source: git/Singular/LIB/gradedModules.lib @ e9478b

spielwiese
Last change on this file since e9478b was e9478b, checked in by Hans Schoenemann <hannes@…>, 8 years ago
format
  • Property mode set to 100644
File size: 198.3 KB
Line 
1//////////////////////////////////////////////////////////////////////////
2version="version gradedModules.lib 4.0.1.1 Jan_2015 "; // $Id$
3category="Commutative Algebra";
4info="
5LIBRARY: gradedModules.lib     Operations with graded modules/matrices/resolutions
6AUTHORS:  Oleksandr Motsak <U@D>, where U=motsak, D=mathematik.uni-kl.de
7@*        Hanieh Keneshlou <hkeneshlou@yahoo.com>
8KEYWORDS: graded modules, graded homomorphisms, syzygies
9OVERVIEW:
10    The library contains several procedures for constructing and manipulating graded modules/matrices/resolutions.
11    Basics about graded objects can be found in [DL].
12    Throughout this library graded objects are graded maps, that is,
13    matrices with polynomials, together with grading weights for source and
14    destination. Graded modules are implicitly given as coker of a graded map.
15    Note that in special cases we may also consider submodules in S^r generated
16    by columns of a graded polynomial matrix (or a graded map).
17NOTE:
18    set assumeLevel to positive integer value in order to auto-check all assumptions.
19    We denote the current basering by S.
20REFERENCES:
21[DL] Decker, W., Lossen, Ch.: Computing in Algebraic Geometry, Springer, 2006
22PROCEDURES:
23    grobj(M,w[,d])  construct a graded object (map) given by matrix M
24    grtest(A)       check whether A is a valid graded object
25    grdeg(M)        compute graded degrees of columns of the map M
26    grview(M)       view the graded structure of map M
27    grshift(M,d)    shift graded module coker(M) by +d
28    grzero()        presentation of S(0)^1
29    grtwist(r,d)    presentation of S(d)^r
30    grtwists(v)     presentation of S(v[1])+...+S(v[size(v)])
31    grsum(M,N)      direct sum of two graded modules coker(M) + coker(N)
32    grpower(M,p)    direct p-th power of graded module coker(M)
33    grtranspose(M)  un-ordered graded transpose of map M
34    grgens(M)       try to compute submodule generators of coker(M)
35    grpres(F)       presentation of submodule generated by columns of F
36    grorder(M)      reorder cols/rows of M for correct graded-block-structure
37    grtranspose1(M)  reordered graded transpose of map M
38    TestGRRes(n,I)  compute/order/transpose a graded resolution of ideal I
39    KeneshlouMatrixPresentation(v)  build some presentation with intvec v
40    grsyz(M)        syzygy of Im(M)
41    grres(M,l[,m])  resolution of Im(M) of length l... minimal?
42    grlift(A,B)     graded lift, gens!
43    grprod(A,B)     composition of graded maps (product of matrices?)
44    grgroebner(M)   Groebner Basis of Im(M) as a graded object
45    grconcat(M,N)   sum of maps into the same target module
46    grrndmat(s,d[,p,b])   generate random matrix compatible with src and dst gradings
47    grrndmap(S,D[,p,b])   generate random 0-deg homomorphism src(S) -> src(D)
48    grrndmap2(S,D[,p,b])   generate random 0-deg homomorphism dst(S) -> dst(D)
49    grlifting(A,B)     RND! chain lifting
50    grlifting2(A,B)    RND! chain lifting
51    mappingcone(M,N)   mapping cone?
52    grlifting3(A,B)    RND! chain lifting? probably wrong one
53    mappingcone3(A,B)  mapping cone3?
54    grrange(M)         get the row-weightings
55    grneg(A)           graded object given by -A
56    matrixpres(a)      matrix presentation of direct sum of Omega^{a[i]}(i)
57";
58
59//    grisequal(A,B)  check whether A is exactly eqal to B? TODO: isomorphic!
60
61LIB "matrix.lib"; // ?
62
63//////////////////////////////////////////////////////////////////////////////////////////////////////////
64// . view graded module/map
65// . reorder graded resolution
66// . transpose graded module/map?
67
68// draw helpers
69static proc repeat(int n, string c) { string r = ""; while( n > 0 ){ r = r + c; n--; } return(r); }
70static proc pad(int m, string s, string c){ string r = s; while( size(r) < m ){ r = c + r; } return(r); }
71static proc mstring( int m, string c){ if( m < 0 ) { return (c); }; return (string(m)); }
72
73static proc grsumstr(string R, intvec v)
74"direct sum_i=1^size R(-v[i]), for source and targets of graded objects"
75{
76  int n = size(v);
77  if (n == 0) { return ("0"); }
78  ASSUME(0, n > 0 );
79
80  if (R == "")
81  {
82    R = nameof(basering);
83  }
84
85  ASSUME(0, defined(R) && (R != "") );
86
87  v = -v; // NOTE: due to Mathematical meanings of Singular data
88
89
90  int lst = v[1];
91  int cnt = 1;
92
93  string p = R;
94  if( lst != 0 ) { p = p + "(" + string(lst) + ")"; }
95
96  int k, d;
97  for (k = 2; k <= n; k++ )
98  {
99    d = v[k];
100    if( d == lst ) { cnt = cnt + 1; }
101    else
102    {
103      if (cnt > 1){ p = p + "^" + string(cnt); }
104
105      cnt = 1; lst = d;
106
107      p = p + " + " + R;
108      if( lst != 0 ) { p = p + "(" + string(lst) + ")"; }
109    }
110  }
111  if (cnt > 1){ p = p + "^" + string(cnt); }
112
113  return (p);
114}
115example
116{ "EXAMPLE:"; echo = 2;
117
118  ring r=32003,(x,y,z),dp;
119
120  def E = grtwist(2, 0);
121  def v = grrange(E); // grdeg(E);
122  grsumstr("", v );
123}
124
125// view helper
126static proc draw ( intmat D, int d )
127{
128//  print(D); return ();
129  int nc = ncols(D); int nr = nrows(D);
130  int s, r, c; int max = 0;
131  // get maximum string-length among all {D[r,c]}
132  for (r = nr; r > 0; r-- ) { for (c = nc; c > 0; c-- ) { s = size( string(D[r, c]) ); if( max < s ) { max = s; } } }
133  max = max + 1;
134  string head = ""; string foot = ""; string middle = "";
135  for ( c = d+1; c < (nc-d); c++ )
136  {
137    head = head + pad(max, string(D[1 , c]), ".") + " ";
138    foot = foot + pad(max, string(D[nr, c]), " ") + " ";
139  }
140  // last head/foot enties:
141  head = head + pad(max, string(D[1 , c]), ".");
142  foot = foot + pad(max, string(D[nr, c]), " ");
143  // head/foot dash lines:
144  string dash  = "-"; string dash2  = "=";
145  dash = repeat( (nc - 2*d) - 1 , repeat(max, dash) + " " ) + repeat(max, dash) + " "; // dash  = repeat( (max + 1) * (nc - 2*d) , dash );
146  dash2 = repeat( (nc - 2*d) - 1 , repeat(max, dash2) + " " ) + repeat(max, dash2) + " "; // dash2 = repeat( (max + 1) * (nc - 2*d) , dash2);
147  for ( r = d+1; r <= (nr-d); r++ )
148  {
149    middle = middle + pad(max, string(D[r,1]), " ") + " :";
150    for ( c = d+1; c < (nc-d); c++ ) { middle = middle + pad(max, mstring(D[r,c], "-"), " ") + " "; }
151    middle = middle + pad(max, mstring(D[r,nc-d], "-"), " ") + " |" + pad(max, string(D[r,nc]), ".") + newline;
152  }
153  string corner_id = repeat(max, ".");
154  string corner = repeat(max, " ");
155  // print everything all at once:
156  print                                     (
157      corner + "  " + head  + " ." + corner_id + newline +
158      corner + "  " + dash  + "+"  + corner_id + newline +
159                      middle                          +
160      corner + "  " + dash2 + " "  + corner + newline +
161      corner + "  " + foot +  "  " + corner );
162}
163
164proc grview(N)
165"USAGE:  grview(M), graded object M
166RETURN:  nothing
167PURPOSE: print the degree/grading data about the GRADED matrix/module/ideal/mapping object M
168ASSUME:  M must be graded
169EXAMPLE: example grview; shows an example
170"
171{
172//  if( size(N) == 0 ) { return (); }
173  string msg = "Graded";
174  string lst;
175
176  string arrow = " <- ";
177  string R = nameof(basering);
178
179  if( typeof( N ) == "list" ) // TODO: find a better DS for graded resolutions / chain map !?
180  {
181    int n = size(N); ASSUME(0, n > 0);
182
183    string msg1 = "";
184    if( size(R) >= 2 )
185    {
186      msg1 = msg1 + "(let R:="+R+")";
187      R = "R"; // !!!
188    }
189    msg1 = msg1 + ": " ;
190
191
192
193    list arr; arr[n] = list();
194    int exact = (1==1);
195
196    int i = 1;
197
198    ASSUME(1, grtest(N[i]));
199
200    string dst = grsumstr(R, grrange(N[i]));
201    string src = grsumstr(R, grdeg(N[i]));
202
203    arr[i] = list(dst,  src);
204
205    i = i + 1;
206
207    while( i <= n )
208    {
209      ASSUME(1, grtest(N[i]));
210
211      dst = grsumstr(R, grrange(N[i]));
212
213      if( exact && (src != dst) )
214      {
215//        "src: [" + src+ "] != [" + dst + "] :(!!";
216        exact = (1==0);
217      }
218
219      src = grsumstr(R, grdeg(N[i]));
220
221      arr[i] = list(dst,  src);
222
223      i = i + 1;
224    };
225
226    string o = "";
227
228    if( exact )
229    { // complex?
230      msg = msg + " resolution" + msg1;
231
232      o = "d";
233
234      for( i = 1; i <= n; i++ )
235      {
236        msg = msg + newline + arr[i][1] + " <-- "+o+"_" + string(i) + " --";
237      };
238
239      msg =  msg + newline + arr[n][2];
240      msg = msg + ", given by maps: ";
241    } else
242    {
243//      print(arr);
244
245      msg = msg + "-object collection";
246      o = "o";
247
248//      for( i = 1; i <= n; i++ )
249//      {
250//        msg = msg + newline + arr[i][1] + " <-- "+o+"_" + string(i) + " -- " + arr[i][2];
251//      };
252      msg = msg + ", given by the following maps (named here as "+o+"_[1 .. "+string(n)+"]): ";
253    }
254
255
256    print(msg);
257
258    for( i = 1; i <= size(N); i++ )
259    {
260      print( o+"_" + string(i) + " :" );
261      grview( N[i] );
262    };
263
264    return ();
265  }
266
267//  typeof( N ) ;  attrib( N );  grrange(N);
268
269  ASSUME(1, grtest(N) );
270
271  msg = msg + " homomorphism";
272  if( size(R) >= 2 )
273  {
274    msg = msg + "(let R:="+R+")" ;
275    R = "R";
276  }
277
278  msg = msg + ": ";
279
280  intvec gr = grrange(N); // grading weights?
281  string dst = grsumstr(R, gr);
282
283  intvec G = grdeg(N);
284  string src = grsumstr(R, G);
285
286  if( ncols(N) == 0 )
287  {
288    src = "0";
289  }
290
291  lst = msg;
292
293  if( (size(lst) + size(dst) + size(src) + 4) > 80 )
294  {
295    if( (size(lst) + size(dst)) > 80 ) { msg = msg + newline; lst = ""; }
296
297    msg = msg + dst + arrow;
298    lst = lst + dst + arrow;
299
300    if( (size(lst) + size(src)) > 80 ) { msg = msg + newline; lst = ""; }
301
302    msg = msg + src;
303    lst = lst + src;
304  } else
305  {
306    msg = msg + dst + arrow + src;
307    lst = lst + dst + arrow + src;
308  }
309
310  if( size(lst) > 70 ) { msg = msg + newline; } // lst = "";
311  msg = msg + ", given by ";
312//  lst = lst + ", given by ";
313
314
315  int nc = ncols(N); int nr = nrows(N);
316
317  if( size(N) == 0 )
318  {
319    msg = msg + "zero ("+ string(nr);
320    if( nr == nc ) { msg = msg + "^2"; } else { msg = msg + " x " + string(nc); }
321    print( msg+") matrix." );
322  } else
323  {
324    ASSUME(0, nc > 0);
325
326    matrix M = module(N);
327
328    int r,c;
329    int d = 1; // number of extra cols/rows for extra info around the central degree(N) block in D
330    intmat D[nr+2*d][nc+2*d];
331
332    for( c = nc; c > 0; c-- )
333    {
334      D[1, c+d] = c; // top row indeces
335      D[nr+2*d, c+d] = G[c]; // deg(v) + gr[ leadexp(v)[m] ]; // bottom row with computed column induced degrees
336    }
337
338    for( r = nr; r > 0; r-- )
339    {
340      D[r+d, 1] = gr[r]; // left-most column with grading data
341      for( c = nc; c > 0; c-- )
342      {
343        D[r+d, c+d] = deg(M[r, c]); // central block with degrees (-1 means zero entry)
344      }
345      D[r+d, nc+2*d] = r; // right-most block with indeces
346    }
347
348    if( nr == nc) // square matrix // detect diagonal?
349    {
350      for (c = nr; c > 0; c-- )
351      {
352        M[c,c] = 0;
353      }
354
355      if( size(module(M)) == 0 )
356      {
357        msg = msg + "a diagonal matrix";
358      } else
359      {
360        msg = msg + "a square matrix";
361      }
362
363    } else
364    {
365      msg = msg + "a matrix";
366    }
367
368    print(msg + ", with degrees: " );
369    draw(D, d); // print it nicely!
370  }
371}
372example
373{ "EXAMPLE:"; echo = 2;
374
375  ring r=32003,(x,y,z),dp;
376
377  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
378  grview(A);
379
380  module B = grobj( module([0,x,y]), intvec(15,1,1) );
381  grview(B);
382
383  module D = grsum( grsum(grpower(A,2), grtwist(1,1)), grsum(grtwist(1,2), grpower(B,2)) );
384  grview(D);
385
386  ring R = 0,(w,x,y,z), dp; def I = grobj( ideal(y2-xz, xy-wz, x2z-wyz), intvec(0) );
387  list res1 = grres(I, 0); // non-minimal
388  grview(res1);
389  print(betti(res1,0), "betti");
390
391  list res2 = grres(grshift(I, -10), 0, 1); //  minimal!
392  grview(res2);
393  print(betti(res2,0), "betti");
394}
395
396static proc issorted( intvec g, int s )
397{
398  g = s * g; //  "g: ", g;
399  int i = size(g);
400
401  for(; i > 1; i--)
402  {
403    if( (g[i] - g[i-1]) < 0 )
404    {
405      return (0);
406    }
407  }
408
409  return (1);
410}
411
412static proc mysort( intvec gr, int s )
413"
414computes the permutation P of gr, such that (s*gr)[P] is ascendingly sorted
415NOTE: looks like a bubble sort (was taken from sort) and modified to ensure stability!
416TODO: replace with some kernel function if this turns out to be inefficient!!
417"
418{
419  gr = s * gr;
420  int m = size(gr);
421  intvec pivot;
422
423  int Bi;
424  // compute reordering permutation pivot such that gr[pivot] is (stably) sorted
425  for(Bi=m; Bi>0; Bi--) { pivot[Bi]=Bi; } // pivot = Id_m for starters
426
427  int Bn,Bb; int P, D;
428
429  int Bj = 0; int flag = 0;
430
431  // Bi == 0
432  while(Bj==0)
433  {
434    Bi++; Bj=1;
435    for(Bn=1; Bn <= (m-Bi); Bn++)
436    {
437      D = (gr[pivot[Bn]] - gr[pivot[Bn+1]]); // sort gr
438      P = (D > 0) or ( (D == 0) && ((pivot[Bn]-pivot[Bn+1]) > 0) ); // stability!?
439      if(P)
440      {
441        Bb=pivot[Bn];
442        pivot[Bn]=pivot[Bn+1];
443        pivot[Bn+1]=Bb;
444
445        Bj=0; flag = 1;
446      }
447    }
448  }
449
450  ASSUME(1, issorted(intvec(gr[pivot]), 1));
451
452  return (pivot);
453}
454
455proc grdeg(M)
456"USAGE:  grdeg(M), graded object M
457RETURN:  intvec of degrees
458PURPOSE: graded degrees of columns (generators) of M, describing the source of M
459ASSUME:  M must be a graded object (matrix/module/ideal/mapping)
460NOTE:    if M has zero cols it shoud have attrib(M,'degHomog') set.
461EXAMPLE: example grdeg; shows an example
462"
463{
464  ASSUME(1, grtest(M) );
465
466  if ( typeof(attrib(M, "degHomog")) == "intvec" )
467  {
468    def t = attrib(M, "degHomog"); // graded degrees
469
470    if( size(t) == 0 ){ return (t); } // ZERO!
471
472    ASSUME(2, ncols(M) == size(t) );
473    return (t);
474  }
475
476  if( ncols(M) == 0 ) { return (0:0); } // FIXME: Why???
477
478  ASSUME(0, ncols(M) > 0);
479  ASSUME(0, ncols(M) == size(M) );
480
481  def w = grrange(M); // grading weights?
482
483  if( size(M) == 0 ){ return (w); } // TODO: Q@Wolfram!???
484
485  int m = ncols(M); // m > 0 in Singular!
486  int n = nvars(basering) + 1; // index of mod. column in the leadexp
487
488  module L = lead(M[1..m]); // leading module-terms for input column vectors
489  intvec d = deg(L[1..m]); // their degrees
490  intvec c = leadexp(L[1..m])[n]; // their module-components
491
492//   w = intvec(-6665), w; // 0?????
493  intvec gr = w[c]; //  + 1]; // weights?????
494
495  gr = gr + d; // finally we compute their graded degrees
496
497  return (gr);
498}
499example
500{ "EXAMPLE:"; echo = 2;
501
502  ring r=32003,(x,y,z),dp;
503
504  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
505  grview(A);
506
507  module B = grobj( module([0,x,y]), intvec(15,1,1) );
508  grview(B);
509
510  module D = grsum(
511                   grsum(grpower(A,2), grtwist(1,1)),
512                   grsum(grtwist(1,2), grpower(B,2))
513                  );
514
515  grview(D);
516  grdeg(D);
517
518  def D10 = grshift(D, 10);
519
520  grview(D10);
521  grdeg(D10);
522}
523
524static proc reorder(def M, int s)
525"
526Reorder gens of M: compute graded degrees and the permutation to sort them
527"
528{
529  // input should be graded:
530  ASSUME(1, grtest(M) );
531
532  intvec w = grrange(M); // grading weights
533
534  intvec gr = grdeg( M );
535
536//  intvec d = deg(M[1..nocls(M)]); // no need to deal with un-weighted degrees??!
537
538  intvec pivot = mysort(gr, s);
539
540  // grades & ordering permutation for N.  gr[pivot] should be sorted!
541  ASSUME(1, issorted(gr[pivot], s));
542
543  module N = grobj(module(M[pivot]), w, intvec(gr[pivot]));  // reorder the starting ideal/module
544
545//  "reorder: "; grview(N);
546
547  return (N, intvec(gr[pivot]));
548}
549
550proc grtranspose1(def M)
551"USAGE:  grtranspose1(M), graded object or list M
552RETURN:  same as input
553PURPOSE: graded transpose of graded object or chain complex M
554ASSUME:  M must be a graded object or a list of graded objects
555EXAMPLE: example grtranspose1; shows an example
556"
557{
558  if( typeof( M ) == "list" )
559  {
560    if( size(M) == 0 ) { return (); }
561
562    int j = size(M);
563
564    int i = 1;
565
566    // TODO: extra grading argument???
567    while( i < j )
568    {
569     if( size(M[i]) == 0 ){ break; }
570     ASSUME(0, typeof(grrange(M[i])) == "intvec");
571     i++;
572    }
573
574    if( size(M[i]) == 0 ) { i--; }
575
576    j = i; i = 1;
577
578    list L;
579    while( j > 0 )
580    {
581//      grview(M[i]);
582      L[j] = grtranspose1( grobj( M[i], grrange(M[i])) );
583//      grview(L[j]);
584
585      if( (i > 1) && (j > 0) )
586      {
587//        grview(L[j+1]);
588        ASSUME(2, size( module( matrix(L[j])*matrix(L[j+1]) ) ) == 0 );
589      };
590//      grview(L[j]);
591      j--; i++;
592    };
593    return (L); // ?
