xy2uv+1741y3uv+7698x2zuv-7299xyzuv+12127y2zuv+7/93xz2uv+71/8yz2uv-123/73z3uv+13657x2u2v-98/13xyu2v+11818y2u2v+22/23xzu2v-3038yzu2v+68/61z2u2v-7173xu3v-7460yu3v+3540zu3v+27/20u4v-37/41x3v2+20x2yv2+107/82xy2v2-2237y3v2+9827x2zv2+124/27xyzv2-18/5y2zv2-77/24xz2v2-10231yz2v2-32/7z3v2-11980x2uv2-36/35xyuv2+8618y2uv2+3174xzuv2-123/2yzuv2-117/38z2uv2+117/115xu2v2+70/3yu2v2-3144zu2v2+815u3v2-116/85x2v3+98/41xyv3-648y2v3-38/5xzv3-9/125yzv3+8710z2v3+48/31xuv3+101/109yuv3+70/11zuv3-51/4u2v3-76/59xv4-93/52yv4+15291zv4+4/55uv4+64/59v5,568x5+4355x4y+48/5x3y2+33/7x2y3-53/111xy4+1749y5-23/4x4z-98/69x3yz-47/56x2y2z-8519xy3z-5/113y4z+11488x3z2+79/21x2yz2+11/89xy2z2-64/83y3z2-15697x2z3-67/86xyz3+11545y2z3+3336xz4-106/39yz4+15466z5+15202x4u-34/63x3yu-121/72x2y2u+1/52xy3u+10800y4u+4993x3zu-55/112x2yzu-26/51xy2zu-114/125y3zu+113/2x2z2u-87/88xyz2u-91/107y2z2u-65/6xz3u+15415yz3u+1373z4u-27/86x3u2-76/93x2yu2+9/22xy2u2+16/91y3u2+10326x2zu2-61/84xyzu2-28/99y2zu2+87/14xz2u2-88/45yz2u2+60/59z3u2-13/60x2u3-10824xyu3-121/119y2u3+14919xzu3-81/25yzu3+11233z2u3+14676xu4-8474yu4+12211zu4+32/83u5+57/52x4v+10/13x3yv-277x2y2v-6961xy3v-4594y4v-13439x3zv-1/30x2yzv-118/43xy2zv-62/15y3zv+76/15x2z2v+3805xyz2v-26/15y2z2v+3081xz3v+662yz3v+13856z4v+107/30x3uv+6063x2yuv+100/37xy2uv+110/107y3uv-10346x2zuv-67/44xyzuv-93/29y2zuv+17/89xz2uv-57/104yz2uv-68/91z3uv+3804x2u2v-75/107xyu2v-11842y2u2v-103/57xzu2v-37/18yzu2v+10795z2u2v-90/31xu3v+14200yu3v+97/124zu3v+5256u4v+52/101x3v2-94/107x2yv2-12841xy2v2+77/72y3v2+93/74x2zv2+7033xyzv2+87/76y2zv2-15415xz2v2-15164yz2v2-14749z3v2+86/53x2uv2+14707xyuv2+9443y2uv2+118/5xzuv2-81/2yzuv2+43/57z2uv2+59/83xu2v2-121/79yu2v2+4449zu2v2-50/63u3v2+79/31x2v3+95/32xyv3+125/107y2v3-9165xzv3+3151yzv3+5006z2v3+45/19xuv3-5194yuv3-82/11zuv3+121/15u2v3-10265xv4-99/118yv4-3162zv4-16/29uv4-37/4v5;TestGRRes(Name, I); kill R, Name, @p;  "";
709
710  string Name = "k3.d11.g11.ss0"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = 38/41x4y+116/67x3y2+6547x2y3-50/71xy4+13/89y5+63/22x4z-12151x3yz-3400x2y2z-52/45xy3z+9027y4z+5420x3z2+6983x2yz2-3285xy2z2-47/2y3z2-137x2z3+40/51xyz3+111/40y2z3-97/93xz4+918yz4-7492z5-122/49x4u-123/47x3yu-95/32x2y2u-83/36xy3u-125/77y4u-9824x3zu-51/115x2yzu-83/18xy2zu-19/20y3zu-117/98x2z2u+885xyz2u-20/97y2z2u+69/55xz3u-11/82yz3u+93/47z4u-97/113x3u2-83/48x2yu2+12868xy2u2-4932y3u2-97/114x2zu2-121/116xyzu2-79/108y2zu2-27/68xz2u2+116/19yz2u2+10019z3u2-6268x2u3+5/31xyu3+13810y2u3-120/37xzu3-33/124yzu3-31/41z2u3+79/50xu4+71/59yu4+110/81zu4-27/53u5-12764x4v-7/22x3yv+15253x2y2v-67/29xy3v+15620y4v-1202x3zv+56/57x2yzv-99xy2zv-29/28y3zv-15010x2z2v-101/16xyz2v+11110y2z2v+7300xz3v+58/95yz3v+10228z4v+65/57x3uv+9/2x2yuv+116/27xy2uv+7960y3uv-11/8x2zuv+59/23xyzuv+19/26y2zuv+14327xz2uv-14671yz2uv+126/101z3uv+69/83x2u2v+14041xyu2v-73/90y2u2v+11/108xzu2v-5492yzu2v-3858z2u2v-2840xu3v+15365yu3v+28/113zu3v+149u4v-94/85x3v2-32/123x2yv2-1409xy2v2-8233y3v2+851x2zv2-7458xyzv2-10713y2zv2-18/11xz2v2-15/47yz2v2-32/97z3v2+39/68x2uv2-10832xyuv2+39/59y2uv2-12211xzuv2+66/71yzuv2+121/115z2uv2-65/101xu2v2+82/11yu2v2-78/103zu2v2-10128u3v2-100/33x2v3-29/28xyv3+61/29y2v3-5266xzv3+1953yzv3+5799z2v3+13/77xuv3-2680yuv3-57/98zuv3+56/125u2v3+121/42xv4+47/111yv4+2590zv4-60/53uv4+43/61v5,8057x5+3453x4y-71/57x3y2+14017x2y3+89/28xy4-15/44y5+10785x4z-14385x3yz-112/31x2y2z+29/42xy3z+162y4z-12837x3z2+31/33x2yz2+105/74xy2z2+97/59y3z2-23/61x2z3-246xyz3+65/93y2z3+1/54xz4+6/25yz4+96x4u-41/74x3yu+15120x2y2u-1465xy3u-47/42y4u+11/80x3zu-84/55x2yzu+12120xy2zu+84/65y3zu+496x2z2u-29/24xyz2u+3753y2z2u-2608xz3u+11/123yz3u+7955z4u-11390x3u2+37/79x2yu2+3230xy2u2-72/83y3u2-87/74x2zu2-11620xyzu2+8276y2zu2+608xz2u2-7002yz2u2-7897z3u2-65/97x2u3-37/3xyu3+7/43y2u3+37/20xzu3+97/28yzu3+98/19z2u3-47/45xu4-49/109yu4-53/89zu4-66/125u5+7516x4v-1097x3yv+15928x2y2v-12128xy3v-12988y4v-23/7x3zv+5146x2yzv+9/28xy2zv-1816y3zv+115/42x2z2v+11840xyz2v+40/119y2z2v-66/85xz3v-8269yz3v-59/45z4v-114/37x3uv-126/55x2yuv-31/24xy2uv-19/9y3uv+77/3x2zuv+14268xyzuv-4133y2zuv-11603xz2uv-55/83yz2uv-5/61z3uv-13069x2u2v+4387xyu2v+94/77y2u2v-111/79xzu2v-31/61yzu2v-26/53z2u2v-13/103xu3v-27/91yu3v-100/57zu3v-104/111u4v+77/15x3v2+100/69x2yv2-1664xy2v2+14971y3v2-67/45x2zv2-55/27xyzv2+13/98y2zv2-958xz2v2+3/68yz2v2+34/65z3v2+10771x2uv2+19/106xyuv2-84/125y2uv2+4723xzuv2-10707yzuv2+50/103z2uv2+1766xu2v2+110/3yu2v2-58/51zu2v2-16/105u3v2-70/111x2v3+83/103xyv3-104/83y2v3-2394xzv3+91/109yzv3-11779z2v3+111/80xuv3+41/109yuv3+71/77zuv3+110/31u2v3+8933xv4-109/113yv4-56/87zv4-120/7uv4-107/57v5,-38/41x5-116/67x4y-6547x3y2+50/71x2y3-13/89xy4-43/79x4z+1342x3yz+14316x2y2z+737xy3z+15/44y4z+124/79x3z2-67/13x2yz2+79/104xy2z2-162y3z2-109/120x2z3+4540xyz3-97/59y2z3+3772xz4-65/93yz4-6/25z5-13041x4u-90/89x3yu+107/36x2y2u+43/46xy3u-11755y4u+12017x3zu-97/58x2yzu+5592xy2zu-11967y3zu+24/79x2z2u-63/83xyz2u-7367y2z2u-62/79xz3u+55/64yz3u-67/18z4u-672x3u2+19/77x2yu2-100/63xy2u2-23/56y3u2+61/78x2zu2+120/67xyzu2+48/107y2zu2+5855xz2u2+9877yz2u2+6940z3u2+12754x2u3+12989xyu3-123/106y2u3+59/88xzu3-3400yzu3-8976z2u3+43/21xu4-86/111yu4+2/29zu4+57/31u5+79/48x4v+95/56x3yv+3056x2y2v-13681xy3v+13735y4v-122/91x3zv+79/74x2yzv+21/47xy2zv+12060y3zv-12314x2z2v+64/17xyz2v-57/52y2z2v-57/86xz3v+15436yz3v+9387z4v+3345x3uv+2/109x2yuv-13978xy2uv+5604y3uv+11645x2zuv+2633xyzuv+15505y2zuv+10/99xz2uv+14409yz2uv+8127z3uv+99/104x2u2v+14440xyu2v+37/43y2u2v-9707xzu2v+9171yzu2v-656z2u2v+3723xu3v+4/19yu3v+109/76zu3v-8740u4v+2121x3v2+34/11x2yv2-89/61xy2v2-26/21y3v2+111/22x2zv2+88/41xyzv2+119/99y2zv2+108/77xz2v2+9279yz2v2-45/116z3v2+71/107x2uv2+25/76xyuv2-112/121y2uv2-18/71xzuv2-84/125yzuv2+496z2uv2+96/113xu2v2-964yu2v2-73/4zu2v2+103/95u3v2+9962x2v3+38/39xyv3-15120y2v3+11747xzv3+2/123yzv3+14829z2v3-6538xuv3-52/63yuv3-83/107zuv3+73/37u2v3-4183xv4+11/103yv4+83/119zv4+94/31uv4-19/98v5,-12092x5-2411x4y+3922x3y2+117/41x2y3+95/22xy4+45/19x4z-5881x3yz+97/80x2y2z-4981xy3z-21/67y4z+9068x3z2+1/11x2yz2-109/65xy2z2+22/117y3z2-7823x2z3-76/75xyz3-34/25y2z3-79/5xz4-60/37yz4-87/100z5+58/83x4u-36/61x3yu+79/76x2y2u+502xy3u+4988y4u+43/38x3zu-4/107x2yzu-48/11xy2zu+11685y3zu-15002x2z2u-97/17xyz2u+93/2y2z2u-35/71xz3u+43/83yz3u-69/26z4u+119/6x3u2-87/14x2yu2-29/109xy2u2-36/97y3u2-116/119x2zu2+4610xyzu2-33/58y2zu2+121/25xz2u2-125/121yz2u2-35/121z3u2-8975x2u3+9014xyu3+14845y2u3-10277xzu3+75/124yzu3-10/83z2u3-73/69xu4+46/85yu4-4971zu4-113/4u5+9321x4v+109/19x3yv+11/17x2y2v+6672xy3v+16/99y4v+8092x3zv+1725x2yzv+80/41xy2zv+2445y3zv+4/99x2z2v+69/101xyz2v+13182y2z2v-10090xz3v+3817yz3v+106/79z4v-71/89x3uv+110/107x2yuv-56/19xy2uv-708y3uv-108/97x2zuv-11889xyzuv+9744y2zuv-24/121xz2uv-10711yz2uv+3182z3uv-22/35x2u2v+81/44xyu2v-40/31y2u2v-13494xzu2v+47/80yzu2v+71/52z2u2v-6214xu3v-5144yu3v-115/49zu3v-109/19u4v+8621x3v2-62/79x2yv2-102/103xy2v2-8174y3v2+13689x2zv2+15544xyzv2-107/73y2zv2+120/73xz2v2+19/56yz2v2-4544z3v2-824x2uv2-2/17xyuv2+67/78y2uv2-54/85xzuv2+31/51yzuv2-59/19z2uv2+50/7xu2v2+5762yu2v2+79/64zu2v2-3729u3v2+12212x2v3+1833xyv3+12543y2v3+11974xzv3-11/17yzv3-75/74z2v3+26/3xuv3-37/36yuv3-7683zuv3+14069u2v3+12261xv4+12489yv4+1657zv4+10781uv4-46/3v5,12092x4z+2411x3yz-3922x2y2z-117/41xy3z-95/22y4z+11164x3z2+6625x2yz2+112/75xy2z2+1533y3z2+60/101x2z3-173xyz3+15913y2z3+14954xz4-5022yz4+12391z5-38/41x4u-116/67x3yu-6547x2y2u+50/71xy3u-13/89y4u-12/55x3zu-10086x2yzu+6782xy2zu-111/89y3zu-52/85x2z2u+9744xyz2u+9553y2z2u-15590xz3u+76/13yz3u+5938z4u+42/11x3u2-25/116x2yu2+2554xy2u2-12842y3u2-3/88x2zu2+102/113xyzu2-10298y2zu2-32/69xz2u2+9709yz2u2+8775z3u2-9937x2u3+5128xyu3-56/75y2u3+12493xzu3-7/39yzu3-41/24z2u3-125/49xu4-15745yu4-1005zu4+16/55u5-7566x3zv+14010x2yzv+51/23xy2zv+37/113y3zv+9/14x2z2v+2251xyz2v+10076y2z2v-106/69xz3v-4060yz3v+3379z4v-11120x3uv-9744x2yuv+50/17xy2uv+7065y3uv-70/37x2zuv+10016xyzuv+47/86y2zuv+6928xz2uv-11190yz2uv-11611z3uv+15042x2u2v-52/105xyu2v+2185y2u2v-76/67xzu2v-57/104yzu2v-7610z2u2v-3912xu3v+1/48yu3v-24/109zu3v+3287u4v+17/96x2zv2+29/76xyzv2+15768y2zv2+8410xz2v2-116/41yz2v2+89/48z3v2+15119x2uv2-11840xyuv2-89/43y2uv2+10115xzuv2+93/101yzuv2+33/62z2uv2+11864xu2v2-14582yu2v2+95/53zu2v2-8816u3v2+35/43xzv3+75/107yzv3+13515z2v3-38/67xuv3+83/71yuv3+113/51zuv3-80/111u2v3+49/5zv4+13850uv4,14959x5-3/13x4y+97/37x3y2+14586x2y3-71/120xy4-10158x4z+59/50x3yz-101/96x2y2z+118/47xy3z-65/83y4z+49/66x3z2-107/18x2yz2-2/47xy2z2+104/63y3z2-121/43x2z3+9552xyz3-113/36y2z3+4699xz4+55/53yz4+16/109z5-3576x4u-103/52x3yu-8299x2y2u+1585xy3u+3377y4u+15336x3zu-119/24x2yzu-19/68xy2zu-65/11y3zu-17/117x2z2u+788xyz2u+73/115y2z2u-46/93xz3u-108/7yz3u+3774z4u-14034x3u2-15420x2yu2-5128xy2u2+83/55y3u2+17/5x2zu2+13098xyzu2+96/29y2zu2-54/115xz2u2+4/5yz2u2+2747z3u2+56/83x2u3-1545xyu3+14384y2u3+7787xzu3-69/64yzu3-27/20z2u3-17/15xu4+46/13yu4-44/41zu4-14876u5+10090x4v+184x3yv+125/44x2y2v-13987xy3v+104/123y4v+24/35x3zv+77/95x2yzv+162xy2zv+31/113y3zv-94/51x2z2v-14750xyz2v-110/101y2z2v+3224xz3v-12389yz3v-77/57z4v-7340x3uv+48/79x2yuv-55/71xy2uv-65/57y3uv+13981x2zuv+76/73xyzuv-41/22y2zuv-10847xz2uv+3230yz2uv+37/14z3uv+64/47x2u2v-89/97xyu2v-608y2u2v-93/112xzu2v-22yzu2v+7158z2u2v-120/31xu3v-13481yu3v-97/37zu3v-113/87u4v-35/19x3v2+79/53x2yv2-1037xy2v2-29/63y3v2+5990x2zv2-3380xyzv2-17/126y2zv2-40/121xz2v2-15041yz2v2+3779z3v2+13583x2uv2+11/73xyuv2+2762y2uv2-16/49xzuv2-40/93yzuv2-37/75z2uv2+13312xu2v2+4407yu2v2+5449zu2v2+3013u3v2+86/73x2v3-37/66xyv3-73/15y2v3+75/107xzv3-63/31yzv3-97/99z2v3+11234xuv3+37/92yuv3+47/27zuv3+121/26u2v3-15690xv4+73/40yv4-12281zv4+6014uv4-92/83v5,-12092x4y-2411x3y2+3922x2y3+117/41xy4+95/22y5+14327x4z+3699x3yz+18/85x2y2z-56/53xy3z-31/16y4z+5371x3z2+73/69x2yz2+65/34xy2z2-59/49y3z2+23/37x2z3-9067xyz3+79/37y2z3-17/50xz4+8412yz4+110/39z5-36/125x4u-20/51x3yu-28/123x2y2u-4482xy3u+4217y4u+8/19x3zu+9/77x2yzu-10526xy2zu+76/79y3zu-12494x2z2u-50/13xyz2u-98/123y2z2u-23/19xz3u+1491yz3u-50/109z4u-67/62x3u2+68/47x2yu2-38/99xy2u2-4891y3u2+68/113x2zu2-73/35xyzu2-2384y2zu2+71/109xz2u2-68/39yz2u2-94/125z3u2+120/121x2u3-20/39xyu3+435y2u3-23/14xzu3-39/97yzu3+75/23z2u3+71/30xu4-8426yu4+125/7zu4+11/46u5-2334x4v+9113x3yv-1060x2y2v+12839xy3v+9876y4v-8395x3zv-79/82x2yzv+89/79xy2zv+805y3zv-7473x2z2v+80/89xyz2v+105/52y2z2v-54/103xz3v-2102yz3v+19/117z4v-1326x3uv-8963x2yuv-12/13xy2uv+11798y3uv-80/7x2zuv+519xyzuv-58/67y2zuv+14572xz2uv+8426yz2uv-66/47z3uv-574x2u2v+12480xyu2v-41/89y2u2v-111/83xzu2v-58/37yzu2v-15255z2u2v+31/97xu3v-89/113yu3v+15475zu3v-3982u4v+51/8x3v2+9547x2yv2-8060xy2v2-195y3v2-5/21x2zv2-2411xyzv2+65/12y2zv2-5410xz2v2+3844yz2v2+3/61z3v2-62/101x2uv2+53/19xyuv2-6567y2uv2+11302xzuv2+123/37yzuv2-107/118z2uv2-29/79xu2v2-91/40yu2v2+40/99zu2v2-12274u3v2-47/124x2v3+12752xyv3+11039y2v3-115/43xzv3+44/79yzv3-37/28z2v3+5364xuv3+14510yuv3+3024zuv3-40/3u2v3+71/122xv4+12024yv4+10/93zv4-4183uv4+11229v5,-51/74x4y-99/61x3y2-10442x2y3+6943xy4-15040y5+126/97x4z+101/41x3yz+4018x2y2z+98/61xy3z+87/34y4z+75/52x3z2-109/70x2yz2-81/71xy2z2+8231y3z2+78/49x2z3+53/69xyz3+70/71y2z3+48/23xz4-6678yz4+14913z5-32/97x4u+78/55x3yu+11669x2y2u-58/75xy3u-61/64y4u+118/35x3zu-125/28x2yzu-125/79xy2zu-49/23y3zu-14966x2z2u-34/19xyz2u-53/126y2z2u+13854xz3u-2177yz3u+9962z4u+15886x3u2+47/38x2yu2+10992xy2u2-111/31y3u2-79/21x2zu2-14524xyzu2-3442y2zu2-45/86xz2u2+53/3yz2u2+8738z3u2+9062x2u3+3872xyu3+56/61y2u3-6255xzu3-104/107yzu3+9858z2u3+7891xu4-11114yu4+67/37zu4-15307u5-108/7x4v+11586x3yv+19/4x2y2v+14404xy3v-99/116y4v+124/33x3zv-73/17x2yzv+77/115xy2zv-4537y3zv+9949x2z2v+101/111xyz2v+6634y2z2v-11818xz3v+23/52yz3v-63z4v+7/6x3uv-13686x2yuv+15879xy2uv+4731y3uv+107/82x2zuv+104/119xyzuv-56/67y2zuv-21/5xz2uv-24/41yz2uv-125/108z3uv+58/77x2u2v+79/49xyu2v+82/19y2u2v-82/117xzu2v-8/61yzu2v+210z2u2v+27/25xu3v+71/111yu3v-14500zu3v-15/2u4v-113/108x3v2+40/31x2yv2+89/69xy2v2-8271y3v2+111/20x2zv2+1/31xyzv2-51/101y2zv2+3967xz2v2+79/32yz2v2-6893z3v2-1060x2uv2+38/5xyuv2+21/20y2uv2-79/34xzuv2+15/118yzuv2+25/106z2uv2+97/20xu2v2+6/67yu2v2+113/120zu2v2+13/3u3v2+1800x2v3-97/15xyv3-12712y2v3+49/118xzv3+5/63yzv3+234z2v3-97/123xuv3+13/88yuv3+8/103zuv3-38/97u2v3-15634xv4+18/25yv4-7517zv4+115/103uv4-56/23v5,-123/61x5+4/87x4y-15558x3y2+78/5x2y3-31/83xy4+9742x4z+23/125x3yz+1865x2y2z+56/125xy3z-4/33y4z-54/71x3z2-113/84x2yz2+37/75xy2z2+6/23y3z2-28/123x2z3+31/112xyz3-15736y2z3-106/111xz4+46/109yz4-29/10z5-28/117x4u+15892x3yu+8096x2y2u-91/29xy3u+57/92y4u+96/31x3zu+166x2yzu+2654xy2zu-11662y3zu+1565x2z2u+9017xyz2u+121/4y2z2u-29/115xz3u+9828yz3u-15873z4u-5354x3u2+118/19x2yu2+88/95xy2u2+68/19y3u2-7/110x2zu2-109/37xyzu2-45/74y2zu2+12579xz2u2-6659yz2u2+10257z3u2+7229x2u3+39/67xyu3-108/19y2u3-58/9xzu3-29/81yzu3-1461z2u3+23/43xu4-8/19yu4-44zu4+100/109u5+121/51x4v-20/39x3yv-85/121x2y2v+73/61xy3v+103/50y4v+7334x3zv+52/125x2yzv-14/55xy2zv+106/103y3zv-4079x2z2v+109/57xyz2v+123/28y2z2v-21/83xz3v+3/31yz3v-9826z4v+89/77x3uv-79/35x2yuv+8767xy2uv+83/11y3uv+113/36x2zuv-57/68xyzuv+1675y2zuv+10873xz2uv+84/11yz2uv+89/110z3uv-5834x2u2v-121/97xyu2v+49/66y2u2v-103/95xzu2v+14863yzu2v+119/94z2u2v+44/35xu3v-15429yu3v-9302zu3v-73/12u4v-77/86x3v2-121/46x2yv2+48/13xy2v2+68/115y3v2+58/63x2zv2+58/117xyzv2-16/7y2zv2-76/39xz2v2+41/103yz2v2-8042z3v2-59/5x2uv2+3277xyuv2-120/107y2uv2-5/84xzuv2-30/103yzuv2+31/71z2uv2-1593xu2v2-4668yu2v2+5749zu2v2+38/43u3v2+26/17x2v3+1894xyv3+62/17y2v3-4851xzv3-10816yzv3+62/55z2v3+1366xuv3-70/11yuv3+90/43zuv3-115/57u2v3-10886xv4+1987yv4-78/25zv4+110/29uv4+4694v5,47/12x5+64/29x4y-113/70x3y2+15185x2y3-52/81xy4+67/28x4z-4220x3yz-9239x2y2z+10/117xy3z-5609y4z-4439x3z2-61/91x2yz2+15282xy2z2+8165y3z2-19/109x2z3+123/94xyz3+62/49y2z3+77/2xz4-1/37yz4-1202z5-14940x4u+13396x3yu-6/5x2y2u-91/50xy3u+115/118y4u-455x3zu-2755x2yzu+14353xy2zu+11/53y3zu+115/57x2z2u+86/49xyz2u+43y2z2u+5247xz3u+4438yz3u+109/16z4u-3113x3u2-15629x2yu2-15664xy2u2-115/57y3u2+3/103x2zu2-3723xyzu2+89/17y2zu2-59/56xz2u2+19/123yz2u2+43/14z3u2+103/14x2u3+106/31xyu3-13591y2u3-71/43xzu3+74/119yzu3-36/113z2u3-73/96xu4-31/120yu4-105/76zu4-37/34u5-58/23x4v-11111x3yv+5888x2y2v+14867xy3v+8608y4v-2829x3zv-31/120x2yzv+6306xy2zv+5913y3zv+35/6x2z2v+75/104xyz2v+33/41y2z2v-15317xz3v-31/49yz3v-7300z4v+2214x3uv-91/46x2yuv+10949xy2uv-3/82y3uv-16/27x2zuv-14175xyzuv-13/19y2zuv-21/65xz2uv+148yz2uv+14615z3uv-43/6x2u2v-4133xyu2v+33/49y2u2v-1299xzu2v+96/53yzu2v-12667z2u2v-86/113xu3v+10437yu3v-53/13zu3v-15678u4v-53/121x3v2-20/49x2yv2+3813xy2v2+10006y3v2+15644x2zv2-99/7xyzv2-42/13y2zv2-124/57xz2v2+73/70yz2v2+110/107z3v2-97/22x2uv2-125/116xyuv2+92/93y2uv2-12120xzuv2+143yzuv2-15344z2uv2+13225xu2v2+17/104yu2v2+1212zu2v2-7685u3v2-81/4x2v3+10328xyv3-21/19y2v3+13407xzv3-1/118yzv3+59/88z2v3+965xuv3-93/43yuv3-76/85zuv3-81/86u2v3-6949xv4+9205yv4-7777zv4+15020uv4+8845v5,3079