594  }
595
596//////
597// "a";  grview(M);
598  ASSUME(1, grtest(M) );
599
600 intvec d; module N;
601
602 (N,d) = reorder(M, -1);
603
604 kill M; module M = grobj(transpose(N), -d, -grrange(N));
605
606// "b";  grview(M);
607
608 kill N,d; module N; intvec d;
609 // reverse order:
610 (N,d) = reorder(M, 1); kill M;
611
612// "e"; grview( N );
613
614 ASSUME(1, issorted( grrange(N), 1) );
615 ASSUME(1, issorted(grdeg(N), 1) );
616
617
618 return (N);
619}
620example
621{ "EXAMPLE:"; echo = 2;
622
623  "Surface Name: 'k3.d10.g9.quart2' in P^4";
624  int @p=31991; ring R = (@p),(x,y,z,u,v), dp;
625  ideal J = x3yz2+31/15x2y2z2-7231xy3z2+99/37y4z2+28/95x3z3+97/32x2yz3+13247xy2z3+12717y3z3-113/31x2z4-61/30xyz4-6844y2z4+104/3xz5-13849yz5+43/39z6+13061x3yzu-8463x2y2zu+94/69xy3zu-8/61y4zu-13297x3z2u+7217x2yz2u-7830xy2z2u-75/14y3z2u+2839x2z3u-14657xyz3u-52/7y2z3u-6/89xz4u-6169yz4u+44/7z5u-98/33x3yu2+41/30x2y2u2-65/98xy3u2+122/13y4u2+9906x3zu2-11587x2yzu2+17/53xy2zu2+6504y3zu2+49/106x2z2u2+11480xyz2u2+97/71y2z2u2+12560xz3u2-114/83yz3u2-13761z4u2-67/112x3u3-18/49x2yu3+21/67xy2u3-44/43y3u3+123/116x2zu3+4459xyzu3-13841y2zu3-805xz2u3-1382yz2u3-5293z3u3+133x2u4-122/79xyu4+9724y2u4+61/24xzu4+113/119yzu4-19/108z2u4+15893xu5+57/22yu5+4600zu5-618u6-27/53x3yzv+44/103x2y2zv-142xy3zv+19/84y4zv+105/8x3z2v+10532x2yz2v-75/74xy2z2v-70/19y3z2v+31/80x2z3v-481xyz3v+47/30y2z3v+14318xz4v+51/28yz4v-15/113z5v-46/17x3yuv-99/100x2y2uv-106/5xy3uv+14384y4uv+7/100x3zuv-15/64x2yzuv-6976xy2zuv+12051y3zuv-67/42x2z2uv-2627xyz2uv-49/104y2z2uv+77/16xz3uv+15766yz3uv+85/117z4uv-107/101x3u2v-6699x2yu2v+2443xy2u2v-27/28y3u2v+11945x2zu2v-14467xyzu2v-4873y2zu2v-63/124xz2u2v-8270yz2u2v+11900z3u2v+47/14x2u3v+53/8xyu3v-10/51y2u3v-87/119xzu3v+114/73yzu3v+86/57z2u3v+52/63xu4v-11587yu4v+1/18zu4v-121/109u5v+116/11x3yv2+19/108x2y2v2-31/3xy3v2-43/9y4v2-81/100x3zv2-7728x2yzv2-1037xy2zv2+24/101y3zv2-61/103x2z2v2-8/51xyz2v2+117/109y2z2v2+98/23xz3v2+1646yz3v2-3356z4v2+105/59x3uv2+117/31x2yuv2+519xy2uv2+12633y3uv2+25/6x2zuv2-963xyzuv2-49/23y2zuv2-116/25xz2uv2+14146yz2uv2+11480z3uv2-95/8x2u2v2-10928xyu2v2-51/23y2u2v2-12770xzu2v2-92/91yzu2v2+3872z2u2v2+3183xu3v2+6871yu3v2+90/37zu3v2+10019u4v2-69/88x3v3-1398x2yv3-97/72xy2v3-46/97y3v3+107/14x2zv3-20/89xyzv3-11367y2zv3+120/29xz2v3-86/81yz2v3+107/69z3v3-39/17x2uv3+83/11xyuv3+169y2uv3-11/71xzuv3-22/17yzuv3-14862z2uv3-13009xu2v3-101/12yu2v3+10617zu2v3+2567u3v3-23/85x2v4+27/50xyv4+113/51y2v4+97/16xzv4+4438yzv4-11857z2v4+14580xuv4-6426yuv4+9421zuv4-10585u2v4+14670xv5+1807yv5+10298zv5-116/53uv5+7869v6,x3yzu+31/15x2y2zu-7231xy3zu+99/37y4zu+28/95x3z2u+97/32x2yz2u+13247xy2z2u+12717y3z2u-113/31x2z3u-61/30xyz3u-6844y2z3u+104/3xz4u-13849yz4u+43/39z5u-124/43x3yu2-90/13x2y2u2-13244xy3u2-78/73y4u2+118/43x3zu2+37/67x2yzu2-10426xy2zu2+2412y3zu2-32/113x2z2u2+35/104xyz2u2+3952y2z2u2+9028xz3u2-1990yz3u2-59/109z4u2+15499x3u3+116/23x2yu3+95/58xy2u3+8/47y3u3+59/109x2zu3-29xyzu3+12412y2zu3+20/81xz2u3+2200yz2u3-13809z3u3+3889x2u4-8136xyu4+8922y2u4-4/121xzu4+82/113yzu4-65/23z2u4+101/53xu5+103/113yu5-99/118zu5-9524u6-2749x3yzv-7814x2y2zv+73/113xy3zv+9937y4zv-59/62x3z2v-23/12x2yz2v-10245xy2z2v+7130y3z2v-4427x2z3v+6656xyz3v+3448y2z3v-46/79xz4v+1611yz4v+8453z5v+12013x3yuv+49/17x2y2uv-4/115xy3uv-121/91y4uv-63/29x3zuv+64/7x2yzuv-8785xy2zuv-87/14y3zuv+36/121x2z2uv+9525xyz2uv+4215y2z2uv-17/13xz3uv-117/125yz3uv+101/122z4uv+42/37x3u2v-8747x2yu2v-105/79xy2u2v+10799y3u2v-58/49x2zu2v-8/75xyzu2v-67/49y2zu2v-38/11xz2u2v+53/27yz2u2v+113/52z3u2v+18/59x2u3v+71/106xyu3v+47/2y2u3v-4594xzu3v+95/4yzu3v-121/46z2u3v-55/62xu4v-101/72yu4v+40/53zu4v+15227u5v-15553x3yv2+29/94x2y2v2-4076xy3v2-7133y4v2+27/125x3zv2+33/29x2yzv2-63/95xy2zv2+9166y3zv2-480x2z2v2+9941xyz2v2+107/46y2z2v2+13018xz3v2+53/98yz3v2+92/35z4v2+17/30x3uv2+77/95x2yuv2+11/67xy2uv2+8262y3uv2+65/11x2zuv2+2567xyzuv2-33/94y2zuv2+85/92xz2uv2+103/25yz2uv2-27/100z3uv2+13210x2u2v2-109/90xyu2v2+141y2u2v2-124/51xzu2v2-3/109yzu2v2-4910z2u2v2+205xu3v2+14357yu3v2+85/57zu3v2-109/28u4v2-68/39x3v3+10545x2yv3-2176xy2v3-8743y3v3+15111x2zv3+25/119xyzv3+8/103y2zv3-6046xz2v3+8658yz2v3+106/5z3v3-31/126x2uv3-7762xyuv3+2315y2uv3+124/67xzuv3-77/104yzuv3+95/71z2uv3+69/119xu2v3+13069yu2v3-8620zu2v3+105/41u3v3-15772x2v4-11212xyv4-61/36y2v4+38/125xzv4-15860yzv4+8/63z2v4+7519xuv4-94/41yuv4+45/32zuv4+9417u2v4-71/35xv5-6287yv5+6481zv5+106/99uv5+3/41v6,-8036x3yu2+7966x2y2u2-151xy3u2-14/111y4u2-111/76x3zu2-102/11x2yzu2+7956xy2zu2-7397y3zu2-113/16x2z2u2-8049xyz2u2+7230y2z2u2+3978xz3u2-36/113yz3u2-8147z4u2-107/83x3u3+78/97x2yu3+12700xy2u3+11/72y3u3+88/31x2zu3-63/40xyzu3+101/35y2zu3-220xz2u3+3/103yz2u3-49/45z3u3-21/113x2u4+104/123xyu4+98/47y2u4-56/61xzu4-87/50yzu4+5913z2u4-120/17xu5+64/11yu5-109/80zu5+10371u6-118/25x3yzv+58/99x2y2zv-5/64xy3zv+7/46y4zv-49/103x3z2v-77/106x2yz2v-44/7xy2z2v-7559y3z2v-17/35x2z3v+948xyz3v-15043y2z3v-3576xz4v-2/109yz4v+74/11z5v+6436x3yuv+7316x2y2uv+29/5xy3uv-1326y4uv+34/49x3zuv-122/27x2yzuv-632xy2zuv+46/49y3zuv-13463x2z2uv-808xyz2uv-17/32y2z2uv-13149xz3uv-117/88yz3uv-45/79z4uv-65/94x3u2v+6/67x2yu2v+34/39xy2u2v-14026y3u2v+42/107x2zu2v-3287xyzu2v-70/43y2zu2v+29/104xz2u2v-47/18yz2u2v-11038z3u2v+6262x2u3v-5255xyu3v-7/10y2u3v+7065xzu3v+5608yzu3v+4675z2u3v-73/90xu4v-15822yu4v-71/63zu4v+110/97u5v-69/5x3yv2+4315x2y2v2-124/45xy3v2-79/16y4v2-10739x3zv2-93/46x2yzv2+12499xy2zv2-73/86y3zv2+6367x2z2v2-12876xyz2v2-306y2z2v2-89xz3v2-70/51yz3v2+13120z4v2+61/57x3uv2+14782x2yuv2-91/9xy2uv2-2625y3uv2+14747x2zuv2-5899xyzuv2-12944y2zuv2-47/14xz2uv2-4551yz2uv2-99/101z3uv2-12618x2u2v2+1507xyu2v2-11951y2u2v2+68/49xzu2v2+49/39yzu2v2-56/103z2u2v2-31/85xu3v2-32/49yu3v2-65/14zu3v2+15/7u4v2+5749x3v3-3667x2yv3-107/29xy2v3+11301y3v3+95/18x2zv3-121/74xyzv3+75/26y2zv3+101/98xz2v3-111/76yz2v3-11335z3v3-15923x2uv3-36/83xyuv3-4134y2uv3-87/118xzuv3-41/11yzuv3+104/61z2uv3+12583xu2v3-50/23yu2v3-31/44zu2v3-29/23u3v3+108/107x2v4-8216xyv4-5009y2v4+101/26xzv4-9779yzv4+71/74z2v4-3358xuv4+83/84yuv4-34/39zuv4+44/47u2v4-112/83xv5+113/74yv5+82/79zv5-115/99uv5+12/109v6,-x4y-31/15x3y2+7231x2y3-99/37xy4-28/95x4z-53/107x3yz-4623x2y2z+5300xy3z-41/111y4z+12205x3z2+113/120x2yz2+54/49xy2z2-85/63y3z2+104/89x2z3-52/121xyz3-22/49y2z3+14367xz4+71/93yz4+55/56z5-5/81x4u-67/81x3yu-83/13x2y2u+98/55xy3u+15289y4u-94/111x3zu+40/29x2yzu-16/59xy2zu-107/14y3zu+2965x2z2u-459xyz2u-2/47y2z2u+35/22xz3u+119/39yz3u-12180z4u-13679x3u2+1534x2yu2+11305xy2u2-62/9y3u2-68/39x2zu2+11/90xyzu2-36/101y2zu2-2896xz2u2-15114yz2u2-49/114z3u2+19/16x2u3-11401xyu3-109/3y2u3+67/80xzu3+53/92yzu3+2894z2u3+119/74xu4+407yu4-65/53zu4+95/94u5-9309x4v+21/40x3yv+1436x2y2v+2194xy3v+6994y4v-116/81x3zv+13/2x2yzv-12/13xy2zv-23/84y3zv-61/83x2z2v+2023xyz2v+19/40y2z2v+43/26xz3v-59/113yz3v-47/53z4v+15580x3uv+21x2yuv+113/97xy2uv-15419y3uv-15243x2zuv+5128xyzuv-34/47y2zuv+13206xz2uv-4833yz2uv+107/91z3uv-1693x2u2v+54/53xyu2v-86/67y2u2v+98/9xzu2v+86/17yzu2v+64/89z2u2v+25/113xu3v+7884yu3v+14089zu3v-12027u4v-9471x3v2-36/85x2yv2-21/13xy2v2+15888y3v2+76/109x2zv2+4547xyzv2+115/12y2zv2-11/107xz2v2+6764yz2v2-8321z3v2+84/101x2uv2-202xyuv2+3251y2uv2+91/4xzuv2+7124yzuv2-53/81z2uv2+47/84xu2v2-8833yu2v2+117/14zu2v2-3/113u3v2+126/97x2v3-78/115xyv3+68/63y2v3-34/109xzv3+5913yzv3+6226z2v3-2365xuv3+91/120yuv3+14120zuv3-69/8u2v3+71/12xv4-13094yv4-7262zv4-33uv4+5367v5,-9533x4y-318x3y2+8/49x2y3+83/29xy4+13129y5+221x4z+115/48x3yz+12508x2y2z+97/52xy3z+11479y4z+8941x3z2+104/109x2yz2+9191xy2z2+103/64y3z2+10584x2z3-7728xyz3+3979y2z3+15/82xz4+5409yz4-1326z5+3756x4u-57/62x3yu+63/47x2y2u-14600xy3u+159y4u-11/4x3zu-113/57x2yzu-26/125xy2zu-32/87y3zu-10/21x2z2u+12927xyz2u-73/62y2z2u+115/99xz3u-13/3yz3u-126/25z4u-3969x3u2-122/57x2yu2-5003xy2u2-100/117y3u2-71/30x2zu2+7356xyzu2-2211y2zu2+31/40xz2u2-6722yz2u2-139z3u2+4426x2u3+1/115xyu3-72/85y2u3+15260xzu3+7938yzu3+4/115z2u3-33/89xu4+31/108yu4-50/83zu4+14/107u5+24/95x4v-113/17x3yv+81/14x2y2v-9957xy3v-10075y4v-122/113x3zv+65/118x2yzv-96/29xy2zv-19/41y3zv+113/35x2z2v+121/31xyz2v-9/68y2z2v+91/45xz3v-23/116yz3v-67/99z4v-5355x3uv-3112x2yuv-12824xy2uv-58/123y3uv-13/22x2zuv-19/85xyzuv-121/24y2zuv-14093xz2uv+99/95yz2uv+89/50z3uv+13096x2u2v-109/120xyu2v+121/61y2u2v+80/41xzu2v-39yzu2v-8/99z2u2v+5/17xu3v+112/69yu3v+14346zu3v-7173u4v+125/13x3v2+43/53x2yv2-78/103xy2v2-109/111y3v2+33/13x2zv2-15333xyzv2+87/49y2zv2-7212xz2v2+7729yz2v2-86/123z3v2-119/103x2uv2-71/122xyuv2-81/113y2uv2+6133xzuv2+55/72yzuv2+69/31z2uv2+12828xu2v2+94/15yu2v2-7588zu2v2+21/41u3v2-8712x2v3+74/9xyv3-11/87y2v3+1446xzv3-3/95yzv3-87/55z2v3-717xuv3-110/97yuv3-13/113zuv3-95/81u2v3-37/68xv4+5112yv4-56/11zv4-6/115uv4+7910v5,25/42x4y-42/79x3y2-59/21x2y3+2736xy4-107/115x4z-203x3yz+47/101x2y2z+7686xy3z-63/64y4z+103/57x3z2-12082x2yz2+11/102xy2z2-83/43y3z2+13/49x2z3-2685xyz3+123/44y2z3+31/12xz4+126/83yz4+14745z5+83/37x4u+7362x3yu-14615x2y2u-14109xy3u+49/47y4u+1929x3zu+83/71x2yzu-13640xy2zu-97/58y3zu-11141x2z2u-61/49xyz2u-3745y2z2u-74/21xz3u+3493yz3u-7540z4u-103/118x3u2-43/32x2yu2-9200xy2u2-23/65y3u2+15895x2zu2-13924xyzu2-14291y2zu2-11039xz2u2-31/37yz2u2-101/93z3u2-39/83x2u3-4536xyu3-78/47y2u3+75/44xzu3-24/121yzu3-81/113z2u3-81/89xu4+15825yu4-4111zu4+5850u5-12534x4v-69/94x3yv-10076x2y2v+3952xy3v+25/12y4v+21/34x3zv+11002x2yzv-54xy2zv+20/23y3zv+4991x2z2v+549xyz2v+2687y2z2v-110/9xz3v+11359yz3v+49/24z4v+62/107x3uv-27/41x2yuv-17/52xy2uv-10972y3uv+12/103x2zuv-318xyzuv-77/40y2zuv-114/53xz2uv+17/28yz2uv-8084z3uv+85/36x2u2v+7/100xyu2v-5772y2u2v-89/114xzu2v-40/121yzu2v+3340z2u2v+36/113xu3v-38/93yu3v+2519zu3v-7084u4v+8136x3v2-55/23x2yv2+27/7xy2v2+74/39y3v2+63/16x2zv2-8661xyzv2+2/91y2zv2+3773xz2v2-75/122yz2v2+447z3v2-59/109x2uv2-119/9xyuv2-67/49y2uv2-11334xzuv2-10482yzuv2-60/91z2uv2+94/65xu2v2-108/17yu2v2-69/70zu2v2-23/20u3v2+8/115x2v3+29/41xyv3+8/15y2v3-95/6xzv3-9714yzv3+2550z2v3-121/80xuv3+67/18yuv3+43/5zuv3+23/124u2v3-12509xv4-104/79yv4-73/21zv4-1238uv4+9038v5,94/107x4y+47/14x3y2-6362x2y3-20/59xy4-43/120y5-3028x4z-15141x3yz-2028x2y2z+84/115xy3z-3024y4z+2811x3z2+47/45x2yz2+121/101xy2z2-100/57y3z2+8/115x2z3+1/101xyz3-13/112y2z3+3618xz4+88/67yz4-52/63z5+102/97x4u-12/89x3yu-102x2y2u-3846xy3u-61/86y4u+85/54x3zu+78/29x2yzu-13381xy2zu-49/95y3zu-77/2x2z2u-5784xyz2u+1557y2z2u-9163xz3u-114/121yz3u-57/103z4u+36/31x3u2-9062x2yu2-23/111xy2u2+7362y3u2-7671x2zu2+14945xyzu2+7901y2zu2+51/5xz2u2-109/48yz2u2+7696z3u2+11280x2u3-44/57xyu3-13736y2u3-13458xzu3-14723yzu3-707z2u3+899xu4-10381yu4+99/25zu4-7788u5-237x4v+45/43x3yv-7666x2y2v-4/109xy3v+4303y4v-13107x3zv-108/91x2yzv-7707xy2zv-73/47y3zv+61/118x2z2v-11/65xyz2v+2970y2z2v-104/37xz3v-15408yz3v-64/55z4v+47/113x3uv+2185x2yuv+7941xy2uv-61/37y3uv+6482x2zuv-11/70xyzuv+83/110y2zuv-109/83xz2uv-86/95yz2uv-7583z3uv+83/45x2u2v+89/38xyu2v-2/11y2u2v+3577xzu2v+124/125yzu2v-1151z2u2v+109/85xu3v+70/13yu3v+37/104zu3v-210u4v+51/29x3v2-104/111x2yv2+105/58xy2v2-13459y3v2-80/79x2zv2-3006xyzv2-115/16y2zv2+8208xz2v2+35/38yz2v2+49/27z3v2-1647x2uv2+10482xyuv2-34/93y2uv2+97/18xzuv2+101/20yzuv2+1711z2uv2+91/36xu2v2-96/23yu2v2+7006zu2v2+86/31u3v2-10734x2v3-43/18xyv3-4597y2v3-11174xzv3-7334yzv3+7/96z2v3+4/97xuv3-5/82yuv3-15600zuv3-69/94u2v3-71/25xv4+21/97yv4+117/23zv4-6557uv4-67/83v5,8164x4y+19/73x3y2-1592x2y3-28/87xy4-63/103x4z+11/42x3yz-52/67x2y2z-13766xy3z+11378y4z+10/37x3z2+115/41x2yz2+11/100xy2z2-49/40y3z2+86/111x2z3+124/5xyz3-25/79y2z3-14525xz4+11380yz4-53/42z5-12169x4u-14/51x3yu+68/33x2y2u-3/62xy3u-31/22y4u-74/93x3zu+12924x2yzu-103/123xy2zu-74/97y3zu-2789x2z2u-95/32xyz2u+45/13y2z2u+40/71xz3u+49/110yz3u+34/75z4u+9829x3u2-59/92x2yu2+106/65xy2u2+123/86y3u2+7133x2zu2-73/46xyzu2-7/29y2zu2-937xz2u2-65/67yz2u2-88/111z3u2-61/119x2u3+975xyu3-54/7y2u3-37/33xzu3+61/59yzu3+51/115z2u3+117/43xu4+8506yu4+13941zu4-14945u5-115/63x4v-14237x3yv-74/87x2y2v+104/47xy3v-95/104y4v+11535x3zv-119/75x2yzv-44xy2zv+11299y3zv-21/113x2z2v-2852xyz2v+95/77y2z2v-75/19xz3v-4864yz3v-79/88z4v+139x3uv-10068x2yuv+2049xy2uv+7515y3uv+97/56x2zuv+109/113xyzuv+7778y2zuv-71/11xz2uv-80/19yz2uv+55/59z3uv-69/98x2u2v-15679xyu2v+114/11y2u2v+69/65xzu2v+879yzu2v+45/104z2u2v+47/97xu3v-1373yu3v+15885zu3v+11121u4v-5042x3v2+4/25x2yv2-8607xy2v2-25/33y3v2+93/55x2zv2+68xyzv2-4167y2zv2+14180xz2v2-115/47yz2v2-81/67z3v2-12099x2uv2+34/107xyuv2+122/59y2uv2+775xzuv2-91yzuv2-85/96z2uv2-59/95xu2v2+174yu2v2+11/16zu2v2+66/37u3v2-121/36x2v3+6070xyv3-83/52y2v3-121/59xzv3-55/12yzv3+8088z2v3-20/29xuv3+76/125yuv3-10858zuv3+1833u2v3-103/50xv4+76/93yv4-119/18zv4+37/114uv4+51/7v5,85/56x4y-7839x3y2+12/37x2y3+6558xy4-8191x4z+115/7x3yz+81/23x2y2z-4121xy3z-1131y4z-23/37x3z2-71/32x2yz2+30/97xy2z2+5070y3z2-49/123x2z3+103/88xyz3-45/19y2z3+5132xz4+7277yz4+1896z5-103/75x4u-12020x3yu+12337x2y2u+6248xy3u+14290y4u-87/44x3zu-5364x2yzu-11801xy2zu-59/37y3zu+34/109x2z2u-14482xyz2u-10338y2z2u+118/73xz3u+7/8yz3u+158z4u+10590x3u2-5182x2yu2+83/62xy2u2+11557y3u2-92/119x2zu2-37/94xyzu2+5383y2zu2-365xz2u2+7/62yz2u2-7965z3u2-10/43x2u3+119/101xyu3-113/83y2u3-121/41xzu3+61/104yzu3+37/60z2u3-74/95xu4-113/66yu4-205zu4+4787u5-94/93x4v+14871x3yv-14723x2y2v+10730xy3v+112/17y4v-35/19x3zv-3487x2yzv-65/43xy2zv-7445y3zv-79/124x2z2v+7423xyz2v+91/2y2z2v+91/34xz3v-6970yz3v-50/113z4v+75/43x3uv-127x2yuv+11978xy2uv+48/113y3uv+113/62x2zuv-8941xyzuv-101/112y2zuv-5737xz2uv-31/123yz2uv+9490z3uv+19/92x2u2v-107/73xyu2v-23/121y2u2v+38/65xzu2v-672yzu2v+13/77z2u2v+46/119xu3v-103/18yu3v+107/59zu3v-52/21u4v-94/87x3v2-74/31x2yv2-9/22xy2v2-2896y3v2+113/3x2zv2-5386xyzv2-11391y2zv2+42/97xz2v2+77/64yz2v2-1610z3v2-102/43x2uv2+124/39xyuv2+14829y2uv2+88/113xzuv2-10411yzuv2-51/43z2uv2-36/121xu2v2+9487yu2v2-5589zu2v2+4335u3v2-5/91x2v3+6084xyv3-56/39y2v3-84/101xzv3-81/85yzv3-6521z2v3-2432xuv3+14317yuv3-43/82zuv3+121/8u2v3+14783xv4-92/45yv4+112/27zv4-8410uv4+31/105v5,-6691x4y-10158x3y2-5372x2y3+4132xy4+106/9y5+15600x4z-803x3yz+43/29x2y2z+9/91xy3z-92/61y4z+4807x3z2-12562x2yz2+14234xy2z2-91/17y3z2-91/30x2z3-10615xyz3-4206y2z3-29/45xz4-11/86yz4-115/9z5+125/112x4u+52/59x3yu+92/49x2y2u+121/85xy3u-51/14y4u-73/48x3zu-1/110x2yzu+12/65xy2zu+15045y3zu+12826x2z2u-123/89xyz2u+9465y2z2u-67/31xz3u-5080yz3u-7944z4u-107/72x3u2+1473x2yu2+7965xy2u2+15753y3u2-95/98x2zu2-9827xyzu2-25/53y2zu2-83/54xz2u2-13217yz2u2-117/110z3u2+230x2u3-12120xyu3+11/36y2u3-2071xzu3+109/59yzu3+6909z2u3-15/64xu4+45/82yu4-3091zu4-15711u5+5957x4v-45/86x3yv+26/29x2y2v-40/57xy3v+25/43y4v+126/37x3zv-38/33x2yzv+65/109xy2zv-33/68y3zv-7287x2z2v-4842xyz2v+35/118y2z2v+6157xz3v-97/89yz3v-91/50z4v-70/27x3uv+32/9x2yuv+78/125xy2uv+38/7y3uv-3214x2zuv-68/101xyzuv+87/55y2zuv-69/98xz2uv+5805yz2uv+41/102z3uv-43/54x2u2v-42/73xyu2v-13/49y2u2v+11864xzu2v+121/37yzu2v-100/109z2u2v-12609xu3v-9114yu3v-8746zu3v+11659u4v+3799x3v2-9581x2yv2+60/91xy2v2+2029y3v2+12075x2zv2+210xyzv2-1/22y2zv2+17/58xz2v2+1212yz2v2+118/27z3v2-3571x2uv2-3139xyuv2-23/100y2uv2-1240xzuv2+71/49yzuv2-21/103z2uv2-110/71xu2v2-40/77yu2v2-103/29zu2v2+10737u3v2+2828x2v3+14/39xyv3+7564y2v3+113/50xzv3+38/79yzv3+59/66z2v3+2726xuv3+91/94yuv3-15730zuv3-13408u2v3-97/42xv4+54/29yv4-33/73zv4+4823uv4+57/71v5,-14556x3yz-9751x2y2z-45/28xy3z+85/23y4z+5623x3z2+5369x2yz2-19/60xy2z2-36/5y3z2-95/36x2z3+5862xyz3-5/93y2z3+2949xz4+11357yz4-5679z5-52/45x3yu+4448x2y2u-9/22xy3u+2427y4u+3296x3zu+16/39x2yzu+53/57xy2zu+15/41y3zu+9473x2z2u+37xyz2u-58/69y2z2u-23/56xz3u-13/90yz3u-54/29z4u-41/67x3u2+10258x2yu2+23/44xy2u2-12952y3u2+2124x2zu2-1677xyzu2+12911y2zu2+22/45xz2u2+17/84yz2u2+5910z3u2+4782x2u3+119/39xyu3-17/84y2u3-120/91xzu3+35/59yzu3+17/77z2u3-4467xu4-77/4yu4-26/53zu4-3580u5-11977x3yv-118/77x2y2v+6040xy3v+9724y4v-47/5x3zv+59/101x2yzv+1212xy2zv-7/121y3zv+93/53x2z2v-56/23xyz2v-4470y2z2v+110/111xz3v-41/99yz3v-81/10z4v-71/24x3uv+26/115x2yuv+59/39xy2uv-10029y3uv+11748x2zuv+5749xyzuv+6887y2zuv+38/3xz2uv-116/61yz2uv-55/118z3uv+105/22x2u2v+70/87xyu2v-28/13y2u2v-109/123xzu2v-102/47yzu2v-52/71z2u2v+101/95xu3v+51/16yu3v+15/97zu3v-78/125u4v+35/46x3v2-9526x2yv2+10781xy2v2-119/44y3v2-23/10x2zv2+59/29xyzv2-15144y2zv2+29/120xz2v2-53/126yz2v2-93/85z3v2+53/8x2uv2-487xyuv2-12143y2uv2+13825xzuv2+55/6yzuv2-4250z2uv2+4237xu2v2-109/9yu2v2+67/53zu2v2+82/33u3v2+8660x2v3+15046xyv3-79/84y2v3-10310xzv3+110yzv3-7636z2v3+57/92xuv3-22/119yuv3-95/103zuv3+5138u2v3+123/49xv4-7587yv4+30/41zv4-124/121uv4+54/71v5,-29/60x4y-108/77x3y2-109/37x2y3-3619xy4+109/6x4z-37/67x3yz+53/45x2y2z+5291xy3z-2927y4z+34/5x3z2+87/17x2yz2+100/89xy2z2-114/29y3z2-4057x2z3-1/42xyz3-14/61y2z3-398xz4-122/73yz4+66/37z5+99/37x4u-5691x3yu-8778x2y2u+17/115xy3u+51/113y4u-71/101x3zu+85/91x2yzu-92/9xy2zu-3442y3zu+109/26x2z2u+50/37xyz2u+77/94y2z2u+16/35xz3u+9985yz3u+5/102z4u-5932x3u2+89/125x2yu2-895xy2u2-12455y3u2-630x2zu2-64/47xyzu2+25/9y2zu2+7906xz2u2+6827yz2u2+9808z3u2-113/118x2u3+79/8xyu3+9484y2u3+62/39xzu3+6/85yzu3-23/49z2u3-93/115xu4-11/93yu4-15177zu4-13/2u5-7623x4v-103/73x3yv-96/115x2y2v+39/76xy3v+80/79y4v+43/68x3zv+45/97x2yzv+101/87xy2zv+4632y3zv-918x2z2v+8248xyz2v-4276y2z2v+8853xz3v-39/61yz3v-121/87z4v+9968x3uv+473x2yuv+117/56xy2uv-19/21y3uv+121/119x2zuv+3/98xyzuv-65/42y2zuv-3723xz2uv+7/34yz2uv-112/87z3uv+103x2u2v+25/41xyu2v-14459y2u2v-56/41xzu2v-59/81yzu2v-109/102z2u2v-87/16xu3v-13011yu3v+49/123zu3v+106/89u4v-61/51x3v2+14107x2yv2+8035xy2v2-8853y3v2+5723x2zv2+123/53xyzv2-9727y2zv2-102/83xz2v2+1111yz2v2-15745z3v2+83/118x2uv2-57/35xyuv2-48/73y2uv2-28/37xzuv2-27/97yzuv2-27/58z2uv2+71/93xu2v2+117/8yu2v2+12344zu2v2-2497u3v2-118/71x2v3-11/19xyv3+21/104y2v3+32/113xzv3+15544yzv3+31/18z2v3+5909xuv3-67/58yuv3+27/35zuv3+115/9u2v3+79/13xv4+6722yv4-37/114zv4-71/124uv4+4657v5,-77/61x4y-88/101x3y2+93/88x2y3-11/70xy4+9806y5+7896x4z-4699x3yz+55/122x2y2z-63/122xy3z-125/74y4z+47/45x3z2+101/17x2yz2+92/47xy2z2+69/82y3z2+12402x2z3+113/98xyz3-101/33y2z3-15376xz4+47/71yz4-73/10z5+65/74x4u-14409x3yu-14478x2y2u+13593xy3u+102/97y4u+39/62x3zu-34/125x2yzu-83/9xy2zu+45/113y3zu+14484x2z2u-15293xyz2u-26/55y2z2u-958xz3u+67/35yz3u-93/19z4u+25/16x3u2+107/52x2yu2-4599xy2u2-86/51y3u2-9885x2zu2-77/47xyzu2+33/65y2zu2+90/109xz2u2-61/26yz2u2+6198z3u2-38/37x2u3-13935xyu3-142y2u3-64/5xzu3-7228yzu3+1251z2u3+1556xu4+117/121yu4-92/35zu4+99/92u5+13493x4v+12654x3yv+32/101x2y2v-11118xy3v+43/51y4v-575x3zv+103/21x2yzv+85/24xy2zv+1788y3zv+85/3x2z2v-64/25xyz2v+57/35y2z2v+37/120xz3v-69/110yz3v+48/49z4v+55/114x3uv-6439x2yuv+31/51xy2uv-90/49y3uv-45/104x2zuv-12018xyzuv+6/119y2zuv+40/63xz2uv+20/91yz2uv+50/43z3uv+1/26x2u2v-109/47xyu2v+99/7y2u2v+72/83xzu2v+61/118yzu2v+3530z2u2v+6146xu3v+117yu3v-9921zu3v-8708u4v-10/47x3v2-15294x2yv2-7336xy2v2+1/66y3v2-3057x2zv2+74/123xyzv2+146y2zv2-103/34xz2v2-117/76yz2v2+8472z3v2-7/92x2uv2+10033xyuv2+43/53y2uv2+4694xzuv2-49/2yzuv2-71/73z2uv2-125/17xu2v2-9817yu2v2+7218zu2v2+6897u3v2-19/90x2v3+11899xyv3-11779y2v3-5456xzv3+17/42yzv3+15340z2v3+12/7xuv3+9580yuv3-502zuv3-14069u2v3-4371xv4+14452yv4-9423zv4-117/122uv4+1126v5,49/108x4-39/4x3y-67/21x2y2-8/69xy3-9779y4+57/14x3z-11145x2yz+6928xy2z-7824y3z+1/79x2z2+5173xyz2-62/15y2z2-123/112xz3+88/79yz3+1/125z4+57/23x3u-11856x2yu-7444xy2u+115/8y3u-11133x2zu+71/73xyzu-7941y2zu+69/65xz2u+22/75yz2u+65/121z3u+9471x2u2+9167xyu2+51/59y2u2+12835xzu2+15047yzu2+11102z2u2-10059xu3+19/28yu3+65/21zu3-39/28u4-3/73x3v+94/61x2yv+8778xy2v-12922y3v-8711x2zv-37/97xyzv+14270y2zv+4487xz2v-59/112yz2v-14183z3v+15553x2uv+3579xyuv+114/91y2uv-4/97xzuv+13/85yzuv-89/15z2uv+58/75xu2v-34/7yu2v-90/61zu2v+90/101u3v-14673x2v2+90/19xyv2-45/37y2v2+23/49xzv2-71/11yzv2+119/8z2v2+89/10xuv2+109/91yuv2+36/49zuv2-7/31u2v2-40/113xv3-21/121yv3+9910zv3+33/14uv3-23/79v4,93/70x4-43/125x3y+9582x2y2+7565xy3-11511y4-3/79x3z-36/107x2yz-2038xy2z+879y3z-4700x2z2+103/14xyz2+102/79y2z2-67/68xz3-44/25yz3+105/79z4-29/24x3u-74/83x2yu+67/43xy2u+49/12y3u-115/11x2zu+23/67xyzu-61/27y2zu+12257xz2u+14068yz2u+23/15z3u+607x2u2+73/8xyu2+14237y2u2-13/33xzu2+110/71yzu2+41/101z2u2+5708xu3+88/67yu3+1460zu3-2472u4-1629x3v-51/70x2yv-88/73xy2v-36/97y3v+38/11x2zv+15899xyzv+54/19y2zv+9460xz2v-5150yz2v+3462z3v+5522x2uv-19/123xyuv+14871y2uv+53/5xzuv-7535yzuv-13430z2uv+107/47xu2v-8307yu2v-55/79zu2v-11945u3v-16/83x2v2+115/48xyv2+12389y2v2+11545xzv2-25/26yzv2-3755z2v2+4724xuv2-31/21yuv2+7872zuv2+89/45u2v2+87/47xv3+7625yv3+13494zv3-15376uv3-25/126v4;
626
627  def I = grobj( groebner(J), intvec(0) ); // ASSUME: no zero entries in J!
628  ASSUME(0, grtest(I));
629  "Input degrees: "; grview(I);
630
631  def RR = grres(I, 0, 1); list L = RR;
632
633  " = Non-minimal betti numbers: "; print(betti(L, 0), "betti");
634
635  "Graded (original) structure of 'res(Input,0)': "; grview(L);
636
637  "Graded transpose of the previous resolution "; list LLL = grtranspose1( L ); grview( LLL );
638
639  "Its non-minimal betti numbers: "; print(betti(LLL, 0), "betti");
640
641}
642
643proc grorder(def M)
644"USAGE:  grorder(M), graded object or list M
645RETURN:  same as input
646PURPOSE: reorder/transform graded object or chain complex M into block form
647ASSUME:  M must be a graded object or a list of graded objects
648EXAMPLE: example grorder; shows an example
649"
650{
651  if( typeof(M) == "list" )
652  { // TODO: extra grading argument???
653    if( size(M) == 0 ) { return (); }
654
655    int j = size(M);  int i = 1;
656
657    while( i < j )
658    {
659      if( size(M[i]) == 0 ){ break; }
660      ASSUME(0, typeof(grrange(M[i])) == "intvec");
661      i++;
662    }
663
664    if( size(M[i]) == 0 ) { i--; }
665
666    list L; module Z = 0; L[i] = Z; j = i;
667
668    while( i > 0 )
669    {
670//      "i: ", i;      "A"; grview(M[i]);
671      L[i] = grorder( grobj( M[i], grrange(M[i])) );
672//      "B"; grview(L[i]);
673      if( i < j )
674      {
675        ASSUME(2, size( module( matrix(transpose(L[i+1]))*matrix(transpose(L[i])) ) ) == 0 );
676      };
677
678      i--;
679    };
680
681    return (L); // ?