x5-28/11x4y+117/88x3y2-89/115x2y3+40/13xy4+13407y5+3942x4z+30/121x3yz-2922x2y2z-71/74xy3z-103/114y4z-89/59x3z2+12255x2yz2+44/109xy2z2+13778y3z2+103/110x2z3-73/95xyz3+8049y2z3+10042xz4-101/35yz4-1636z5-53/27x4u+130x3yu-5989x2y2u+67/109xy3u+4601y4u-12943x3zu-86/75x2yzu+5837xy2zu+107/104y3zu+2396x2z2u-25/58xyz2u+29/110y2z2u+10526xz3u-7/45yz3u-9105z4u-64/35x3u2+64/105x2yu2+113/24xy2u2-5955y3u2+20/91x2zu2+119/78xyzu2+83/8y2zu2+125/103xz2u2+83/101yz2u2+14895z3u2-118/93x2u3-19/23xyu3+100/53y2u3-92/59xzu3+34/89yzu3+9417z2u3-6626xu4-36/65yu4+119/82zu4+8761u5-15340x4v-89/115x3yv+89/85x2y2v+33/74xy3v-8088y4v+29/16x3zv-6581x2yzv-88/85xy2zv-12/11y3zv-58/19x2z2v+12219xyz2v-100/119y2z2v+116/53xz3v-67/94yz3v+13/5z4v+236x3uv+107/96x2yuv+115/113xy2uv-7860y3uv+15064x2zuv+29/59xyzuv-7/103y2zuv-71/66xz2uv-103/79yz2uv-83/4z3uv-77/23x2u2v+7/37xyu2v+106/103y2u2v+3/50xzu2v+125/17yzu2v-15620z2u2v+6424xu3v-12832yu3v+58/53zu3v-3893u4v+25/124x3v2-99/61x2yv2-61/10xy2v2-103/39y3v2-9764x2zv2+123/23xyzv2-83/126y2zv2+13541xz2v2+73/106yz2v2+1172z3v2-14333x2uv2+7/72xyuv2-41/25y2uv2-42/31xzuv2+7/12yzuv2-9744z2uv2-15518xu2v2-121/5yu2v2-7/115zu2v2+75/14u3v2-9/67x2v3+10248xyv3+5738y2v3+71/13xzv3-43/24yzv3+9/94z2v3-113/16xuv3-27/25yuv3-50/11zuv3+41/49u2v3+10896xv4-46/43yv4-58/15zv4-5671uv4-61/9v5,6254x5-95/34x4y-7133x3y2+111/38x2y3-43/19xy4-104/111y5+92/51x4z+11826x3yz+3453x2y2z+5703xy3z+13099y4z-73/79x3z2-69/11x2yz2-15727xy2z2+98/115y3z2-10548x2z3-14452xyz3-5138y2z3-138xz4+46/109yz4-5419z5+73/6x4u-63/5x3yu+31/60x2y2u-11963xy3u+6161y4u-2311x3zu+104/105x2yzu+10873xy2zu+8165y3zu-17/83x2z2u-18/91xyz2u+13544y2z2u+36/121xz3u-8704yz3u+46/7z4u+11392x3u2+133x2yu2+7460xy2u2+8831y3u2+144x2zu2-79/47xyzu2-70/113y2zu2+7369xz2u2-11234yz2u2-19/52z3u2+9830x2u3+13/41xyu3+1985y2u3-22/15xzu3-5449yzu3+5967z2u3+9321xu4+13078yu4-97/3zu4+4079u5-5700x4v+5013x3yv-10774x2y2v-13183xy3v-20/109y4v-106/65x3zv+49/117x2yzv-67/17xy2zv-13917y3zv+9457x2z2v+95/67xyz2v-108/65y2z2v+65/77xz3v-11235yz3v+125/104z4v+17/117x3uv+6355x2yuv+5/36xy2uv-117/31y3uv-1225x2zuv+117/53xyzuv-7/26y2zuv+87/46xz2uv+33/76yz2uv-82/73z3uv-34/39x2u2v+9/22xyu2v+83/11y2u2v+13740xzu2v-108/11yzu2v-9627z2u2v-32/95xu3v-7966yu3v-12400zu3v-111/91u4v+47/11x3v2-10/27x2yv2-5257xy2v2-85/19y3v2-3/62x2zv2+12660xyzv2-37/110y2zv2+10980xz2v2+73/29yz2v2+87/92z3v2-73/90x2uv2-77/25xyuv2+66/31y2uv2-23/96xzuv2-3169yzuv2+125/71z2uv2+9/11xu2v2+6550yu2v2-15163zu2v2+10810u3v2+96/79x2v3+196xyv3-95/94y2v3+15146xzv3+14695yzv3+97/80z2v3+13047xuv3-44/79yuv3-43/41zuv3+40/57u2v3-8369xv4+12/5yv4+77/100zv4-53/79uv4-53/86v5,-122/49x5-3959x4y-7277x3y2+41/93x2y3+39/59xy4-91/68x4z+37/11x3yz+11561x2y2z-5297xy3z+53/14y4z-17/122x3z2+5470x2yz2+14889xy2z2-123/49y3z2+131x2z3+13/43xyz3-82/37y2z3-106/91xz4+11066yz4-72/13z5+15904x4u+44/47x3yu+10450x2y2u+86/41xy3u-40/41y4u+17/92x3zu-81/29x2yzu-40/101xy2zu+103/59y3zu-29/72x2z2u+17/123xyz2u+38/3y2z2u+3358xz3u-69/97yz3u+7627z4u+15451x3u2+5371x2yu2-9009xy2u2-62/35y3u2-44/75x2zu2+13188xyzu2+50/51y2zu2+53/93xz2u2-6796yz2u2-13/6z3u2+39/62x2u3-22/71xyu3-32/97y2u3+43/14xzu3-9/37yzu3-48/125z2u3+100/103xu4+13286yu4+6246zu4-26/107u5-15634x4v+112/9x3yv+54/109x2y2v+23/93xy3v+101/13y4v+79/84x3zv+5290x2yzv-52/29xy2zv-109/111y3zv+107/88x2z2v+10186xyz2v+122/97y2z2v-8370xz3v-108/47yz3v+6311z4v-1126x3uv+51/10x2yuv+9201xy2uv-111/119y3uv+105/58x2zuv-74/23xyzuv-130y2zuv-99/28xz2uv+24/65yz2uv-111/49z3uv-4961x2u2v-23/42xyu2v-32/101y2u2v+48/83xzu2v-13001yzu2v-31/86z2u2v+85/91xu3v+4019yu3v-10/43zu3v+11/105u4v+9790x3v2+73/78x2yv2+63/50xy2v2+35/2y3v2-52/119x2zv2+13680xyzv2-46/55y2zv2+89/12xz2v2-23/82yz2v2-107/85z3v2-20/79x2uv2-85/111xyuv2+31/95y2uv2-13xzuv2+5661yzuv2+9399z2uv2+73/75xu2v2+4782yu2v2-5440zu2v2+45/64u3v2-1484x2v3+1/54xyv3+43/115y2v3+139xzv3-47/85yzv3-103/43z2v3+48/97xuv3+67/15yuv3-69/95zuv3-67/90u2v3+6540xv4+6276yv4-9756zv4-10/121uv4+118/63v5,x5+13/23x4y-10277x3y2-81/107x2y3+18/97xy4+193x4z-206x3yz+1473x2y2z-3907xy3z+9620y4z-11603x3z2+7430x2yz2-3745xy2z2-23/55y3z2-31/13x2z3-115/51xyz3+54/5y2z3+107/6xz4+8432yz4-23/71z5-21/79x4u-7130x3yu-55/46x2y2u+61/113xy3u+11/95y4u-31/125x3zu+47/80x2yzu+12/79xy2zu-51/112y3zu-28/75x2z2u+1962xyz2u-12942y2z2u-93/37xz3u-7/9yz3u+81/7z4u-79/62x3u2+98/29x2yu2-113/36xy2u2-59/51y3u2-5931x2zu2+8/29xyzu2-22/117y2zu2-12146xz2u2+12607yz2u2-8748z3u2-11878x2u3-6xyu3-11798y2u3+97/111xzu3+122/3yzu3+10228z2u3-99/67xu4-8058yu4+116/43zu4-6801u5-7565x4v-21/58x3yv-23/90x2y2v-111/49xy3v+62/3y4v-118/109x3zv-91/27x2yzv-2256xy2zv-6909y3zv+47/126x2z2v+397xyz2v-65/103y2z2v+106/43xz3v-43/9yz3v+4502z4v+5383x3uv-19/48x2yuv+91/92xy2uv-15545y3uv+11204x2zuv+7609xyzuv-125/44y2zuv+15/7xz2uv-4157yz2uv+27/10z3uv+70/67x2u2v+5/121xyu2v-12337y2u2v-12417xzu2v+46/113yzu2v+27/89z2u2v-9419xu3v-59/47yu3v+52/97zu3v+71/56u4v+56/123x3v2+122/73x2yv2+100/103xy2v2+43/8y3v2+99/98x2zv2-14242xyzv2-93/38y2zv2+61/109xz2v2-21/125yz2v2+80/23z3v2+11603x2uv2-1734xyuv2-55/73y2uv2+5/89xzuv2+77/100yzuv2-71/38z2uv2+41/47xu2v2+981yu2v2+11/41zu2v2-8983u3v2+98/59x2v3+105/97xyv3-6372y2v3+12829xzv3+79/96yzv3+110/57z2v3+8495xuv3-11228yuv3-2396zuv3-101/9u2v3-71/39xv4-11746yv4-43/96zv4+64/55uv4-769v5,122/49x4y+3959x3y2+7277x2y3-41/93xy4-39/59y5+32/97x4z+97/96x3yz-43/116x2y2z+19/30xy3z+18/17y4z+39/122x3z2-98/99x2yz2+23/65xy2z2-50/103y3z2-11445x2z3+111/119xyz3-82/67y2z3+49/15xz4+59/74yz4+87/124z5+97/113x3yu+59/113x2y2u-17/16xy3u-1892y4u-15886x3zu+75/124x2yzu-13/108xy2zu+14203y3zu+13871x2z2u+24xyz2u+1483y2z2u-34/91xz3u+51/29yz3u+88/107z4u+6268x2yu2+13776xy2u2+1935y3u2-9062x2zu2-4534xyzu2+9553y2zu2-8429xz2u2-11141yz2u2-89/88z3u2-79/50xyu3-121/15y2u3-7891xzu3-27/94yzu3+96/71z2u3+27/53yu4+15307zu4-775x4v-2648x3yv-2095x2y2v+7594xy3v+12989y4v-17/29x3zv+11801x2yzv+32/45xy2zv-55/73y3zv+9756x2z2v+6886xyz2v+5939y2z2v+39/23xz3v+2632yz3v+77/6z4v+36/121x3uv-76/55x2yuv+5296xy2uv-32/47y3uv-125/84x2zuv-30/67xyzuv-14914y2zuv+73/23xz2uv+123/101yz2uv+49/43z3uv-76/71x2u2v+79/50xyu2v+38/7y2u2v-5262xzu2v-5211yzu2v+2/95z2u2v-3570xu3v-9280yu3v+32/91zu3v+1089u4v-73/33x3v2-3931x2yv2-21/113xy2v2+191y3v2-93/2x2zv2-75/47xyzv2+16/115y2zv2+120/23xz2v2+23/114yz2v2-115/108z3v2-103/12x2uv2+20/107xyuv2+28/11y2uv2+23/42xzuv2-15290yzuv2+3651z2uv2-9566xu2v2-113/68yu2v2+7705zu2v2-12261u3v2+9882x2v3-8520xyv3+14858y2v3+200xzv3+14/73yzv3+45/53z2v3-4/113xuv3-11327yuv3+59/51zuv3-13869u2v3-33/29xv4-13026yv4+4236zv4+10782uv4+2817v5,-123/61x4y+4/87x3y2-15558x2y3+78/5xy4-31/83y5+10267x4z-29/21x3yz+2197x2y2z-57/98xy3z+121/31y4z-1310x3z2+9386x2yz2-37/50xy2z2-1767y3z2-489x2z3-117/31xyz3+13576y2z3-50/9xz4-47/77yz4+53/89z5-57/11x4u-8374x3yu+104/103x2y2u+29/12xy3u+7368y4u+102/37x3zu+10508x2yzu+28xy2zu-14484y3zu-240x2z2u-115/114xyz2u+97/74y2z2u+105/11xz3u+125/46yz3u-6746z4u+3454x3u2+14656x2yu2-82/111xy2u2+13130y3u2+121/58x2zu2-42/11xyzu2-89/81y2zu2+68/49xz2u2+8243yz2u2-11615z3u2-40/87x2u3+80/39xyu3+14735y2u3+10706xzu3-2448yzu3+64/51z2u3+4514xu4+658yu4-39/49zu4+21/23u5+11/105x4v-108x3yv-31/98x2y2v-73/64xy3v+205y4v-15348x3zv-13734x2yzv-52/11xy2zv+5897y3zv+106/27x2z2v+9613xyz2v+81/59y2z2v+1172xz3v+3716yz3v-3581z4v+50x3uv+81/38x2yuv+84/109xy2uv-34/69y3uv-58/35x2zuv-23/105xyzuv+43/78y2zuv-57/31xz2uv+98/37yz2uv+11/96z3uv+147x2u2v+11414xyu2v+5/96y2u2v+19/77xzu2v+1274yzu2v+4/63z2u2v-4396xu3v+7060yu3v+5044zu3v-102/121u4v+67/25x3v2-13601x2yv2+68/65xy2v2+82/77y3v2-8394x2zv2-13318xyzv2+71/104y2zv2-75/107xz2v2+39/100yz2v2+11229z3v2+113/84x2uv2-2988xyuv2-9616y2uv2-41/50xzuv2+3/34yzuv2-12322z2uv2-120/11xu2v2+4/75yu2v2+12562zu2v2-92/39u3v2+1497x2v3+80/103xyv3+15/64y2v3-16/109xzv3-85/81yzv3-52/81z2v3-23/49xuv3+1295yuv3+13460zuv3+52/73u2v3-24/5xv4+11079yv4-25/57zv4-119/47uv4-7/120v5,123/61x4z-4/87x3yz+15558x2y2z-78/5xy3z+31/83y4z-2966x3z2+73/89x2yz2+75/112xy2z2+51/29y3z2-46/47x2z3+3812xyz3-8592y2z3+7582xz4+113/92yz4-11815z5+34/111x3zu-25/63x2yzu+115/79xy2zu+36/115y3zu-17/38x2z2u+7906xyz2u-108/71y2z2u+7541xz3u-12683yz3u-111/110z4u-107/24x2zu2-70/9xyzu2+42/113y2zu2-75xz2u2+64/101yz2u2+65/106z3u2-118/97xzu3+12960yzu3-918z2u3-72/113zu4+17/73x4v+15/17x3yv-22/91x2y2v+78/121xy3v+9/77y4v-91/102x3zv+15814x2yzv-12480xy2zv+1177y3zv-7/40x2z2v+47/69xyz2v-2847y2z2v+987xz3v-1954yz3v+43/97z4v-7692x3uv-109/44x2yuv-94/111xy2uv+84/17y3uv+13682x2zuv+64/7xyzuv-13069y2zuv+92/67xz2uv-109/84yz2uv-93/56z3uv-5368x2u2v-93/101xyu2v-118/43y2u2v-40/57xzu2v-58/55yzu2v+84/19z2u2v+4/9xu3v-540yu3v+11588zu3v-93/25u4v-85/89x3v2-1800x2yv2-40/51xy2v2-7293y3v2+15927x2zv2-33/106xyzv2+25/98y2zv2-13657xz2v2+43/37yz2v2+79/115z3v2-74/11x2uv2+29/114xyuv2-50/69y2uv2+252xzuv2-65/69yzuv2-88/5z2uv2+4418xu2v2-6634yu2v2-9854zu2v2-20/73u3v2+94/11x2v3+1430xyv3+1/41y2v3+21/101xzv3-68/59yzv3-9515z2v3+55/8xuv3-12014yuv3+57/73zuv3-97/58u2v3-124/91xv4+5575yv4-5470zv4+15340uv4+123/7v5,-14327x4y-14863x3y2+3913x2y3+4595xy4+75/77y5-5371x3yz+86/123x2y2z-84/115xy3z-117/100y4z-23/37x2yz2-82/125xy2z2+2426y3z2+17/50xyz3+11188y2z3-110/39yz4-126/97x4u-85/41x3yu-22/25x2y2u-10619xy3u+3473y4u-75/52x3zu-121/37x2yzu+48/125xy2zu+7246y3zu-78/49x2z2u+106/3xyz2u-50/59y2z2u-48/23xz3u+79/111yz3u-14913z4u+31/87x3u2+101/84x2yu2-14270xy2u2-116/83y3u2-15/86x2zu2-3946xyzu2+17/23y2zu2+11/2xz2u2-6992yz2u2-118/77z3u2+68/87x2u3-101/70xyu3-5015y2u3-134xzu3-13479yzu3-103/19z2u3-24/61xu4+35/83yu4-15310zu4-10610u5-22/41x4v-120/91x3yv-10964x2y2v-44/31xy3v+65/122y4v-29/47x3zv+2889x2yzv+43/63xy2zv-47/9y3zv+14/41x2z2v-58/57xyz2v-67/9y2z2v+20/33xz3v+32/87yz3v-113/114z4v+31/19x3uv-7367x2yuv+11612xy2uv-27/62y3uv-47/2x2zuv-28/15xyzuv-6682y2zuv+14672xz2uv+4043yz2uv-2529z3uv-39/115x2u2v+17/4xyu2v+49/39y2u2v+15437xzu2v+91/40yzu2v+14140z2u2v-18/107xu3v-49/5yu3v-88/115zu3v-77/82u4v+1398x3v2+7/111x2yv2+1081xy2v2+6822y3v2-19/100x2zv2-19/9xyzv2+116/83y2zv2+123xz2v2-37/54yz2v2+83/32z3v2-23/82x2uv2-17/45xyuv2-10206y2uv2+20/11xzuv2-29/43yzuv2-61/77z2uv2-15878xu2v2-39/44yu2v2+19/41zu2v2+35/88u3v2+2955x2v3-87/115xyv3-16/17y2v3-107/34xzv3+80/91yzv3+112/69z2v3+109/107xuv3+85/28yuv3-68/121zuv3+2654u2v3-64/55xv4-37/60yv4+69/7zv4+66/85uv4+5754v5,-36/35x4u+12883x3yu+49/120x2y2u-4628xy3u-75/118y4u+65/93x3zu+5754x2yzu-41/62xy2zu+328y3zu-43/49x2z2u+98/107xyz2u+9/16y2z2u+15504xz3u-94/39yz3u-7028z4u-74/81x3u2+3486x2yu2+110/31xy2u2+7609y3u2-17/113x2zu2-71/78xyzu2-49/102y2zu2-2012xz2u2-4935yz2u2+459z3u2+6/53x2u3-12342xyu3-4432y2u3-95/23xzu3+11567yzu3+23/84z2u3-78/19xu4+57/10yu4+37/92zu4+11049u5-70/83x4v-34/69x3yv-9309x2y2v+10247xy3v-119/89y4v-13641x3zv+7018x2yzv+33/95xy2zv+8545y3zv+8410x2z2v-119/33xyz2v-31/44y2z2v-15/79xz3v+49/2yz3v+15796z4v-8/61x3uv-4248x2yuv+1419xy2uv-7061y3uv-12022x2zuv+5656xyzuv+101/51y2zuv-6255xz2uv+8208yz2uv-25/31z3uv-55/64x2u2v+35/88xyu2v+7627y2u2v-15213xzu2v-125/47yzu2v+716z2u2v-13163xu3v-12319yu3v+9945zu3v-122/123u4v-55/112x3v2-14498x2yv2-8389xy2v2+31/24y3v2-48/61x2zv2-10781xyzv2-51/43y2zv2-47/38xz2v2+73/88yz2v2+3185z3v2+41/11x2uv2+53/15xyuv2+35/94y2uv2-2/81xzuv2-109/55yzuv2-12412z2uv2+8/67xu2v2-79/101yu2v2+61/76zu2v2-119/47u3v2+100/7x2v3-56/81xyv3+21/82y2v3+87/52xzv3-85/57yzv3-13804z2v3-106/31xuv3+12534yuv3-93/7zuv3-14/27u2v3+85/11xv4-13639yv4-119/76zv4+59/111uv4-3220v5,975x4y+104/33x3y2-106/65x2y3+66/23xy4+59/86y5+73/72x3yz+33/92x2y2z+41/19xy3z-14775y4z-99/23x2yz2+3753xy2z2+71/41y3z2-92/5xyz3+6199y2z3+125yz4-5129x4u+112/123x3yu+19/2x2y2u-2647xy3u-35/89y4u-31/54x3zu+72/37x2yzu-121/52xy2zu-111/68y3zu+3697x2z2u+128xyz2u+14200y2z2u-27/53xz3u+59/78yz3u-22/45z4u-123/38x3u2+102/53x2yu2-49/57xy2u2+5449y3u2-2572x2zu2+3/2xyzu2+9486y2zu2+6/125xz2u2+45/2yz2u2-19/55z3u2-14525x2u3+83/18xyu3+123/56y2u3-12494xzu3-15240yzu3-28/117z2u3-20/93xu4-10552yu4-79/50zu4+107/33u5-11945x4v-86/85x3yv-115/62x2y2v+1874xy3v+96/13y4v+11797x3zv+15569x2yzv+6118xy2zv-106/103y3zv+117/40x2z2v+13729xyz2v-4329y2z2v+2102xz3v-77/27yz3v-73/25z4v+79/50x3uv+115/58x2yuv-1/111xy2uv-14589y3uv-10733x2zuv-83/65xyzuv+1735y2zuv-104/31xz2uv+99/97yz2uv+23/60z3uv+4021x2u2v+15801xyu2v+4183y2u2v-173xzu2v-100/51yzu2v-79/123z2u2v-8262xu3v-9744yu3v+28/37zu3v+5/111u4v-91/124x3v2+100/123x2yv2+113/96xy2v2-67/50y3v2+101/6x2zv2+3452xyzv2+9281y2zv2+53/22xz2v2-4861yz2v2+8899z3v2+91/23x2uv2+13924xyuv2-4/75y2uv2+59/4xzuv2-214yzuv2-114/49z2uv2+14285xu2v2+85/27yu2v2-99/5zu2v2-74/33u3v2+8313x2v3-96/71xyv3+41/69y2v3-97/31xzv3-6935yzv3-102/29z2v3+67/82xuv3+35/9yuv3-33/95zuv3+6316u2v3-6800xv4-93/4yv4-6367zv4+75/56uv4-13460v5;TestGRRes(Name, I); kill R, Name, @p; "";
711
712  string Name = "ell.d10.g9"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = -44/83x3y2-51/22x2y3+104/11xy4+38/119y5+22/87x3yz-27/61x2y2z-49/121xy3z-60/43y4z+124/65x3z2+39/107x2yz2-10379xy2z2-86/125y3z2+33/8x2z3+3501xyz3+53/9y2z3-69/106xz4+441yz4-19/126z5+12584x3yu+21/104x2y2u+12937xy3u-113/108y4u+13758x3zu+4991x2yzu+5360xy2zu-11946y3zu-2442x2z2u-9336xyz2u+9027y2z2u-112/37xz3u+14035yz3u-8230z4u+58/83x3u2+9675x2yu2+29/114xy2u2+10729y3u2+11/23x2zu2+3609xyzu2+7065y2zu2-2477xz2u2+32/37yz2u2-109/89z3u2-68/109x2u3-107/45xyu3-65/53y2u3+12249xzu3-11480yzu3+4/119z2u3+4418xu4+11875yu4-6961zu4+2678u5-76/71x3yv-87/4x2y2v+119/27xy3v+20/31y4v+122/65x3zv-116/61x2yzv-10976xy2zv-5720y3zv-12559x2z2v-109/102xyz2v-123/121y2z2v-18/73xz3v-89/124yz3v-50/109z4v-113/50x3uv+31/79x2yuv-14121xy2uv+11/123y3uv-3754x2zuv-1676xyzuv-117/113y2zuv-11336xz2uv-35/44yz2uv-116/21z3uv+10245x2u2v+17/4xyu2v-6432y2u2v-12632xzu2v+80/47yzu2v-9/115z2u2v-2607xu3v-79/82yu3v-71/63zu3v+71/102u4v-5212x3v2-2079x2yv2+104/107xy2v2+50/19y3v2+14719x2zv2-7/115xyzv2-113/6y2zv2+123/100xz2v2+22/9yz2v2+15772z3v2-10/111x2uv2-35/52xyuv2-8041y2uv2-17/38xzuv2-11677yzuv2+54/67z2uv2+7941xu2v2-8500yu2v2-147zu2v2-101/68u3v2+7864x2v3-120/61xyv3+13984y2v3+81/101xzv3-79/20yzv3-95/7z2v3-19/89xuv3-5837yuv3+112/95zuv3+119/87u2v3-51/50xv4-85/16yv4+3/44zv4+5109uv4-9320v5,44/83x4y+7230x3y2-110/69x2y3+5570xy4+87y5-103/18x4z+93/70x3yz+75/37x2y2z-61xy3z+7367y4z+5/31x3z2+9111x2yz2-97/44xy2z2+28/55y3z2+89/12x2z3+1832xyz3-15162y2z3+81/100xz4+52/9yz4-3/17z5+23/118x4u+101/55x3yu-33/47x2y2u-149xy3u+7961y4u-7891x3zu-81/14x2yzu+10246xy2zu+51/125y3zu+43/64x2z2u-68/37xyz2u+11/5y2z2u+5578xz3u-5440yz3u+61/118z4u-4318x3u2-69x2yu2-15141xy2u2+12/13y3u2+12180x2zu2-67/6xyzu2-18/121y2zu2+738xz2u2-91/115yz2u2+105/8z3u2-14085x2u3-5451xyu3+91/79y2u3-43/113xzu3-36/11yzu3-89/122z2u3+101/59xu4-125/117yu4-113/25zu4+63/118u5+13/106x4v+11326x3yv+2583x2y2v+14291xy3v+11795y4v-9923x3zv+10823x2yzv+30/31xy2zv-6558y3zv+89/20x2z2v-111/109xyz2v+10420y2z2v-81/44xz3v-76/3yz3v-31/55z4v+3423x3uv+47/80x2yuv-7843xy2uv-15365y3uv+978x2zuv+73/24xyzuv-2/39y2zuv-28/75xz2uv+1849yz2uv-10885z3uv+120/91x2u2v+9293xyu2v-8837y2u2v+109/105xzu2v+7/93yzu2v+4076z2u2v-106/5xu3v+8053yu3v-90zu3v+8598u4v+81/76x