682  }
683
684  ASSUME(1, grtest(M) );
685
686// "a";  grview(M);
687
688  intvec d; module N;
689
690  (N,d) = reorder(M, 1); kill M;
691
692  module M = grobj(transpose(N), -d, -grrange(N)); kill N,d;
693
694// "b";  grview(M);
695
696  module N; intvec d;
697  // reverse order:
698  (N,d) = reorder(M, -1); kill M;
699
700  module M = grobj(transpose(N), -d, -grrange(N));
701
702// "c";  grview(M);
703
704  ASSUME(1, issorted(grrange(M), 1) );
705  ASSUME(1, issorted(grdeg(M), 1) );
706
707  return (M);
708}
709example
710{ "EXAMPLE:"; echo = 2;
711
712  "Surface Name: 'rat.d10.g9.quart2' in P^4";
713  int @p=31991; ring R = (@p),(x,y,z,u,v), dp;
714  ideal J = x3yu2-48/11x2y2u2-8356xy3u2+35/121y4u2+31/66x3zu2-54/83x2yzu2-61/18xy2zu2+11526y3zu2+7372x2z2u2-91/60xyz2u2-95/97y2z2u2-45/71xz3u2+71/115yz3u2+25/54z4u2-61/102x3u3-12668x2yu3+6653xy2u3+41/54y3u3+87/50x2zu3-5004xyzu3+13924y2zu3+2310xz2u3-93/14yz2u3-2/93z3u3-97/125x2u4-58/11xyu4+46/73y2u4-4417xzu4+60/101yzu4+56/75z2u4-113/118xu5+115/4yu5-40zu5-8554u6-54/83x3yuv-9770x2y2uv-590xy3uv+15/49y4uv+94/69x3zuv+121/105x2yzuv+95/88xy2zuv+3186y3zuv+11/6x2z2uv-44/81xyz2uv+637y2z2uv+109/121xz3uv-33yz3uv-94/115z4uv-49/95x3u2v-11/109x2yu2v+45/113xy2u2v+97/84y3u2v+5257x2zu2v+99/49xyzu2v+12584y2zu2v-4294xz2u2v+1137yz2u2v-58/69z3u2v-4749x2u3v+120/97xyu3v-31/103y2u3v+62/97xzu3v-107/74yzu3v+53/59z2u3v+91/33xu4v+1291yu4v+23/34zu4v+58/77u5v+16/17x3yv2-750x2y2v2+86/89xy3v2+123/46y4v2+53/123x3zv2-61/99x2yzv2+12389xy2zv2+10419y3zv2+43/11x2z2v2-146xyz2v2-116/51y2z2v2+13/62xz3v2-5524yz3v2-111/118z4v2-56/55x3uv2-3038x2yuv2+14/27xy2uv2-43/64y3uv2+3385x2zuv2+25/11xyzuv2+92/41y2zuv2+28/113xz2uv2-2049yz2uv2+89/37z3uv2-13094x2u2v2-2774xyu2v2+15474y2u2v2-15791xzu2v2-71/116yzu2v2+77/41z2u2v2-83/68xu3v2-33/106yu3v2+71/37zu3v2-41/17u4v2+12052x3v3+1906x2yv3+13825xy2v3+80/7y3v3-125/96x2zv3-9661xyzv3+85/116y2zv3-72/91xz2v3+13/112yz2v3-126/97z3v3-1637x2uv3+34/103xyuv3+3844y2uv3+77/10xzuv3+6359yzuv3-11185z2uv3-124/121xu2v3+66/91yu2v3-14636zu2v3-1051u3v3+9/64x2v4-12924xyv4-119/41y2v4+74/23xzv4+1622yzv4+73/37z2v4-60/101xuv4+111/22yuv4-45/124zuv4+59/37u2v4-66/37xv5-71/99yv5+12409zv5-113/64uv5-5267v6,-x4y-22/79x3y2-125/42x2y3-116/7xy4+98/111y5-31/66x4z-118/75x3yz+110/93x2y2z-43/92xy3z-788y4z-7372x3z2-2701x2yz2-67/124xy2z2-117/62y3z2+45/71x2z3-8396xyz3-10343y2z3-25/54xz4+30/59yz4+61/102x4u+11736x3yu+12726x2y2u+41/118xy3u-15832y4u-87/50x3zu-130x2yzu+41/8xy2zu-10300y3zu-2310x2z2u-101/5xyz2u+6205y2z2u+2/93xz3u+8679yz3u+97/125x3u2-43/37x2yu2-39/80xy2u2+12139y3u2+4417x2zu2+4294xyzu2+11/58y2zu2-56/75xz2u2+8338yz2u2+113/118x2u3-10190xyu3-37/16y2u3+40xzu3+74/23yzu3+8554xu4+115/22yu4-39/79x4v+61/72x3yv+8048x2y2v-9201xy3v+16/121y4v+113/93x3zv+109/75x2yzv+12700xy2zv-10607y3zv+50/11x2z2v+1223xyz2v-103/79y2z2v-123/58xz3v+31/26yz3v-15/122z4v+122/25x3uv-99/17x2yuv+1723xy2uv-38/121y3uv+11016x2zuv-25/102xyzuv-14970y2zuv-61/6xz2uv-14981yz2uv+15900z3uv+3268x2u2v-75/19xyu2v-1436y2u2v-1764xzu2v-57/41yzu2v+12741z2u2v-14615xu3v+119/61yu3v-115/119zu3v+10501u4v-8502x3v2-51/76x2yv2-6281xy2v2+17/49y3v2-106/7x2zv2+63/101xyzv2-27/95y2zv2-1606xz2v2+9245yz2v2+1912z3v2+11155x2uv2+223xyuv2-13/18y2uv2+110/43xzuv2+76/81yzuv2-6291z2uv2+1400xu2v2-95/23yu2v2-9701zu2v2+106/105u3v2+72/47x2v3-13118xyv3+14409y2v3+37/86xzv3+44/69yzv3-325z2v3+113/71xuv3+16/81yuv3+6/19zuv3-119/39u2v3-89/9xv4+72/53yv4+112/55zv4-8587uv4-6604v5,-x3y2+48/11x2y3+8356xy4-35/121y5-12750x3yz+100/111x2y2z+45/74xy3z+99/74y4z-6/7x3z2-47/67x2yz2+11465xy2z2-11865y3z2+7776x2z3+124/45xyz3-98/115y2z3+117/85xz4-59/120yz4-8748z5+61/102x3yu+12668x2y2u-6653xy3u-41/54y4u+13408x3zu-2185x2yzu-1240xy2zu+1161y3zu+44/27x2z2u-11164xyz2u-13388y2z2u-107/13xz3u+90/71yz3u+4204z4u+97/125x2yu2+58/11xy2u2-46/73y3u2+55/48x2zu2+121/31xyzu2+126/61y2zu2-55/69xz2u2+5988yz2u2+3755z3u2+113/118xyu3-115/4y2u3+3390xzu3-5762yzu3+30/61z2u3+8554yu4-14317zu4+99/116x3yv-113/119x2y2v+50/23xy3v-37/79y4v-8668x3zv+14049x2yzv+111/35xy2zv+61/28y3zv-10171x2z2v+68/21xyz2v+2023y2z2v-9/109xz3v+8520yz3v-2683z4v-13547x3uv+28/65x2yuv-5988xy2uv+61/111y3uv+12314x2zuv+29/44xyzuv+6141y2zuv+11280xz2uv+79/22yz2uv-38/111z3uv+19/51x2u2v+5093xyu2v-10291y2u2v-5009xzu2v-111/49yzu2v+3813z2u2v-61/37xu3v+15914yu3v-3218zu3v-12915u4v-118/101x3v2-7/57x2yv2+13128xy2v2+11606y3v2+42/101x2zv2-54/17xyzv2-43/49y2zv2-119/110xz2v2+9742yz2v2-43/4z3v2-55/8x2uv2-29/88xyuv2+12042y2uv2+101/37xzuv2-57/62yzuv2+106/97z2uv2+38/83xu2v2+8152yu2v2-5492zu2v2-47/79u3v2+15112x2v3+69/44xyv3-6/71y2v3+113/54xzv3-13210yzv3-707z2v3-119/8xuv3+3845yuv3-19/20zuv3+4852u2v3+15761xv4-12372yv4+74/69zv4-2100uv4-12833v5,-x3yz+48/11x2y2z+8356xy3z-35/121y4z-31/66x3z2+54/83x2yz2+61/18xy2z2-11526y3z2-7372x2z3+91/60xyz3+95/97y2z3+45/71xz4-71/115yz4-25/54z5+15/52x3yu+6039x2y2u+74/99xy3u-17/40y4u+29/50x3zu-7775x2yzu+6368xy2zu+14170y3zu+52/41x2z2u+7003xyz2u-5787y2z2u-101/37xz3u-23/28yz3u-20/63z4u+41/77x3u2+8650x2yu2-15922xy2u2-16/83y3u2+7278x2zu2+31/30xyzu2-2/107y2zu2+35/122xz2u2+85/58yz2u2-757z3u2+2/101x2u3+86/17xyu3+95/59y2u3+123/22xzu3-6869yzu3-9311z2u3-105/97xu4+5699yu4+15925zu4+13528u5-154x3yv+4187x2y2v+56/107xy3v-15932y4v-5137x3zv-37/56x2yzv+9401xy2zv+92/123y3zv-79/97x2z2v+9201xyz2v+19/53y2z2v+107/20xz3v+17/77yz3v-15306z4v+3215x3uv-79/117x2yuv-9/76xy2uv-6352y3uv+93/13x2zuv-65/89xyzuv-115/4y2zuv-34/57xz2uv+39/107yz2uv+31/9z3uv+107/48x2u2v+2632xyu2v+29/96y2u2v-125/89xzu2v+29/113yzu2v+3940z2u2v-116/111xu3v+6145yu3v-105/62zu3v+101/17u4v-9281x3v2-49/107x2yv2-12154xy2v2+4/19y3v2-114/71x2zv2-15/118xyzv2+4372y2zv2+45/121xz2v2+46/111yz2v2+6614z3v2+17x2uv2+10806xyuv2-10617y2uv2-25/111xzuv2-116/27yzuv2-7/58z2uv2-686xu2v2+3/13yu2v2-17/49zu2v2-40/107u3v2+47/90x2v3-83/43xyv3-6326y2v3+49/64xzv3+113/76yzv3-122/73z2v3+10232xuv3-116/109yuv3-1990zuv3+70/51u2v3-118/19xv4-27/55yv4+21/19zv4-23/57uv4-11721v5,-3399x4y+1849x3y2-3/29x2y3+28/87xy4+10/29y5-9788x4z-49/73x3yz+13829x2y2z+118/73xy3z+13129y4z-618x3z2+92/13x2yz2+101/117xy2z2-162y3z2+24/5x2z3-29/74xyz3+2687y2z3-74/39xz4+2/57yz4+68/73x4u-13787x3yu-11659x2y2u+14729xy3u+92/53y4u+15/71x3zu-62/15x2yzu+21/85xy2zu+4938y3zu-120/37x2z2u-77/102xyz2u-4785y2z2u-83/70xz3u-12128yz3u-13592z4u-123/20x3u2+2607x2yu2+40/19xy2u2+6361y3u2-3091x2zu2+89/113xyzu2+149y2zu2-2890xz2u2-8374yz2u2+11886z3u2-49/43x2u3-9854xyu3-6943y2u3+10743xzu3-122/45yzu3-13902z2u3-103/19xu4-48/59yu4+27/86zu4+46/35u5-117/17x4v-15/7x3yv+8409x2y2v-83/28xy3v+86/35y4v+37/45x3zv+4/3x2yzv+35/38xy2zv+4015y3zv-49/111x2z2v-1260xyz2v-25/33y2z2v+116/19xz3v+93/8yz3v+5755z4v-25/89x3uv-11669x2yuv-64/107xy2uv+2993y3uv+7767x2zuv-17/95xyzuv-103/80y2zuv-14576xz2uv+80/47yz2uv+25/107z3uv+103/2x2u2v+125/117xyu2v-2/89y2u2v-5298xzu2v-50/27yzu2v-71/53z2u2v+2652xu3v+15761yu3v+2124zu3v+11/82u4v+100/63x3v2+4180x2yv2+11/39xy2v2-1221y3v2+108/125x2zv2+97/126xyzv2-7698y2zv2+13984xz2v2+1342yz2v2-84/121z3v2-26/73x2uv2-14/15xyuv2-22/37y2uv2-71/82xzuv2+12430yzuv2+103/52z2uv2-13095xu2v2+10114yu2v2-8/73zu2v2-33/97u3v2+83/105x2v3+22/45xyv3-7961y2v3-9654xzv3-54/55yzv3-3/71z2v3-10148xuv3-117/98yuv3+101/102zuv3-606u2v3+97/43xv4-68/21yv4+63/16zv4+42/17uv4+5834v5,-3399x3y2-32/113x2y3+14/99xy4+15001y5-121/115x3yz+4604x2y2z+7/2xy3z+9532y4z-3267x3z2+97/118x2yz2-14238xy2z2-80/21y3z2-12332x2z3-19/69xyz3+116/15y2z3-103/32xz4+15340yz4+10509z5+112/109x3yu-97x2y2u-40/11xy3u+90/29y4u-95/106x3zu-114/67x2yzu+113/48xy2zu+12080y3zu-44x2z2u+18/17xyz2u-4814y2z2u-103/100xz3u-96/61yz3u-205z4u-87/82x3u2-97/108x2yu2+3230xy2u2+104/83y3u2+41/86x2zu2+116/49xyzu2-59/110y2zu2+14/59xz2u2-6962yz2u2-2185z3u2+59/91x2u3+2497xyu3+3/37y2u3-13010xzu3+6/83yzu3-11448z2u3+13/72xu4-69/62yu4-2869zu4+23/73u5-20/43x3yv+5074x2y2v+28/125xy3v-2706y4v+13010x3zv-17/109x2yzv+21/4xy2zv+59/93y3zv-2406x2z2v+117/11xyz2v-14978y2z2v+70/89xz3v-33/7yz3v-13676z4v-13690x3uv+9825x2yuv-117/107xy2uv+12760y3uv-93/98x2zuv-113/64xyzuv+113/103y2zuv-9748xz2uv+11016yz2uv-10729z3uv+90/13x2u2v-13/47xyu2v-11/39y2u2v+20/69xzu2v+5531yzu2v+125/49z2u2v-11025xu3v-9621yu3v+113/109zu3v+4710u4v-107/7x3v2+110/119x2yv2-10025xy2v2-6644y3v2-5041x2zv2+5/96xyzv2+11472y2zv2-5128xz2v2+2927yz2v2+121/18z3v2-125/89x2uv2+12936xyuv2-71/47y2uv2+34/47xzuv2-75/103yzuv2-2654z2uv2-2350xu2v2-7707yu2v2+47/72zu2v2-952u3v2-21/67x2v3+58/37xyv3-8757y2v3+3615xzv3+44/123yzv3-13027z2v3-9/10xuv3+75/43yuv3+115/18zuv3+8071u2v3-26/3xv4-67/65yv4+14186zv4-41/122uv4+33/28v5,-3399x3yz-32/113x2y2z+14/99xy3z+15001y4z-9788x3z2+37/96x2yz2+7743xy2z2+31/55y3z2-618x2z3-8171xyz3+82/109y2z3+24/5xz4+88/85yz4-74/39z5-13165x3yu+3407x2y2u-12509xy3u-23/45y4u-11774x3zu-10/67x2yzu+69/79xy2zu-10/123y3zu-7636x2z2u+83/32xyz2u+51/112y2z2u+19/8xz3u+9309yz3u-44/49z4u+4089x3u2-374x2yu2-919xy2u2+98/107y3u2+2776x2zu2+85/26xyzu2+31/13y2zu2-103/82xz2u2+35/76yz2u2+59/45z3u2+2950x2u3+27/44xyu3+88/71y2u3+7/114xzu3-72/77yzu3+12917z2u3-34/67xu4-85/82yu4-55/84zu4+4690u5+11/42x3yv-19/125x2y2v-8288xy3v+9199y4v-12929x3zv+13357x2yzv-4903xy2zv-584y3zv-10/33x2z2v+59/113xyz2v+103/92y2z2v+101/69xz3v+8708yz3v-8/7z4v+13560x3uv-43/49x2yuv-121/98xy2uv+75/79y3uv-39x2zuv-88/69xyzuv-89/78y2zuv+110/67xz2uv+61/4yz2uv-98/45z3uv+82/7x2u2v-85/41xyu2v+6548y2u2v+9367xzu2v-59/81yzu2v-14408z2u2v+2363xu3v-80/11yu3v-50/17zu3v-14799u4v-53/21x3v2+9437x2yv2-117/80xy2v2+81/85y3v2-8/45x2zv2-6428xyzv2+15126y2zv2+68/89xz2v2+7/122yz2v2+9639z3v2+113/4x2uv2-8678xyuv2-104/45y2uv2-79/90xzuv2+39/101yzuv2-7234z2uv2-28/43xu2v2+1251yu2v2-97/56zu2v2+17/41u3v2+107/24x2v3+2747xyv3+9933y2v3-4199xzv3+53/83yzv3+6364z2v3-5456xuv3+618yuv3-123/55zuv3+2375u2v3+63/76xv4-115/106yv4-8811zv4-31/75uv4+10/109v5,13/89x4y+77/31x3y2+36/83x2y3-11411xy4+6936y5-12223x4z+7400x3yz+33/118x2y2z-12146xy3z+108/79y4z+82/99x3z2-9877x2yz2-79/70xy2z2-19/123y3z2-1491x2z3+7953xyz3-43/126y2z3+60/17xz4+98/57yz4-13317x4u-77/27x3yu-6811x2y2u-69/61xy3u+6144y4u+5404x3zu+121/120x2yzu-91/23xy2zu-71/106y3zu+1435x2z2u-120/13xyz2u-12019y2z2u-68/7xz3u-113/82yz3u+11526z4u-8706x3u2-89/53x2yu2-14804xy2u2+120/107y3u2+71/94x2zu2-1/70xyzu2+1532y2zu2+4470xz2u2+13/60yz2u2-115/102z3u2-82/21x2u3+27/121xyu3-4439y2u3-101/47xzu3-3186yzu3-106/101z2u3-10169xu4+19/58yu4-96/73zu4-7959u5-10526x4v-107/92x3yv+47/6x2y2v-23/43xy3v-69/62y4v+59/65x3zv-28/95x2yzv+5479xy2zv-39/77y3zv+11/69x2z2v-11713xyz2v+43/79y2z2v-15602xz3v+16/73yz3v-13952z4v+61/82x3uv-2219x2yuv-91/106xy2uv+5/37y3uv-148x2zuv+31/51xyzuv+18/101y2zuv+97/68xz2uv-73/32yz2uv+47/2z3uv+2/41x2u2v-13009xyu2v-7/60y2u2v+15779xzu2v+72/7yzu2v-11/73z2u2v-119/44xu3v-9067yu3v+3249zu3v+61/51u4v+12525x3v2-118/9x2yv2-3270xy2v2-4/25y3v2-5075x2zv2+77/40xyzv2-89/65y2zv2+17/58xz2v2-15609yz2v2+95/54z3v2-75/79x2uv2-4907xyuv2+12418y2uv2-57/17xzuv2-8746yzuv2+13/95z2uv2-124/67xu2v2+16/13yu2v2+28/23zu2v2-10847u3v2-645x2v3+106/75xyv3+6/115y2v3-8495xzv3+58/35yzv3-9398z2v3-101/72xuv3-71/20yuv3-124/65zuv3-8971u2v3+27/28xv4+12/29yv4-4276zv4+10858uv4+29/12v5,13/89x3y2+12068x2y3-15543xy4-77/79y5+6626x3yz+64/53x2y2z-6/23xy3z-47/125y4z+14403x3z2-43/78x2yz2-31/115xy2z2+94/59y3z2-118/117x2z3-11229xyz3+2268y2z3-116/85xz4+25/58yz4+3085z5+59/27x3yu+67/82x2y2u+11/6xy3u+103/47y4u-63/80x3zu-81/47x2yzu+7760xy2zu-115/56y3zu-10/17x2z2u+101/5xyz2u+15634y2z2u+1/107xz3u-9282yz3u+43/62z4u+62/55x3u2+100/113x2yu2-9205xy2u2-46/13y3u2+43/96x2zu2+10159xyzu2+692y2zu2+859xz2u2-19/74yz2u2+123/47z3u2-9/20x2u3-11391xyu3-2375y2u3+109/24xzu3-57/53yzu3-925z2u3-82/45xu4+97/34yu4+13/82zu4-108/29u5+63/10x3yv+38/17x2y2v-19/115xy3v+3150y4v+22/69x3zv+26/57x2yzv+110/27xy2zv+87/77y3zv+85/18x2z2v+39/47xyz2v-48/17y2z2v-7/27xz3v-13/100yz3v-11662z4v-17/8x3uv+37/11x2yuv+29/11xy2uv-109/88y3uv-2817x2zuv-61/44xyzuv+10/31y2zuv+10010xz2uv+51/86yz2uv-97/83z3uv-89/96x2u2v+4030xyu2v-58/77y2u2v-114/43xzu2v-37/10yzu2v-2011z2u2v+14483xu3v-109/101yu3v+121/102zu3v-79/92u4v+15113x3v2+10781x2yv2-14259xy2v2-113