3v2-103/42x2yv2-6873xy2v2+49/73y3v2+8447x2zv2+3846xyzv2+107/126y2zv2+2145xz2v2+53/105yz2v2-62/75z3v2-11/35x2uv2+7066xyuv2+69/59y2uv2-53/64xzuv2+8587yzuv2+58/125z2uv2-15386xu2v2+9/121yu2v2+14966zu2v2-2518u3v2-37/56x2v3-11840xyv3-23/47y2v3+110/81xzv3-81yzv3+2719z2v3-65/118xuv3-1221yuv3-33/82zuv3-106/15u2v3+39/112xv4+13479yv4-126/109zv4-2251uv4+8907v5,-10723x3yz+16/79x2y2z+62/49xy3z-5204y4z-49/3x3z2+91/71x2yz2+77/3xy2z2-88/43y3z2-13949x2z3-9045xyz3+109/16y2z3-89/62xz4-15674yz4-10313z5-6773x3yu+124/61x2y2u-7483xy3u+18/23y4u-5136x3zu-3/31x2yzu-11796xy2zu-56/57y3zu-68/95x2z2u-7917xyz2u+1349y2z2u-17/56xz3u+14713yz3u-7938z4u+3104x3u2+14197x2yu2-15411xy2u2-14704y3u2+24/77x2zu2+78/19xyzu2-23/51y2zu2+98/61xz2u2+60/71yz2u2-103/51z3u2-103/42x2u3+15/79xyu3+101/62y2u3-15165xzu3+83/5yzu3-61/60z2u3+7/78xu4-3907yu4+6635zu4-12205u5-388x3yv+63/59x2y2v+88/109xy3v-13978y4v+80/53x3zv+645x2yzv+117/25xy2zv-81/53y3zv+43/72x2z2v+27/8xyz2v-10620y2z2v-13547xz3v-8282yz3v+13426z4v-58/119x3uv+480x2yuv-15697xy2uv-25/58y3uv-115x2zuv-46/123xyzuv-22/13y2zuv-88/105xz2uv-111/62yz2uv+3415z3uv-117/77x2u2v+18/29xyu2v-80/91y2u2v+7851xzu2v-11079yzu2v+39/50z2u2v+14917xu3v+1131yu3v+13259zu3v-122/25u4v-109/37x3v2+7/78x2yv2-73/13xy2v2-5623y3v2+11389x2zv2+63/68xyzv2+28/27y2zv2+69/112xz2v2-10851yz2v2+15829z3v2+86/51x2uv2+2298xyuv2+17/103y2uv2-97/2xzuv2+1/5yzuv2-104/119z2uv2+2/95xu2v2+11655yu2v2-42/65zu2v2+37/26u3v2-12355x2v3+35xyv3+20/7y2v3+8032xzv3+9572yzv3+11508z2v3+10858xuv3+115/81yuv3+10973zuv3+10832u2v3+33/101xv4-71/88yv4+67/18zv4-15473uv4+11/107v5,-28/81x3y2-126/61x2y3-70/23xy4+14521y5-3/55x3yz-100/107x2y2z-10724xy3z+2013y4z+1241x3z2+61/104x2yz2+3577xy2z2-2748y3z2-15718x2z3+106/5xyz3-41/93y2z3-95/61xz4-1/30yz4-73/4z5-59/56x3yu-14867x2y2u-11840xy3u+7444y4u-38/41x3zu-153x2yzu-2654xy2zu+73/83y3zu+6940x2z2u-1241xyz2u+79/17y2z2u-39/35xz3u-4590yz3u+8/109z4u+73/34x3u2+15609x2yu2+12721xy2u2-95/31y3u2+33/14x2zu2+77/65xyzu2-14476y2zu2+73/101xz2u2-73/101yz2u2+92/5z3u2-71/94x2u3-97/33xyu3+125/82y2u3+10213xzu3-6039yzu3-87/61z2u3-14084xu4-43/7yu4+3169zu4+4248u5+100/101x3yv+624x2y2v-4023xy3v-87/65y4v-2971x3zv-8/21x2yzv+8171xy2zv-7776y3zv-55/104x2z2v+96/113xyz2v-7318y2z2v+9436xz3v+42/41yz3v-115/14z4v-2550x3uv+82/29x2yuv+3830xy2uv+71/97y3uv-98/67x2zuv-4319xyzuv+33/49y2zuv-123/49xz2uv-35/62yz2uv-85/6z3uv-10726x2u2v+98/85xyu2v+24/43y2u2v-1382xzu2v+39/109yzu2v-36/71z2u2v+15911xu3v-38/35yu3v+2079zu3v+123/29u4v+4369x3v2-59/126x2yv2-11066xy2v2+110/117y3v2+14815x2zv2-19/49xyzv2-29/10y2zv2+41/38xz2v2-96/55yz2v2+686z3v2+67/30x2uv2+123/23xyuv2-52/25y2uv2-55xzuv2-23/89yzuv2-89/77z2uv2+9906xu2v2-12766yu2v2-104/7zu2v2+6533u3v2-65/97x2v3+57/2xyv3-11084y2v3+13/81xzv3-23/7yzv3-122/111z2v3+224xuv3+5112yuv3+103/30zuv3+78/43u2v3+4811xv4+6171yv4-3422zv4-1589uv4-5541v5,28/81x4y-39/88x3y2-101/87x2y3+11/10xy4+29/44y5-21/94x4z-100/81x3yz+123/73x2y2z+5440xy3z-15190y4z+14140x3z2+74/27x2yz2+92/15xy2z2+8048y3z2-95/64x2z3-60/89xyz3-11/118y2z3+56/15xz4+102/31yz4-1571z5-2598x4u-4426x3yu+2148x2y2u-95/11xy3u-6701y4u-12741x3zu-1179x2yzu+1671xy2zu-93/10y3zu-77/78x2z2u-35/101xyz2u-41/89y2z2u+1556xz3u+13/121yz3u+1288z4u-53/89x3u2-3/109x2yu2-12018xy2u2-5219y3u2+86/49x2zu2-1/84xyzu2+86/113y2zu2-85/123xz2u2+94/85yz2u2-10590z3u2-99/38x2u3+2696xyu3+107/13y2u3-144xzu3+8/69yzu3-107/33z2u3-117/53xu4+1924yu4+75/7zu4+98/113u5+13120x4v-7308x3yv+49/85x2y2v+55/64xy3v-4634y4v+9344x3zv-126/121x2yzv+23/81xy2zv+5086y3zv-4215x2z2v+2442xyz2v-9336y2z2v-43/44xz3v+114/109yz3v+10963z4v-2/111x3uv-5/126x2yuv-41/56xy2uv+47/79y3uv+74x2zuv-15011xyzuv+11187y2zuv-104/115xz2uv-94/67yz2uv+6674z3uv-5/78x2u2v-123/79xyu2v+7/36y2u2v+79/97xzu2v-55/62yzu2v-121/3z2u2v+109/4xu3v+9102yu3v-9526zu3v+8388u4v-47/98x3v2+14967x2yv2+5139xy2v2+83/16y3v2-15926x2zv2+8971xyzv2-15679y2zv2+8686xz2v2+13783yz2v2-57/103z3v2-73/100x2uv2-106/119xyuv2-98/113y2uv2+12096xzuv2+14898yzuv2+115/61z2uv2-125/119xu2v2+6048yu2v2+1/102zu2v2+31/125u3v2+7/27x2v3+64/123xyv3+2569y2v3+113/96xzv3-7216yzv3+2236z2v3-7127xuv3-38/17yuv3+94/73zuv3+708u2v3+87/88xv4-15428yv4-41/64zv4-55/86uv4-41/89v5,109/21x3yz-8388x2y2z-17/10xy3z-14404y4z+12672x3z2+73/52x2yz2+13291xy2z2+118/57y3z2+6159x2z3+4294xyz3-35/92y2z3-55/116xz4+83/64yz4-40/81z5-21/88x3yu-23/58x2y2u+83/118xy3u+12766y4u-45/101x3zu-38/71x2yzu+13/14xy2zu+50y3zu-2123x2z2u-61/102xyz2u+7/111y2z2u+48/121xz3u-15030yz3u-16/21z4u-34/121x3u2+34/111x2yu2+7/48xy2u2+1018y3u2-90/71x2zu2+10585xyzu2-117/56y2zu2+15739xz2u2-37/123yz2u2+4841z3u2-3527x2u3+107/77xyu3+14476y2u3-53/14xzu3-44/41yzu3+83/99z2u3+57/83xu4+1763yu4+3291zu4-2214u5+4710x3yv+4019x2y2v+106/103xy3v-33/67y4v-65/74x3zv-19/36x2yzv+83/97xy2zv+3597y3zv+76/25x2z2v-2159xyz2v+73/67y2z2v-68/55xz3v+36/29yz3v+96/55z4v-7809x3uv-101/51x2yuv+107/99xy2uv+3452y3uv-32/63x2zuv-61/125xyzuv+700y2zuv+14/45xz2uv-10/27yz2uv-64/109z3uv-12507x2u2v-3286xyu2v-8787y2u2v+11244xzu2v-7142yzu2v+51/52z2u2v-11/15xu3v+14/15yu3v-71/78zu3v+12840u4v+1676x3v2-7/22x2yv2+13461xy2v2+91/17y3v2-211x2zv2+2520xyzv2+37/91y2zv2+57/43xz2v2+79/61yz2v2+126/5z3v2+15390x2uv2+2521xyuv2-9728y2uv2-31/100xzuv2-67/120yzuv2-2/89z2uv2+3/40xu2v2-123/5yu2v2+95/44zu2v2+55/82u3v2+61/73x2v3+4656xyv3-59/61y2v3+53/5xzv3+81/19yzv3+7838z2v3-30xuv3-24/7yuv3-88/67zuv3-97/109u2v3+1/32xv4-7809yv4+115/33zv4+95/9uv4-51/31v5,10723x3yu-16/79x2y2u-62/49xy3u+5204y4u+49/3x3zu-91/71x2yzu-77/3xy2zu+88/43y3zu+13949x2z2u+9045xyz2u-109/16y2z2u+89/62xz3u+15674yz3u+10313z4u+12767x3u2-3679x2yu2+115/94xy2u2-95/72y3u2+83/126x2zu2+3070xyzu2+44/91y2zu2+105/53xz2u2-12618yz2u2-13345z3u2+61/47x2u3+108/25xyu3-3/17y2u3-76/71xzu3-36yzu3+96/47z2u3-7291xu4+7566yu4+1445zu4-48/79u5-4731x3yv+35/38x2y2v+26/47xy3v-6365y4v-15522x3zv+6045x2yzv+121/111xy2zv-15013y3zv+4541x2z2v+12683xyz2v+21/61y2z2v+96/29xz3v+98/57yz3v+57/112z4v+1027x3uv+220x2yuv+63/122xy2uv-6828y3uv+21/92x2zuv-13076xyzuv+4327y2zuv+65/107xz2uv-109/120yz2uv+46/87z3uv-13/102x2u2v+20/61xyu2v-41/47y2u2v-7345xzu2v+125/42yzu2v+124/49z2u2v-118/115xu3v+53/36yu3v-15/56zu3v+107/76u4v-13479x3v2+104/73x2yv2+5583xy2v2+12198y3v2-10858x2zv2+244xyzv2+15876y2zv2-38/123xz2v2+93/122yz2v2+82/15z3v2-35x2uv2-90/103xyuv2-16/73y2uv2+5638xzuv2-39/35yzuv2-82/39z2uv2+39/106xu2v2-3530yu2v2+7014zu2v2-9/16u3v2+105/46x2v3+1/9xyv3-10361y2v3+3039xzv3-5956yzv3+750z2v3-2053xuv3+27/112yuv3+4/121zuv3-13/108u2v3-70/33xv4-115/108yv4-59/61zv4-10442uv4-17/39v5,-80/61x3y2+68/57x2y3-35/101xy4+19/75y5+635x3yz+287x2y2z-31/49xy3z+89/93y4z-20/41x3z2-10544x2yz2+14618xy2z2-92/49y3z2+33/86x2z3-1/121xyz3-9325y2z3+2/67xz4-49/106yz4+15003z5+67/49x3yu-15884x2y2u-11/9xy3u+9349y4u+63/20x3zu+79/25x2yzu-23/77xy2zu+99/20y3zu-8233x2z2u-5/84xyz2u+71/97y2z2u+124/43xz3u-64/101yz3u-13567z4u-59/84x3u2+55/94x2yu2+7962xy2u2+36/95y3u2+5/8x2zu2+104/27xyzu2+59/12y2zu2+8231xz2u2-138yz2u2-8432z3u2+25/37x2u3+19/97xyu3+55/97y2u3+12659xzu3+27/119yzu3-101/6z2u3+69/103xu4-111/124yu4+96/107zu4-97/5u5+11725x3yv+16/105x2y2v-79/16xy3v-43/107y4v+17/54x3zv-12757x2yzv+7/124xy2zv-93/73y3zv+69/22x2z2v+73/40xyz2v+15350y2z2v+108/65xz3v+190yz3v+4395z4v+14431x3uv+8x2yuv+6264xy2uv+38/41y3uv-15601x2zuv-6559xyzuv-4074y2zuv+8619xz2uv+83/28yz2uv+15701z3uv-35/37x2u2v+75/62xyu2v+9293y2u2v-32/123xzu2v-64/15yzu2v+101/106z2u2v-13/111xu3v+89/37yu3v+49/36zu3v-78/125u4v+32/87x3v2-15591x2yv2-637xy2v2+31/61y3v2+39/41x2zv2-15874xyzv2-12988y2zv2+37/109xz2v2-18/119yz2v2-7257z3v2+97/16x2uv2+21/29xyuv2+81/95y2uv2-109/34xzuv2-35/27yzuv2+13439z2uv2-55/81xu2v2-23/90yu2v2-79/37zu2v2-60/103u3v2+41/24x2v3-95/54xyv3-104/25y2v3-27/97xzv3+43/52yzv3+82/65z2v3+15/82xuv3+1/44yuv3+65/119zuv3-5/32u2v3-1039xv4+39/31yv4-2847zv4-35/123uv4+59/20v5,80/61x4y-116/11x3y2-79/103x2y3-10762xy4-67/101y5+83/38x4z+61/10x3yz+31/8x2y2z-107/103xy3z-85/113y4z-3/97x3z2+6296x2yz2+47/86xy2z2+15041y3z2+14353x2z3+1990xyz3+15780y2z3-92/43xz4+64/47yz4-108/7z5+88/49x4u+98/57x3yu-41/44x2y2u+92/119xy3u+43/71y4u+14335x3zu+58/7x2yzu-79/39xy2zu-3487y3zu+56/83x2z2u-75/73xyz2u-7173y2z2u-99/64xz3u-51/65yz3u+11138z4u+8299x3u2+47/116x2yu2+98/95xy2u2+117/53y3u2-123/46x2zu2+125/74xyzu2-82/19y2zu2-4508xz2u2+49/29yz2u2-3337z3u2-109/7x2u3+103/41xyu3+28/13y2u3-6790xzu3-8289yzu3+59/41z2u3+15888xu4-9252yu4+10/99zu4+1485u5-101/23x4v-6626x3yv+19/25x2y2v-73/49xy3v-17/14y4v-33/46x3zv+109/58x2yzv+1/44xy2zv+8/65y3zv+5700x2z2v+16/69xyz2v+18/37y2z2v+3905xz3v+84/95yz3v+83/65z4v-700x3uv-8/7x2yuv+3184xy2uv-8373y3uv+106/115x2zuv+68/125xyzuv-2829y2zuv-38/41xz2uv+101/19yz2uv+66/97z3uv-47/7x2u2v+21/97xyu2v+9/74y2u2v+57/55xzu2v-107/89yzu2v-14157z2u2v-1693xu3v+9/10yu3v-53/114zu3v-10049u4v+9871x3v2+14318x2yv2-8447xy2v2+10730y3v2-98/87x2zv2-3822xyzv2+38/39y2zv2+111/59xz2v2-4603yz2v2+35/69z3v2-161x2uv2-73/48xyuv2-58/79y2uv2+71/63xzuv2+1832yzuv2+7891z2uv2-13900xu2v2+113/31yu2v2-7626zu2v2-1223u3v2-33/94x2v3-49/20xyv3+20/113y2v3-47/15xzv3+109/32yzv3-49/95z2v3+92/17xuv3-16/99yuv3-10817zuv3+3754u2v3-94/9xv4-67/79yv4+12659zv4+101/117uv4+113/17v5,-3756x3yz-24/35x2y2z-29/112xy3z+7944y4z-8968x3z2+62/115x2yz2-38/101xy2z2+28/39y3z2+61/49x2z3-88/119xyz3-119/87y2z3-7/123xz4-4935yz4-1239z5+8x3yu-68/7x2y2u+11910xy3u+5043y4u+7293x3zu-121/47x2yzu+8/77xy2zu-53/109y3zu+15439x2z2u-6359xyz2u-81/109y2z2u-3423xz3u+12246yz3u-1382z4u-2355x3u2+12015x2yu2-79/38xy2u2-14798y3u2+623x2zu2+47/113xyzu2+11457y2zu2+5127xz2u2-9/16yz2u2-70/41z3u2+107/112x2u3-73/49xyu3-38/15y2u3+8748xzu3-5150yzu3-94/67z2u3+10449xu4-993yu4-53/6zu4+46/79u5+59/46x3yv+7/44x2y2v+11979xy3v+78/61y4v+69/109x3zv-424x2yzv+3267xy2zv-82/17y3zv+15/92x2z2v-106/121xyz2v-32/37y2z2v+15746xz3v+97/30yz3v-7/29z4v-9484x3uv+64/45x2yuv-75xy2uv+14513y3uv-11/103x2zuv-82/3xyzuv+8740y2zuv-67/101xz2uv+584yz2uv+15/121z3uv+11669x2u2v+51/112xyu2v+124/101y2u2v+106/17xzu2v+3108yzu2v-67/118z2u2v+6866xu3v+5705yu3v-68/77zu3v-89/98u4v+14035x3v2-1896x2yv2+107/99xy2v2+46/49y3v2+109/29x2zv2-14831xyzv2-13871y2zv2+61/62xz2v2-35/9yz2v2+61/40z3v2+101/115x2uv2-14723xyuv2+13811y2uv2+66/13xzuv2-9031yzuv2-118/77z2uv2-86/121xu2v2-10616yu2v2-60/107zu2v2+123/85u3v2-92/47x2v3+23/98xyv3-5986y2v3-8636xzv3+63/89yzv3+1899z2v3+117/19xuv3-65/41yuv3+2817zuv3-1578u2v3-35/82xv4+2155yv4+7844zv4-40/67uv4-16/111v5,-4394x3y2-8801x2y3+12722xy4+15341y5+85/73x3yz+3786x2y2z-156xy3z-11841y4z-93/47x3z2+79/20x2yz2+79/99xy2z2+10343y3z2-631x2z3+7178xyz3-4119y2z3+15660xz4+14318yz4+1/69z5-9/85x3yu-59/33x2y2u-4250xy3u-9233y4u-103/75x3zu-72/53x2yzu+50/7xy2zu+6476y3zu-37/114x2z2u-5/7xyz2u-13/93y2z2u+7262xz3u+40/93yz3u-5837z4u-13/116x3u2+12622x2yu2+2615xy2u2-235y3u2+99/115x2zu2+101/9xyzu2+83/28y2zu2+14490xz2u2+119/96yz2u2-11229z3u2+41/86x2u3+14636xyu3-88/45y2u3-9311xzu3-8967yzu3-71/105z2u3+56/53xu4+14093yu4+115zu4+118/67u5-95/54x3yv-11922x2y2v-101/117xy3v-15245y4v-3849x3zv+100x2yzv+101/64xy2zv+82/5y3zv-53/52x2z2v-26/67xyz2v+17/72y2z2v+33/41xz3v-91/82yz3v-29/12z4v+73/126x3uv+109/73x2yuv-28/55xy2uv-51/29y3uv+17/35x2zuv+108/67xyzuv+81/2y2zuv+95/101xz2uv-57/8yz2uv-7142z3uv-8230x2u2v-91/107xyu2v-51/11y2u2v+67/125xzu2v-59/17yzu2v+23/121z2u2v+14520xu3v+2632yu3v+10602zu3v+19/75u4v-98/115x3v2-13270x2yv2+23/28xy2v2-97/24y3v2+18/37x2zv2+2394xyzv2+9634y2zv2-12683xz2v2-4723yz2v2+93/11z3v2+76/15x2uv2-7066xyuv2-3496y2uv2-31/33xzuv2+23/114yzuv2+75/4z2uv2+6637xu2v2+5/31yu2v2-220zu2v2-15145u3v2-16/57x2v3+994xyv3+13/111y2v3-35/111xzv3-1460yzv3-13818z2v3-12748xuv3+6/19yuv3+3481zuv3+4768u2v3+31/83xv4-21/34yv4-117/95zv4+7890uv4-5747v5,4394x4y+25/118x3y2+27/122x2y3-1/20xy4-21/58y5+7367x4z+11281x3yz+2518x2y2z-55/92xy3z+7/17y4z-6716x3z2+116/11x2yz2+67/35xy2z2+14506y3z2-70/17x2z3-92/125xyz3-11235y2z3+28/79xz4+6770yz4+13311z5-12323x4u-36x3yu-74/35x2y2u+28/11xy3u-14140y4u+29/76x3zu+10357x2yzu-13657xy2zu-65/9y3zu+8/49x2z2u-186xyz2u+7854y2z2u+20/111xz3u+53/20yz3u-4420z4u-49x3u2+106/73x2yu2-57/112xy2u2-1767y3u2-67/36x2zu2+97/31xyzu2-4/15y2zu2-27/119xz2u2-6837yz2u2+81/88z3u2-803x2u3-14237xyu3+116/45y2u3+74/53xzu3-44/23yzu3+7957z2u3+2551xu4-5262yu4-3014zu4+115/98u5+46/39x4v+71/2x3yv+13841x2y2v-12/7xy3v+7491y4v+19/67x3zv-21/82x2yzv+29/92xy2zv+124/123y3zv+4436x2z2v+4318xyz2v-14/111y2z2v+105/118xz3v+12883yz3v-105/22z4v-124/109x3uv-107/103x2yuv+7/4xy2uv-114/121y3uv-74/69x2zuv-5025xyzuv-114/97y2zuv-5872xz2uv+24/95yz2uv-49/88z3uv-21/29x2u2v+121/52xyu2v+721y2u2v+119/67xzu2v+85/48yzu2v+50/67z2u2v+24/53xu3v+32/115yu3v-2809zu3v+2966u4v+5211x3v2-190x2yv2+2551xy2v2+2895y3v2+124/63x2zv2-6160xyzv2+71/122y2zv2+8635xz2v2-9/28yz2v2+193z3v2+9/119x2uv2-110/101xyuv2-11713y2uv2-6363xzuv2+61/93yzuv2-10139z2uv2+89/96xu2v2+94/103yu2v2+61/93zu2v2-61/78u3v2-67/22x2v3+15674xyv3-121/5y2v3+121/76xzv3+15523yzv3-93/88z2v3+8667xuv3-11344yuv3-97/108zuv3-14490u2v3+10228xv4-18/107yv4-54/37zv4-2193uv4+14370v5,-103/79x3yz-16/41x2y2z+114/83xy3z-104/85y4z+14/37x3z2-3023x2yz2+723xy2z2-7/55y3z2-82/85x2z3-33/83xyz3+109/119y2z3-13119xz4-4627yz4-35/37z5-11662x3yu+121/57x2y2u-7212xy3u+59/83y4u+2149x3zu-30/13x2yzu+125/119xy2zu+79/23y3zu-3/88x2z2u+7168xyz2u-10717y2z2u+112/33xz3u-10509yz3u+121/56z4u+125/88x3u2-115/121x2yu2+49/4xy2u2-27/88y3u2-2867x2zu2-43/85xyzu2-4734y2zu2-37/114xz2u2-2/43yz2u2+106/95z3u2-108/35x2u3+4531xyu3-19/44y2u3-73/27xzu3+59/117yzu3+25/9z2u3-65/89xu4+81/20yu4+5365zu4+1733u5-2363x3yv-10326x2y2v-5/24xy3v-17/106y4v-14412x3zv+6361x2yzv+10187xy2zv-76/101y3zv+4991x2z2v+14252xyz2v-107/18y2z2v+4857xz3v-13162yz3v+1088z4v-3/64x3uv-14/113x2yuv+96/41xy2uv-76/103y3uv+8924x2zuv-11/30xyzuv-4493y2zuv+3070xz2uv+10/41yz2uv-35/51z3uv+4318x2u2v+15309xyu2v+107/101y2u2v-1748xzu2v+11082yzu2v+29/90z2u2v-19/8xu3v+107/64yu3v+3039zu3v-21/59u4v+14/87x3v2+16/59x2yv2+77/9xy2v2+3679y3v2+53/113x2zv2+97/80xyzv2-899y2zv2+10016xz2v2-10049yz2v2+29/10z3v2+43/7x2uv2-5919xyuv2-7/34y2uv2+42/85xzuv2+102/23yzuv2-8300z2uv2+125/2xu2v2-1700yu2v2-107/21zu2v2+12942u3v2-3054x2v3-87/53xyv3+4745y2v3+52/83xzv3-11747yzv3-119/64z2v3-5987xuv3+2016yuv3-2889zuv3+4535u2v3-1588xv4-27/5yv4+8541zv4-15581uv4-3/119v5,-x3y2-7492x2y3+118/35xy4-43/5y5-2479x3yz-8522x2y2z-105/26xy3z-103/18y4z+5868x3z2-10040x2yz2-50/81xy2z2+3378y3z2-71/44x2z3-12323xyz3-25/44y2z3+12979xz4-15146yz4+5962z5+8852x3yu-39/77x2y2u-9554xy3u-14590y4u+61/84x3zu-2295x2yzu-5969xy2zu+14241y3zu-29/74x2z2u+107/17xyz2u+107y2z2u-14/99xz3u+109/93yz3u-73/41z4u-9170x3u2+8877x2yu2-109/118xy2u2+65/36y3u2+122/93x2zu2-15020xyzu2+33/50y2zu2-11/46xz2u2-91/116yz2u2-47/10z3u2-34/57x2u3-90/79xyu3+12760y2u3+81/71xzu3+1436yzu3+14839z2u3+6598xu4-12418yu4-47/59zu4-1357u5+6/91x3yv-46/21x2y2v+100/53xy3v-69/125y4v+98x3zv-63/23x2yzv+96/121xy2zv+12/11y3zv-37/120x2z2v-37/106xyz2v-25/122y2z2v-13657xz3v+79/47yz3v+15519z4v+45/46x3uv+73/100x2yuv-5361xy2uv-39/101y3uv+1161x2zuv-105/22xyzuv+79/34y2zuv+96/31xz2uv-20/51yz2uv-2683z3uv-122/125x2u2v-66/109xyu2v-6357y2u2v