/48y3v2-7/94x2zv2-17/74xyzv2-5/117y2zv2-59/75xz2v2+13188yz2v2+103/43z3v2+4/125x2uv2-52/59xyuv2+85/92y2uv2-1/46xzuv2-9106yzuv2-83/11z2uv2-23/94xu2v2+6742yu2v2-35/107zu2v2-14596u3v2-117/43x2v3+1026xyv3+90/19y2v3+14671xzv3-101/100yzv3+6962z2v3+61/68xuv3+108/37yuv3-4157zuv3-3974u2v3+15677xv4+8661yv4+8459zv4-16/23uv4-37/119v5,13/89x3yz+12068x2y2z-15543xy3z-77/79y4z-12223x3z2-13941x2yz2+115/84xy2z2+13/98y3z2+82/99x2z3+7751xyz3+122/17y2z3-1491xz4+1327yz4+60/17z5+15363x3yu+9780x2y2u+19/117xy3u-1924y4u-14600x3zu+46/41x2yzu-5466xy2zu-73/12y3zu+10838x2z2u-8302xyz2u-89/113y2z2u+53/69xz3u-9224yz3u+47/33z4u-7399x3u2+89/77x2yu2+9312xy2u2-41/80y3u2-732x2zu2-6781xyzu2-8608y2zu2-9270xz2u2-117/58yz2u2-115/68z3u2-48/31x2u3-9067xyu3+97/107y2u3+73/57xzu3-2719yzu3-110/59z2u3-37/86xu4-15796yu4-61/4zu4-115/72u5+6161x3yv+4134x2y2v+677xy3v-8375y4v+1150x3zv+1551x2yzv+4157xy2zv+112/87y3zv+8171x2z2v+6040xyz2v+15651y2z2v-7/66xz3v-47/61yz3v+77/64z4v+14848x3uv+48/119x2yuv-9534xy2uv-117/95y3uv+5/4x2zuv+122xyzuv+90/31y2zuv-41/26xz2uv+31/30yz2uv-10428z3uv-9896x2u2v-71/21xyu2v-55/38y2u2v-29/22xzu2v-11092yzu2v+39/122z2u2v+93/73xu3v+22/49yu3v-21/106zu3v+56u4v+8565x3v2-1695x2yv2+2/17xy2v2+1/78y3v2-113/71x2zv2-41/100xyzv2+55/14y2zv2+15286xz2v2+17/53yz2v2+126/71z3v2-79/87x2uv2+109/97xyuv2-28/31y2uv2-6533xzuv2+22/5yzuv2-10449z2uv2+10830xu2v2-15516yu2v2+28/57zu2v2-81/22u3v2+4198x2v3+5667xyv3-7133y2v3-8408xzv3+11066yzv3-26/125z2v3-808xuv3+95/54yuv3-64/17zuv3-5267u2v3-15333xv4+42/89yv4+63/85zv4+119/113uv4-2011v5,5583x4y+1725x3y2-8652x2y3-91/25xy4-8495x4z-13731x3yz+9298x2y2z-41/111xy3z-15503y4z-13805x3z2+3962x2yz2-2/63xy2z2+3314y3z2+2522x2z3-10/87xyz3-408y2z3+7/16xz4+69/22yz4-7254z5-59/21x4u+115/7x3yu-1718x2y2u+7851xy3u+2632y4u-82/3x3zu+37/86x2yzu+101/113xy2zu+6747y3zu-109/113x2z2u+7399xyz2u+24/103y2z2u+89/9xz3u-14630yz3u+15066z4u-12561x3u2+113/115x2yu2+87/97xy2u2-126/67y3u2-48/7x2zu2+123/103xyzu2-11/107y2zu2-2747xz2u2+8158yz2u2-3/107z3u2+41/6x2u3+12767xyu3+3873y2u3+74/83xzu3-55/119yzu3-24/83z2u3+55xu4-7/95yu4+57/44zu4+2/101u5-6928x4v-121/57x3yv+111/104x2y2v+946xy3v-29y4v+3057x3zv-14/25x2yzv+43/31xy2zv-105/2y3zv+2336x2z2v+61/77xyz2v-7880y2z2v+5/58xz3v+10593yz3v+7094z4v+63/59x3uv-5/69x2yuv-11/81xy2uv-4157y3uv+73/65x2zuv-1676xyzuv-2376y2zuv-85/63xz2uv-95/2yz2uv-14903z3uv-119/110x2u2v-115/24xyu2v+125/9y2u2v+106/87xzu2v-13/12yzu2v-4/19z2u2v+7838xu3v-43/111yu3v+7/113zu3v-12500u4v+7743x3v2-2023x2yv2-85/83xy2v2+49/41y3v2+20/87x2zv2+3932xyzv2-77/6y2zv2+47/90xz2v2-15580yz2v2+39/4z3v2-61/8x2uv2+2518xyuv2+29/98y2uv2+11057xzuv2-18/107yzuv2+708z2uv2+14720xu2v2-3175yu2v2-113/59zu2v2-14735u3v2+7/69x2v3-4029xyv3+54/91y2v3+12372xzv3+67/2yzv3+8856z2v3-2178xuv3+995yuv3+64/95zuv3+4039u2v3-37/44xv4+23/17yv4-3035zv4-103/124uv4+69/64v5,-5583x3y2-1725x2y3+8652xy4+91/25y5+6201x3yz-73/49x2y2z-3844xy3z+10548y4z-11057x3z2-105/122x2yz2+31/53xy2z2+79/89y3z2-24/101x2z3+107/119xyz3-126y2z3+8164xz4+2/77yz4-51/8z5-14941x3yu-106x2y2u+8695xy3u+125/62y4u+4328x3zu+29/117x2yzu-6249xy2zu-2791y3zu+67/49x2z2u-38/29xyz2u+122/41y2z2u+10603xz3u-3029yz3u+5578z4u+14754x3u2-108/79x2yu2+4408xy2u2-12401y3u2-1426x2zu2-1741xyzu2-83/86y2zu2+79/95xz2u2+122/121yz2u2+81/2z3u2-1172x2u3-41/68xyu3-70/3y2u3+24/107xzu3+120/79yzu3+18/119z2u3-65/122xu4+1018yu4+22/107zu4+15189u5+5/8x3yv-12060x2y2v+3/62xy3v-227y4v+60/41x3zv-123/115x2yzv+110/123xy2zv+12864y3zv-86/121x2z2v-69/94xyz2v+14/79y2z2v+118/45xz3v+10842yz3v-37/58z4v+100/69x3uv-47/65x2yuv-7/67xy2uv-93/100y3uv-6262x2zuv-4/75xyzuv+2082y2zuv-9117xz2uv+12450yz2uv-84/67z3uv+123/26x2u2v-51/89xyu2v+19/74y2u2v-104/77xzu2v+318yzu2v+12402z2u2v+95/8xu3v-81/26yu3v-4486zu3v+3872u4v+72/91x3v2-83/63x2yv2+93/92xy2v2-15924y3v2-53/62x2zv2+6046xyzv2+1408y2zv2+60/107xz2v2-1150yz2v2-126/19z3v2-7429x2uv2+2554xyuv2+3602y2uv2+10738xzuv2-57/64yzuv2+86/69z2uv2+8172xu2v2+91/113yu2v2+92/65zu2v2+118/37u3v2+47/83x2v3+12750xyv3+10851y2v3+4216xzv3+6/101yzv3-108z2v3+2920xuv3-101/102yuv3-157zuv3+7742u2v3-7234xv4-2/111yv4+59/33zv4-93/91uv4+24/19v5,1592x4y+75/121x3y2+40/19x2y3-2651xy4+9934x4z+245x3yz+11665x2y2z+30/41xy3z+1823y4z+89/88x3z2-105/46x2yz2+79/58xy2z2-4191y3z2-76/61x2z3-21/32xyz3-9516y2z3-14896xz4-85/77yz4+51/109z5+61/30x4u-10/101x3yu+11796x2y2u+76/101xy3u+123/88y4u-5932x3zu-11857x2yzu+7128xy2zu-45/79y3zu+119/18x2z2u+9/74xyz2u+7042y2z2u-1114xz3u-11/82yz3u-1466z4u-6/85x3u2+27/106x2yu2+14246xy2u2-6216y3u2+47/6x2zu2-45/59xyzu2+89/41y2zu2+41/80xz2u2-7583yz2u2-75/113z3u2-14808x2u3-10873xyu3-90/67y2u3-11081xzu3-7369yzu3-7131z2u3-1402xu4-15386yu4-108/73zu4-5039u5+120/113x4v+10617x3yv-50/87x2y2v-2395xy3v-20/69y4v-8587x3zv+12960x2yzv-41/50xy2zv-13844y3zv-65/32x2z2v-77/122xyz2v-85/66y2z2v+13/100xz3v-20/51yz3v-13676z4v+76/97x3uv+1046x2yuv-8059xy2uv-117/59y3uv-29/105x2zuv+7287xyzuv-107/119y2zuv-35/118xz2uv+79/86yz2uv-2211z3uv+5448x2u2v+62/35xyu2v-2275y2u2v+29/121xzu2v-1674yzu2v-56/43z2u2v-3377xu3v-43/110yu3v+23/10zu3v-24/61u4v+121/53x3v2-4745x2yv2-57/64xy2v2+9554y3v2-12741x2zv2+10449xyzv2+37/108y2zv2+8621xz2v2-11/57yz2v2+1566z3v2+125/49x2uv2-121/118xyuv2+109/84y2uv2-335xzuv2+10167yzuv2-59/109z2uv2-103/119xu2v2+43/13yu2v2-73/87zu2v2+2037u3v2+13002x2v3+83/48xyv3-10713y2v3+1026xzv3-105/64yzv3-37/6z2v3+14779xuv3-6448yuv3+19/69zuv3-1/110u2v3+10010xv4+79/12yv4+12/19zv4-35/61uv4-11/57v5,-1592x3y2-75/121x2y3-40/19xy4+2651y5+39/121x3yz+122/77x2y2z-114/31xy3z+1544y4z+2/3x3z2-10271x2yz2-8373xy2z2+56/61y3z2+55/48x2z3-116xyz3-25/7y2z3-108/113xz4-34/53yz4+5548z5-122x3yu-9690x2y2u+43/87xy3u-5/19y4u+97/54x3zu-17/19x2yzu+4355xy2zu+12/5y3zu-1/100x2z2u+12754xyz2u+13600y2z2u+17/45xz3u-12091yz3u+5145z4u-63/64x3u2-84/31x2yu2-97/41xy2u2+7/13y3u2-79/62x2zu2-80/103xyzu2-69/14y2zu2+119/4xz2u2-35/87yz2u2-13840z3u2+14101x2u3+7952xyu3-1857y2u3-9861xzu3+3180yzu3+75/107z2u3-250xu4-15134yu4+4717zu4-2/41u5+22/27x3yv-8983x2y2v+10520xy3v-113/2y4v+10/73x3zv-1986x2yzv-110/13xy2zv+1550y3zv+32/111x2z2v-111/35xyz2v+101/98y2z2v+8045xz3v-2/89yz3v+2924z4v-79/11x3uv-15178x2yuv+10874xy2uv+54/11y3uv-8950x2zuv+70/53xyzuv-2403y2zuv-8249xz2uv+6935yz2uv+20/89z3uv+885x2u2v-76/71xyu2v-4/17y2u2v-31/52xzu2v-4/99yzu2v+10333z2u2v-93/104xu3v+82/101yu3v-71/37zu3v+9397u4v-15/112x3v2-6614x2yv2+119/2xy2v2+88/119y3v2+306x2zv2+2790xyzv2+10992y2zv2-115/74xz2v2-14711yz2v2+11612z3v2-1788x2uv2-75/97xyuv2+79/30y2uv2+99/59xzuv2-11439yzuv2-121/113z2uv2+108/37xu2v2+37/36yu2v2-3/65zu2v2-55/42u3v2+13/100x2v3-209xyv3-1272y2v3-117/68xzv3+63/94yzv3+32/59z2v3+1013xuv3-3463yuv3+6946zuv3-37/86u2v3+67/117xv4+85/28yv4-3024zv4-82/9uv4-32/65v5,-35/52x4y-12140x3y2+23/83x2y3+69/5xy4-80/79y5+120/43x4z-11865x3yz-3487x2y2z+53/59xy3z+53/102y4z-14083x3z2-14430x2yz2-2442xy2z2-33/104y3z2-91/38x2z3+4/87xyz3-26/57y2z3+4097xz4-9/122yz4+6364z5+9634x4u-97/95x3yu-46/99x2y2u+3847xy3u+121/106y4u+12765x3zu-5292x2yzu+1607xy2zu-67/121y3zu-12/35x2z2u+4/55xyz2u-17/27y2z2u+91/122xz3u-23/31yz3u+65/49z4u+73/46x3u2-124/27x2yu2-9933xy2u2+46/75y3u2+53/114x2zu2+3503xyzu2-14147y2zu2-11283xz2u2+11889yz2u2+99/104z3u2+3117x2u3+12624xyu3-10060y2u3+2193xzu3-80/47yzu3-77/13z2u3+11/31xu4-47/90yu4+49/48zu4-2/105u5-92/61x4v+7443x3yv+35/76x2y2v+114/67xy3v-73/126y4v+97/107x3zv+9464x2yzv+10869xy2zv+15718y3zv-37/33x2z2v+124/13xyz2v-11/26y2z2v-61/40xz3v+91/100yz3v-18/103z4v+60/29x3uv+21/125x2yuv-11117xy2uv+11748y3uv-16/117x2zuv+18/103xyzuv-1711y2zuv+1872xz2uv-109/123yz2uv-18/113z3uv-26/103x2u2v+14140xyu2v+11065y2u2v+8686xzu2v-5/111yzu2v+30/101z2u2v-10501xu3v-36/113yu3v-73/74zu3v+12753u4v-43/52x3v2-76/15x2yv2-5793xy2v2+18/13y3v2+1/79x2zv2+84/23xyzv2-172y2zv2+86/77xz2v2+15/37yz2v2+11835z3v2-6482x2uv2+94/113xyuv2+10727y2uv2-102/41xzuv2+15914yzuv2-12973z2uv2-9038xu2v2-13107yu2v2+1533zu2v2+12549u3v2-13528x2v3+903xyv3+23/114y2v3-123/64xzv3-81/5yzv3+111/103z2v3+4734xuv3-33/20yuv3-7954zuv3-2478u2v3+15518xv4-6723yv4-14/31zv4-3482uv4+10919v5,-3/94x4y-12936x3y2+2/11x2y3+32/23xy4-15921y5+61/93x4z+82/111x3yz-93/2x2y2z-6659xy3z-97/90y4z+402x3z2-14586x2yz2-121/39xy2z2+68/7y3z2+1212x2z3-2980xyz3+49/52y2z3-72/89xz4+92/47yz4+8478z5+2733x4u-103/89x3yu+1166x2y2u-7/53xy3u-106/23y4u+677x3zu+907x2yzu+7891xy2zu-9014y3zu+76/47x2z2u+49/116xyz2u-49/78y2z2u+12261xz3u+118/105yz3u-126/13z4u-8812x3u2-97/120x2yu2-9534xy2u2+92/5y3u2-54/71x2zu2+94/103xyzu2+2256y2zu2+4182xz2u2-5798yz2u2-31/115z3u2-73/98x2u3+15822xyu3+1004y2u3-578xzu3+9494yzu3-6779z2u3+14506xu4+10/121yu4+58/27zu4-2817u5-19/119x4v+7128x3yv+75/64x2y2v-65/109xy3v+5129y4v-53/55x3zv+54/125x2yzv-3009xy2zv+6144y3zv+15601x2z2v+123/55xyz2v-58/77y2z2v-56/61xz3v+121/10yz3v-103/86z4v-93/25x3uv+94/123x2yuv-25/107xy2uv+14807y3uv+65/7x2zuv+87/44xyzuv+6605y2zuv+23/99xz2uv-413yz2uv-17/15z3uv-79/46x2u2v+15240xyu2v-42/67y2u2v+8932xzu2v-5888yzu2v-4204z2u2v+7002xu3v-36/97yu3v-1634zu3v+61/102u4v-14/33x3v2-6520x2yv2+9004xy2v2-67/36y3v2-7/8x2zv2-24/11xyzv2-9373y2zv2+1556xz2v2-79/74yz2v2-6691z3v2+108x2uv2-76/61xyuv2+220y2uv2-1191xzuv2-4/9yzuv2+4546z2uv2+12205xu2v2+9/22yu2v2+64/93zu2v2-44/125u3v2+292x2v3+41/74xyv3+16/79y2v3-15892xzv3+5733yzv3+6796z2v3-42/55xuv3+71/79yuv3-19/104zuv3-38/15u2v3+6436xv4+28/15yv4+87/55zv4+2270uv4-30/41v5,-117/4x3y+97/122x2y2-3618xy3+6566y4+97/113x3z-12634x2yz+9865xy2z-1764y3z+114/31x2z2+5006xyz2+7/44y2z2-15040xz3+8/125yz3+11134z4-12980x3u-79/41x2yu-79/98xy2u+89/65y3u-1217x2zu+89/87xyzu+83/66y2zu+115/11xz2u+123/107yz2u+10920z3u-86/73x2u2-11/94xyu2-14054y2u2+6752xzu2-123/124yzu2+12129z2u2-13310xu3-52/63yu3+12847zu3-1545u4-11064x3v+11499x2yv-37/64xy2v+50/103y3v+123/94x2zv-126xyzv-111/44y2zv+95/14xz2v+113/83yz2v-77/103z3v+41/64x2uv+91/90xyuv-4932y2uv+103/31xzuv+62/63yzuv+1161z2uv-99/106xu2v-3181yu2v-11741zu2v-33/8u3v-3/118x2v2-9369xyv2+527y2v2-113/39xzv2-88/49yzv2-113/101z2v2+95/68xuv2-5930yuv2-20/43zuv2+7/41u2v2+109/93xv3-107/61yv3-8352zv3-5255uv3+12021v4,-2159x4-94/3x3y-4602x2y2+1609xy3+10721y4+28/9x3z-99/35x2yz+1/110xy2z+113/114y3z-118/75x2z2-103/93xyz2-68/67y2z2+13687xz3-1531yz3+61/107z4+6076x3u+9004x2yu+2211xy2u+110/53y3u+47/102x2zu+8495xyzu-9238y2zu+57/121xz2u-8543yz2u+8/19z3u-13527x2u2-13293xyu2+1138y2u2+26/115xzu2+78/53yzu2-12556z2u2+7299xu3+70/19yu3-14687zu3+13559u4+113/9x3v-85/126x2yv-83/3xy2v-3/46y3v+1814x2zv+28/79xyzv+103/51y2zv+78/31xz2v-14387yz2v+1/88z3v+116/75x2uv-101/59xyuv-70/3y2uv+109/71xzuv+13/88yzuv-147z2uv-113/76xu2v-9661yu2v+13855zu2v-6162u3v-1857x2v2-8208xyv2-4634y2v2-6178xzv2-7352yzv2-8247z2v2-113/15xuv2+99/40yuv2+21/97zuv2+11/37u2v2-6605xv3+8964yv3+35/121zv3+8543uv3-6008v4;
715
716  def I = grobj( groebner(J), intvec(0) ); // ASSUME: no zero entries in J!
717  ASSUME(0, grtest(I));
718
719  "Input degrees: "; grview(I);
720
721  def RR = grres(I, 0, 1);
722  list L = RR;
723
724  " = Non-minimal betti numbers: ";  print(betti(L, 0), "betti");
725  "Graded reordered structure of 'res(Input,0)': ";  grview(grorder(L));
726}
727
728proc TestGRRes(Name, J)
729"USAGE:  TestGRRes(name, I), string name, ideal I
730RETURN:  nothing
731PURPOSE: compute/test/output/order/transpose a graded resolution of I
732EXAMPLE: example TestGRRes; shows an example
733"
734{
735  "==============================================";
736  "";
737  "=== Example: [", Name, "]";
738  " = Ring: ", string(basering);
739
740  def I = grobj( groebner(J), intvec(0) ); // ASSUME: no zero entries in J!
741  ASSUME(0, grtest(I));
742//  " = Input degrees: "; grview(I);
743
744  " ! Resolution via 'grres': ";
745  def R = grres(I, 0, 1); // sres, lres: no grading! // nres, mres - graded (with attrib(, "isHomog"))
746
747  " = Non-minimal betti numbers: ";
748  print(betti(R, 0), "betti");
749
750  list L = R ; // SRES_list(R); //  " = Degrees of maps: "; grview(L); // MUST BE GRADED!!!
751
752  " = Degrees of (ordered) maps: ";
753  def LL = grorder(L); // MUST BE GRADED
754
755  // ordres(L, intvec(0)); // ?