-3021xzu2v+86/33yzu2v-105/8z2u2v+95/22xu3v-9046yu3v+69/83zu3v-3166u4v+91/115x3v2+9661x2yv2-8757xy2v2+79/23y3v2+125/107x2zv2+6133xyzv2+8975y2zv2-38/103xz2v2-120/43yz2v2+59/124z3v2-9252x2uv2+27/64xyuv2+99/80y2uv2+125/28xzuv2-60/109yzuv2-73/107z2uv2-15162xu2v2+91/71yu2v2-89/122zu2v2-1/9u3v2+40/117x2v3-71/41xyv3+10502y2v3-5618xzv3-995yzv3-117/112z2v3-15185xuv3-4470yuv3-13/4zuv3-14631u2v3-5804xv4-15527yv4-47/87zv4+5084uv4-64/11v5,x4y+46/47x3y2+13/47x2y3-13553xy4-5/59y5-15/76x4z+370x3yz+15/56x2y2z-8199xy3z+17/37y4z+32/47x3z2-26/29x2yz2-1/109xy2z2+68/77y3z2-88/123x2z3-1397xyz3-90y2z3+117/80xz4+14919yz4+11248z5+1742x4u-6060x3yu+97/38x2y2u+54/53xy3u-26/45y4u-315x3zu+9/76x2yzu+113/14xy2zu-28/79y3zu-109/14x2z2u+53/54xyz2u-213y2z2u-18/11xz3u-12129yz3u+6321z4u-13361x3u2+109/81x2yu2+37/84xy2u2-19/69y3u2+82/31x2zu2-20/41xyzu2-13135y2zu2-52/99xz2u2-12942yz2u2-8237z3u2-12377x2u3-41/43xyu3+13143y2u3-6701xzu3-98/53yzu3+97/43z2u3+1570xu4-41/5yu4-7/86zu4+306u5-7920x4v+76/53x3yv-91/73x2y2v-49/64xy3v+12976y4v-1787x3zv-95/123x2yzv-10033xy2zv-83/100y3zv-17/112x2z2v+1060xyz2v-121/54y2z2v+25/77xz3v+23/73yz3v-3576z4v+41/98x3uv+15265x2yuv+9014xy2uv-86/33y3uv-83/51x2zuv-15747xyzuv+11/16y2zuv-12110xz2uv-15554yz2uv-7654z3uv+68/53x2u2v+1673xyu2v-123/64y2u2v-3/19xzu2v+29/34yzu2v-5457z2u2v+51/58xu3v-4242yu3v-70/67zu3v+7159u4v+8620x3v2-9381x2yv2+52/79xy2v2-73/113y3v2+83/22x2zv2-1445xyzv2+6524y2zv2-122xz2v2-107/85yz2v2-1240z3v2+1710x2uv2-101/59xyuv2-2950y2uv2-12343xzuv2-79/27yzuv2-5/26z2uv2+89/68xu2v2-14985yu2v2+8382zu2v2-5109u3v2-12322x2v3-97/106xyv3-86/23y2v3+115/11xzv3-45/2yzv3-79/110z2v3+7472xuv3-17/71yuv3+1659zuv3-4468u2v3-85/47xv4+11/73yv4-1700zv4-32/51uv4+7855v5,62/49x4-125/36x3y+2x2y2+56/39xy3+7307y4-42/43x3z+83/42x2yz-11648xy2z-43/106y3z-49/109x2z2-95/28xyz2-194y2z2+71/95xz3-83/59yz3-66/95z4-1/51x3u-82/21x2yu+121/103xy2u-11106y3u-55/91x2zu+55/119xyzu-123/79y2zu-20/11xz2u+6943yz2u+69z3u+5908x2u2-56/89xyu2-13119y2u2+32/115xzu2+11412yzu2+63/50z2u2+73/85xu3-12527yu3+1991zu3+26/33u4+79/91x3v-10/27x2yv+20/117xy2v-49/102y3v+98/33x2zv+115/76xyzv+12412y2zv-47/48xz2v+121/113yz2v+105/26z3v-10954x2uv+10730xyuv+15721y2uv-101/63xzuv-32/19yzuv+67/71z2uv+77/45xu2v+27/98yu2v-670zu2v-13396u3v-55/119x2v2-7890xyv2-101/7y2v2-9563xzv2+3/95yzv2+4857z2v2+9397xuv2+3/116yuv2-12257zuv2-79/49u2v2+11697xv3+26/19yv3+4885zv3-53/22uv3-8355v4;TestGRRes(Name, I); kill R, Name, @p; "";
713
714  string Name = "k3.d10.g9.quart2"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = x3yz2+31/15x2y2z2-7231xy3z2+99/37y4z2+28/95x3z3+97/32x2yz3+13247xy2z3+12717y3z3-113/31x2z4-61/30xyz4-6844y2z4+104/3xz5-13849yz5+43/39z6+13061x3yzu-8463x2y2zu+94/69xy3zu-8/61y4zu-13297x3z2u+7217x2yz2u-7830xy2z2u-75/14y3z2u+2839x2z3u-14657xyz3u-52/7y2z3u-6/89xz4u-6169yz4u+44/7z5u-98/33x3yu2+41/30x2y2u2-65/98xy3u2+122/13y4u2+9906x3zu2-11587x2yzu2+17/53xy2zu2+6504y3zu2+49/106x2z2u2+11480xyz2u2+97/71y2z2u2+12560xz3u2-114/83yz3u2-13761z4u2-67/112x3u3-18/49x2yu3+21/67xy2u3-44/43y3u3+123/116x2zu3+4459xyzu3-13841y2zu3-805xz2u3-1382yz2u3-5293z3u3+133x2u4-122/79xyu4+9724y2u4+61/24xzu4+113/119yzu4-19/108z2u4+15893xu5+57/22yu5+4600zu5-618u6-27/53x3yzv+44/103x2y2zv-142xy3zv+19/84y4zv+105/8x3z2v+10532x2yz2v-75/74xy2z2v-70/19y3z2v+31/80x2z3v-481xyz3v+47/30y2z3v+14318xz4v+51/28yz4v-15/113z5v-46/17x3yuv-99/100x2y2uv-106/5xy3uv+14384y4uv+7/100x3zuv-15/64x2yzuv-6976xy2zuv+12051y3zuv-67/42x2z2uv-2627xyz2uv-49/104y2z2uv+77/16xz3uv+15766yz3uv+85/117z4uv-107/101x3u2v-6699x2yu2v+2443xy2u2v-27/28y3u2v+11945x2zu2v-14467xyzu2v-4873y2zu2v-63/124xz2u2v-8270yz2u2v+11900z3u2v+47/14x2u3v+53/8xyu3v-10/51y2u3v-87/119xzu3v+114/73yzu3v+86/57z2u3v+52/63xu4v-11587yu4v+1/18zu4v-121/109u5v+116/11x3yv2+19/108x2y2v2-31/3xy3v2-43/9y4v2-81/100x3zv2-7728x2yzv2-1037xy2zv2+24/101y3zv2-61/103x2z2v2-8/51xyz2v2+117/109y2z2v2+98/23xz3v2+1646yz3v2-3356z4v2+105/59x3uv2+117/31x2yuv2+519xy2uv2+12633y3uv2+25/6x2zuv2-963xyzuv2-49/23y2zuv2-116/25xz2uv2+14146yz2uv2+11480z3uv2-95/8x2u2v2-10928xyu2v2-51/23y2u2v2-12770xzu2v2-92/91yzu2v2+3872z2u2v2+3183xu3v2+6871yu3v2+90/37zu3v2+10019u4v2-69/88x3v3-1398x2yv3-97/72xy2v3-46/97y3v3+107/14x2zv3-20/89xyzv3-11367y2zv3+120/29xz2v3-86/81yz2v3+107/69z3v3-39/17x2uv3+83/11xyuv3+169y2uv3-11/71xzuv3-22/17yzuv3-14862z2uv3-13009xu2v3-101/12yu2v3+10617zu2v3+2567u3v3-23/85x2v4+27/50xyv4+113/51y2v4+97/16xzv4+4438yzv4-11857z2v4+14580xuv4-6426yuv4+9421zuv4-10585u2v4+14670xv5+1807yv5+10298zv5-116/53uv5+7869v6,x3yzu+31/15x2y2zu-7231xy3zu+99/37y4zu+28/95x3z2u+97/32x2yz2u+13247xy2z2u+12717y3z2u-113/31x2z3u-61/30xyz3u-6844y2z3u+104/3xz4u-13849yz4u+43/39z5u-124/43x3yu2-90/13x2y2u2-13244xy3u2-78/73y4u2+118/43x3zu2+37/67x2yzu2-10426xy2zu2+2412y3zu2-32/113x2z2u2+35/104xyz2u2+3952y2z2u2+9028xz3u2-1990yz3u2-59/109z4u2+15499x3u3+116/23x2yu3+95/58xy2u3+8/47y3u3+59/109x2zu3-29xyzu3+12412y2zu3+20/81xz2u3+2200yz2u3-13809z3u3+3889x2u4-8136xyu4+8922y2u4-4/121xzu4+82/113yzu4-65/23z2u4+101/53xu5+103/113yu5-99/118zu5-9524u6-2749x3yzv-7814x2y2zv+73/113xy3zv+9937y4zv-59/62x3z2v-23/12x2yz2v-10245xy2z2v+7130y3z2v-4427x2z3v+6656xyz3v+3448y2z3v-46/79xz4v+1611yz4v+8453z5v+12013x3yuv+49/17x2y2uv-4/115xy3uv-121/91y4uv-63/29x3zuv+64/7x2yzuv-8785xy2zuv-87/14y3zuv+36/121x2z2uv+9525xyz2uv+4215y2z2uv-17/13xz3uv-117/125yz3uv+101/122z4uv+42/37x3u2v-8747x2yu2v-105/79xy2u2v+10799y3u2v-58/49x2zu2v-8/75xyzu2v-67/49y2zu2v-38/11xz2u2v+53/27yz2u2v+113/52z3u2v+18/59x2u3v+71/106xyu3v+47/2y2u3v-4594xzu3v+95/4yzu3v-121/46z2u3v-55/62xu4v-101/72yu4v+40/53zu4v+15227u5v-15553x3yv2+29/94x2y2v2-4076xy3v2-7133y4v2+27/125x3zv2+33/29x2yzv2-63/95xy2zv2+9166y3zv2-480x2z2v2+9941xyz2v2+107/46y2z2v2+13018xz3v2+53/98yz3v2+92/35z4v2+17/30x3uv2+77/95x2yuv2+11/67xy2uv2+8262y3uv2+65/11x2zuv2+2567xyzuv2-33/94y2zuv2+85/92xz2uv2+103/25yz2uv2-27/100z3uv2+13210x2u2v2-109/90xyu2v2+141y2u2v2-124/51xzu2v2-3/109yzu2v2-4910z2u2v2+205xu3v2+14357yu3v2+85/57zu3v2-109/28u4v2-68/39x3v3+10545x2yv3-2176xy2v3-8743y3v3+15111x2zv3+25/119xyzv3+8/103y2zv3-6046xz2v3+8658yz2v3+106/5z3v3-31/126x2uv3-7762xyuv3+2315y2uv3+124/67xzuv3-77/104yzuv3+95/71z2uv3+69/119xu2v3+13069yu2v3-8620zu2v3+105/41u3v3-15772x2v4-11212xyv4-61/36y2v4+38/125xzv4-15860yzv4+8/63z2v4+7519xuv4-94/41yuv4+45/32zuv4+9417u2v4-71/35xv5-6287yv5+6481zv5+106/99uv5+3/41v6,-8036x3yu2+7966x2y2u2-151xy3u2-14/111y4u2-111/76x3zu2-102/11x2yzu2+7956xy2zu2-7397y3zu2-113/16x2z2u2-8049xyz2u2+7230y2z2u2+3978xz3u2-36/113yz3u2-8147z4u2-107/83x3u3+78/97x2yu3+12700xy2u3+11/72y3u3+88/31x2zu3-63/40xyzu3+101/35y2zu3-220xz2u3+3/103yz2u3-49/45z3u3-21/113x2u4+104/123xyu4+98/47y2u4-56/61xzu4-87/50yzu4+5913z2u4-120/17xu5+64/11yu5-109/80zu5+10371u6-118/25x3yzv+58/99x2y2zv-5/64xy3zv+7/46y4zv-49/103x3z2v-77/106x2yz2v-44/7xy2z2v-7559y3z2v-17/35x2z3v+948xyz3v-15043y2z3v-3576xz4v-2/109yz4v+74/11z5v+6436x3yuv+7316x2y2uv+29/5xy3uv-1326y4uv+34/49x3zuv-122/27x2yzuv-632xy2zuv+46/49y3zuv-13463x2z2uv-808xyz2uv-17/32y2z2uv-13149xz3uv-117/88yz3uv-45/79z4uv-65/94x3u2v+6/67x2yu2v+34/39xy2u2v-14026y3u2v+42/107x2zu2v-3287xyzu2v-70/43y2zu2v+29/104xz2u2v-47/18yz2u2v-11038z3u2v+6262x2u3v-5255xyu3v-7/10y2u3v+7065xzu3v+5608yzu3v+4675z2u3v-73/90xu4v-15822yu4v-71/63zu4v+110/97u5v-69/5x3yv2+4315x2y2v2-124/45xy3v2-79/16y4v2-10739x3zv2-93/46x2yzv2+12499xy2zv2-73/86y3zv2+6367x2z2v2-12876xyz2v2-306y2z2v2-89xz3v2-70/51yz3v2+13120z4v2+61/57x3uv2+14782x2yuv2-91/9xy2uv2-2625y3uv2+14747x2zuv2-5899xyzuv2-12944y2zuv2-47/14xz2uv2-4551yz2uv2-99/101z3uv2-12618x2u2v2+1507xyu2v2-11951y2u2v2+68/49xzu2v2+49/39yzu2v2-56/103z2u2v2-31/85xu3v2-32/49yu3v2-65/14zu3v2+15/7u4v2+5749x3v3-3667x2yv3-107/29xy2v3+11301y3v3+95/18x2zv3-121/74xyzv3+75/26y2zv3+101/98xz2v3-111/76yz2v3-11335z3v3-15923x2uv3-36/83xyuv3-4134y2uv3-87/118xzuv3-41/11yzuv3+104/61z2uv3+12583xu2v3-50/23yu2v3-31/44zu2v3-29/23u3v3+108/107x2v4-8216xyv4-5009y2v4+101/26xzv4-9779yzv4+71/74z2v4-3358xuv4+83/84yuv4-34/39zuv4+44/47u2v4-112/83xv5+113/74yv5+82/79zv5-115/99uv5+12/109v6,-x4y-31/15x3y2+7231x2y3-99/37xy4-28/95x4z-53/107x3yz-4623x2y2z+5300xy3z-41/111y4z+12205x3z2+113/120x2yz2+54/49xy2z2-85/63y3z2+104/89x2z3-52/121xyz3-22/49y2z3+14367xz4+71/93yz4+55/56z5-5/81x4u-67/81x3yu-83/13x2y2u+98/55xy3u+15289y4u-94/111x3zu+40/29x2yzu-16/59xy2zu-107/14y3zu+2965x2z2u-459xyz2u-2/47y2z2u+35/22xz3u+119/39yz3u-12180z4u-13679x3u2+1534x2yu2+11305xy2u2-62/9y3u2-68/39x2zu2+11/90xyzu2-36/101y2zu2-2896xz2u2-15114yz2u2-49/114z3u2+19/16x2u3-11401xyu3-109/3y2u3+67/80xzu3+53/92yzu3+2894z2u3+119/74xu4+407yu4-65/53zu4+95/94u5-9309x4v+21/40x3yv+1436x2y2v+2194xy3v+6994y4v-116/81x3zv+13/2x2yzv-12/13xy2zv-23/84y3zv-61/83x2z2v+2023xyz2v+19/40y2z2v+43/26xz3v-59/113yz3v-47/53z4v+15580x3uv+21x2yuv+113/97xy2uv-15419y3uv-15243x2zuv+5128xyzuv-34/47y2zuv+13206xz2uv-4833yz2uv+107/91z3uv-1693x2u2v+54/53xyu2v-86/67y2u2v+98/9xzu2v+86/17yzu2v+64/89z2u2v+25/113xu3v+7884yu3v+14089zu3v-12027u4v-9471x3v2-36/85x2yv2-21/13xy2v2+15888y3v2+76/109x2zv2+4547xyzv2+115/12y2zv2-11/107xz2v2+6764yz2v2-8321z3v2+84/101x2uv2-202xyuv2+3251y2uv2+91/4xzuv2+7124yzuv2-53/81z2uv2+47/84xu2v2-8833yu2v2+117/14zu2v2-3/113u3v2+126/97x2v3-78/115xyv3+68/63y2v3-34/109xzv3+5913yzv3+6226z2v3-2365xuv3+91/120yuv3+14120zuv3-69/8u2v3+71/12xv4-13094yv4-7262zv4-33uv4+5367v5,-9533x4y-318x3y2+8/49x2y3+83/29xy4+13129y5+221x4z+115/48x3yz+12508x2y2z+97/52xy3z+11479y4z+8941x3z2+104/109x2yz2+9191xy2z2+103/64y3z2+10584x2z3-7728xyz3+3979y2z3+15/82xz4+5409yz4-1326z5+3756x4u-57/62x3yu+63/47x2y2u-14600xy3u+159y4u-11/4x3zu-113/57x2yzu-26/125xy2zu-32/87y3zu-10/21x2z2u+12927xyz2u-73/62y2z2u+115/99xz3u-13/3yz3u-126/25z4u-3969x3u2-122/57x2yu2-5003xy2u2-100/117y3u2-71/30x2zu2+7356xyzu2-2211y2zu2+31/40xz2u2-6722yz2u2-139z3u2+4426x2u3+1/115xyu3-72/85y2u3+15260xzu3+7938yzu3+4/115z2u3-33/89xu4+31/108yu4-50/83zu4+14/107u5+24/95x4v-113/17x3yv+81/14x2y2v-9957xy3v-10075y4v-122/113x3zv+65/118x2yzv-96/29xy2zv-19/41y3zv+113/35x2z2v+121/31xyz2v-9/68y2z2v+91/45xz3v-23/116yz3v-67/99z4v-5355x3uv-3112x2yuv-12824xy2uv-58/123y3uv-13/22x2zuv-19/85xyzuv-121/24y2zuv-14093xz2uv+99/95yz2uv+89/50z3uv+13096x2u2v-109/120xyu2v+121/61y2u2v+80/41xzu2v-39yzu2v-8/99z2u2v+5/17xu3v+112/69yu3v+14346zu3v-7173u4v+125/13x3v2+43/53x2yv2-78/103xy2v2-109/111y3v2+33/13x2zv2-15333xyzv2+87/49y2zv2-7212xz2v2+7729yz2v2-86/123z3v2-119/103x2uv2-71/122xyuv2-81/113y2uv2+6133xzuv2+55/72yzuv2+69/31z2uv2+12828xu2v2+94/15yu2v2-7588zu2v2+21/41u3v2-8712x2v3+74/9xyv3-11/87y2v3+1446xzv3-3/95yzv3-87/55z2v3-717xuv3-110/97yuv3-13/113zuv3-95/81u2v3-37/68xv4+5112yv4-56/11zv4-6/115uv4+7910v5,25/42x4y-42/79x3y2-59/21x2y3+2736xy4-107/115x4z-203x3yz+47/101x2y2z+7686xy3z-63/64y4z+103/57x3z2-12082x2yz2+11/102xy2z2-83/43y3z2+13/49x2z3-2685xyz3+123/44y2z3+31/12xz4+126/83yz4+14745z5+83/37x4u+7362x3yu-14615x2y2u-14109xy3u+49/47y4u+1929x3zu+83/71x2yzu-13640xy2zu-97/58y3zu-11141x2z2u-61/49xyz2u-3745y2z2u-74/21xz3u+3493yz3u-7540z4u-103/118x3u2-43/32x2yu2-9200xy2u2-23/65y3u2+15895x2zu2-13924xyzu2-14291y2zu2-11039xz2u2-31/37yz2u2-101/93z3u2-39/83x2u3-4536xyu3-78/47y2u3+75/44xzu3-24/121yzu3-81/113z2u3-81/89xu4+15825yu4-4111zu4+5850u5-12534x4v-69/94x3yv-10076x2y2v+3952xy3v+25/12y4v+21/34x3zv+11002x2yzv-54xy2zv+20/23y3zv+4991x2z2v+549xyz2v+2687y2z2v-110/9xz3v+11359yz3v+49/24z4v+62/107x3uv-27/41x2yuv-17/52xy2uv-10972y3uv+12/103x2zuv-318xyzuv-77/40y2zuv-114/53xz2uv+17/28yz2uv-8084z3uv+85/36x2u2v+7/100xyu2v-5772y2u2v-89/114xzu2v-40/121yzu2v+3340z2u2v+36/113xu3v-38/93yu3v+2519zu3v-7084u4v+8136x3v2-55/23x2yv2+27/7xy2v2+74/39y3v2+63/16x2zv2-8661xyzv2+2/91y2zv2+3773xz2v2-75/122yz2v2+447z3v2-59/109x2uv2-119/9xyuv2-67/49y2uv2-11334xzuv2-10482yzuv2-60/91z2uv2+94/65xu2v2-108/17yu2v2-69/70zu2v2-23/20u3v2+8/115x2v3+29/41xyv3+8/15y2v3-95/6xzv3-9714yzv3+2550z2v3-121/80xuv3+67/18yuv3+43/5zuv3+23/124u2v3-12509xv4-104/79yv4-73/21zv4-1238uv4+9038v5,94/107x4y+47/14x3y2-6362x2y3-20/59xy4-43/120y5-3028x4z-15141x3yz-2028x2y2z+84/115xy3z-3024y4z+2811x3z2+47/45x2yz2+121/101xy2z2-100/57y3z2+8/115x2z3+1/101xyz3-13/112y2z3+3618xz4+88/67yz4-52/63z5+102/97x4u-12/89x3yu-102x2y2u-3846xy3u-61/86y4u+85/54x3zu+78/29x2yzu-13381xy2zu-49/95y3zu-77/2x2z2u-5784xyz2u+1557y2z2u-9163xz3u-114/121yz3u-57/103z4u+36/31x3u2-9062x2yu2-23/111xy2u2+7362y3u2-7671x2zu2+14945xyzu2+7901y2zu2+51/5xz2u2-109/48yz2u2+7696z3u2+11280x2u3-44/57xyu3-13736y2u3-13458xzu3-14723yzu3-707z2u3+899xu4-10381yu4+99/25zu4-7788u5-237x4v+45/43x3yv-7666x2y2v-4/109xy3v+4303y4v-13107x3zv-108/91x2yzv-7707xy2zv-73/47y3zv+61/118x2z2v-11/65xyz2v+2970y2z2v-104/37xz3v-15408yz3v-64/55z4v+47/113x3uv+2185x2yuv+7941xy2uv-61/37y3uv+6482x2zuv-11/70xyzuv+83/110y2zuv-109/83xz2uv-86/95yz2uv-7583z3uv+83/45x2u2v+89/38xyu2v-2/11y2u2v+3577xzu2v+124/125yzu2v-1151z2u2v+109/85xu3v+70/13yu3v+37/104zu3v-210u4v+51/29x3v2-104/111x2yv2+105/58xy2v2-13459y3v2-80/79x2zv2-3006xyzv2-115/16y2zv2+8208xz2v2+35/38yz2v2+49/27z3v2-1647x2uv2+10482xyuv2-34/93y2uv2+97/18xzuv2+101/20yzuv2+1711z2uv2+91/36xu2v2-96/23yu2v2+7006zu2v2+86/31u3v2-10734x2v3-43/18xyv3-4597y2v3-11174xzv3-7334yzv3+7/96z2v3+4/97xuv3-5/82yuv3-15600zuv3-69/94u2v3-71/25xv4+21/97yv4+117/23zv4-6557uv4-67/83v5,8164x4y+19/73x3y2-1592x2y3-28/87xy4-63/103x4z+11/42x3yz-52/67x2y2z-13766xy3z+11378y4z+10/37x3z2+115/41x2yz2+11/100xy2z2-49/40y3z2+86/111x2z3+124/5xyz3-25/79y2z3-14525xz4+11380yz4-53/42z5-12169x4u-14/51x3yu+68/33x2y2u-3/62xy3u-31/22y4u-74/93x3zu+12924x2yzu-103/123xy2zu-74/97y3zu-2789x2z2u-95/32xyz2u+45/13y2z2u+40/71xz3u+49/110yz3u+34/75z4u+9829x3u2-59/92x2yu2+106/65xy2u2+123/86y3u2+7133x2zu2-73/46xyzu2-7/29y2zu2-937xz2u2-65/67yz2u2-88/111z3u2-61/119x2u3+975xyu3-54/7y2u3-37/33xzu3+61/59yzu3+51/115z2u3+117/43xu4+8506yu4+13941zu4-14945u5-115/63x4v-14237x3yv-74/87x2y2v+104/47xy3v-95/104y4v+11535x3zv-119/75x2yzv-44xy2zv+11299y3zv-21/113x2z2v-2852xyz2v+95/77y2z2v-75/19xz3v-4864yz3v-79/88z4v+139x3uv-10068x2yuv+2049xy2uv+7515y3uv+97/56x2zuv+109/113xyzuv+7778y2zuv-71/11xz2uv-80/19yz2uv+55/59z3uv-69/98x2u2v-15679xyu2v+114/11y2u2v+69/65xzu2v+879yzu2v+45/104z2u2v+47/97xu3v-1373yu3v+15885zu3v+11121u4v-5042x3v2+4/25x2yv2-8607xy2v2-25/33y3v2+93/55x2zv2+68xyzv2-4167y2zv2+14180xz2v2-115/47yz2v2-81/67z3v2-12099x2uv2+34/107xyuv2+122/59y2uv2+775xzuv2-91yzuv2-85/96z2uv2-59/95xu2v2+174yu2v2+11/16zu2v2+66/37u3v2-121/36x2v3+6070xyv3-83/52y2v3-121/59xzv3-55/12yzv3+8088z2v3-20/29xuv3+76/125yuv3-10858zuv3+1833u2v3-103/50xv4+76/93yv4-119/18zv4+37/114uv4+51/7v5,85/56x4y-7839x3y2+12/37x2y3+6558xy4-8191x4z+115/7x3yz+81/23x2y2z-4121xy3z-1131y4z-23/37x3z2-71/32x2yz2+30/97xy2z2+5070y3z2-49/123x2z3+103/88xyz3-45/19y2z3+5132xz4+7277yz4+1896z5-103/75x4u-12020x3yu+12337x2y2u+6248xy3u+14290y4u-87/44x3zu-5364x2yzu-11801xy2zu-59/37y3zu+34/109x2z2u-14482xyz2u-10338y2z2u+118/73xz3