756
757  grview( LL ); " = TRANSPOSE'd complex: %%%%%%%%%%%%%%";
758  list LLL = grtranspose1( LL ); //  resolution RR = LLL;
759  print(betti(LLL, 0), "betti");
760
761  grview( LLL ); ""; //  "==============================================";
762
763  kill L, R;
764}
765example
766{ "EXAMPLE:"; echo = 2;
767//  if( defined(assumeLevel) ){ int assumeLevel0 = assumeLevel; } else { int assumeLevel; export(assumeLevel); }; assumeLevel = 5; // store the state of aL
768
769  // note: data from random generation 2
770  string Name = "castelnuovo"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = 5153xy2-98/23y3-101/51xyz+33/41y2z+99/79xz2+7136yz2-106/111z3+119/53xyu+34/57y2u-77/92xzu+84/73yzu-109/78z2u-27/56xu2+10023yu2+82/103zu2-34/25u3+3/2xyv-68/25y2v+12721xzv+4/63yzv-73/21z2v-7291xuv-91/53yuv-4/79zuv-34/91u2v-122/53xv2+123/70yv2-64/73zv2+44/65uv2+14/31v3,xy2-15202y3+10613xyz+13640y2z-107/103xz2+5292yz2+19/119z3-10042xyu+2770y2u+7957xzu+14008yzu+92/121z2u-92/51xu2+1178yu2+1/117zu2-12726u3+82/101xyv-92/17y2v-107/56xzv+14233yzv+79/28z2v+51/50xuv-31/5yuv+95/91zuv+19/108u2v+12151xv2-69/110yv2+37/89zv2-63/116uv2-88/23v3,-5153x2+37/23xy+8706y2-13160xz+68/115yz+5548z2-22/61xu-113/98yu+11818zu+2114u2-101/97xv+89/22yv-3355zv-113/5uv-5521v2;TestGRRes(Name, I); kill R, Name, @p;  "";
771
772  string Name = "ell.d8.g7"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = x2y2-47/69xy3+6059y4+78/85x2yz+55/124xy2z+13641y3z+8/17x2z2+7817xyz2-2746y2z2+85/124xz3+87yz3+13182z4+109/93x2yu-69/17xy2u+12089y3u+8769x2zu-53/36xyzu-14834y2zu+123/23xz2u+103/77yz2u-2344z3u-43/104x2u2-6198xyu2+47/115y2u2-39/19xzu2-29/24yzu2+51/89z2u2-65/37xu3-95/94yu3+11302zu3-53/57u4-2874x2yv+4347xy2v-25/77y3v+13819x2zv+29/34xyzv+474y2zv+33/107xz2v-3517yz2v+10617z3v+1834x2uv+54/113xyuv-8751y2uv+111/70xzuv-66/61yzuv+9195z2uv-14289xu2v-13/110yu2v+103/9zu2v+5113u3v+116/89x2v2+15142xyv2+13078y2v2-38/41xzv2-13/113yzv2-12824z2v2-57/11xuv2-114/17yuv2-125/31zuv2+11939u2v2+44/13xv3+56/69yv3+12/125zv3+643uv3+3530v4,-3454x2y-1285xy2-6182y3-8/69x2z+9/19xyz+64/49y2z+98/67xz2-13809yz2+21/44z3+77/47x2u+748xyu-41/77y2u+7318xzu+4217yzu+12562z2u-98/69xu2-14/85yu2+119/46zu2-61/121u3+5582x2v+108/77xyv-93/4y2v-65/49xzv-4135yzv+2477z2v+11114xuv+85/14yuv+51/125zuv-7572u2v-115/52xv2-7647yv2+4647zv2-5684uv2-1/55v3,3454x3-6645x2y-43/34xy2+14590y3+8/11x2z-117/112xyz+109/54y2z+6566xz2+23/57yz2-13078z3+95/61x2u+67/40xyu-4544y2u-95/72xzu-8/103yzu+100/77z2u+23/63xu2+69/61yu2-94/105zu2+8619u3+68/123x2v+8/117xyv+101/77y2v+124/125xzv+17/84yzv+23/67z2v+18/59xuv+3216yuv-77/59zuv-9/50u2v+96/109xv2-2491yv2+14089zv2+14067uv2-56/113v3;TestGRRes(Name, I); kill R, Name, @p;  "";
773
774  string Name = "ell.d7.g6"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = 4971xy3+3/101y4-12318xy2z-12835y3z+97/98xyz2+63y2z2-8056xz3+23/91yz3-9662z4-7398xy2u+69/71y3u-53/68xyzu-49/67y2zu-113/122xz2u-9/61yz2u+71/88z3u+11358xyu2-38/29y2u2-10232xzu2+14490yzu2+2274z2u2+3501xu3+10427yu3-109/38zu3-99/5u4-6605xy2v-1555y3v-648xyzv-2083y2zv-61/41xz2v+75/17yz2v-69/55z3v-6104xyuv-9582y2uv+69/2xzuv-12551yzuv+47/49z2uv-118/13xu2v+34/105yu2v+105/41zu2v+6533u3v+122/25xyv2+2/43y2v2+16/61xzv2+11524yzv2+113/99z2v2-71/26xuv2+7809yuv2-4865zuv2-2122u2v2+53/118xv3-13209yv3-11106zv3-49/79uv3+3006v4,xy3+15492y4-13742xy2z+112/117y3z+6/47xyz2+28/41y2z2+71/111xz3+49/57yz3-61/44z4-11759xy2u+4242y3u-109/18xyzu+2260y2zu-6873xz2u-41/112yz2u+12574z3u-10939xyu2+119/38y2u2-62/33xzu2-3699yzu2+2651z2u2-13194xu3-15185yu3-11/116zu3-61/83u4-10094xy2v+13/4y3v-74/73xyzv+43/20y2zv-11547xz2v+53/43yz2v-92/93z3v+32/41xyuv+118/33y2uv-121/39xzuv-15913yzuv+53/11z2uv+97/76xu2v+85/29yu2v-5183zu2v+8520u3v+121/28xyv2+64/51y2v2-15810xzv2+1/43yzv2-6160z2v2+13988xuv2+9/40yuv2+123/4zuv2+15024u2v2+73/95xv3+80/97yv3+57/25zv3-109/81uv3-121/87v4,-4971x2+14389xy+1607y2+59/119xz+12020yz+103/122z2+8894xu+7091yu+54/19zu-50/77u2+28/25xv-113/56yv+68/29zv-14620uv+79/107v2;TestGRRes(Name, I); kill R, Name, @p;  "";
775
776  string Name = "k3.d7.g5"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = -97/108x2y-31/118xy2-73/61y3-79/14x2z-15930xyz-2324y2z+1842xz2+656yz2-8852z3-89/38x2u-102/43xyu+14719y2u+70/67xzu+7335yzu+27/56z2u-10744xu2-55/83yu2+120/73zu2+120/61u3-126/125x2v+691xyv-15385y2v+117/16xzv-17/97yzv+80/121z2v-48/119xuv+21/34yuv-103/65zuv-49/32u2v-41/42xv2+11/75yv2-502zv2-7583uv2+26/69v3,97/108x3+77/114x2y+71/21xy2+13679y3-1645x2z-1/33xyz-79/7y2z-52/53xz2+11940yz2-5800z3+109/13x2u-115/64xyu-125/56y2u-2365xzu+2103yzu+56/87z2u-84/79xu2+107/106yu2-79/70zu2-419u3+5354x2v+92/53xyv-32/19y2v+11/74xzv+4193yzv+45/79z2v-113/72xuv+17/71yuv+11164zuv-17/33u2v+103/66xv2+55/79yv2+118/15zv2-2646uv2+57/106v3,x3-61/113x2y-64/21xy2-107/8y3-13/60x2z+43/35xyz+41/114y2z-13683xz2-5829yz2+71/38z3+90/17x2u-39/29xyu+42/5y2u-61/55xzu+111/77yzu-87/100z2u+10735xu2-83/91yu2-4884zu2-7965u3-65/12x2v+109/86xyv+10606y2v-14164xzv-6678yzv+83/18z2v-93/10xuv+120/49yuv-1592zuv-8710u2v-73/57xv2+10762yv2-2956zv2-89/63uv2-12/7v3;TestGRRes(Name, I); kill R, Name, @p;  "";
777
778  string Name = "rat.d8.g6"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = -19/125x2y2-87/119xy3-97/21y4+36/53x2yz+2069xy2z-59/50y3z-65/33x2z2-14322xyz2+79/60y2z2-9035xz3-14890yz3+87/47z4-23/48x2yu+45/44xy2u+1972y3u+79/118x2zu-5173xyzu+115/121y2zu+1239xz2u-115/17yz2u-15900z3u-78/95x2u2+67/101xyu2-12757y2u2+12752xzu2+68/21yzu2+103/90z2u2-12917xu3+97/92yu3-24/49zu3-13/79u4-51/61x2yv-3103xy2v+77/117y3v+73/115x2zv-79/33xyzv+123/110y2zv+11969xz2v-31/95yz2v-123/95z3v-105/124x2uv+12624xyuv+2/63y2uv+6579xzuv+13/62yzuv+4388z2uv-12747xu2v-26/105yu2v-78/61zu2v-125/53u3v-5/71xyv2+62/77y2v2+21/44xzv2-9806yzv2+3/91z2v2+361xuv2+568yuv2+2926zuv2+53/38u2v2-14523yv3+2082zv3+113/115uv3,108/73x2y2+4028xy3+38/43y4-1944x2yz+39/80xy2z+8/109y3z+52/27x2z2+103/45xyz2+5834y2z2+63/101xz3+107/80yz3+1178z4-1/6x2yu+78/25xy2u-21/43y3u+50/71x2zu-14693xyzu+15074y2zu+9/103xz2u-7396yz2u-14493z3u+93/25x2u2+61/4xyu2-11306y2u2-79/81xzu2+59/82yzu2-5/106z2u2+89/71xu3-34/11yu3+15/103zu3-115/52u4-54/65x2yv+67/16xy2v-7/68y3v-10/13x2zv+32/85xyzv+1/91y2zv+107/118xz2v+7594yz2v-98/103z3v+9919x2uv-965xyuv+53/34y2uv+119/11xzuv-3400yzuv-8329z2uv+75/98xu2v-24yu2v+55/87zu2v-82/71u3v-73/115x2v2+85/19xyv2-213y2v2-7704xzv2-15347yzv2+14960z2v2+15065xuv2-125/17yuv2+32/83zuv2-14/73u2v2-21/44xv3+79/2yv3-61/32zv3+46/119uv3-2082v4,9/20x2y2+113/71xy3-88/65y4+9983x2yz-6722xy2z+87/68y3z+1893x2z2+65/32xyz2+51/55y2z2-102/53xz3+58/5yz3-7187z4-96/7x2yu-14/87xy2u-3532y3u+95/54x2zu+19/65xyzu-6728y2zu+31/121xz2u+73/106yz2u-91/5z3u-12928x2u2+707xyu2-55/48y2u2-96/25xzu2+15869yzu2-20/107z2u2-10030xu3-13786yu3-122/9zu3+19/59u4-7/52x2yv+101/74xy2v+83/6y3v-91/55x2zv-5266xyzv+85/61y2zv+126/95xz2v+56/51yz2v+13073z3v-50/21x2uv-13553xyuv-116/53y2uv+68/71xzuv-111/98yzuv-11037z2uv+68/121xu2v-124/53yu2v+54/55zu2v+5862u3v+12318x2v2-119/29xyv2+101/17y2v2-51/40xzv2-82/33yzv2-30/41z2v2-29/52xuv2+7817yuv2+8121zuv2-28/99u2v2+1125xv3-73/55yv3-14141zv3+8742uv3-1203v4,x2y2+11357xy3+295y4+144x2yz-31/54xy2z+89/119y3z+1/46x2z2+29/26xyz2+1384y2z2+1461xz3+113/91yz3+9494z4-7/32x2yu+12850xy2u-3626y3u-33/106x2zu-7/60xyzu-5935y2zu-8597xz2u+5527yz2u+1708z3u+6182x2u2-15780xyu2+4669y2u2-38/69xzu2+8412yzu2+9265z2u2-5679xu3-67/18yu3-34/67zu3-7178u4+113/56x2yv-3669xy2v+17/113y3v-87/35x2zv-4871xyzv-111/11y2zv-1131xz2v-72/13yz2v+838z3v-115/4x2uv+3395xyuv-43/68y2uv-82/13xzuv+7042yzuv-88/119z2uv+100/19xu2v+24/11yu2v+89/3zu2v+7395u3v-119/109x2v2+1/104xyv2+18/25y2v2+700xzv2-59/9yzv2-92/87z2v2+2486xuv2-67/103yuv2+1469zuv2-101/91u2v2-79/33xv3+10838yv3+81/4zv3-11843uv3+7204v4,19/125x3-15698x2y-22/117xy2-95/107y3+2027x2z-7750xyz+85/104y2z-15326xz2+31/101yz2+67/81z3-7879x2u-112/115xyu+124/81y2u+99/61xzu-7458yzu+40/33z2u-1502xu2+6591yu2-7/73zu2-42/95u3+93/83x2v-15/112xyv-84/95y2v+35/36xzv+5/24yzv-12768z2v+13232xuv-76/103yuv-79/52zuv-7217u2v+75/92xv2-49/64yv2+17/14zv2-6109uv2+1695v3;TestGRRes(Name, I); kill R, Name, @p; "";
779
780  string Name = "k3.d14.g19"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = x4y2+52/25x3y3+73/79x2y4+33/83xy5-116/65y6+23/39x4yz-45/11x3y2z-45/16x2y3z+73/8xy4z+107/70y5z+115/8x4z2-4619x3yz2+13504x2y2z2+9/118xy3z2-113/64y4z2+10731x3z3-7/13x2yz3-26/17xy2z3+3/59y3z3-4602x2z4+71/44xyz4-66/43y2z4-37/70xz5-6988yz5-123/29z6-6158x4yu+9171x3y2u+71/122x2y3u-119/73xy4u-15409y5u+85/3x4zu+104/59x3yzu-3336x2y2zu-50/107xy3zu-10232y4zu-8965x3z2u-2736x2yz2u+4/61xy2z2u+49/92y3z2u+13261x2z3u+64/31xyz3u-89/70y2z3u+11080xz4u+10139yz4u+13653z5u+34/25x4u2-5678x3yu2+43/13x2y2u2+4119xy3u2+72/109y4u2-77/64x3zu2+15044x2yzu2+97/53xy2zu2+9036y3zu2-10599x2z2u2-107/126xyz2u2+43/12y2z2u2-4690xz3u2-43/75yz3u2-15886z4u2-113/7x3u3-242x2yu3+85/19xy2u3-20/57y3u3+109/37x2zu3+6103xyzu3-51/43y2zu3-89/92xz2u3-14/87yz2u3+59/111z3u3-40/63x2u4+113/86xyu4-17/109y2u4-11039xzu4+107/31yzu4+121/47z2u4-123/5xu5+83/97yu5+110/23zu5-122/83u6-15/17x4yv+96/65x3y2v-1491x2y3v+3885xy4v+26/87y5v-51/89x4zv-123/88x3yzv-2315x2y2zv-4119xy3zv-3390y4zv-68/5x3z2v-57/67x2yz2v-116/77xy2z2v+109/54y3z2v+23/89x2z3v+19/77xyz3v+32/107y2z3v-85/121xz4v+9325yz4v+87/32z5v-65/81x4uv-39/19x3yuv+4671x2y2uv+54/77xy3uv+8/47y4uv+1194x3zuv+5/14x2yzuv+1151xy2zuv+90/103y3zuv-55/8x2z2uv-44/101xyz2uv-4713y2z2uv-1/7xz3uv+13344yz3uv-11451z4uv-101/108x3u2v+42/55x2yu2v+4810xy2u2v-3/40y3u2v+4699x2zu2v+114/53xyzu2v+49/116y2zu2v-9/74xz2u2v-84/109yz2u2v-119/97z3u2v+15282x2u3v-109/71xyu3v+2490y2u3v-119/47xzu3v+43/40yzu3v-105/86z2u3v-101/70xu4v+10041yu4v-93/53zu4v+4204u5v+83/43x4v2+15199x3yv2+26/43x2y2v2-6627xy3v2+59/113y4v2+10482x3zv2-8354x2yzv2-78/79xy2zv2+7126y3zv2+68/25x2z2v2+94/59xyz2v2+83/45y2z2v2-59/60xz3v2+15768yz3v2+15/29z4v2-43/100x3uv2-11939x2yuv2+1832xy2uv2+29/6y3uv2+115/76x2zuv2+51/106xyzuv2+7/23y2zuv2+19/107xz2uv2-13797yz2uv2+16/109z3uv2-7519x2u2v2+3472xyu2v2-28/107y2u2v2-11283xzu2v2+12707yzu2v2+54/47z2u2v2+1841xu3v2-3037yu3v2+9239zu3v2+3729u4v2+7476x3v3+59/81x2yv3-49/85xy2v3-91/60y3v3+20/77x2zv3-2761xyzv3+4245y2zv3+97/75xz2v3+42/121yz2v3+1822z3v3-97/16x2uv3-47/10xyuv3-11222y2uv3-2194xzuv3+116/21yzuv3+118/47z2uv3-89/23xu2v3+7317yu2v3-10812zu2v3+70/13u3v3-5855x2v4-9755xyv4+14875y2v4+59/117xzv4-33/109yzv4+48/59z2v4+62/57xuv4-56/73yuv4-3601zuv4+2155u2v4-77/107xv5+12478yv5+7028zv5-3652uv5+81/28v6,-50/87x4yz-2298x3y2z+9266x2y3z-55/16xy4z+31/76y5z+13/46x4z2-11/100x3yz2+90/119x2y2z2-65/54xy3z2-102/77y4z2-76/109x3z3-6558x2yz3-60/19xy2z3-17/113y3z3-74/43x2z4+8092xyz4-13313y2z4-13/107xz5-47/82yz5+5501z6+39/17x4yu-11/13x3y2u-4407x2y3u+89/117xy4u+118/101y5u-37/57x4zu+100/33x3yzu-99/46x2y2zu-2772xy3zu-75/94y4zu-6429x3z2u-7628x2yz2u+10112xy2z2u+85/32y3z2u-4068x2z3u+81/95xyz3u+97/89y2z3u-12700xz4u+19/113yz4u+14306z5u+13878x4u2-22/21x3yu2+107/41x2y2u2-16/97xy3u2-2426y4u2-12247x3zu2+71/41x2yzu2+16/69xy2zu2+37/113y3zu2-12195x2z2u2-8354xyz2u2-6177y2z2u2-10139xz3u2+9118yz3u2-113/115z4u2-8042x3u3+37/97x2yu3+7/30xy2u3+90/73y3u3-14676x2zu3+630xyzu3+7824y2zu3-5947xz2u3-12019yz2u3+99/19z3u3+17/117x2u4+1943xyu4-47/45y2u4-79/98xzu4+46/119yzu4-98/25z2u4-20/69xu5+45/28yu5-123/14zu5-20/29u6+83/41x4yv+32/19x3y2v+5/107x2y3v+9/95xy4v+35/33y5v+14385x4zv+2237x3yzv+109/11x2y2zv-6489xy3zv-96/107y4zv+1749x3z2v+23/64x2yz2v+105/17xy2z2v+11/70y3z2v-4677x2z3v-4/119xyz3v+8243y2z3v-7538xz4v-45/58yz4v+1768z5v-10804x4uv-102/89x3yuv-80/17x2y2uv-103/66xy3uv-14/55y4uv-5981x3zuv+2/35x2yzuv+24/71xy2zuv-17/62y3zuv-59/52x2z2uv+468xyz2uv+61/110y2z2uv-1265xz3uv-11317yz3uv+15610z4uv+61/116x3u2v+1972x2yu2v+26/121xy2u2v+9787y3u2v-91/62x2zu2v+101/65xyzu2v-85/111y2zu2v+99/95xz2u2v-125/51yz2u2v+10324z3u2v+95/73x2u3v-705xyu3v-6165y2u3v+2215xzu3v-109/12yzu3v+72/95z2u3v-149xu4v+14154yu4v+412zu4v+2747u5v+113/25x4v2+5988x3yv2-119/107x2y2v2-70/41xy3v2+2891y4v2+85/103x3zv2-9398x2yzv2-116/117xy2zv2-12527y3zv2-8408x2z2v2-76/47xyz2v2+13729y2z2v2-65/77xz3v2+23/94yz3v2+61/77z4v2+18/121x3uv2-8520x2yuv2+103/34xy2uv2+17/40y3uv2+23/104x2zuv2+7/29xyzuv2-5908y2zuv2-7791xz2uv2-12032yz2uv2+125/82z3uv2-89/126x2u2v2+22/75xyu2v2-118/67y2u2v2+34/29xzu2v2+30/109yzu2v2-64/37z2u2v2-113/87xu3v2+110/109yu3v2+81/23zu3v2-40/99u4v2-14204x3v3+5939x2yv3-7749xy2v3+2924y3v3-3662x2zv3-51/122xyzv3-7218y2zv3-13482xz2v3+12673yz2v3-9675z3v3+6567x2uv3-14008xyuv3+14242y2uv3-4310xzuv3+757yzuv3-9110z2uv3+27/14xu2v3-81/40yu2v3-42/29zu2v3+7287u3v3+119/94x2v4-11926xyv4-82/117y2v4+4138xzv4-67/70yzv4+79/49z2v4-113/50xuv4+102/113yuv4-4791zuv4-11/97u2v4-19/18xv5+6866yv5+63/101zv5+4646uv5-374v6,109/29x4yz+94/43x3y2z-13879x2y3z-53/73xy4z+9074y5z+846x4z2-107/44x3yz2+62/71x2y2z2-121/68xy3z2+14200y4z2-78/89x3z3+51/94x2yz3+123/5xy2z3-731y3z3-15645x2z4-91/25xyz4+39/17y2z4+10343xz5-14671yz5+101/71z6+10467x4yu-3/64x3y2u+75/31x2y3u-43/66xy4u-118/55y5u+7/25x4zu-59/95x3yzu+11830x2y2zu-76/121xy3zu+95/72y4zu-121/53x3z2u+120/7x2yz2u-7033xy2z2u+89/2y3z2u+86/47x2z3u-13/99xyz3u-1447y2z3u+6253xz4u-9082yz4u-4518z5u+31/111x4u2+68/79x3yu2-3532x2y2u2+61/94xy3u2+1210y4u2-11697x3zu2-9386x2yzu2-8263xy2zu2+11759y3zu2+113/118x2z2u2-6488xyz2u2+41/30y2z2u2-15179xz3u2-10848yz3u2-14/51z4u2-13/123x3u3-21/10x2yu3-4018xy2u3-11558y3u3-68/13x2zu3+41/119xyzu3-94/31y2zu3+97/101xz2u3+2551yz2u3+51/73z3u3-10862x2u4-44/125xyu4+113/13y2u4-5704xzu4+65/116yzu4-9578z2u4-95/58xu5+8033yu5-79/124zu5-107/76u6+7293x4yv+15260x3y2v+32/35x2y3v+8519xy4v-50/83y5v+83/40x4zv-6104x3yzv+83/121x2y2zv+230xy3zv+9/50y4zv+1507x3z2v-75/112x2yz2v-20/7xy2z2v-12689y3z2v-75/112x2z3v-8673xyz3v+79/69y2z3v-12453xz4v-4805yz4v-125/11z5v-22/97x4uv-11396x3yuv+67/88x2y2uv-75/122xy3uv-30/29y4uv-837x3zuv-71/12x2yzuv+37/77xy2zuv+78/59y3zuv-13742x2z2uv+13080xyz2uv+643y2z2uv-7517xz3uv-15577yz3uv+52/75z4uv+12922x3u2v-14629x2yu2v-10188xy2u2v-5113y3u2v+67/51x2zu2v-15273xyzu2v-13388y2zu2v+121/109xz2u2v-64/83yz2u2v+69/20z3u2v-117/44x2u3v-7091xyu3v-118/45y2u3v+73/26xzu3v-117/38yzu3v+1448z2u3v+71/19xu4v-12698yu4v+107/81zu4v+21/43u5v-94/79x4v2-1660x3yv2-15179x2y2v2-10/71xy3v2+9523y4v2+6/115x3zv2-15x2yzv2+15142xy2zv2+6157y3zv2+5/79x2z2v2+126/47xyz2v2+14/107y2z2v2+35/11xz3v2-65/51yz3v2-7246z4v2-2652x3uv2-79/69x2yuv2-21/59xy2uv2-14050y3uv2-89/81x2zuv2+91/55xyzuv2-7501y2zuv2-7688xz2uv2-73/102yz2uv2-27/13z3uv2-2186x2u2v2+120/31xyu2v2+45/43y2u2v2-101/16xzu2v2-69/83yzu2v2-12658z2u2v2-7658xu3v2-53/103yu3v2+11620zu3v2+672u4v2-10795x3v3+10972x2yv3-7178xy2v3+81/2y3v3+67/43x2zv3-113/12xyzv3-3947y2zv3-17/5xz2v3-102/49yz2v3-67/26z3v3+5/6x2uv3-95/4xyuv3+2582y2uv3+72/23xzuv3+8490yzuv3-46/111z2uv3+224xu2v3+658yu2v3-98/89zu2v3+7954u3v3+87/35x2v4+7260xyv4+91/40y2v4+11611xzv4+9076yzv4+6444z2v4-8/95xuv4-12845yuv4+86/61zuv4-59/113u2v4-115/84xv5-116/41yv5-119/62zv5+15120uv5-37/51v6,21/122x4yz-9662x3y2z-11556x2y3z+67/18xy4z-10712y5z-4891x4z2+113/118x3yz2-94/83x2y2z2+61/90xy3z2+108/101y4z2+9905x3z3+12/29x2yz3+13047xy2z3-55/46y3z3+59/88x2z4+59/78xyz4+11951y2z4-1357xz5-75/77yz5+15673z6+40/113x4yu+9/55x3y2u-62/83x2y3u+65/111xy4u+4184y5u-9578x4zu+124/17x3yzu+91/85x2y2zu-1/66xy3zu+4184y4zu+101/77x3z2u-12238x2yz2u-5394xy2z2u+82/9y3z2u-73/113x2z3u+3736xyz3u+52/81y2z3u+10426xz4u+11/120yz4u+89/123z5u-99/74x4u2-9/46x3yu2-57/29x2y2u2-24/125xy3u2+115/119y4u2-10/103x3zu2-66/17x2yzu2-662xy2zu2-31/17y3zu2-56/27x2z2u2-4728xyz2u2-86/59y2z2u2-19/34xz3u2+61/13yz3u2-14093z4u2-9068x3u3-115/94x2yu3+15912xy2u3-79/66y3u3-3631x2zu3+1074xyzu3-113/105y2zu3-89/109xz2u3-80/91yz2u3+119/12z3u3+19/87x2u4-42/25xyu4+116/55y2u4+10/77xzu4+74/79yzu4-77/81z2u4-90/121xu5-43/31yu5+107/122zu5+76/113u6+60/17x4yv-6269x3y2v-124/75x2y3v+89/48xy4v-69/2y5v+8832x4zv+13984x3yzv+35/29x2y2zv-65/88xy3zv+53/74y4zv-55/79x3z2v-104/105x2yz2v+50/29xy2z2v-118/119y3z2v-25/88x2z3v+69/82xyz3v-56/69y2z3v-10495xz4v-73/50yz4v+1872z5v-62/19x4uv+99/89x3yuv+3156x2y2uv+5804xy3uv+85/91y4uv+10928x3zuv-4/83x2yzuv+2839xy2zuv+11/38y3zuv+55/126x2z2uv+15613xyz2uv+69/28y2z2uv+75/17xz3uv+115/51yz3uv-111/68z4uv-9781x3u2v+2/105x2yu2v-29/10xy2u2v+90/53y3u2v-12840x2zu2v+85/71xyzu2v-91/80y2zu2v+15904xz2u2v-82/69yz2u2v-32/75z3u2v-91/2x2u3v-77/61xyu3v-9757y2u3v-97/52xzu3v-32/9yzu3v-7457z2u3v-113/100xu4v-13367yu4v-16zu4v+17/53u5v+90/103x4v2-9338x3yv2-42/61x2y2v2+57/124xy3v2-17/6y4v2+6201x3zv2+75/8x2yzv2+13205xy2zv2-21/23y3zv2+6724x2z2v2-1646xyz2v2-3/41y2z2v2+13206xz3v2+14595yz3v2+3100z4v2-94/107x3uv2+106/99x2yuv2+53/24xy2uv2-10113y3uv2+13103x2zuv2+121/124xyzuv2-104/103y2zuv2+59/62xz2uv2+13343yz2uv2-73/72z3uv2-35/123x2u2v2+91/33xyu2v2+75/58y2u2v2-69/73xzu2v2-15760yzu2v2+684z2u2v2-12551xu3v2-99/79yu3v2+74/87zu3v2+9255u4v2-9727x3v3+1222x2yv3+31/115xy2v3+37/50y3v3-86/125x2zv3-5/82xyzv3+7/2y2zv3+69/88xz2v3-25/119yz2v3-120/101z3v3-48/113x2uv3-25/97xyuv3-14896y2uv3+13431xzuv3+13246yzuv3+7556z2uv3-103/111xu2v3+13/108yu2v3+9471zu2v3+31/114u3v3-121/23x2v4-65/69xyv4+66/95y2v4+30/59xzv4-111/40yzv4+55/4z2v4+114/121xuv4+7610yuv4-9205zuv4+85/81u2v4-88/59xv5-4248yv5+95/91zv5+156uv5-71/90v6,7698x4y-93/32x3y2+95/37x2y3+29/104xy4+10/23y5-11774x4z+4544x3yz-9/85x2y2z-45/49xy3z+110/41y4z-44/91x3z2-6083x2yz2+116/111xy2z2+47/68y3z2-11603x2z3-4229xyz3-13462y2z3-31/19xz4+4222yz4-700z5-34/11x4u-20/17x3yu-2471x2y2u-11235xy3u+13259y4u-111x3zu-109x2yzu-89/61xy2zu-28/11y3zu+74/97x2z2u+5554xyz2u+75/47y2z2u-68/77xz3u+15754yz3u-7/51z4u-53/98x3u2+9699x2yu2-9/104xy2u2+64/87y3u2-95/4x2zu2-595xyzu2+4/19y2zu2-18/95xz2u2-13449yz2u2+2931z3u2-11155x2u3-83/29xyu3+7830y2u3+108/91xzu3+13161yzu3+37/42z2u3-16/79xu4-10604yu4-15832zu4+40/39u5-6020x4v+910x3yv+13/110x2y2v+7/86xy3v-97/101y4v-3286x3zv+80/91x2yzv+12467xy2zv+115/99y3zv+79/60x2z2v-8/19xyz2v+105/71y2z2v+60/119xz3v-71/15yz3v+15272z4v-7397x3uv+125/7x2yuv-9507xy2uv+5301y3uv-5605x2zuv-32/35xyzuv-5523y2zuv+67/88xz2uv+15144yz2uv+3/8z3uv-33/56x2u2v+37/29xyu2v+49/19y2u2v-10604xzu2v+37/44yzu2v-8754z2u2v+4184xu3v-56/89yu3v-23/32zu3v+74/101u4v-23/123x3v2-13803x2yv2+54/95xy2v2+9751y3v2+55/119x2zv2+75/32xyzv2+10091y2zv2+1108xz2v2-13283yz2v2+98/111z3v2+5/109x2uv2+28/79xyuv2-95/6y2uv2-7880xzuv2-12659yzuv2+14820z2uv2+4279xu2v2+79/51yu2v2-67/49zu2v2+11207u3v2+85/54x2v3-78/43xyv3-3/95y2v3-86/65xzv3+1/114yzv3+27/74z2v3-102/31xuv3-11/59yuv3-33/29zuv3-3/110u2v3-8455xv4+77/100yv4-6225zv4-70/9uv4-10939v5,-7698x5-16/39x4y+51/61x3y2+59/33x2y3+12841xy4-11040y5+14163x4z-79/55x3yz-83/18x2y2z+121/67xy3z+52/35y4z+26/15x3z2+12770x2yz2-67/15xy2z2-12895y3z2-11/16x2z3-82/45xyz3+2446y2z3+116/9xz4+6/61yz4+83/98z5+9973x4u+67/101x3yu+25/19x2y2u+7517xy3u-59/117y4u-1/86x3zu-10/119x2yzu+2552xy2zu-2448y3zu-112/45x2z2u+35/71xyz2u+12328y2z2u+124/65xz3u-15531yz3u-39/16z4u+4678x3u2-44/103x2yu2-9303xy2u2+59/20y3u2-45/97x2zu2+2707xyzu2+65/61y2zu2+75/68xz2u2+2853yz2u2-12748z3u2-17/18x2u3-115/121xyu3+72/71y2u3-12194xzu3-14204yzu3-63/17z2u3+5772xu4-99/16yu4-51/43zu4+49/43u5-2588x4v+89/44x3yv+32/107x2y2v-117/76xy3v-84/115y4v+113/30x3zv-13/68x2yzv+15120xy2zv-59/28y3zv+61/52x2z2v+12390xyz2v+11436y2z2v+109/40xz3v+40/61yz3v+65/31z4v+12764x3uv+15885x2yuv-11299xy2uv-113/66y3uv+2887x2zuv-918xyzuv+12579y2zuv+39/10xz2uv-119/53yz2uv-62/115z3uv-10887x2u2v+115/122xyu2v-8863y2u2v-30/79xzu2v-26/5yzu2v+15294z2u2v-15701xu3v-11/19yu3v+25/14zu3v-48/55u4v+1341x3v2-4973x2yv2+55/117xy2v2-1787y3v2-115/57x2zv2+28/29xyzv2-184y2zv2+11738xz2v2-8375yz2v2-5962z3v2+52/55x2uv2+17/48xyuv2-103/52y2uv2-53/25xzuv2-101/3yzuv2-123/35z2uv2-14815xu2v2-103/14yu2v2-68/81zu2v2-81/22u3v2-121/56x2v3-12609xyv3+5555y2v3+8/17xzv3-741yzv3-73/103z2v3-12550xuv3-17/78yuv3+7817zuv3+6534u2v3-15384xv4+1807yv4-4677zv4-101/115uv4-83/19v5,-53/83x5+107/75x4y+26/51x3y2+45/109x2y3-3009xy4-27/61y5+16/85x4z-14859x3yz-20/27x2y2z+6326xy3z-4508y4z-10006x3z2-11979x2yz2+8579xy2z2+14669y3z2+67/79x2z3-2551xyz3-61/124y2z3+83/10xz4+12698yz4+15/113z5+123/86x4u-77/6x3yu+15113x2y2u+79/117xy3u-115/88y4u+101/95x3zu+56/13x2yzu-25/62xy2zu+1955y3zu+70/33x2z2u+7470xyz2u-2148y2z2u-14263xz3u-3962yz3u+47/35z4u+441x3u2+14944x2yu2-2/77xy2u2+68/23y3u2-121/43x2zu2-14321xyzu2-35/32y2zu2+34/21xz2u2+11645yz2u2+7131z3u2-3615x2u3-2748xyu3-15200y2u3+81/101xzu3+39/64yzu3-3967z2u3-10346xu4+55/18yu4-8/9zu4+33/68u5-13957x4v+31/116x3yv+58/81x2y2v+36/71xy3v-5706y4v-95/48x3zv+3214x2yzv+14729xy2zv+71/109y3zv+15365x2z2v-5109xyz2v-20/107y2z2v-6/11xz3v+74/55yz3v-76/11z4v+41/72x3uv+7215x2yuv-18/59xy2uv+1741y3uv+7698x2zuv-7299xyzuv+12127y2zuv+7/93xz2uv+71/8yz2uv-123/73z3uv+13657x2u2v-98/13xyu2v+11818y2u2v+22/23xzu2v-3038yzu2v+68/61z2u2v-7173xu3v-7460yu3v+3540zu3v+27/20u4v-37/41x3v2+20x2yv2+107/82xy2v2-2237y3v2+9827x2zv2+124/27xyzv2-18/5y2zv2-77/24xz2v2-10231yz2v2-32/7z3v2-11980x2uv2-36/35xyuv2+8618y2uv2+3174xzuv2-123/2yzuv2-117/38z2uv2+117/115xu2v2+70/3yu2v2-3144zu2v2+815u3v2-116/85x2v3+98/41xyv3-648y2v3-38/5xzv3-9/125yzv3+8710z2v3+48/31xuv3+101/109yuv3+70/11zuv3-51/4u2v3-76/59xv4-93/52yv4+15291zv4+4/55uv4+64/59v5,568x5+4355x4y+48/5x3y2+33/7x2y3-53/111xy4+1749y5-23/4x4z-98/69x3yz-47/56x2y2z-8519xy3z-5/113y4z+11488x3z2+79/21x2yz2+11/89xy2z2-64/83y3z2-15697x2z3-67/86xyz3+11545y2z3+3336xz4-106/39yz4+15466z5+15202x4u-34/63x3yu-121/72x2y2u+1/52xy3u+10800y4u+4993x3zu-55/112x2yzu-26/51xy2zu-114/125y3zu+113/2x2z2u-87/88xyz2u-91/107y2z2u-65/6xz3u+15415yz3u+1373z4u-27/86x3u2-76/93x2yu2+9/22xy2u2+16/91y3u2+10326x2zu2-61/84xyzu2-28/99y2zu2+87/14xz2u2-88/45yz2u2+60/59z3u2-13/60x2u3-10824xyu3-121/119y2u3+14919xzu3-81/25yzu3+11233z2u3+14676xu4-8474yu4+12211zu4+32/83u5+57/52x4v+10/13x3yv-277x2y2v-6961xy3v-4594y4v-13439x3zv-1/30x2yzv-118/43xy2zv-62/15y3zv+76/15x2z2v+3805xyz2v-26/15y2z2v+3081xz3v+662yz3v+13856z4v+107/30x3uv+6063x2yuv+100/37xy2uv+110/107y3uv-10346x2zuv-67/44xyzuv-93/29y2zuv+17/89xz2uv-57/104yz2uv-68/91z3uv+3804x2u2v-75/107xyu2v-11842y2u2v-103/57xzu2v-37/18yzu2v+10795z2u2v-90/31xu3v+14200yu3v+97/124zu3v+5256u4v+52/101x3v2-94/107x2yv2-12841xy2v2+77/72y3v2+93/74x2zv2+7033xyzv2+87/76y2zv2-15415xz2v2-15164yz2v2-14749z3v2+86/53x2uv2+14707xyuv2+9443y2uv2+118/5xzuv2-81/2yzuv2+43/57z2uv2+59/83xu2v2-121/79yu2v2+4449zu2v2-50/63u3v2+79/31x2v3+95/32xyv3+125/107y2v3-9165xzv3+3151yzv3+5006z2v3+45/19xuv3-5194yuv3-82/11zuv3+121/15u2v3-10265xv4-99/118yv4-3162zv4-16/29uv4-37/4v5;TestGRRes(Name, I); kill R, Name, @p;  "";
781