u+7/8yz3u+158z4u+10590x3u2-5182x2yu2+83/62xy2u2+11557y3u2-92/119x2zu2-37/94xyzu2+5383y2zu2-365xz2u2+7/62yz2u2-7965z3u2-10/43x2u3+119/101xyu3-113/83y2u3-121/41xzu3+61/104yzu3+37/60z2u3-74/95xu4-113/66yu4-205zu4+4787u5-94/93x4v+14871x3yv-14723x2y2v+10730xy3v+112/17y4v-35/19x3zv-3487x2yzv-65/43xy2zv-7445y3zv-79/124x2z2v+7423xyz2v+91/2y2z2v+91/34xz3v-6970yz3v-50/113z4v+75/43x3uv-127x2yuv+11978xy2uv+48/113y3uv+113/62x2zuv-8941xyzuv-101/112y2zuv-5737xz2uv-31/123yz2uv+9490z3uv+19/92x2u2v-107/73xyu2v-23/121y2u2v+38/65xzu2v-672yzu2v+13/77z2u2v+46/119xu3v-103/18yu3v+107/59zu3v-52/21u4v-94/87x3v2-74/31x2yv2-9/22xy2v2-2896y3v2+113/3x2zv2-5386xyzv2-11391y2zv2+42/97xz2v2+77/64yz2v2-1610z3v2-102/43x2uv2+124/39xyuv2+14829y2uv2+88/113xzuv2-10411yzuv2-51/43z2uv2-36/121xu2v2+9487yu2v2-5589zu2v2+4335u3v2-5/91x2v3+6084xyv3-56/39y2v3-84/101xzv3-81/85yzv3-6521z2v3-2432xuv3+14317yuv3-43/82zuv3+121/8u2v3+14783xv4-92/45yv4+112/27zv4-8410uv4+31/105v5,-6691x4y-10158x3y2-5372x2y3+4132xy4+106/9y5+15600x4z-803x3yz+43/29x2y2z+9/91xy3z-92/61y4z+4807x3z2-12562x2yz2+14234xy2z2-91/17y3z2-91/30x2z3-10615xyz3-4206y2z3-29/45xz4-11/86yz4-115/9z5+125/112x4u+52/59x3yu+92/49x2y2u+121/85xy3u-51/14y4u-73/48x3zu-1/110x2yzu+12/65xy2zu+15045y3zu+12826x2z2u-123/89xyz2u+9465y2z2u-67/31xz3u-5080yz3u-7944z4u-107/72x3u2+1473x2yu2+7965xy2u2+15753y3u2-95/98x2zu2-9827xyzu2-25/53y2zu2-83/54xz2u2-13217yz2u2-117/110z3u2+230x2u3-12120xyu3+11/36y2u3-2071xzu3+109/59yzu3+6909z2u3-15/64xu4+45/82yu4-3091zu4-15711u5+5957x4v-45/86x3yv+26/29x2y2v-40/57xy3v+25/43y4v+126/37x3zv-38/33x2yzv+65/109xy2zv-33/68y3zv-7287x2z2v-4842xyz2v+35/118y2z2v+6157xz3v-97/89yz3v-91/50z4v-70/27x3uv+32/9x2yuv+78/125xy2uv+38/7y3uv-3214x2zuv-68/101xyzuv+87/55y2zuv-69/98xz2uv+5805yz2uv+41/102z3uv-43/54x2u2v-42/73xyu2v-13/49y2u2v+11864xzu2v+121/37yzu2v-100/109z2u2v-12609xu3v-9114yu3v-8746zu3v+11659u4v+3799x3v2-9581x2yv2+60/91xy2v2+2029y3v2+12075x2zv2+210xyzv2-1/22y2zv2+17/58xz2v2+1212yz2v2+118/27z3v2-3571x2uv2-3139xyuv2-23/100y2uv2-1240xzuv2+71/49yzuv2-21/103z2uv2-110/71xu2v2-40/77yu2v2-103/29zu2v2+10737u3v2+2828x2v3+14/39xyv3+7564y2v3+113/50xzv3+38/79yzv3+59/66z2v3+2726xuv3+91/94yuv3-15730zuv3-13408u2v3-97/42xv4+54/29yv4-33/73zv4+4823uv4+57/71v5,-14556x3yz-9751x2y2z-45/28xy3z+85/23y4z+5623x3z2+5369x2yz2-19/60xy2z2-36/5y3z2-95/36x2z3+5862xyz3-5/93y2z3+2949xz4+11357yz4-5679z5-52/45x3yu+4448x2y2u-9/22xy3u+2427y4u+3296x3zu+16/39x2yzu+53/57xy2zu+15/41y3zu+9473x2z2u+37xyz2u-58/69y2z2u-23/56xz3u-13/90yz3u-54/29z4u-41/67x3u2+10258x2yu2+23/44xy2u2-12952y3u2+2124x2zu2-1677xyzu2+12911y2zu2+22/45xz2u2+17/84yz2u2+5910z3u2+4782x2u3+119/39xyu3-17/84y2u3-120/91xzu3+35/59yzu3+17/77z2u3-4467xu4-77/4yu4-26/53zu4-3580u5-11977x3yv-118/77x2y2v+6040xy3v+9724y4v-47/5x3zv+59/101x2yzv+1212xy2zv-7/121y3zv+93/53x2z2v-56/23xyz2v-4470y2z2v+110/111xz3v-41/99yz3v-81/10z4v-71/24x3uv+26/115x2yuv+59/39xy2uv-10029y3uv+11748x2zuv+5749xyzuv+6887y2zuv+38/3xz2uv-116/61yz2uv-55/118z3uv+105/22x2u2v+70/87xyu2v-28/13y2u2v-109/123xzu2v-102/47yzu2v-52/71z2u2v+101/95xu3v+51/16yu3v+15/97zu3v-78/125u4v+35/46x3v2-9526x2yv2+10781xy2v2-119/44y3v2-23/10x2zv2+59/29xyzv2-15144y2zv2+29/120xz2v2-53/126yz2v2-93/85z3v2+53/8x2uv2-487xyuv2-12143y2uv2+13825xzuv2+55/6yzuv2-4250z2uv2+4237xu2v2-109/9yu2v2+67/53zu2v2+82/33u3v2+8660x2v3+15046xyv3-79/84y2v3-10310xzv3+110yzv3-7636z2v3+57/92xuv3-22/119yuv3-95/103zuv3+5138u2v3+123/49xv4-7587yv4+30/41zv4-124/121uv4+54/71v5,-29/60x4y-108/77x3y2-109/37x2y3-3619xy4+109/6x4z-37/67x3yz+53/45x2y2z+5291xy3z-2927y4z+34/5x3z2+87/17x2yz2+100/89xy2z2-114/29y3z2-4057x2z3-1/42xyz3-14/61y2z3-398xz4-122/73yz4+66/37z5+99/37x4u-5691x3yu-8778x2y2u+17/115xy3u+51/113y4u-71/101x3zu+85/91x2yzu-92/9xy2zu-3442y3zu+109/26x2z2u+50/37xyz2u+77/94y2z2u+16/35xz3u+9985yz3u+5/102z4u-5932x3u2+89/125x2yu2-895xy2u2-12455y3u2-630x2zu2-64/47xyzu2+25/9y2zu2+7906xz2u2+6827yz2u2+9808z3u2-113/118x2u3+79/8xyu3+9484y2u3+62/39xzu3+6/85yzu3-23/49z2u3-93/115xu4-11/93yu4-15177zu4-13/2u5-7623x4v-103/73x3yv-96/115x2y2v+39/76xy3v+80/79y4v+43/68x3zv+45/97x2yzv+101/87xy2zv+4632y3zv-918x2z2v+8248xyz2v-4276y2z2v+8853xz3v-39/61yz3v-121/87z4v+9968x3uv+473x2yuv+117/56xy2uv-19/21y3uv+121/119x2zuv+3/98xyzuv-65/42y2zuv-3723xz2uv+7/34yz2uv-112/87z3uv+103x2u2v+25/41xyu2v-14459y2u2v-56/41xzu2v-59/81yzu2v-109/102z2u2v-87/16xu3v-13011yu3v+49/123zu3v+106/89u4v-61/51x3v2+14107x2yv2+8035xy2v2-8853y3v2+5723x2zv2+123/53xyzv2-9727y2zv2-102/83xz2v2+1111yz2v2-15745z3v2+83/118x2uv2-57/35xyuv2-48/73y2uv2-28/37xzuv2-27/97yzuv2-27/58z2uv2+71/93xu2v2+117/8yu2v2+12344zu2v2-2497u3v2-118/71x2v3-11/19xyv3+21/104y2v3+32/113xzv3+15544yzv3+31/18z2v3+5909xuv3-67/58yuv3+27/35zuv3+115/9u2v3+79/13xv4+6722yv4-37/114zv4-71/124uv4+4657v5,-77/61x4y-88/101x3y2+93/88x2y3-11/70xy4+9806y5+7896x4z-4699x3yz+55/122x2y2z-63/122xy3z-125/74y4z+47/45x3z2+101/17x2yz2+92/47xy2z2+69/82y3z2+12402x2z3+113/98xyz3-101/33y2z3-15376xz4+47/71yz4-73/10z5+65/74x4u-14409x3yu-14478x2y2u+13593xy3u+102/97y4u+39/62x3zu-34/125x2yzu-83/9xy2zu+45/113y3zu+14484x2z2u-15293xyz2u-26/55y2z2u-958xz3u+67/35yz3u-93/19z4u+25/16x3u2+107/52x2yu2-4599xy2u2-86/51y3u2-9885x2zu2-77/47xyzu2+33/65y2zu2+90/109xz2u2-61/26yz2u2+6198z3u2-38/37x2u3-13935xyu3-142y2u3-64/5xzu3-7228yzu3+1251z2u3+1556xu4+117/121yu4-92/35zu4+99/92u5+13493x4v+12654x3yv+32/101x2y2v-11118xy3v+43/51y4v-575x3zv+103/21x2yzv+85/24xy2zv+1788y3zv+85/3x2z2v-64/25xyz2v+57/35y2z2v+37/120xz3v-69/110yz3v+48/49z4v+55/114x3uv-6439x2yuv+31/51xy2uv-90/49y3uv-45/104x2zuv-12018xyzuv+6/119y2zuv+40/63xz2uv+20/91yz2uv+50/43z3uv+1/26x2u2v-109/47xyu2v+99/7y2u2v+72/83xzu2v+61/118yzu2v+3530z2u2v+6146xu3v+117yu3v-9921zu3v-8708u4v-10/47x3v2-15294x2yv2-7336xy2v2+1/66y3v2-3057x2zv2+74/123xyzv2+146y2zv2-103/34xz2v2-117/76yz2v2+8472z3v2-7/92x2uv2+10033xyuv2+43/53y2uv2+4694xzuv2-49/2yzuv2-71/73z2uv2-125/17xu2v2-9817yu2v2+7218zu2v2+6897u3v2-19/90x2v3+11899xyv3-11779y2v3-5456xzv3+17/42yzv3+15340z2v3+12/7xuv3+9580yuv3-502zuv3-14069u2v3-4371xv4+14452yv4-9423zv4-117/122uv4+1126v5,49/108x4-39/4x3y-67/21x2y2-8/69xy3-9779y4+57/14x3z-11145x2yz+6928xy2z-7824y3z+1/79x2z2+5173xyz2-62/15y2z2-123/112xz3+88/79yz3+1/125z4+57/23x3u-11856x2yu-7444xy2u+115/8y3u-11133x2zu+71/73xyzu-7941y2zu+69/65xz2u+22/75yz2u+65/121z3u+9471x2u2+9167xyu2+51/59y2u2+12835xzu2+15047yzu2+11102z2u2-10059xu3+19/28yu3+65/21zu3-39/28u4-3/73x3v+94/61x2yv+8778xy2v-12922y3v-8711x2zv-37/97xyzv+14270y2zv+4487xz2v-59/112yz2v-14183z3v+15553x2uv+3579xyuv+114/91y2uv-4/97xzuv+13/85yzuv-89/15z2uv+58/75xu2v-34/7yu2v-90/61zu2v+90/101u3v-14673x2v2+90/19xyv2-45/37y2v2+23/49xzv2-71/11yzv2+119/8z2v2+89/10xuv2+109/91yuv2+36/49zuv2-7/31u2v2-40/113xv3-21/121yv3+9910zv3+33/14uv3-23/79v4,93/70x4-43/125x3y+9582x2y2+7565xy3-11511y4-3/79x3z-36/107x2yz-2038xy2z+879y3z-4700x2z2+103/14xyz2+102/79y2z2-67/68xz3-44/25yz3+105/79z4-29/24x3u-74/83x2yu+67/43xy2u+49/12y3u-115/11x2zu+23/67xyzu-61/27y2zu+12257xz2u+14068yz2u+23/15z3u+607x2u2+73/8xyu2+14237y2u2-13/33xzu2+110/71yzu2+41/101z2u2+5708xu3+88/67yu3+1460zu3-2472u4-1629x3v-51/70x2yv-88/73xy2v-36/97y3v+38/11x2zv+15899xyzv+54/19y2zv+9460xz2v-5150yz2v+3462z3v+5522x2uv-19/123xyuv+14871y2uv+53/5xzuv-7535yzuv-13430z2uv+107/47xu2v-8307yu2v-55/79zu2v-11945u3v-16/83x2v2+115/48xyv2+12389y2v2+11545xzv2-25/26yzv2-3755z2v2+4724xuv2-31/21yuv2+7872zuv2+89/45u2v2+87/47xv3+7625yv3+13494zv3-15376uv3-25/126v4;TestGRRes(Name, I); kill R, Name, @p; "";
715
716  string Name = "rat.d10.g9.quart2"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = x3yu2-48/11x2y2u2-8356xy3u2+35/121y4u2+31/66x3zu2-54/83x2yzu2-61/18xy2zu2+11526y3zu2+7372x2z2u2-91/60xyz2u2-95/97y2z2u2-45/71xz3u2+71/115yz3u2+25/54z4u2-61/102x3u3-12668x2yu3+6653xy2u3+41/54y3u3+87/50x2zu3-5004xyzu3+13924y2zu3+2310xz2u3-93/14yz2u3-2/93z3u3-97/125x2u4-58/11xyu4+46/73y2u4-4417xzu4+60/101yzu4+56/75z2u4-113/118xu5+115/4yu5-40zu5-8554u6-54/83x3yuv-9770x2y2uv-590xy3uv+15/49y4uv+94/69x3zuv+121/105x2yzuv+95/88xy2zuv+3186y3zuv+11/6x2z2uv-44/81xyz2uv+637y2z2uv+109/121xz3uv-33yz3uv-94/115z4uv-49/95x3u2v-11/109x2yu2v+45/113xy2u2v+97/84y3u2v+5257x2zu2v+99/49xyzu2v+12584y2zu2v-4294xz2u2v+1137yz2u2v-58/69z3u2v-4749x2u3v+120/97xyu3v-31/103y2u3v+62/97xzu3v-107/74yzu3v+53/59z2u3v+91/33xu4v+1291yu4v+23/34zu4v+58/77u5v+16/17x3yv2-750x2y2v2+86/89xy3v2+123/46y4v2+53/123x3zv2-61/99x2yzv2+12389xy2zv2+10419y3zv2+43/11x2z2v2-146xyz2v2-116/51y2z2v2+13/62xz3v2-5524yz3v2-111/118z4v2-56/55x3uv2-3038x2yuv2+14/27xy2uv2-43/64y3uv2+3385x2zuv2+25/11xyzuv2+92/41y2zuv2+28/113xz2uv2-2049yz2uv2+89/37z3uv2-13094x2u2v2-2774xyu2v2+15474y2u2v2-15791xzu2v2-71/116yzu2v2+77/41z2u2v2-83/68xu3v2-33/106yu3v2+71/37zu3v2-41/17u4v2+12052x3v3+1906x2yv3+13825xy2v3+80/7y3v3-125/96x2zv3-9661xyzv3+85/116y2zv3-72/91xz2v3+13/112yz2v3-126/97z3v3-1637x2uv3+34/103xyuv3+3844y2uv3+77/10xzuv3+6359yzuv3-11185z2uv3-124/121xu2v3+66/91yu2v3-14636zu2v3-1051u3v3+9/64x2v4-12924xyv4-119/41y2v4+74/23xzv4+1622yzv4+73/37z2v4-60/101xuv4+111/22yuv4-45/124zuv4+59/37u2v4-66/37xv5-71/99yv5+12409zv5-113/64uv5-5267v6,-x4y-22/79x3y2-125/42x2y3-116/7xy4+98/111y5-31/66x4z-118/75x3yz+110/93x2y2z-43/92xy3z-788y4z-7372x3z2-2701x2yz2-67/124xy2z2-117/62y3z2+45/71x2z3-8396xyz3-10343y2z3-25/54xz4+30/59yz4+61/102x4u+11736x3yu+12726x2y2u+41/118xy3u-15832y4u-87/50x3zu-130x2yzu+41/8xy2zu-10300y3zu-2310x2z2u-101/5xyz2u+6205y2z2u+2/93xz3u+8679yz3u+97/125x3u2-43/37x2yu2-39/80xy2u2+12139y3u2+4417x2zu2+4294xyzu2+11/58y2zu2-56/75xz2u2+8338yz2u2+113/118x2u3-10190xyu3-37/16y2u3+40xzu3+74/23yzu3+8554xu4+115/22yu4-39/79x4v+61/72x3yv+8048x2y2v-9201xy3v+16/121y4v+113/93x3zv+109/75x2yzv+12700xy2zv-10607y3zv+50/11x2z2v+1223xyz2v-103/79y2z2v-123/58xz3v+31/26yz3v-15/122z4v+122/25x3uv-99/17x2yuv+1723xy2uv-38/121y3uv+11016x2zuv-25/102xyzuv-14970y2zuv-61/6xz2uv-14981yz2uv+15900z3uv+3268x2u2v-75/19xyu2v-1436y2u2v-1764xzu2v-57/41yzu2v+12741z2u2v-14615xu3v+119/61yu3v-115/119zu3v+10501u4v-8502x3v2-51/76x2yv2-6281xy2v2+17/49y3v2-106/7x2zv2+63/101xyzv2-27/95y2zv2-1606xz2v2+9245yz2v2+1912z3v2+11155x2uv2+223xyuv2-13/18y2uv2+110/43xzuv2+76/81yzuv2-6291z2uv2+1400xu2v2-95/23yu2v2-9701zu2v2+106/105u3v2+72/47x2v3-13118xyv3+14409y2v3+37/86xzv3+44/69yzv3-325z2v3+113/71xuv3+16/81yuv3+6/19zuv3-119/39u2v3-89/9xv4+72/53yv4+112/55zv4-8587uv4-6604v5,-x3y2+48/11x2y3+8356xy4-35/121y5-12750x3yz+100/111x2y2z+45/74xy3z+99/74y4z-6/7x3z2-47/67x2yz2+11465xy2z2-11865y3z2+7776x2z3+124/45xyz3-98/115y2z3+117/85xz4-59/120yz4-8748z5+61/102x3yu+12668x2y2u-6653xy3u-41/54y4u+13408x3zu-2185x2yzu-1240xy2zu+1161y3zu+44/27x2z2u-11164xyz2u-13388y2z2u-107/13xz3u+90/71yz3u+4204z4u+97/125x2yu2+58/11xy2u2-46/73y3u2+55/48x2zu2+121/31xyzu2+126/61y2zu2-55/69xz2u2+5988yz2u2+3755z3u2+113/118xyu3-115/4y2u3+3390xzu3-5762yzu3+30/61z2u3+8554yu4-14317zu4+99/116x3yv-113/119x2y2v+50/23xy3v-37/79y4v-8668x3zv+14049x2yzv+111/35xy2zv+61/28y3zv-10171x2z2v+68/21xyz2v+2023y2z2v-9/109xz3v+8520yz3v-2683z4v-13547x3uv+28/65x2yuv-5988xy2uv+61/111y3uv+12314x2zuv+29/44xyzuv+6141y2zuv+11280xz2uv+79/22yz2uv-38/111z3uv+19/51x2u2v+5093xyu2v-10291y2u2v-5009xzu2v-111/49yzu2v+3813z2u2v-61/37xu3v+15914yu3v-3218zu3v-12915u4v-118/101x3v2-7/57x2yv2+13128xy2v2+11606y3v2+42/101x2zv2-54/17xyzv2-43/49y2zv2-119/110xz2v2+9742yz2v2-43/4z3v2-55/8x2uv2-29/88xyuv2+12042y2uv2+101/37xzuv2-57/62yzuv2+106/97z2uv2+38/83xu2v2+8152yu2v2-5492zu2v2-47/79u3v2+15112x2v3+69/44xyv3-6/71y2v3+113/54xzv3-13210yzv3-707z2v3-119/8xuv3+3845yuv3-19/20zuv3+4852u2v3+15761xv4-12372yv4+74/69zv4-2100uv4-12833v5,-x3yz+48/11x2y2z+8356xy3z-35/121y4z-31/66x3z2+54/83x2yz2+61/18xy2z2-11526y3z2-7372x2z3+91/60xyz3+95/97y2z3+45/71xz4-71/115yz4-25/54z5+15/52x3yu+6039x2y2u+74/99xy3u-17/40y4u+29/50x3zu-7775x2yzu+6368xy2zu+14170y3zu+52/41x2z2u+7003xyz2u-5787y2z2u-101/37xz3u-23/28yz3u-20/63z4u+41/77x3u2+8650x2yu2-15922xy2u2-16/83y3u2+7278x2zu2+31/30xyzu2-2/107y2zu2+35/122xz2u2+85/58yz2u2-757z3u2+2/101x2u3+86/17xyu3+95/59y2u3+123/22xzu3-6869yzu3-9311z2u3-105/97xu4+5699yu4+15925zu4+13528u5-154x3yv+4187x2y2v+56/107xy3v-15932y4v-5137x3zv-37/56x2yzv+9401xy2zv+92/123y3zv-79/97x2z2v+9201xyz2v+19/53y2z2v+107/20xz3v+17/77yz3v-15306z4v+3215x3uv-79/117x2yuv-9/76xy2uv-6352y3uv+93/13x2zuv-65/89xyzuv-115/4y2zuv-34/57xz2uv+39/107yz2uv+31/9z3uv+107/48x2u2v+2632xyu2v+29/96y2u2v-125/89xzu2v+29/113yzu2v+3940z2u2v-116/111xu3v+6145yu3v-105/62zu3v+101/17u4v-9281x3v2-49/107x2yv2-12154xy2v2+4/19y3v2-114/71x2zv2-15/118xyzv2+4372y2zv2+45/121xz2v2+46/111yz2v2+6614z3v2+17x2uv2+10806xyuv2-10617y2uv2-25/111xzuv2-116/27yzuv2-7/58z2uv2-686xu2v2+3/13yu2v2-17/49zu2v2-40/107u3v2+47/90x2v3-83/43xyv3-6326y2v3+49/64xzv3+113/76yzv3-122/73z2v3+10232xuv3-116/109yuv3-1990zuv3+70/51u2v3-118/19xv4-27/55yv4+21/19zv4-23/57uv4-11721v5,-3399x4y+1849x3y2-3/29x2y3+28/87xy4+10/29y5-9788x4z-49/73x3yz+13829x2y2z+118/73xy3z+13129y4z-618x3z2+92/13x2yz2+101/117xy2z2-162y3z2+24/5x2z3-29/74xyz3+2687y2z3-74/39xz4+2/57yz4+68/73x4u-13787x3yu-11659x2y2u+14729xy3u+92/53y4u+15/71x3zu-62/15x2yzu+21/85xy2zu+4938y3zu-120/37x2z2u-77/102xyz2u-4785y2z2u-83/70xz3u-12128yz3u-13592z4u-123/20x3u2+2607x2yu2+40/19xy2u2+6361y3u2-3091x2zu2+89/113xyzu2+149y2zu2-2890xz2u2-8374yz2u2+11886z3u2-49/43x2u3-9854xyu3-6943y2u3+10743xzu3-122/45yzu3-13902z2u3-103/19xu4-48/59yu4+27/86zu4+46/35u5-117/17x4v-15/7x3yv+8409x2y2v-83/28xy3v+86/35y4v+37/45x3zv+4/3x2yzv+35/38xy2zv+4015y3zv-49/111x2z2v-1260xyz2v-25/33y2z2v+116/19xz3v+93/8yz3v+5755z4v-25/89x3uv-11669x2yuv-64/107xy2uv+2993y3uv+7767x2zuv-17/95xyzuv-103/80y2zuv-14576xz2uv+80/47yz2uv+25/107z3uv+103/2x2u2v+125/117xyu2v-2/89y2u2v-5298xzu2v-50/27yzu2v-71/53z2u2v+2652xu3v+15761yu3v+2124zu3v+11/82u4v+100/63x3v2+4180x2yv2+11/39xy2v2-1221y3v2+108/125x2zv2+97/126xyzv2-7698y2zv2+13984xz2v2+1342yz2v2-84/121z3v2-26/73x2uv2-14/15xyuv2-22/37y2uv2-71/82xzuv2+12430yzuv2+103/52z2uv2-13095xu2v2+10114yu2v2-8/73zu2v2-33/97u3v2+83/105x2v3+22/45xyv3-7961y2v3-9654xzv3-54/55yzv3-3/71z2v3-10148xuv3-117/98yuv3+101/102zuv3-606u2v3+97/43xv4-68/21yv4+63/16zv4+42/17uv4+5834v5,-3399x3y2-32/113x2y3+14/99xy4+15001y5-121/115x3yz+4604x2y2z+7/2xy3z+9532y4z-3267x3z2+97/118x2yz2-14238xy2z2-80/21y3z2-12332x2z3-19/69xyz3+116/15y2z3-103/32xz4+15340yz4+10509z5+112/109x3yu-97x2y2u-40/11xy3u+90/29y4u-95/106x3zu-114/67x2yzu+113/48xy2zu+12080y3zu-44x2z2u+18/17xyz2u-4814y2z2u-103/100xz3u-96/61yz3u-205z4u-87/82x3u2-97/108x2yu2+3230xy2u2+104/83y3u2+41/86x2zu2+116/49xyzu2-59/110y2zu2+14/59xz2u2-6962yz2u2-2185z3u2+59/91x2u3+2497xyu3+3/37y2u3-13010xzu3+6/83yzu3-11448z2u3+13/72xu4-69/62yu4-2869zu4+23/73u5-20/43x3yv+5074x2y2v+28/125xy3v-2706y4v+13010x3zv-17/109x2yzv+21/4xy2zv+59/93y3zv-2406x2z2v+117/11xyz2v-14978y2z2v+70/89xz3v-33/7yz3v-13676z4v-13690x3uv+9825x2yuv-117/107xy2uv+12760y3uv-93/98x2zuv-113/64xyzuv+113/103y2zuv-9748xz2uv+11016yz2uv-10729z3uv+90/13x2u2v-13/47xyu2v-11/39y2u2v+20/69xzu2v+5531yzu2v+125/49z2u2v-11025xu3v-9621yu3v+113/109zu3v+4710u4v-107/7x3v2+110/119x2yv2-10025xy2v2-6644y3v2-5041x2zv2+5/96xyzv2+11472y2zv2-5128xz2v2+2927yz2v2+121/18z3v2-125/89x2uv2+12936xyuv2-71/47y2uv2+34/47xzuv2-75/103yzuv2-2654z2uv2-2350xu2v2-7707yu2v2+47/72zu2v2-952u3v2-21/67x2v3+58/37xyv3-8757y2v3+3615xzv3+44/123yzv3-13027z2v3-9/10xuv3+75/43yuv3+115/18zuv3+8071u2v3-26/3xv4-67/65yv4+14186zv4-41/122uv4+33/28v5,-3399x3yz-32/113x2y2z+14/99xy3z+15001y4z-9788x3z2+37/96x2yz2+7743xy2z2+31/55y3z2-618x2z3-8171xyz3+82/109y2z3+24/5xz4+88/85yz4-74/39z5-13165x3yu+3407x2y2u-12509xy3u-23/45y4u-11774x3zu-10/67x2yzu+69/79xy2zu-10/123y3zu-7636x2z2u+83/32xyz2u+51/112y2z2u+19/8xz3u+9309yz3u-44/49z4u+4089x3u2-374x2yu2-919xy2u2+98/107y3u2+2776x2zu2+85/26xyzu2+31/13y2zu2-103/82xz2u2+35/76yz2u2+59/45z3u2+2950x2u3+27/44xyu3+88/71y2u3+7/114xzu3-72/77yzu3+12917z2u3-34/67xu4-85/82yu4-55/84zu4+4690u5+11/42x3yv-19/125x2y2v-8288xy3v+9199y4v-12929x3zv+13357x2yzv-4903xy2zv-584y3zv-10/33x2z2v+59/113xyz2v+103/92y2z2v+101/69xz3v+8708yz3v-8/7z4v+13560x3uv-43/49x2yuv-121/98xy2uv+75/79y3uv-39x2zuv-88/69xyzuv-89/78y2zuv+110/67xz2uv+61/4yz2uv-98/45z3uv+82/7x2u2v-85/41xyu2v+6548y2u2v+9367xzu2v-59/81yzu2v-14408z2u2v+2363xu3v-80/11yu3v-50/17zu3v-14799u4v-53/21x3v2+9437x2yv2-117/80xy2v2+81/85y3v2-8/45x2zv2-6428xyzv2+15126y2zv2+68/89xz2v2+7/122yz2v2+9639z3v2+113/4x2uv2-8678xyuv2-104/45y2uv2-79/90xzuv2+39/101yzuv2-7234z2uv2-28/43xu2v2+1251yu2v2-97/56zu2v2+17/41u3v2+107/24x2v3+2747xyv3+9933y2v3-4199xzv3+53/83yzv3+6364z2v3-5456xuv3+618yuv3-123/55zuv3+2375u2v3+63/76xv4-115/106yv4-8811zv4-31/75uv4+10/109v5,13/89x4y+77/31x3y2+36/83x2y3-11411xy4+6936y5-12223x4z+7400x3yz+33/118x2y2z-12146xy3z+108/79y4z+82/99x3z2-9877x2yz2-79/70xy2z2-19/123y3z2-1491x2z3+7953xyz3-43/126y2z3+60/17xz4+98/57yz4-13317x4u-77/27x3yu-6811x2y2u-69/61xy3u+6144y4u+5404x3zu+121/120x2yzu-91/23xy2zu-71/106y3zu+1435x2z2u-120/13xyz2u-12019y2z2u-68/7xz3u-113/82yz3u+11526z4u-8706x3u2-89/53x2yu2-14804xy2u2+120/107y3u2+71/94x2zu2-1/70xyzu2+1532y2zu2+4470xz2u2+13/60yz2u2-115/102z3u2-82/21x2u3+27/121xyu3-4439y2u3-101/47xzu3-3186yzu3-106/101z2u3-10169xu4+19/58yu4-96/73zu4-7959u5-10526x4v-107/92x3yv+47/6x2y2v-23/43xy3v-69/62y4v+59/65x3zv-28/95x2yzv+5479xy2zv-39/77y3zv+11/69x2z2v-11713xyz2v+43/79y2z2v-15602xz3v+16/73yz3v-13952z4v+61/82x3uv-2219x2yuv-91/106xy2uv+5/37y3uv-148x2zuv+31/51xyzuv+18/101y2zuv+97/68xz2uv-73/32yz2uv+47/2z3uv+2/41x2u2v-13009xyu2v-7/60y2u2v+15779xzu2v+72/7yzu2v-11/73z2u2v-119/44xu3v-9067yu3v+3249zu3v+61/51u4v+12525x3v2-118/9x2yv2-3270xy2v2-4/25y3v2-5075x2zv2+77/40xyzv2-89/65y2zv2+17/58xz2v2-15609yz2v2+95/54z3v2-75/79x2uv2-4907xyuv2+12418y2uv2-57/17xzuv2-8746yzuv2+13/95z2uv2-124/67xu2v2+16/13yu2v2+28/23zu2v2-10847u3v2-645x2v3+106/75xyv3+6/115y2v3-8495xzv3+58/35yzv3-9398z2v3-101/72xuv3-71/20yuv3-124/65zuv3-8971u2v3+27/28xv4+12/29yv4-4276zv4+10858uv4+29/12v5,13/89x3y2+12068x2y3-15543xy4-77/79y5+6626x3yz+64/53x2y2z-6/23xy3z-47/125y4z+14403x3z2-43/78x2yz2-31/115xy2z2+94/59y3z2-118/117x2z3-11229xyz3+2268y2z3-116/85xz4+25/58yz4+3085z5+59/27x3yu+67/82x2y2u+11/6xy3u+103/47y4u-63/80x3zu-81/47x2yzu+7760xy2zu-115/56y3zu-10/17x2z2u+101/5xyz2u+15634y2z2u+1/107xz3u-9282yz3u+43/62z4u+62/55x3u2+100/113x2yu2-9205xy2u2-46/13y3u2+43/96x2zu2+10159xyzu2+692y2zu2+859xz2u2-19/74yz2u2+123/47z3u2-9/20x2u3-11391xyu3-2375y2u3+109/24xzu3-57/53yzu3-925z2u3-82/45xu4+97/34yu4+13/82zu4-108/29u5+63/10x3yv+38/17x2y2v-19/115xy3v+3150y4v+22/69x3zv+26/57x2yzv+110/27xy2zv+87/77y3zv+85/18x2z2v+39/47xyz2v-48/17y2z2v-7/27xz3v-13/100yz3v-11662z4v-17/8x3uv+37/11x2yuv+29/11xy2uv-109/88y3uv-2817x2zuv-61/44xyzuv+10/31y2zuv+10010xz2uv+51/86yz2uv-97/83z3uv-89/96x2u2v+4030xyu2v-58/77y2u2v-114/43xzu2v-37/10yzu2v-2011z2u2v+14483xu3v-109/101yu3v+121/102zu3v-79/92u4v+15113x3v2+10781x2yv2-14259xy2v2-113/48y3v2-7/94x2zv2-17/74xyzv2-5/117y2zv2-59/75xz2v2+13188yz2v2+103/43z3v2+4/125x2uv2-52/59xyuv2+85/92y2uv2-1/46xzuv2-9106yzuv2-83/11z2uv2-23/94xu2v2+6742yu2v2-35/107zu2v2-14596u3v2-117/43x2v3+1026xyv3+90/19y2v3+14671xzv3-101/100yzv3+6962z2v3+61/68xuv3+108/37yuv3-4157zuv3-3974u2v3+15677xv4+8661yv4+8459zv4-16/23uv4-37/119v5,13/89x3yz+12068x2y2z-15543xy3z-77/79y4z-12223x3z2-13941x2yz2+115/84xy2z2+13/98y3z2+82/99x2z3+7751xyz3+122/17y2z3-1491xz4+1327yz4+60/17z5+15363x3yu+9780x2y2u+19/117xy3u-1924y4u-14600x3zu+46/41x2yzu-5466xy2zu-73/12y3zu+10838x2z2u-8302xyz2u-89/113y2z2u+53/69xz3u-9224yz3u+47/33z4u-7399x3u2+89/77x2yu2+9312xy2u2-41/80y3u2-732x2zu2-6781xyzu2-8608y2zu2-9270xz2u2-117/58yz2u2-115/68z3u2-48/31x2u3-9067xyu3+97/107y2u3+73/57xzu3-2719yzu3-110/59z2u3-37/86xu4-15796yu4-61/4zu4-115/72u5+6161x3yv+4134x2y2v+677xy3v-8375y4v+1150x3zv+1551x2yzv+4157xy2zv+112/87y3zv+8171x2z2v+6040xyz2v+15651y2z2v-7/66xz3v-47/61yz3v+77/64z4v+14848x3uv+48/119x2yuv-9534xy2uv-117/95y3uv+5/4x2zuv+122xyzuv+90/31y2zuv-41/26xz2uv+31/30yz2uv-10428z3uv-9896x2u2v-71/21xyu2v-55/38y2u2v-29/22xzu2v-11092yzu2v+39/122z2u2v+93/73xu3v+22/49yu3v-21/106zu3v+56u4v+8565x3v2-1695x2yv2+2/17xy2v2+1/78y3v2-113/71x2zv2-41/100xyzv2+55/14y2zv2+15286xz2v2+17/53yz2v2+126/71z3v2-79/87x2uv2+109/97xyuv2-28/31y2uv2-6533xzuv2+22/5yzuv2-10449z2uv2+10830xu2v2-15516yu2v2+28/57zu2v2-81/22u3v2+4198x2v3+5667xyv3-7133y2v3-8408xzv3+11066yzv3-26/125z2v3-808xuv3+95/54yuv3-64/17zuv3-5267u2v3-15333xv4+42/89yv4+63/85zv4+119/113uv4-2011v5,5583x4y+1725x3y2-8652x2y3-91/25xy4-8495x4z-13731x3yz+9298x2y2z-41/111xy3z-15503y4z-13805x3z2+3962x2yz2-2/63xy2z2+3314y3z2+2522x2z3-10/87xyz3-408y2z3+7/16xz4+69/22yz4-7254z5-59/21x4u+115/7x3yu-1718x2y2u+7851xy3u+2632y4u-82/3x3zu+37/86x2yzu+101/113xy2zu+6747y3zu-109/113x2z2u+7399xyz2u+24/103y2z2u+89/9xz3u-14630yz3u+15066z4u-12561x3u2+113/115x2yu2+87/97xy2u2-126/67y3u2-48/7x2zu2+123/103xyzu2-11/107y2zu2-2747xz2u2+8158yz2u2-3/107z3u2+41/6x2u3+12767xyu3+3873y2u3+74/83xzu3-55/119yzu3-24/83z2u3+55xu4-7/95yu4+57/44zu4+2/101u5-6928x4v-121/57x3yv+111/104x2y2v+946xy3v-29y4v+3057x3zv-14/25x2yzv+43/31xy2zv-105/2y3zv+2336x2z2v+61/77xyz2v-7880y2z2v+5/58xz3v+10593yz3v+7094z4v+63/59x3uv-5/69x2yuv-11/81xy2uv-4157y3uv+73/65x2zuv-1676xyzuv-2376y2zuv-85/63xz2uv-95/2yz2uv-14903z3uv-119/110x2u2v-115/24xyu2v+125/9y2u2v+106/87xzu2v-13/12yzu2v-4/19z2u2v+7838xu3v-43/111yu3v+7/113zu3v-12500u4v+7743x3v2-2023x2yv2-85/83xy2v2+49/41y3v2+20/87x2zv2+3932xyzv2-77/6y2zv2+47/90xz2v2-15580yz2v2+39/4z3v2-61/8x2uv2+2518xyuv2+29/98y2uv2+11057xzuv2-18/107yzuv2+708z2uv2+14720xu2v2-3175yu2v2-113/59zu2v2-14735u3v2+7/69x2v3-4029xyv3+54/91y2v3+12372xzv3+67/2yzv3+8856z2v3-2178xuv3+995yuv3+64/95zuv3+4039u2v3-37/44xv4+23/17yv4-3035zv4-103/124uv4+69/64v5,-5583x3y2-1725x2y3+8652xy4+91/25y5+6201x3yz-73/49x2y2z-3844xy3z+10548y4z-11057x3z2-105/122x2yz2+31/53xy2z2+79/89y3z2-24/101x2z3+107/119xyz3-126y2z3+8164xz4+2/77yz4-51/8z5-14941x3yu-106x2y2u+8695xy3u+125/62y4u+4328x3zu+29/117x2yzu-6249xy2zu-2791y3zu+67/49x2z2u-38/29xyz2u+122/41y2z2u+10603xz3u-3029yz3u+5578z4u+14754x3u2-108/79x2yu2+4408xy2u2-12401y3u2-1426x2zu2-1741xyzu2-83/86y2zu2+79/95xz2u2+122/121yz2u2+81/2z3u2-1172x2u3-41/68xyu3-70/3y2u3+24/107xzu3+120/79yzu3+18/119z2u3-65/122xu4+1018yu4+22/107zu4+15189u5+5/8x3yv-12060x2y2v+3/62xy3v-227y4v+60/41x3zv-123/115x2yzv+110/123xy2zv+12864y3zv-86/121x2z2v-69/94xyz2v+14/79y2z2v+118/45xz3v+10842yz3v-37/58z4v+100/69x3uv-47/65x2yuv-7/67xy2uv-93/100y3uv-6262x2zuv-4/75xyzuv+2082y2zuv-9117xz2uv+12450yz2uv-84/67z3uv+123/26x2u2v-51/89xyu2v+19/74y2u2v-104/77xzu2v+318yzu2v+12402z2u2v+95/8xu3v-81/26yu3v-4486zu3v+3872u4v+72/91x3v2-83/63x2yv2+93/92xy2v2-15924y3v2-53/62x2zv2+6046xyzv2+1408y2zv2+60/107xz2v2-1150yz2v2-126/19z3v2-7429x2uv2+2554xyuv2+3602y2uv2+10738xzuv2-57/64yzuv2+86/69z2uv2+8172xu2v2+91/113yu2v2+92/65zu2v2+118/37u3v2+47/83x2v3+12750xyv3+10851y2v3+4216xzv3+6/101yzv3-108z2v3+2920xuv3-101/102yuv3-157zuv3+7742u2v3-7234xv4-2/111yv4+59/33zv4-93/91uv4+24/19v5,1592x4y+75/121x3y2+40/19x2y3-2651xy4+9934x4z+245x3yz+11665x2y2z+30/41xy3z+1823y4z+89/88x3z2-105/46x2yz2+79/58xy2z2-4191y3z2-76/61x2z3-21/32xyz3-9516y2z3-14896xz4-85/77yz4+51/109z5+61/30x4u-10/101x3yu+11796x2y2u+76/101xy3u+123/88y4u-5932x3zu-11857x2yzu+7128xy2zu-45/79y3zu+119/18x2z2u+9/74xyz2u+7042y2z2u-1114xz3u-11/82yz3u-1466z4u-6/85x3u2+27/106x2yu2+14246xy2u2-6216y3u2+47/6x2zu2-45/59xyzu2+89/41y2zu2+41/80xz2u2-7583yz2u2-75/113z3u2-14808x2u3-10873xyu3-90/67y2u3-11081xzu3-7369yzu3-7131z2u3-1402xu4-15386yu4-108/73zu4-5039u5+120/113x4v+10617x3yv-50/87x2y2v-2395xy3v-20/69y4v-8587x3zv+12960x2yzv-41/50xy2zv-13844y3zv-65/32x2z2v-77/122xyz2v-85/66y2z2v+13/100xz3v-20/51yz3v-13676z4v+76/97x3uv+1046x2yuv-8059xy2uv-117/59y3uv-29/105x2zuv+7287xyzuv-107/119y2zuv-35/118xz2uv+79/86yz2uv-2211z3uv+5448x2u2v+62/35xyu2v-2275y2u2v+29/121xzu2v-1674yzu2v-56/43z2u2v-3377xu3v-43/110yu3v+23/10zu3v-24/61u4v+121/53x3v2-4745x2yv2-57/64xy2v2+9554y3v2-12741x2zv2+10449xyzv2+37/108y2zv2+8621xz2v2-11/57yz2v2+1566z3v2+125/49x2uv2-121/118xyuv2+109/84y2uv2-335xzuv2+10167yzuv2-59/109z2uv2-103/119xu2v2+43/13yu2v2-73/87zu2v2+2037u3v2+13002x2v3+83/48xyv3-10713y2v3+1026xzv3-105/64yzv3-37/6z2v3+14779xuv3-6448yuv3+19/69zuv3-1/110u2v3+10010xv4+79/12yv4+12/19zv4-35/61uv4-11/57v5,-1592x3y2-75/121x2y3-40/19xy4+2651y5+39/121x3yz+122/77x2y2z-114/31xy3z+1544y4z+2/3x3z2-10271x2yz2-8373xy2z2+56/61y3z2+55/48x2z3-116xyz3-25/7y2z3-108/113xz4-34/53yz4+5548z5-122x3yu-9690x2y2u+43/87xy3u-5/19y4u+97/54x3zu-17/19x2yzu+4355xy2zu+12/5y3zu-1/100x2z2u+12754xyz2u+13600y2z2u+17/45xz3u-12091yz3u+5145z4u-63/64x3u2-84/31x2yu2-97/41xy2u2+7/13y3u2-79/62x2zu2-80/103xyzu2-69/14y2zu2+119/4xz2u2-35/87yz2u2-13840z3u2+14101x2u3+7952xyu3-1857y2u3-9861xzu3+3180yzu3+75/107z2u3-250xu4-15134yu4+4717zu4-2/41u5+22/27x3yv-8983x2y2v+10520xy3v-113/2y4v+10/73x3zv-1986x2yzv-110/13xy2zv+1550y3zv+32/111x2z2v-111/35xyz2v+101/98y2z2v+8045xz3v-2/89yz3v+2924z4v-79/11x3uv-15178x2yuv+10874xy2uv+54/11y3uv-8950x2zuv+70/53xyzuv-2403y2zuv-8249xz2uv+6935yz2uv+20/89z3uv+885x2u2v-76/71xyu2v-4/17y2u2v-31/52xzu2v-4/99yzu2v+10333z2u2v-93/104xu3v+82/101yu3v-71/37zu3v+9397u4v-15/112x3v2-6614x2yv2+119/2xy2v2+88/119y3v2+306x2zv2+2790xyzv2+10992y2zv2-115/74xz2v2-14711yz2v2+11612z3v2-1788x2uv2-75/97xyuv2+79/30y2uv2+99/59xzuv2-11439yzuv2-121/113z2uv2+108/37xu2v2+37/36yu2v2-3/65zu2v2-55/42u3v2+13/100x2v3-209xyv3-1272y2v3-117/68xzv3+63/94yzv3+32/59z2v3+1013xuv3-3463yuv3+6946zuv3-37/86u2v3+67/117xv4+85/28yv4-3024zv4-82/9uv4-32/65v5,-35/52x4y-12140x3y2+23/83x2y3+69/5xy4-80/79y5+120/43x4z-11865x3yz-3487x2y2z+53/59xy3z+53/102y4z-14083x3z2-14430x2yz2-2442xy2z2-33/104y3z2-91/38x2z3+4/87xyz3-26/57y2z3+4097xz4-9/122yz4+6364z5+9634x4u-97/95x3yu-46/99x2y2u+3847xy3u+121/106y4u+12765x3zu-5292x2yzu+1607xy2zu-67/121y3zu-12/35x2z2u+4/55xyz2u-17/27y2z2u+91/122xz3u-23/31yz3u+65/49z4u+73/46x3u2-124/27x2yu2-9933xy2u2+46/75y3u2+53/114x2zu2+3503xyzu2-14147y2zu2-11283xz2u2+11889yz2u2+99/104z3u2+3117x2u3+12624xyu3-10060y2u3+2193xzu3-80/47yzu3-77/13z2u3+11/31xu4-47/90yu4+49/48zu4-2/105u5-92/61x4v+7443x3yv+35/76x2y2v+114/67xy3v-73/126y4v+97/107x3zv+9464x2yzv+10869xy2zv+15718y3zv-37/33x2z2v+124/13xyz2v-11/26y2z2v-61/40xz3v+91/100yz3v-18/103z4v+60/29x3uv+21/125x2yuv-11117xy2uv+11748y3uv-16/117x2zuv+18/103xyzuv-1711y2zuv+1872xz2uv-109/123yz2uv-18/113z3uv-26/103x2u2v+14140xyu2v+11065y2u2v+8686xzu2v-5/111yzu2v+30/101z2u2v-10501xu3v-36/113yu3v-73/74zu3v+12753u4v-43/52x3v2-76/15x2yv2-5793xy2v2+18/13y3v2+1/79x2zv2+84/23xyzv2-172y2zv2+86/77xz2v2+15/37yz2v2+11835z3v2-6482x2uv2+94/113xyuv2+10727y2uv2-102/41xzuv2+15914yzuv2-12973z2uv2-9038xu2v2-13107yu2v2+1533zu2v2+12549u3v2-13528x2v3+903xyv3+23/114y2v3-123/64xzv3-81/5yzv3+111/103z2v3+4734xuv3-33/20yuv3-7954zuv3-2478u2v3+15518xv4-6723yv4-14/31zv4-3482uv4+10919v5,-3/94x4y-12936x3y2+2/11x2y3+32/23xy4-15921y5+61/93x4z+82/111x3yz-93/2x2y2z-6659xy3z-97/90y4z+402x3z2-14586x2yz2-121/39xy2z2+68/7y3z2+1212x2z3-2980xyz3+49/52y2z3-72/89xz4+92/47yz4+8478z5+2733x4u-103/89x3yu+1166x2y2u-7/53xy3u-106/23y4u+677x3zu+907x2yzu+7891xy2zu-9014y3zu+76/47x2z2u+49/116xyz2u-49/78y2z2u+12261xz3u+118/105yz3u-126/13z4u-8812x3u2-97/120x2yu2-9534xy2u2+92/5y3u2-54/71x2zu2+94/103xyzu2+2256y2zu2+4182xz2u2-5798yz2u2-31/115z3u2-73/98x2u3+15822xyu3+1004y2u3-578xzu3+9494yzu3-6779z2u3+14506xu4+10/121yu4+58/27zu4-2817u5-19/119x4v+7128x3yv+75/64x2y2v-65/109xy3v+5129y4v-53/55x3zv+54/125x2yzv-3009xy2zv+6144y3zv+15601x2z2v+123/55xyz2v-58/77y2z2v-56/61xz3v+121/10yz3v-103/86z4v-93/25x3uv+94/123x2yuv-25/107xy2uv+14807y3uv+65/7x2zuv+87/44xyzuv+6605y2zuv+23/99xz2uv-413yz2uv-17/15z3uv-79/46x2u2v+15240xyu2v-42/67y2u2v+8932xzu2v-5888yzu2v-4204z2u2v+7002xu3v-36/97yu3v-1634zu3v+61/102u4v-14/33x3v2-6520x2yv2+9004xy2v2-67/36y3v2-7/8x2zv2-24/11xyzv2-9373y2zv2+1556xz2v2-79/74yz2v2-6691z3v2+108x2uv2-76/61xyuv2+220y2uv2-1191xzuv2-4/9yzuv2+4546z2uv2+12205xu2v2+9/22yu2v2+64/93zu2v2-44/125u3v2+292x2v3+41/74xyv3+16/79y2v3-15892xzv3+5733yzv3+6796z2v3-42/55xuv3+71/79yuv3-19/104zuv3-38/15u2v3+6436xv4+28/15yv4+87/55zv4+2270uv4-30/41v5,-117/4x3y+97/122x2y2-3618xy3+6566y4+97/113x3z-12634x2yz+9865xy2z-1764y3z+114/31x2z2+5006xyz2+7/44y2z2-15040xz3+8/125yz3+11134z4-12980x3u-79/41x2yu-79/98xy2u+89/65y3u-1217x2zu+89/87xyzu+83/66y2zu+115/11xz2u+123/107yz2u+10920z3u-86/73x2u2-11/94xyu2-14054y2u2+6752xzu2-123/124yzu2+12129z2u2-13310xu3-52/63yu3+12847zu3-1545u4-11064x3v+11499x2yv-37/64xy2v+50/103y3v+123/94x2zv-126xyzv-111/44y2zv+95/14xz2v+113/83yz2v-77/103z3v+41/64x2uv+91/90xyuv-4932y2uv+103/31xzuv+62/63yzuv+1161z2uv-99/106xu2v-3181yu2v-11741zu2v-33/8u3v-3/118x2v2-9369xyv2+527y2v2-113/39xzv2-88/49yzv2-113/101z2v2+95/68xuv2-5930yuv2-20/43zuv2+7/41u2v2+109/93xv3-107/61yv3-8352zv3-5255uv3+12021v4,-2159x4-94/3x3y-4602x2y2+1609xy3+10721y4+28/9x3z-99/35x2yz+1/110xy2z+113/114y3z-118/75x2z2-103/93xyz2-68/67y2z2+13687xz3-1531yz3+61/107z4+6076x3u+9004x2yu+2211xy2u+110/53y3u+47/102x2zu+8495xyzu-9238y2zu+57/121xz2u-8543yz2u+8/19z3u-13527x2u2-13293xyu2+1138y2u2+26/115xzu2+78/53yzu2-12556z2u2+7299xu3+70/19yu3-14687zu3+13559u4+113/9x3v-85/126x2yv-83/3xy2v-3/46y3v+1814x2zv+28/79xyzv+103/51y2zv+78/31xz2v-14387yz2v+1/88z3v+116/75x2uv-101/59xyuv-70/3y2uv+109/71xzuv+13/88yzuv-147z2uv-113/76xu2v-9661yu2v+13855zu2v-6162u3v-1857x2v2-8208xyv2-4634y2v2-6178xzv2-7352yzv2-8247z2v2-113/15xuv2+99/40yuv2+21/97zuv2+11/37u2v2-6605xv3+8964yv3+35/121zv3+8543uv3-6008v4;TestGRRes(Name, I); kill R, Name, @p; "";
717
718//  if( defined(assumeLevel0) ){ assumeLevel = assumeLevel0; } else { kill assumeLevel; } // restore the state of aL
719}
720
721/////////////////////////////////////////////////////////
722
723// Q@Woflram?
724proc grzero()
725"USAGE:  grzero()
726RETURN:  graded object representing S(0)^1
727PURPOSE: compute presentation of S(0)^1
728EXAMPLE: example grzero; shows an example
729"
730{
731 return ( grobj(module([0]), intvec(0), intvec(0)) );
732}
733example
734{ "EXAMPLE:"; echo = 2;
735
736  ring r=32003,(x,y,z),dp;
737
738  def M = grpower( grshift( grzero(), 10), 5 );
739
740  print(M);
741
742  grview(M);
743}
744
745proc grpower(def A, int p)
746"USAGE:  grpower(A, p), graded object A, int p > 0
747RETURN:  graded direct power A^p
748PURPOSE: compute the graded direct power A^p
749NOTE:    the power p must be positive
750EXAMPLE: example grpower; shows an example
751"
752{
753  if(p==0){ ERROR("Sorry, we don't know what is A^0!?!?"); } // grzero!?
754
755  ASSUME(0, p > 0);
756  ASSUME(1, grtest(A) );
757
758  if(p==1){ return(A); }
759
760  def N = grsum(A,A);
761
762  if(p==2){ return(N); }
763
764  // TODO: replace recursion with a loop!
765  // see http://en.wikipedia.org/wiki/Exponentiation_by_squaring
766  if((p%2)==0)
767    { return ( grpower(N, p div 2) ); }
768  else
769    { return ( grsum( A, grpower(N, (p-1) div 2) )); }
770}
771example
772{ "EXAMPLE:"; echo = 2;
773
774  ring r=32003,(x,y,z),dp;
775
776  module A = grobj( module([x+y, x, 0], [0, x+y, y]), intvec(1,1,1) );
777  grview(A);
778
779  module B = grobj( module([x,y]), intvec(2,2) );
780  grview(B);
781
782  module D = grsum( grpower(A,2), grpower(B,2) );
783
784  print(D);
785  homog(D);
786  grview(D);
787}
788
789
790proc grsum(A,B)
791"USAGE:  grsum(A, B), graded objects A and B
792RETURN:  graded direct sum of input objects
793PURPOSE: compute the graded direct sum of A and B
794EXAMPLE: example grsum; shows an example
795"
796{
797  ASSUME(1, grtest(A) );
798  ASSUME(1, grtest(B) );
799
800  intvec a = grrange(A);
801  intvec b = grrange(B);
802  intvec c = a,b;
803  int r = nrows(A);
804
805  module T = align(module(B), r); //  T;  print(T);  nrows(T); // BUG!!!!
806  module S = module(A), T;
807
808  intvec da = grdeg(A);
809  intvec db = grdeg(B);
810  intvec dc = da, db;
811
812  return(grobj(S, c, dc));
813}
814example
815{ "EXAMPLE:"; echo = 2;
816
817//  if( defined(assumeLevel) ){ int assumeLevel0 = assumeLevel; } else { int assumeLevel; export(assumeLevel); }; assumeLevel = 5;
818
819  ring r=32003,(x,y,z),dp;
820
821  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
822  grview(A);
823
824  module B = grobj( module([0,x,y]), intvec(15,1,1) );
825  grview(B);
826
827  module C = grsum(A,B);
828
829  print(C);
830  homog(C);
831  grview(C);
832
833  module D = grsum(
834     grsum(grpower(A,2), grtwist(1,1)),
835     grsum(grtwist(1,2), grpower(B,2))
836     );
837
838  print(D);
839  homog(D);
840  grview(D);
841
842  module F = grobj( module([x,y,0]), intvec(1,1,5) );
843  grview(F);
844
845  module T = grsum( F, grsum( grtwist(1, 10), B ) );
846  grview(T);
847
848//  if( defined(assumeLevel0) ){ assumeLevel = assumeLevel0; } else { kill assumeLevel; } // restore the state of aL
849}
850
851proc grshift( def M, int d)
852"USAGE:  grshift(A, d), graded objects A, int d
853RETURN:  shifted graded object
854PURPOSE: shift the grading on A by d: A_i -> A_{i+/-d}?
855EXAMPLE: example grshift; shows an example
856"
857{
858  ASSUME(1, grtest(M) );
859
860  intvec a = grrange(M);
861  a = a - intvec(d:size(a));
862
863  intvec t = attrib(M, "degHomog");
864  t = t - intvec(d:size(t));
865
866  return (grobj(M, a, t));
867}
868example
869{ "EXAMPLE:"; echo = 2;
870
871  ring r=32003,(x,y,z),dp;
872
873  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
874
875  grview(A);
876
877  module S = grshift( A,  6);
878
879  grview(S);
880}
881
882
883proc grisequal (def A, def B)
884"USAGE:  grisequal(A, B), graded objects A and B
885RETURN:  1 if A == B as graded objects, 0 otherwise
886PURPOSE: test the equality of two graded object
887NOTE: A and B should be literarly the same at the moment. TODO?
888EXAMPLE: example grisequal; shows an example
889"
890{
891  ASSUME(1, grtest(A) );
892  ASSUME(1, grtest(B) );
893
894  int ra = nrows(A);
895  int rb = nrows(B);
896
897  intvec wa = grrange(A);
898  intvec wb = grrange(B);
899
900  if( (ra != rb) || (ncols(A) != ncols(B)) ){ return (0); } // TODO: ???
901
902  intvec da = grdeg(A);
903  intvec db = grdeg(B);
904
905  return ( (da == db) && (wa == wb) &&
906           (size(module(matrix(A) - matrix(B))) == 0)    ); // TODO: ???
907}
908example
909{ "EXAMPLE:"; echo = 2;
910  TODO
911}
912
913proc grtwist(int a, int d)
914"USAGE:  grtwist(a,d), int a, d
915RETURN:  graded object representing S(d)^a
916PURPOSE: compute presentation of S(d)^a
917EXAMPLE: example grtwist; shows an example
918"
919{
920  ASSUME(0, a > 0);
921
922  module Z; Z[a] = [0];
923  intvec w = -intvec(d:a);
924  Z = grobj(Z, w, w); // will set the rank as well
925  ASSUME(2, grisequal(Z, grpower( grshift(grzero(), d), a ) )); // optional check
926  return(Z);
927}
928example
929{ "EXAMPLE:"; echo = 2;
930
931  ring r=32003,(x,y,z),dp;
932
933  grview(grpower( grshift(grzero(), 10), 5 ) );
934
935  grview( grtwist (5, 10) );
936}
937
938proc grobj(def A, intvec w, list #)
939"USAGE:  grobj(M, w[, d]), matrix/ideal/module M, intvec w, d
940RETURN:  graded object with matrix presentation M, row weighting w [and total graded degrees d of columns]
941PURPOSE: create a valid graded object with a given matrix presentation, weighting [and total graded degrees (in case of zero columns)]
942EXAMPLE: example grobj; shows an example
943"
944{
945  module M = module(A);
946  ASSUME(0, size(w) >= nrows(M) );
947
948  attrib( M, "rank", size(w) );
949  attrib( M, "isHomog", w );
950
951  if( size(#) > 0 )
952  {
953    ASSUME(0, typeof(#[1]) == "intvec" );
954    ASSUME(0, size(#[1]) == ncols(M) );
955    attrib(M, "degHomog", #[1]);
956  }
957  else
958  {
959    ASSUME(0, /* no zero cols please! */ size(M) == ncols(M) );
960    attrib(M, "degHomog", grdeg(M));
961  }
962
963  ASSUME(0, grtest(M) );
964  return (M);
965}
966example
967{ "EXAMPLE:"; echo = 2;
968
969  ring r=32003,(x,y,z),dp;
970
971  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
972  grview(A);
973
974  module F = grobj( module([x,y,0]), intvec(1,1,5) );
975  grview(F);
976
977  int d = 666; // zero can have any degree...
978  module Z = grobj( module([x,0], [0,0,0], [0, y]), intvec(1,2,3), intvec(2, d, 3) );
979  grview(Z);
980
981  print(Z);
982  attrib(Z);
983  grrange(Z); // module weights
984  attrib(Z, "degHomog"); // total degrees
985
986}
987
988proc grtest(def N, list #)
989"USAGE:  grtest(M[,b]), anyting M, optionally int b
990RETURN:  1 if M is a valid graded object, 0 otherwise
991PURPOSE: validate a graded object. Print an invalid object message if b is not given
992NOTE: M should be an ideal or module or matrix, with weighting attribute
993   'isHomog' and optionally total graded degrees attribute 'degHomog'.
994   Attributes should be compatible with the presentation matrix.
995EXAMPLE: example grtest; shows an example
996"
997{
998  int b = (size(#) == 0);
999  string t = typeof(N);
1000  if( (t != "ideal") && (t != "module") && (t != "matrix") )
1001  {
1002    if(b) { "   ? grtest: Input should be something like a matrix!"; };
1003    return (0);
1004  };
1005
1006  if ( typeof(grrange(N)) != "intvec" )
1007  {
1008    if(b) { type(N); attrib(N); "   ? grtest: Input must be graded!";  };
1009    return (0);
1010  };
1011
1012  intvec gr = grrange(N); // grading weights...
1013  if ( nrows(N) != size(gr) )
1014  {
1015    if(b) { "   ? grtest: Input has wrong number of rows!"; };   
1016    return (0);
1017  };
1018
1019//  if( attrib(N, "rank") != size(gr) ){ return (0); } // wrong rank :(
1020
1021  if ( typeof(attrib(N, "degHomog")) == "intvec" )
1022  {
1023    intvec T = attrib(N, "degHomog"); // graded degrees
1024   
1025    if ( ncols(N) != size(T) )
1026    {
1027      if(b) { "   ? grtest: Input has wrong number of cols!"; };   
1028      return (0);
1029    };
1030   
1031    int k = nvars(basering) + 1; // index of mod. column in the leadexp
1032
1033    module L = lead(module(N)); vector v;
1034
1035    // checking T for non-zero N[i]
1036    int i = size(T);
1037
1038    for (; i > 0; i-- )
1039    {
1040      v = L[i];
1041      if( v != 0 )
1042      {
1043        if( (deg(v) + gr[ leadexp(v)[k] ]) != T[i] )
1044        {
1045          if(b) { "   ? grtest: Input has wrong total grade of " + string(i) + "-th column!"; };
1046          return (0);
1047        };  // wrong T[i]
1048      }
1049    }
1050
1051    // TODO: check t on nonzero cols...
1052  } else
1053  {
1054    if( ncols(N) != size(N) )
1055    {
1056      if(b) { "   ? grtest: Input should have exclusively non-zero columns, please give total grades otherwise!"; };
1057      return (0);
1058    };
1059  }
1060
1061  if( !homog(N) )
1062  {
1063    if(b) { "   ? grtest: Input should be graded homogenous!"; };
1064    return (0);
1065  };
1066
1067//  if(b) { "Input seems to be a valid graded object (map)!"; };
1068  return (1);
1069}
1070example
1071{ "EXAMPLE:"; echo = 2;
1072
1073  ring r=32003,(x,y,z),dp;
1074
1075  // the following calls will fail due to tests in grtest:
1076
1077// grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0) ); // not enough row weights
1078// grobj( module([x,0], [0,0,0], [0, y]), intvec(1,2,3) ); // zero column needs (otherwise optional) total degrees
1079// grobj( module([x,0], [0,0,0], [0, y]), intvec(1,2,3), intvec(1, 1, 1) ); // incompatible total degrees (on non-zero columns)
1080
1081}
1082
1083
1084static proc align( def A, int d)
1085"analog of align kernel command for older Singular versions
1086 this is static since it should not be used by @code{align}-able (newer)
1087 Singular releases.
1088 Note that this proc does not care about any attributes (of A)
1089"
1090{
1091  module T; T[d] = 0;
1092  T = T, module(transpose(A));
1093  return( module(transpose(T)) );
1094}
1095
1096proc grgroebner(A)
1097"USAGE:  grgroebner(M), graded object M
1098RETURN:  graded object
1099PURPOSE: compute graded groebner basis of M
1100EXAMPLE: example grgroebner; shows an example
1101"
1102{
1103  ASSUME(1, grtest(A));
1104
1105  return ( grobj( groebner(A), grrange(A) ) );
1106}
1107example
1108{ "EXAMPLE:"; echo = 2;
1109
1110  ring r=32003,(x,y,z),dp;
1111
1112  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
1113  grview(A);
1114 
1115  module B = grgroebner(A);
1116  grview(B);
1117}
1118
1119
1120proc grtwists(intvec v)
1121"USAGE:  grtwists(v), intvec v
1122RETURN:  graded object representing S(v[1]) + ... + S(v[size(v)])
1123PURPOSE: compute presentation of S(v[1]) + ... + S(v[size(v)])
1124EXAMPLE: example grtwists; shows an example
1125"
1126{
1127  int l = size(v);
1128  module Z; Z[l] = [0];
1129  Z = grobj(Z, v, v); // will set the rank as well
1130  return(Z);
1131}
1132example
1133{ "EXAMPLE:"; echo = 2;
1134
1135  ring r=32003,(x,y,z),dp;
1136 
1137  grview( grtwists ( intvec(-4, 1, 6 )) );
1138}
1139
1140
1141proc grsyz(A)
1142"USAGE:  grsyz(M), graded object M
1143RETURN:  graded object
1144PURPOSE: compute graded syzygy of M
1145EXAMPLE: example grsyz; shows an example
1146"
1147{
1148  ASSUME(1, grtest(A));
1149  intvec v = grdeg(A);
1150
1151//  grrange(A);
1152 
1153  module M = syz(A);
1154//  print(M);
1155 
1156  if( size(M) > 0 ) { return( grobj( M, v ) ); }
1157
1158  // zero syzygy?
1159  return( grtwists(v) ); // ???
1160}
1161example
1162{ "EXAMPLE:"; echo = 2;
1163
1164  ring r=32003,(x,y,z),dp;
1165
1166  module A = grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) );
1167  grview(A);
1168 
1169  module B = grgroebner(A);
1170  grview(B);
1171
1172  module C = grsyz(B); 
1173  grview(C);
1174}
1175
1176
1177proc grprod(A, B)
1178"USAGE:  grprod(M, N), graded objects M and N
1179RETURN:  graded object
1180PURPOSE: compute graded product M * N (as composition of maps)
1181EXAMPLE: example grprod; shows an example
1182"
1183{
1184  ASSUME(1, grtest(A));
1185  ASSUME(1, grtest(B));
1186
1187  // TODO: ASSUME(0, grdeg() == grrange());!!!
1188
1189  return ( grobj( A*B, grrange(A), grdeg(B) ) );
1190}
1191example
1192{ "EXAMPLE:"; echo = 2;
1193
1194  ring r=32003,(x,y,z),dp;
1195
1196  module A = grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) );
1197  grview(A);
1198 
1199  A = grgroebner(A);
1200  grview(A);
1201 
1202  module B = grsyz(A);
1203  grview(B);
1204  print(B);
1205 
1206  module D = grprod( A, B );
1207  grview(D);
1208  print(D); // must be all zeroes due to syzygy property!
1209  ASSUME(0, size(D) == 0);
1210}
1211
1212
1213
1214
1215proc grres(def A, int l, list #)
1216"USAGE:  grres(M, l[, b]), graded object M, int l, int b
1217RETURN:  graded resolution = list of graded objects
1218PURPOSE: compute graded resolution of M (of length l) and minimise it if b was given                             
1219EXAMPLE: example grres; shows an example
1220"
1221{
1222  ASSUME(0, l >= 0);
1223  ASSUME(1, grtest(A));
1224
1225  intvec v = grrange(A);
1226 
1227  int b = (size(#) > 0);
1228  if(b) { list r = res(A, l, #[1]); } else { list r = res(A, l); }
1229
1230//  r;  v;
1231
1232  l = size(r);
1233 
1234  int i; module m;
1235 
1236  for ( i = 1; i <= l; i++ )
1237  {
1238    if( size(r[i]) == 0 ){ r[i] = grtwists(v); i++; break;   }
1239
1240    r[i] = grobj(r[i], v); v = grdeg(r[i]);
1241  }
1242  i = i-1;
1243
1244  return( list(r[1..i]) );
1245}
1246example
1247{ "EXAMPLE:"; echo = 2;
1248
1249  ring r=32003,(x,y,z),dp;
1250
1251  module A = grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) );
1252  grview(A);
1253 
1254  module B = grgroebner(A);
1255  grview(B);
1256
1257  "graded resolution of B: "; def C = grres(B, 0); grview(C);
1258
1259  int i; int l = size(C);
1260
1261  "D^2 == 0: "; for (i = 1; i < l; i++ ) { i; grview( grprod(C[i], C[i+1]) ); }
1262}
1263
1264proc grtranspose(def M)
1265"
1266USAGE:   grtranspose(M), graded object M
1267RETURN:  graded object
1268PURPOSE: graded transpose of M
1269NOTE:    no reordering is performend by this procedure   
1270EXAMPLE: example grtranspose; shows an example
1271"
1272{
1273  ASSUME(1, grtest(M) );
1274  return (  grobj(transpose(M), -grdeg(M), -grrange(M))  );
1275}
1276example
1277{ "EXAMPLE:"; echo = 2;
1278
1279  ring r=32003,(x,y,z),dp;
1280
1281  module M = grtwists( intvec(-2, 0, 4, 4) ); grview(M);
1282
1283  module N = grsyz( grtranspose( M ) ); grview(N);
1284
1285  module L = grtranspose(N); grview( L );
1286
1287  module K = grsyz( L ); grview(K);
1288 
1289
1290  module A = grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) ); A = grgroebner(A); grview(A);
1291
1292  "graded transpose: "; module B = grtranspose(A); grview( B ); print(B);
1293
1294  "... syzygy: "; module C = grsyz(B); grview(C);
1295
1296  "... transposed: "; module D = grtranspose(C); grview( D ); print (D);
1297
1298  "... and back to presentation: "; module E = grsyz( D ); grview(E); print(E);
1299
1300  module F = grgens( E ); grview(F); print(F);
1301 
1302  module G = grpres( F ); grview(G); print(G);
1303}
1304
1305
1306proc grgens(def M)
1307"
1308USAGE:   grgens(M), graded object M (map)
1309RETURN:  graded object 
1310PURPOSE: try compute graded generators of coker(M) and return them as columns
1311         of a graded map.
1312NOTE:    presentation of resulting generated submodule may be different to M!
1313EXAMPLE: example grgens; shows an example
1314"
1315{
1316  ASSUME(1, grtest(M) );
1317
1318  module N = grtranspose( grsyz( grtranspose(M) ) );
1319 
1320//  ASSUME(3, grisequal( grgroebner(M), grgroebner( grpres( N ) ) ) ); // FIXME: not always true!?
1321 
1322  return ( N );
1323}
1324example
1325{ "EXAMPLE:"; echo = 2;
1326
1327  ring r=32003,(x,y,z),dp;
1328
1329  module M = grtwists( intvec(-2, 0, 4, 4) ); grview(M);
1330
1331  module N = grgens(M);
1332 
1333  grview( N ); print(N); // fine == M
1334
1335
1336  module A = grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) );
1337
1338  A = grgroebner(A); grview(A);
1339
1340  module B = grgens(A);
1341
1342  grview( B ); print(B); // Ups :( != A
1343 
1344}
1345
1346
1347proc grpres(def M)
1348"
1349USAGE:   grpres(M), graded object M (submodule gens)
1350RETURN:  graded module (via coker)
1351PURPOSE: compute graded presentation matrix of submodule generated by columns of M
1352EXAMPLE: example grpres; shows an example
1353"
1354{
1355  ASSUME(1, grtest(M) );
1356
1357  module N = grsyz(M);
1358
1359//  ASSUME(3, grisequal( M, grgens( N ) ) );
1360 
1361  return ( N );
1362}
1363example
1364{ "EXAMPLE:"; echo = 2;
1365
1366  ring r=32003,(x,y,z),dp;
1367
1368  module M = grtwists( intvec(-2, 0, 4, 4) ); grview(M);
1369
1370  module N = grgens(M); grview( N ); print(N);
1371
1372  module L = grpres( N ); grview( L ); print(L);
1373
1374
1375  module A = grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) );
1376
1377  A = grgroebner(A); grview(A);
1378
1379  module B = grgens(A); grview( B ); print(B);
1380
1381  module C = grpres( B ); grview( C ); print(C);
1382}
1383
1384
1385
1386LIB "random.lib"; // for sparsepoly
1387
1388proc grrndmat(intvec w, intvec v, list #)
1389"USAGE:  grrndmat(src,dst[,p,b]), intvec src, dst[, int p, b]
1390RETURN:  matrix of polynomials
1391PURPOSE: generate random matrix compatible with src and dst gradings
1392NOTE:    optional arguments p, b are for 'sparsepoly' (by default: 75%, 30000).
1393TODO:    this is experimental at the moment!
1394EXAMPLE: example grrndmat; shows an example
1395"
1396{
1397  // defaults for sparsepoly
1398  int p = 75;
1399  int b = 30000;
1400
1401  if ( size(#) > 0 )
1402  {
1403    ASSUME( 0, (typeof(#[1]) == "int") || (typeof(#[1]) == "bigint") );
1404    p = #[1];
1405
1406    if ( size(#) > 1 )
1407    {
1408      ASSUME( 0, (typeof(#[2]) == "int") || (typeof(#[2]) == "bigint") );
1409      b = #[2];
1410    }
1411  }
1412
1413  int n = size(v); // destination: rows!
1414  int m = size(w); // source: cols
1415
1416  matrix M[n][m];
1417
1418  int r,c; intvec ww;
1419
1420  for( c = m; c > 0; c-- )
1421  {
1422    ww = v - intvec(w[c]:n);
1423    for( r = n; r > 0; r-- )
1424    {
1425      if( ww[r] >= 0)
1426      {
1427        M[r,c] = sparsepoly(ww[r], ww[r], p, b);
1428      }
1429
1430    }
1431  }
1432
1433  return(M);
1434}
1435example
1436{ "EXAMPLE:"; echo = 2;
1437
1438  ring r=32003,(x,y,z),dp;
1439
1440  print( grrndmat( intvec(0, 1), intvec(1, 2, 3) ) );
1441}
1442
1443//
1444
1445
1446proc KeneshlouMatrixPresentation(intvec a)
1447"
1448PURPOSE: Direct sum of all omegas_i(i) with powers a[i]
1449NOTE: Please document/name this proc properly
1450"
1451{
1452  int n = size(a)-1;
1453  //  ring r = 32003,(x(0..n)),dp;
1454  ASSUME(0, nvars(basering)==(n+1));
1455  int i,j;
1456
1457  // find first nonzero exponent a_i
1458  for(i=1;i<=size(a);i++)
1459    {
1460      if(a[i]!=0) {break; };
1461    }
1462
1463  // all zeroes?
1464  if(i>size(a)) {return (grzero()); };
1465
1466  for(i=2;i<=n;i++)
1467    {
1468      if(a[i]!=0) {break; };
1469    }
1470
1471  module N;
1472
1473  if(i>n)
1474    { // no middle part
1475      if(a[1]>0)
1476        {
1477          N=grtwist(a[1],0);
1478
1479          if(a[n+1]>0)
1480            { N=grsum(N,grtwist(a[n+1],-1));}       
1481        } 
1482      else
1483        { N=grtwist(a[n+1],-1);}
1484     
1485      return (N); // grorder(N));
1486    }
1487  else // i <= n: middle part is present, a_i != 0
1488    { // a = a1  ... |  i:2, a_2 ..... i: n, a_n | .... i: n+1a_(n+1)
1489      j = i - 1;
1490      module I = maxideal(1); attrib(I,"isHomog", intvec(0)); list L = mres(I, 0); // TODO: use grres() instead!!!
1491      list kos = grorder(L);
1492      // make sure that graded maps  are represented by blocks corresponding to the betti diagram?
1493
1494      def S = grpower(grshift(grobj( kos[j+2], attrib(kos[j+2], "isHomog")), j), a[i]);
1495
1496      i++;
1497
1498      for(; i <= n; i++)
1499        {
1500          if(a[i]==0) { i++; continue; }
1501          j = i - 1;
1502          S = grsum( S, grpower(grshift( grobj( kos[j+2], attrib(kos[j+2], "isHomog")), j), a[i])  );
1503        }
1504
1505      // S is the middle (non-zero) part
1506
1507      if(a[1] > 0 )
1508        {
1509          N=grsum(grtwist(a[1],0), S);
1510        }
1511      else
1512        { N = S;}
1513
1514      if(a[n+1] > 0 )
1515        { N=grsum(N, grtwist(a[n+1],-1)); }
1516
1517
1518      return ((N)); //      return (grorder(N));
1519    }
1520}
1521example
1522{ "EXAMPLE:"; echo = 2;
1523  ring r = 32003,(x(0..4)),dp;
1524
1525  def N1 = KeneshlouMatrixPresentation(intvec(2,0,0,0,0));
1526  grview(N1);
1527
1528  def N2 = KeneshlouMatrixPresentation(intvec(0,0,0,0,3));
1529  grview(N2);
1530
1531  def N = KeneshlouMatrixPresentation(intvec(2,0,0,0,3));
1532  grview(N);
1533
1534
1535  def M1 = KeneshlouMatrixPresentation(intvec(0,1,0,0,0));
1536  grview(M1);
1537
1538  def M2 = KeneshlouMatrixPresentation(intvec(0,1,1,0,0));
1539  grview(M2);
1540
1541  def M3 = KeneshlouMatrixPresentation(intvec(0,0,0,1,0));
1542  grview(M3);
1543
1544  def M = KeneshlouMatrixPresentation(intvec(1,1,1,0,0));
1545  grview(M);
1546
1547
1548}
1549
1550proc grconcat(A,B)
1551"USAGE: grconcat(A, B), graded objects A and B, dst(A) == dst(B) =: dst
1552RETURN: graded object
1553PURPOSE: construct src(A) + src(B) -----> dst  given by (A|B)
1554EXAMPLE: example grconcat; shows an example
1555"
1556{
1557
1558  ASSUME(1, grtest(A));
1559  ASSUME(1, grtest(B));
1560  ASSUME(0, grrange(A)==grrange(B));
1561 
1562  intvec v = grrange(A);
1563  intvec w=grdeg(A),grdeg(B);
1564  return(grobj(concat(A,B),v,w));
1565}
1566example
1567{ "EXAMPLE:"; echo = 2;
1568  ring r;
1569 
1570  module R=grobj(module([x,y,z]),intvec(0:3));
1571  grview(R);
1572
1573  module S=grobj(module([x,0,y],[xy,zy+x2,0]),intvec(0:3));
1574  grview(S);
1575
1576  def Q=grconcat(R,S);
1577  grview(Q);
1578}
1579
1580
1581proc grlift(A, B)
1582"USAGE: grlift(M, N), graded objects M and N
1583RETURN: transformation matrix (graded object???)
1584PURPOSE: compute graded matrix which the generators of submodule Im(N) in terms of Im(M).
1585EXAMPLE: example grlift; shows an example
1586"
1587{
1588  ASSUME(1, grtest(A));
1589  ASSUME(1, grtest(B));
1590  ASSUME(0, grrange(A) == grrange(B));
1591
1592//  matrix T;  module AA = liftstd(A, T); //  AA = module(A*T)
1593//  matrix U;
1594  matrix L =lift(A,B/*,U*/);  //  module(B*U) = module(matrix(A)*L)
1595 
1596  return(grobj(L, grdeg(A), grdeg(B)));
1597}
1598example
1599{ "EXAMPLE:"; echo = 2;
1600
1601  ring r=32003,(x,y,z),dp;
1602  module P=grobj(module([xy,0,xz]),intvec(0,1,0));
1603  grview(P);
1604
1605
1606  module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
1607  grview(D);
1608
1609  def G=grlift(D,P);
1610  grview(G);
1611
1612  ASSUME(0, grisequal( grprod(D, G), P) ); 
1613}
1614
1615proc grrange(M)
1616{
1617//  ASSUME(1, grtest(M)); // Leads to recursive call due to grtest...
1618  return( attrib(M, "isHomog") );
1619}
1620
1621proc grlift0(M, N, alpha1)
1622"PURPOSE: generic random alpha0 : coker(M) -> coker(N) from random alpha1
1623NOTE: this proc can work only if some assumptions are fulfilled (due
1624to Wolfram)! e.g. at the end of a resolution for the source module...
1625"
1626{
1627
1628  ASSUME(1, grtest(M));
1629  ASSUME(1, grtest(N));
1630
1631  ASSUME(0, grdeg(M) == grdeg(alpha1) );
1632  ASSUME(0, grdeg(N) == grrange(alpha1) );
1633  return(
1634   grtranspose( grlift( grtranspose( M ),
1635       grtranspose( grprod( N,  alpha1 ) ) )
1636       ) ); // alpha0!
1637   
1638}
1639example
1640{ "EXAMPLE:"; echo = 2;
1641
1642  ring S = 0, (x(0..3)), dp;
1643  list kos = grres(grobj(maxideal(1), intvec(0)), 0);
1644  print( betti(kos), "betti");
1645  grview(kos);
1646
1647
1648  // source module:
1649//  module M = grshift(kos[4], 2); // phi, Syz_3(K(2))
1650  def M = KeneshlouMatrixPresentation(intvec(0,0,1,0));
1651//   grview( grres(M, 0) );
1652  grview(M);
1653
1654  // destination module:
1655//   module N = grshift(kos[3], 1); // psi, Syz_2(K(1))
1656  def N = KeneshlouMatrixPresentation(intvec(0,1,0,0));
1657//  grview( grres(N, 0) );
1658  grview(N);
1659
1660  // random graded of degree 0, homomorphism of free presentations:
1661  // alpha1: src(M) -> src (N)
1662  def alpha1 = grrndmap( M, N ); // alpha1
1663  grview(alpha1);
1664
1665  // random graded of degree 0, homomorphism of free presentations:
1666  // alpha0: dst(M) -> dst (N)
1667  def alpha0 = grlift0(M, N, alpha1);
1668  grview(alpha0);
1669
1670}
1671
1672
1673proc grlifting(M,N)
1674"generic random alpha : coker(M) -> coker(N) "
1675{  ASSUME(1, grtest(M));
1676   ASSUME(1, grtest(N));
1677
1678   list rM=grres(M,0,1);
1679   list rN=grres(N,0,1);
1680   int i,j,k;
1681
1682  for(i=1;i<=size(rM);i++)
1683  {
1684    if(size(rM[i])==0){break;}
1685  }
1686
1687  for(j=1;j<=size(rN);j++)
1688  {
1689    if(size(rN[j])==0){break;}
1690  }
1691  int t=min(i,j);
1692
1693  ASSUME(0, t >= 2);
1694 
1695  list P;
1696
1697  "t: ", t;
1698 
1699  P[1]= grrndmap( rM[1], rN[1] ); // alpha1
1700
1701  grview(P[1]); print(P[1]); 
1702
1703//   return();
1704 
1705 
1706  for(k=2; k<=t; k++)
1707  {
1708    "k: ", k;
1709    grview(rN[k-1]);
1710    grview(P[k-1]);
1711
1712//    grprod( grtranspose(P[k-1]), grtranspose(rN[k-1])  );
1713//    grprod( grtranspose(rN[k-1]), grtranspose(P[k-1])  );
1714
1715//     grprod( P[k-1], rN[k-1] );
1716   
1717//    grview( _ );
1718   
1719//    rM[k];
1720    grview(rM[k-1]);
1721
1722    P[k] =  grtranspose( grlift( grtranspose( rM[k-1] ),
1723       grtranspose( grprod( rN[k-1],  P[k-1] ) ) ) ); // alpha0!
1724   
1725//    P[k] = grlift( grprod(P[k-1],rM[k]), rN[k] ); // ??
1726    grview(P[k]); 
1727   
1728  }
1729     
1730  return(P);
1731   
1732}
1733example
1734{ "EXAMPLE:"; echo = 2;
1735/*
1736  ring r=32003,(x,y,z),dp;
1737
1738  module P=grobj(module([xy,0,xz]),intvec(0,1,0));
1739  grview(P);
1740
1741  module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
1742  grview(D);
1743
1744  def G=grlifting(D,P);
1745  grview(G);
1746
1747  kill r;
1748  ring r=32003,(x,y,z),dp;
1749
1750  module D=grobj(module([y,0,z],[x2+y2,z,0], [z3, xy, xy2]),intvec(0,1,0));
1751  D = grgroebner(D);
1752  grview( grres(D, 0));
1753
1754  def G=grlifting(D, D);
1755  grview(G);
1756*/
1757
1758  ring S = 0, (x(0..3)), dp;
1759  list kos = grres(grobj(maxideal(1), intvec(0)), 0);
1760  print( betti(kos), "betti");
1761  grview(kos);
1762
1763//  module M = grshift(kos[4], 2); // phi, Syz_3(K(2))
1764  def M = KeneshlouMatrixPresentation(intvec(0,0,1,0));
1765  grview( grres(M, 0) );
1766 
1767//   module N = grshift(kos[3], 1); // psi, Syz_2(K(1))
1768  def N = KeneshlouMatrixPresentation(intvec(0,1,0,0));
1769  grview( grres(N, 0) );
1770
1771  grlifting(M, N); // grview(G);
1772
1773
1774//  def G=grlifting( grgens(M), grgens(N) );  grview(G);
1775
1776
1777}
1778
1779proc mappingcone(M,N)
1780"??"
1781{
1782  ASSUME(1, grtest(M));
1783  ASSUME(1, grtest(N));
1784
1785  list P=grlifting(M,N);
1786  list rM=grres(M,1);
1787  list rN=grres(N,1);
1788
1789  int i;
1790  list T;
1791
1792  T[1]=grconcat(P[1],rN[2]);
1793
1794  for(i=2;i<=size(P);i++)
1795  {
1796    intvec v=grrange(rM[i]);
1797    intvec w=grdeg(rN[i+1]);
1798    int r=size(v);
1799    int s=size(w);
1800    module zero = (0:s);
1801
1802    module A=grconcat(P[i],rN[i+1]);
1803    module B=grobj(zero,v,w);
1804    module C=grconcat(-rM[i],B);
1805    module D=grconcat(grtranspose(C), grtranspose(A));
1806
1807    T[i]=grtranspose(D);
1808  }
1809   return(T);
1810}
1811example
1812{ "EXAMPLE:"; echo = 2;
1813
1814ring r=32003, (x(0..4)),dp;
1815def I=maxideal(1);
1816module R=grobj(module(I), intvec(0));
1817resolution FR=mres(R,0);
1818print(betti(FR,0),"betti");
1819module K=grobj(module(FR[1]),intvec(-1),intvec(0,0,0,0,0));
1820module S=grsyz(K);
1821grview(S);
1822module B=grobj(module([1,0,0],[0,1,0],[0,0,1]),intvec(1,1,1),intvec(1,1,1));
1823grview(B);
1824
1825def Z=grlifting(B,S);
1826Z;
1827
1828def G=mappingcone(B,S);
1829G;
1830
1831
1832resolution E=grres(G[1],0);
1833print(betti(E,0),"betti");
1834module W=grtranspose(G[1]);
1835resolution U=grres(W,0);
1836ideal P=groebner(flatten(U[2])); // flatten???
1837resolution L=mres(P,0);
1838print(betti(L),"betti");
1839}
1840
1841// correct
1842proc grrndmap(def S, def D, list #)
1843"USAGE: (S,D), graded objects S and D
1844RETURN: graded object
1845PURPOSE: construct a random 0-deg graded homomorphism src(S) -> src(D)
1846EXAMPLE: example grrndmap; shows an example
1847"
1848{
1849
1850ASSUME(1, grtest(S) );
1851ASSUME(1, grtest(D) );
1852
1853// "src: "; grview(S);"dst: "; grview(D);
1854
1855intvec v = -grdeg(S); // source
1856intvec w = -grdeg(D); // destination
1857
1858return (grobj(grrndmat(v, w, #), -w, -v ) );
1859}
1860example
1861{ "EXAMPLE:"; echo = 2;
1862
1863  ring r=32003,(x,y,z),dp;
1864
1865  module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
1866  grview(D);
1867
1868  module S=grobj(module([x,0,y],[xy,zy+x2,0]),intvec(0,0,0));
1869  grview(S);
1870
1871  def H=grrndmap(D,S);
1872  grview(H);
1873
1874}
1875
1876
1877proc grrndmap2(def D, def S, list #)
1878"USAGE: (D,S), graded objects S and D
1879RETURN: graded object
1880PURPOSE: construct a random 0-deg graded homomorphism between target of D and S.
1881EXAMPLE: example grrndmap2; shows an example
1882"
1883{
1884  ASSUME(1, grtest(D) );
1885  ASSUME(1, grtest(S) );
1886  intvec v = -grrange(D); // source
1887  intvec w = -grrange(S); // target
1888  return (grobj(grrndmat(v, w, #), -w, -v ) );
1889}
1890example
1891{ "EXAMPLE:"; echo = 2;
1892
1893  ring r=32003,(x,y,z),dp;
1894
1895  module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
1896  grview(D);
1897
1898  module S=grobj(module([x,0,y],[xy,zy+x2,0]),intvec(0,0,0));
1899  grview(S);
1900
1901  def G=grrndmap2(D,S);
1902  grview(G);
1903
1904}
1905
1906proc grlifting2(A,B)
1907"USAGE: (A,B), graded objects A and B (matrices defining maps)
1908RETURN: map of chain complexes (as a list)
1909PURPOSE: construct a map of chain complexes between free resolution of
1910M=coker(A) and N=coker(B).
1911NOTE:
1912               A     f2     f3
19130<---M<----F0<----F1<----F2<----F3<----
1914             |p1   |p2
1915
19160<---N<----G0<----G1<----G2<----G3<----
1917               B(g1)      g2     g3
1918
1919EXAMPLE: example grlifting2; shows an example
1920"
1921{  ASSUME(1, grtest(A));
1922   ASSUME(1, grtest(B));
1923
1924   list rM=grres(A,0);
1925   list rN=grres(B,0);
1926   int i,j,k;
1927   list P;
1928
1929  // find first zero matrix in rM
1930  for(i=1;i<=size(rM);i++)
1931  {
1932    if(size(rM[i])==0){break;}
1933  }
1934
1935  // find first zero matrix in rN
1936  for(j=1;j<=size(rN);j++)
1937  {
1938    if(size(rN[j])==0){break;}
1939  }
1940
1941  int t=min(i,j);
1942
1943  P[1]=grrndmap2(A,B);
1944
1945  // A(or B)=0
1946  if(t==1){return(P[1])};
1947 
1948  for(k=2;k<=t;k++)
1949  {
1950   def E=grprod(P[k-1],rM[k-1]);
1951   P[k]=grlift(rN[k-1],E); // ---------->
1952   /* let yi=(pi)o(fi); to take grlift(gi,yi)
1953      we should have img(yi) is contained in
1954      img(gi)=ker(gi-1),i.e (gi-1)oyi=0. we have
1955      (gi-1)oyi=(gi-1)o(pi)o(fi)=(pi-1)o(fi-1)ofi=0
1956  */
1957  }
1958  return(P);
1959}
1960example
1961{"EXAMPLE:"; echo = 2;
1962
1963ring r;
1964module P=grobj(module([xy,0,xz]),intvec(0,1,0));
1965grview(P);
1966
1967module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
1968grview(D);
1969
1970module PP = grpres(P);
1971grview(PP);
1972
1973module DD = grpres(D);
1974grview(DD);
1975
1976
1977def T=grlifting2(DD,PP); T;
1978
1979// def Z=grlifting2(P,D); Z; // WRONG!!! 
1980             
1981}
1982
1983
1984/*
1985proc mappingcone2(A,B)
1986"USAGE: (A,B), graded objects A and B (matrices defining maps)
1987RETURN: chain complex (as a list)
1988PURPOSE: construct the free resolution of a cokernel of a random map between
1989M=coker(A), and N=coker(B)
1990NOTE:
1991             -f1 0       -f2 0
1992  (p1 g1)     p2 g2       p3 g3
1993G0<-----F0+G1<------F1+G2<-------F2+G3<-----
1994
1995EXAMPLE: example mappingcone2;
1996"
1997
1998{
1999  ASSUME(1, grtest(A));
2000  ASSUME(1, grtest(B));
2001
2002  list P=grlifting2(A,B);
2003  list rM=grres(A,1);
2004  list rN=grres(B,1);
2005
2006  int i;
2007  list T;
2008
2009  T[1]=grconcat(P[1],rN[1]);
2010
2011  for(i=2;i<=size(P);i++)
2012  {
2013    intvec v=grrange(rM[i-1]);
2014    intvec w=grdeg(rN[i]);
2015    int r=size(v);
2016    int s=size(w);
2017    module zero = (0:s);
2018
2019    module A=grconcat(P[i],rN[i]);
2020    module B=grobj(zero,v,w);
2021    module C=grconcat(-rM[i-1],B);
2022    module D=grconcat(grtranspose(C), grtranspose(A));
2023
2024    T[i]=grtranspose(D);
2025  }
2026  return(T);
2027}
2028example
2029{ "EXAMPLE:"; echo = 2;
2030
2031ring r=32003,(x(0..4)),dp;
2032def I=maxideal(1);
2033module R=grobj(module(I), intvec(0));
2034resolution FR=mres(R,0);
2035print(betti(FR,0),"betti");
2036module K=grobj(module(FR[1]),intvec(-1),intvec(0:5));
2037grview(K);
2038
2039module S=grsyz(K);
2040grview(S);
2041S;
2042
2043module SS = grpres(S);
2044
2045module B=grobj(module([1,0,0],[0,1,0],[0,0,1]),intvec(1,1,1),intvec(1,1,1));
2046// module B=grobj(module([1],[0,1],[0,0,1],[0,0,0,1], [0,0,0,0,1]),intvec(0:5));
2047grview(B);
2048B;
2049module BB = grpres(B);
2050
2051def Z=grlifting2(SS,BB);Z;
2052def G=mappingcone2(SS,BB);G;
2053}
2054*/
2055
2056
2057
2058
2059/*
2060             -f1 0        -f2 0
2061  (p1 g1)     p2 g2        p3 g3
2062G0<-----F0+G1<------F1+G2<-------F2+G3<-----
2063
2064*/
2065
2066proc mappingcone2(A,B)
2067"USAGE: (A,B), graded objects A and B (matrices defining maps)
2068RETURN: chain complex (as a list)
2069PURPOSE: construct the free resolution of cokernel of a random map between
2070M=coker(A), and N=coker(B)
2071EXAMPLE: example ????????
2072"
2073
2074{
2075  ASSUME(1, grtest(A));
2076  ASSUME(1, grtest(B));
2077
2078  list P=grlifting3(A,B);
2079  list rM=grres(A,0,1);
2080  list rN=grres(B,0,1);
2081
2082  int i;
2083  list T;
2084
2085  T[1]=grconcat(P[1],rN[1]);
2086
2087  for(i=2;i<=size(P);i++)
2088  {
2089    intvec v=grrange(rM[i-1]);
2090    intvec w=grdeg(rN[i]);
2091    int r=size(v);
2092    int s=size(w);
2093    matrix zero[r][s];
2094
2095    module A=grconcat(P[i],rN[i]);
2096    module B=grobj(zero,v,w);
2097    module C=grconcat(-rM[i-1],B);
2098    module D=grconcat(grtranspose(C), grtranspose(A));
2099
2100    T[i]=grtranspose(D);
2101  }
2102   return(T);
2103}
2104
2105
2106
2107
2108proc grlifting3(A,B)
2109{
2110  ASSUME(1, grtest(A));
2111  ASSUME(1, grtest(B));
2112
2113
2114  list rM = grres(A,0,1);
2115
2116  print( betti(rM), "betti");
2117  list rN = grres(B,0,1);
2118  print( betti(rN), "betti");
2119 
2120  int i,j,k;
2121
2122  for(i=1;i<=size(rM);i++)
2123  {
2124    if(size(rM[i])==0){break;}
2125  }
2126
2127  for(j=1;j<=size(rN);j++)
2128  {
2129    if(size(rN[j])==0){break;}
2130  }
2131  int t=min(i,j);
2132 
2133  list P;
2134
2135  "t: ", t;
2136//  grview(rM[t]);  grview(rN[t]);
2137 
2138  P[t]= grrndmap2(rM[t],rN[t]);
2139  grview(P[t]);
2140
2141  if(t==1){return(P)};
2142
2143  for(k=t-1; k>=1; k--)
2144  {
2145     "k: ", k;
2146//  grview(rM[k]);  grview(rN[k]);
2147
2148// def C = grtranspose(rM[k]); def T= grprod(rN[k],P[k+1]);
2149// def tT = grtranspose(T);
2150
2151    P[k]= grlift0( rM[k], rN[k], P[k+1] ); // grtranspose(grlift(C,tT));
2152
2153     grview(P[k]);
2154
2155   }
2156   return(P);
2157     
2158
2159}
2160example
2161{"EXAMPLE:"; echo = 2;
2162
2163ring r=32003, x(0..4),dp;
2164
2165def A=grtwist(3,1);
2166grview(A);
2167
2168def T=KeneshlouMatrixPresentation(intvec(0,1,0,0,0));
2169grview(T);
2170
2171def F=grlifting3(T,A);
2172grview(F);
2173
2174def R=KeneshlouMatrixPresentation(intvec(0,0,0,2,0));
2175def S=KeneshlouMatrixPresentation(intvec(1,2,0,0,0));
2176
2177def H=grlifting3(R, S);
2178// grview(H);
2179def H=grlifting3(S, R);
2180
2181/*
2182// ???
2183def I=KeneshlouMatrixPresentation(intvec(2,3,0,6,2));
2184def J=KeneshlouMatrixPresentation(intvec(4,0,1,2,1));
2185def N=grlifting3(I,J); grview(N); // ???
2186*/
2187}
2188
2189/*
2190             -f1 0        -f2 0
2191  (p1 g1)     p2 g2        p3 g3
2192G0<-----F0+G1<------F1+G2<-------F2+G3<-----
2193*/
2194
2195proc grneg(M)
2196"negative map
2197TODO for Hanieh: please document this and find good motivating examples for this proc!!
2198"
2199{
2200  return ( grobj(-M, grrange(M), grdeg(M) ) );
2201}
2202
2203// note: not clear which grlifting3 should be used by the following
2204// procedure!!?
2205proc mappingcone3(A,B)
2206"USAGE: (A,B), graded objects A and B (matrices defining maps)
2207RETURN: chain complex (as a list)
2208PURPOSE: construct a free resolution of the cokernel of a random map between
2209M=coker(A), and N=coker(B)
2210EXAMPLE: example mappingcone3; shows an example
2211
2212{
2213  ASSUME(1, grtest(A));
2214  ASSUME(1, grtest(B));
2215
2216  list P=grlifting4(A,B);
2217  list rM=grres(A,0,1);
2218  list rN=grres(B,0,1);
2219
2220  int i;
2221  list T;
2222
2223  T[1]=grconcat(P[1],rN[1]);
2224
2225  for(i=2;i<=size(P);i++)
2226  {
2227    intvec v= grrange(rM[i-1]);
2228    intvec w=grdeg(rN[i]);
2229    int r=size(v);
2230    int s=size(w);
2231    matrix zero[r][s];
2232
2233//    ASSUME( 0, grtest(P[i]) );
2234//    ASSUME( 0, grtest(rN[i]) );
2235
2236    module A=grconcat(P[i],rN[i]);
2237    module B=grobj(zero,v,w);
2238
2239//    ASSUME( 0, grtest(B) );
2240//    ASSUME( 0, grtest(-rM[i-1]) );   
2241    ASSUME( 0, grtest( grneg( rM[i-1]) ) );
2242    module C=grconcat( grneg( rM[i-1] ) ,B); // FIXME: '-' is wrong! need a graded-enabled minus (e.g. grneg?)
2243    module D=grconcat(grtranspose(C), grtranspose(A));
2244
2245    T[i]=grtranspose(D);
2246   
2247    kill A, B, C, D, v, w, r, s, zero;
2248  }
2249   return(T);
2250}
2251example
2252{ "EXAMPLE:"; echo = 2;
2253
2254ring r=32003,x(0..4),dp;
2255
2256def A=KeneshlouMatrixPresentation(intvec(0,0,0,0,3));
2257grview(A);
2258
2259def T= KeneshlouMatrixPresentation(intvec(0,1,0,0,0));
2260grview(T);
2261
2262def F=grlifting4(A,T); grview(F);
2263
2264/* BUG in the proc */
2265def G=mappingcone3(A,T); grview(G);
2266
2267/*
2268module W=grtranspose(G[1]);
2269resolution U=mres(W,0);
2270print(betti(U,0),"betti"); // ?
2271ideal P=groebner(flatten(U[2]));
2272resolution L=mres(P,0);
2273print(betti(L),"betti");   
2274*/
2275
2276
2277def R=KeneshlouMatrixPresentation(intvec(0,0,0,2,0));
2278grview(R);
2279
2280def S=KeneshlouMatrixPresentation(intvec(1,2,0,0,0));
2281grview(S);
2282
2283def H=grlifting4(R,S); grview(H);
2284
2285/* BUG in the proc */
2286def G=mappingcone3(R,S); // ????????
2287
2288
2289def I=KeneshlouMatrixPresentation(intvec(2,3,0,6,2));
2290def J=KeneshlouMatrixPresentation(intvec(4,0,1,2,1));
2291// def N=grlifting4(I,J);
2292/* 2nd module does not lie in the first: */ // def NN=mappingcone3(I,J); // ????????
2293
2294}
2295
2296
2297// this is grlifting3 from #hani# (NOTE that this version is different
2298// to the grlifting3 that came within this library!!!
2299proc grlifting4(A,B)
2300"USAGE: (A,B), graded objects A and B (matrices defining maps)
2301RETURN: map of chain complexes (as a list)
2302PURPOSE: construct a map of chain complexes between free resolution of
2303             M=coker(A) and N=coker(B).
2304EXAMPLE: example grlifting4; shows an example
2305"
2306{
2307           ASSUME(1, grtest(A));
2308           ASSUME(1, grtest(B));
2309
2310
2311           list rM=grres(A,0,1);
2312           list rN=grres(B,0,1);
2313           int i,j,k;
2314
2315           for(i=1;i<=size(rM);i++)
2316           {
2317             if(size(rM[i])==0){break;}
2318           }
2319
2320           for(j=1;j<=size(rN);j++)
2321           {
2322             if(size(rN[j])==0){break;}
2323           }
2324           int t=min(i,j);
2325
2326           list P;
2327
2328           P[t]= grrndmap2( rM[t],rN[t] );
2329
2330           if(t==1){return(P)};
2331
2332           for(k=t-1; k>=1; k--)
2333           {
2334             def C = grtranspose(rM[k]);
2335             def T= grprod(rN[k],P[k+1]);
2336             def tT = grtranspose(T);
2337
2338             P[k]= grtranspose(grlift(C,tT));
2339
2340           }
2341           return(P);
2342}
2343example
2344{"EXAMPLE:"; echo = 2;
2345
2346ring r=32003,x(0..4),dp;
2347
2348def A=KeneshlouMatrixPresentation(intvec(0,0,0,0,3));
2349grview(A);
2350
2351def T= KeneshlouMatrixPresentation(intvec(0,1,0,0,0));
2352grview(T);
2353
2354def F=grlifting4(A,T);
2355grview(F);
2356
2357def G=mappingcone3(A,T);grview(G);
2358/*
2359module W=grtranspose(G[1]);
2360resolution U=mres(W,0);
2361print(betti(U,0),"betti"); // ?
2362ideal P=groebner(flatten(U[2]));
2363resolution L=mres(P,0);
2364print(betti(L),"betti");
2365*/
2366
2367
2368def R=KeneshlouMatrixPresentation(intvec(0,0,0,2,0));
2369def S=KeneshlouMatrixPresentation(intvec(1,2,0,0,0));
2370
2371def H=grlifting4(R,S); grview(H);
2372
2373def G=mappingcone3(R,S); // ????????
2374
2375def I=KeneshlouMatrixPresentation(intvec(2,3,0,6,2));
2376def J=KeneshlouMatrixPresentation(intvec(4,0,1,2,1));
2377/* 2nd module does not lie in the first: */ //def N=grlifting4(I,J);
2378
2379}
Note: See TracBrowser for help on using the repository browser.