782  string Name = "k3.d11.g11.ss0"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = 38/41x4y+116/67x3y2+6547x2y3-50/71xy4+13/89y5+63/22x4z-12151x3yz-3400x2y2z-52/45xy3z+9027y4z+5420x3z2+6983x2yz2-3285xy2z2-47/2y3z2-137x2z3+40/51xyz3+111/40y2z3-97/93xz4+918yz4-7492z5-122/49x4u-123/47x3yu-95/32x2y2u-83/36xy3u-125/77y4u-9824x3zu-51/115x2yzu-83/18xy2zu-19/20y3zu-117/98x2z2u+885xyz2u-20/97y2z2u+69/55xz3u-11/82yz3u+93/47z4u-97/113x3u2-83/48x2yu2+12868xy2u2-4932y3u2-97/114x2zu2-121/116xyzu2-79/108y2zu2-27/68xz2u2+116/19yz2u2+10019z3u2-6268x2u3+5/31xyu3+13810y2u3-120/37xzu3-33/124yzu3-31/41z2u3+79/50xu4+71/59yu4+110/81zu4-27/53u5-12764x4v-7/22x3yv+15253x2y2v-67/29xy3v+15620y4v-1202x3zv+56/57x2yzv-99xy2zv-29/28y3zv-15010x2z2v-101/16xyz2v+11110y2z2v+7300xz3v+58/95yz3v+10228z4v+65/57x3uv+9/2x2yuv+116/27xy2uv+7960y3uv-11/8x2zuv+59/23xyzuv+19/26y2zuv+14327xz2uv-14671yz2uv+126/101z3uv+69/83x2u2v+14041xyu2v-73/90y2u2v+11/108xzu2v-5492yzu2v-3858z2u2v-2840xu3v+15365yu3v+28/113zu3v+149u4v-94/85x3v2-32/123x2yv2-1409xy2v2-8233y3v2+851x2zv2-7458xyzv2-10713y2zv2-18/11xz2v2-15/47yz2v2-32/97z3v2+39/68x2uv2-10832xyuv2+39/59y2uv2-12211xzuv2+66/71yzuv2+121/115z2uv2-65/101xu2v2+82/11yu2v2-78/103zu2v2-10128u3v2-100/33x2v3-29/28xyv3+61/29y2v3-5266xzv3+1953yzv3+5799z2v3+13/77xuv3-2680yuv3-57/98zuv3+56/125u2v3+121/42xv4+47/111yv4+2590zv4-60/53uv4+43/61v5,8057x5+3453x4y-71/57x3y2+14017x2y3+89/28xy4-15/44y5+10785x4z-14385x3yz-112/31x2y2z+29/42xy3z+162y4z-12837x3z2+31/33x2yz2+105/74xy2z2+97/59y3z2-23/61x2z3-246xyz3+65/93y2z3+1/54xz4+6/25yz4+96x4u-41/74x3yu+15120x2y2u-1465xy3u-47/42y4u+11/80x3zu-84/55x2yzu+12120xy2zu+84/65y3zu+496x2z2u-29/24xyz2u+3753y2z2u-2608xz3u+11/123yz3u+7955z4u-11390x3u2+37/79x2yu2+3230xy2u2-72/83y3u2-87/74x2zu2-11620xyzu2+8276y2zu2+608xz2u2-7002yz2u2-7897z3u2-65/97x2u3-37/3xyu3+7/43y2u3+37/20xzu3+97/28yzu3+98/19z2u3-47/45xu4-49/109yu4-53/89zu4-66/125u5+7516x4v-1097x3yv+15928x2y2v-12128xy3v-12988y4v-23/7x3zv+5146x2yzv+9/28xy2zv-1816y3zv+115/42x2z2v+11840xyz2v+40/119y2z2v-66/85xz3v-8269yz3v-59/45z4v-114/37x3uv-126/55x2yuv-31/24xy2uv-19/9y3uv+77/3x2zuv+14268xyzuv-4133y2zuv-11603xz2uv-55/83yz2uv-5/61z3uv-13069x2u2v+4387xyu2v+94/77y2u2v-111/79xzu2v-31/61yzu2v-26/53z2u2v-13/103xu3v-27/91yu3v-100/57zu3v-104/111u4v+77/15x3v2+100/69x2yv2-1664xy2v2+14971y3v2-67/45x2zv2-55/27xyzv2+13/98y2zv2-958xz2v2+3/68yz2v2+34/65z3v2+10771x2uv2+19/106xyuv2-84/125y2uv2+4723xzuv2-10707yzuv2+50/103z2uv2+1766xu2v2+110/3yu2v2-58/51zu2v2-16/105u3v2-70/111x2v3+83/103xyv3-104/83y2v3-2394xzv3+91/109yzv3-11779z2v3+111/80xuv3+41/109yuv3+71/77zuv3+110/31u2v3+8933xv4-109/113yv4-56/87zv4-120/7uv4-107/57v5,-38/41x5-116/67x4y-6547x3y2+50/71x2y3-13/89xy4-43/79x4z+1342x3yz+14316x2y2z+737xy3z+15/44y4z+124/79x3z2-67/13x2yz2+79/104xy2z2-162y3z2-109/120x2z3+4540xyz3-97/59y2z3+3772xz4-65/93yz4-6/25z5-13041x4u-90/89x3yu+107/36x2y2u+43/46xy3u-11755y4u+12017x3zu-97/58x2yzu+5592xy2zu-11967y3zu+24/79x2z2u-63/83xyz2u-7367y2z2u-62/79xz3u+55/64yz3u-67/18z4u-672x3u2+19/77x2yu2-100/63xy2u2-23/56y3u2+61/78x2zu2+120/67xyzu2+48/107y2zu2+5855xz2u2+9877yz2u2+6940z3u2+12754x2u3+12989xyu3-123/106y2u3+59/88xzu3-3400yzu3-8976z2u3+43/21xu4-86/111yu4+2/29zu4+57/31u5+79/48x4v+95/56x3yv+3056x2y2v-13681xy3v+13735y4v-122/91x3zv+79/74x2yzv+21/47xy2zv+12060y3zv-12314x2z2v+64/17xyz2v-57/52y2z2v-57/86xz3v+15436yz3v+9387z4v+3345x3uv+2/109x2yuv-13978xy2uv+5604y3uv+11645x2zuv+2633xyzuv+15505y2zuv+10/99xz2uv+14409yz2uv+8127z3uv+99/104x2u2v+14440xyu2v+37/43y2u2v-9707xzu2v+9171yzu2v-656z2u2v+3723xu3v+4/19yu3v+109/76zu3v-8740u4v+2121x3v2+34/11x2yv2-89/61xy2v2-26/21y3v2+111/22x2zv2+88/41xyzv2+119/99y2zv2+108/77xz2v2+9279yz2v2-45/116z3v2+71/107x2uv2+25/76xyuv2-112/121y2uv2-18/71xzuv2-84/125yzuv2+496z2uv2+96/113xu2v2-964yu2v2-73/4zu2v2+103/95u3v2+9962x2v3+38/39xyv3-15120y2v3+11747xzv3+2/123yzv3+14829z2v3-6538xuv3-52/63yuv3-83/107zuv3+73/37u2v3-4183xv4+11/103yv4+83/119zv4+94/31uv4-19/98v5,-12092x5-2411x4y+3922x3y2+117/41x2y3+95/22xy4+45/19x4z-5881x3yz+97/80x2y2z-4981xy3z-21/67y4z+9068x3z2+1/11x2yz2-109/65xy2z2+22/117y3z2-7823x2z3-76/75xyz3-34/25y2z3-79/5xz4-60/37yz4-87/100z5+58/83x4u-36/61x3yu+79/76x2y2u+502xy3u+4988y4u+43/38x3zu-4/107x2yzu-48/11xy2zu+11685y3zu-15002x2z2u-97/17xyz2u+93/2y2z2u-35/71xz3u+43/83yz3u-69/26z4u+119/6x3u2-87/14x2yu2-29/109xy2u2-36/97y3u2-116/119x2zu2+4610xyzu2-33/58y2zu2+121/25xz2u2-125/121yz2u2-35/121z3u2-8975x2u3+9014xyu3+14845y2u3-10277xzu3+75/124yzu3-10/83z2u3-73/69xu4+46/85yu4-4971zu4-113/4u5+9321x4v+109/19x3yv+11/17x2y2v+6672xy3v+16/99y4v+8092x3zv+1725x2yzv+80/41xy2zv+2445y3zv+4/99x2z2v+69/101xyz2v+13182y2z2v-10090xz3v+3817yz3v+106/79z4v-71/89x3uv+110/107x2yuv-56/19xy2uv-708y3uv-108/97x2zuv-11889xyzuv+9744y2zuv-24/121xz2uv-10711yz2uv+3182z3uv-22/35x2u2v+81/44xyu2v-40/31y2u2v-13494xzu2v+47/80yzu2v+71/52z2u2v-6214xu3v-5144yu3v-115/49zu3v-109/19u4v+8621x3v2-62/79x2yv2-102/103xy2v2-8174y3v2+13689x2zv2+15544xyzv2-107/73y2zv2+120/73xz2v2+19/56yz2v2-4544z3v2-824x2uv2-2/17xyuv2+67/78y2uv2-54/85xzuv2+31/51yzuv2-59/19z2uv2+50/7xu2v2+5762yu2v2+79/64zu2v2-3729u3v2+12212x2v3+1833xyv3+12543y2v3+11974xzv3-11/17yzv3-75/74z2v3+26/3xuv3-37/36yuv3-7683zuv3+14069u2v3+12261xv4+12489yv4+1657zv4+10781uv4-46/3v5,12092x4z+2411x3yz-3922x2y2z-117/41xy3z-95/22y4z+11164x3z2+6625x2yz2+112/75xy2z2+1533y3z2+60/101x2z3-173xyz3+15913y2z3+14954xz4-5022yz4+12391z5-38/41x4u-116/67x3yu-6547x2y2u+50/71xy3u-13/89y4u-12/55x3zu-10086x2yzu+6782xy2zu-111/89y3zu-52/85x2z2u+9744xyz2u+9553y2z2u-15590xz3u+76/13yz3u+5938z4u+42/11x3u2-25/116x2yu2+2554xy2u2-12842y3u2-3/88x2zu2+102/113xyzu2-10298y2zu2-32/69xz2u2+9709yz2u2+8775z3u2-9937x2u3+5128xyu3-56/75y2u3+12493xzu3-7/39yzu3-41/24z2u3-125/49xu4-15745yu4-1005zu4+16/55u5-7566x3zv+14010x2yzv+51/23xy2zv+37/113y3zv+9/14x2z2v+2251xyz2v+10076y2z2v-106/69xz3v-4060yz3v+3379z4v-11120x3uv-9744x2yuv+50/17xy2uv+7065y3uv-70/37x2zuv+10016xyzuv+47/86y2zuv+6928xz2uv-11190yz2uv-11611z3uv+15042x2u2v-52/105xyu2v+2185y2u2v-76/67xzu2v-57/104yzu2v-7610z2u2v-3912xu3v+1/48yu3v-24/109zu3v+3287u4v+17/96x2zv2+29/76xyzv2+15768y2zv2+8410xz2v2-116/41yz2v2+89/48z3v2+15119x2uv2-11840xyuv2-89/43y2uv2+10115xzuv2+93/101yzuv2+33/62z2uv2+11864xu2v2-14582yu2v2+95/53zu2v2-8816u3v2+35/43xzv3+75/107yzv3+13515z2v3-38/67xuv3+83/71yuv3+113/51zuv3-80/111u2v3+49/5zv4+13850uv4,14959x5-3/13x4y+97/37x3y2+14586x2y3-71/120xy4-10158x4z+59/50x3yz-101/96x2y2z+118/47xy3z-65/83y4z+49/66x3z2-107/18x2yz2-2/47xy2z2+104/63y3z2-121/43x2z3+9552xyz3-113/36y2z3+4699xz4+55/53yz4+16/109z5-3576x4u-103/52x3yu-8299x2y2u+1585xy3u+3377y4u+15336x3zu-119/24x2yzu-19/68xy2zu-65/11y3zu-17/117x2z2u+788xyz2u+73/115y2z2u-46/93xz3u-108/7yz3u+3774z4u-14034x3u2-15420x2yu2-5128xy2u2+83/55y3u2+17/5x2zu2+13098xyzu2+96/29y2zu2-54/115xz2u2+4/5yz2u2+2747z3u2+56/83x2u3-1545xyu3+14384y2u3+7787xzu3-69/64yzu3-27/20z2u3-17/15xu4+46/13yu4-44/41zu4-14876u5+10090x4v+184x3yv+125/44x2y2v-13987xy3v+104/123y4v+24/35x3zv+77/95x2yzv+162xy2zv+31/113y3zv-94/51x2z2v-14750xyz2v-110/101y2z2v+3224xz3v-12389yz3v-77/57z4v-7340x3uv+48/79x2yuv-55/71xy2uv-65/57y3uv+13981x2zuv+76/73xyzuv-41/22y2zuv-10847xz2uv+3230yz2uv+37/14z3uv+64/47x2u2v-89/97xyu2v-608y2u2v-93/112xzu2v-22yzu2v+7158z2u2v-120/31xu3v-13481yu3v-97/37zu3v-113/87u4v-35/19x3v2+79/53x2yv2-1037xy2v2-29/63y3v2+5990x2zv2-3380xyzv2-17/126y2zv2-40/121xz2v2-15041yz2v2+3779z3v2+13583x2uv2+11/73xyuv2+2762y2uv2-16/49xzuv2-40/93yzuv2-37/75z2uv2+13312xu2v2+4407yu2v2+5449zu2v2+3013u3v2+86/73x2v3-37/66xyv3-73/15y2v3+75/107xzv3-63/31yzv3-97/99z2v3+11234xuv3+37/92yuv3+47/27zuv3+121/26u2v3-15690xv4+73/40yv4-12281zv4+6014uv4-92/83v5,-12092x4y-2411x3y2+3922x2y3+117/41xy4+95/22y5+14327x4z+3699x3yz+18/85x2y2z-56/53xy3z-31/16y4z+5371x3z2+73/69x2yz2+65/34xy2z2-59/49y3z2+23/37x2z3-9067xyz3+79/37y2z3-17/50xz4+8412yz4+110/39z5-36/125x4u-20/51x3yu-28/123x2y2u-4482xy3u+4217y4u+8/19x3zu+9/77x2yzu-10526xy2zu+76/79y3zu-12494x2z2u-50/13xyz2u-98/123y2z2u-23/19xz3u+1491yz3u-50/109z4u-67/62x3u2+68/47x2yu2-38/99xy2u2-4891y3u2+68/113x2zu2-73/35xyzu2-2384y2zu2+71/109xz2u2-68/39yz2u2-94/125z3u2+120/121x2u3-20/39xyu3+435y2u3-23/14xzu3-39/97yzu3+75/23z2u3+71/30xu4-8426yu4+125/7zu4+11/46u5-2334x4v+9113x3yv-1060x2y2v+12839xy3v+9876y4v-8395x3zv-79/82x2yzv+89/79xy2zv+805y3zv-7473x2z2v+80/89xyz2v+105/52y2z2v-54/103xz3v-2102yz3v+19/117z4v-1326x3uv-8963x2yuv-12/13xy2uv+11798y3uv-80/7x2zuv+519xyzuv-58/67y2zuv+14572xz2uv+8426yz2uv-66/47z3uv-574x2u2v+12480xyu2v-41/89y2u2v-111/83xzu2v-58/37yzu2v-15255z2u2v+31/97xu3v-89/113yu3v+15475zu3v-3982u4v+51/8x3v2+9547x2yv2-8060xy2v2-195y3v2-5/21x2zv2-2411xyzv2+65/12y2zv2-5410xz2v2+3844yz2v2+3/61z3v2-62/101x2uv2+53/19xyuv2-6567y2uv2+11302xzuv2+123/37yzuv2-107/118z2uv2-29/79xu2v2-91/40yu2v2+40/99zu2v2-12274u3v2-47/124x2v3+12752xyv3+11039y2v3-115/43xzv3+44/79yzv3-37/28z2v3+5364xuv3+14510yuv3+3024zuv3-40/3u2v3+71/122xv4+12024yv4+10/93zv4-4183uv4+11229v5,-51/74x4y-99/61x3y2-10442x2y3+6943xy4-15040y5+126/97x4z+101/41x3yz+4018x2y2z+98/61xy3z+87/34y4z+75/52x3z2-109/70x2yz2-81/71xy2z2+8231y3z2+78/49x2z3+53/69xyz3+70/71y2z3+48/23xz4-6678yz4+14913z5-32/97x4u+78/55x3yu+11669x2y2u-58/75xy3u-61/64y4u+118/35x3zu-125/28x2yzu-125/79xy2zu-49/23y3zu-14966x2z2u-34/19xyz2u-53/126y2z2u+13854xz3u-2177yz3u+9962z4u+15886x3u2+47/38x2yu2+10992xy2u2-111/31y3u2-79/21x2zu2-14524xyzu2-3442y2zu2-45/86xz2u2+53/3yz2u2+8738z3u2+9062x2u3+3872xyu3+56/61y2u3-6255xzu3-104/107yzu3+9858z2u3+7891xu4-11114yu4+67/37zu4-15307u5-108/7x4v+11586x3yv+19/4x2y2v+14404xy3v-99/116y4v+124/33x3zv-73/17x2yzv+77/115xy2zv-4537y3zv+9949x2z2v+101/111xyz2v+6634y2z2v-11818xz3v+23/52yz3v-63z4v+7/6x3uv-13686x2yuv+15879xy2uv+4731y3uv+107/82x2zuv+104/119xyzuv-56/67y2zuv-21/5xz2uv-24/41yz2uv-125/108z3uv+58/77x2u2v+79/49xyu2v+82/19y2u2v-82/117xzu2v-8/61yzu2v+210z2u2v+27/25xu3v+71/111yu3v-14500zu3v-15/2u4v-113/108x3v2+40/31x2yv2+89/69xy2v2-8271y3v2+111/20x2zv2+1/31xyzv2-51/101y2zv2+3967xz2v2+79/32yz2v2-6893z3v2-1060x2uv2+38/5xyuv2+21/20y2uv2-79/34xzuv2+15/118yzuv2+25/106z2uv2+97/20xu2v2+6/67yu2v2+113/120zu2v2+13/3u3v2+1800x2v3-97/15xyv3-12712y2v3+49/118xzv3+5/63yzv3+234z2v3-97/123xuv3+13/88yuv3+8/103zuv3-38/97u2v3-15634xv4+18/25yv4-7517zv4+115/103uv4-56/23v5,-123/61x5+4/87x4y-15558x3y2+78/5x2y3-31/83xy4+9742x4z+23/125x3yz+1865x2y2z+56/125xy3z-4/33y4z-54/71x3z2-113/84x2yz2+37/75xy2z2+6/23y3z2-28/123x2z3+31/112xyz3-15736y2z3-106/111xz4+46/109yz4-29/10z5-28/117x4u+15892x3yu+8096x2y2u-91/29xy3u+57/92y4u+96/31x3zu+166x2yzu+2654xy2zu-11662y3zu+1565x2z2u+9017xyz2u+121/4y2z2u-29/115xz3u+9828yz3u-15873z4u-5354x3u2+118/19x2yu2+88/95xy2u2+68/19y3u2-7/110x2zu2-109/37xyzu2-45/74y2zu2+12579xz2u2-6659yz2u2+10257z3u2+7229x2u3+39/67xyu3-108/19y2u3-58/9xzu3-29/81yzu3-1461z2u3+23/43xu4-8/19yu4-44zu4+100/109u5+121/51x4v-20/39x3yv-85/121x2y2v+73/61xy3v+103/50y4v+7334x3zv+52/125x2yzv-14/55xy2zv+106/103y3zv-4079x2z2v+109/57xyz2v+123/28y2z2v-21/83xz3v+3/31yz3v-9826z4v+89/77x3uv-79/35x2yuv+8767xy2uv+83/11y3uv+113/36x2zuv-57/68xyzuv+1675y2zuv+10873xz2uv+84/11yz2uv+89/110z3uv-5834x2u2v-121/97xyu2v+49/66y2u2v-103/95xzu2v+14863yzu2v+119/94z2u2v+44/35xu3v-15429yu3v-9302zu3v-73/12u4v-77/86x3v2-121/46x2yv2+48/13xy2v2+68/115y3v2+58/63x2zv2+58/117xyzv2-16/7y2zv2-76/39xz2v2+41/103yz2v2-8042z3v2-59/5x2uv2+3277xyuv2-120/107y2uv2-5/84xzuv2-30/103yzuv2+31/71z2uv2-1593xu2v2-4668yu2v2+5749zu2v2+38/43u3v2+26/17x2v3+1894xyv3+62/17y2v3-4851xzv3-10816yzv3+62/55z2v3+1366xuv3-70/11yuv3+90/43zuv3-115/57u2v3-10886xv4+1987yv4-78/25zv4+110/29uv4+4694v5,47/12x5+64/29x4y-113/70x3y2+15185x2y3-52/81xy4+67/28x4z-4220x3yz-9239x2y2z+10/117xy3z-5609y4z-4439x3z2-61/91x2yz2+15282xy2z2+8165y3z2-19/109x2z3+123/94xyz3+62/49y2z3+77/2xz4-1/37yz4-1202z5-14940x4u+13396x3yu-6/5x2y2u-91/50xy3u+115/118y4u-455x3zu-2755x2yzu+14353xy2zu+11/53y3zu+115/57x2z2u+86/49xyz2u+43y2z2u+5247xz3u+4438yz3u+109/16z4u-3113x3u2-15629x2yu2-15664xy2u2-115/57y3u2+3/103x2zu2-3723xyzu2+89/17y2zu2-59/56xz2u2+19/123yz2u2+43/14z3u2+103/14x2u3+106/31xyu3-13591y2u3-71/43xzu3+74/119yzu3-36/113z2u3-73/96xu4-31/120yu4-105/76zu4-37/34u5-58/23x4v-11111x3yv+5888x2y2v+14867xy3v+8608y4v-2829x3zv-31/120x2yzv+6306xy2zv+5913y3zv+35/6x2z2v+75/104xyz2v+33/41y2z2v-15317xz3v-31/49yz3v-7300z4v+2214x3uv-91/46x2yuv+10949xy2uv-3/82y3uv-16/27x2zuv-14175xyzuv-13/19y2zuv-21/65xz2uv+148yz2uv+14615z3uv-43/6x2u2v-4133xyu2v+33/49y2u2v-1299xzu2v+96/53yzu2v-12667z2u2v-86/113xu3v+10437yu3v-53/13zu3v-15678u4v-53/121x3v2-20/49x2yv2+3813xy2v2+10006y3v2+15644x2zv2-99/7xyzv2-42/13y2zv2-124/57xz2v2+73/70yz2v2+110/107z3v2-97/22x2uv2-125/116xyuv2+92/93y2uv2-12120xzuv2+143yzuv2-15344z2uv2+13225xu2v2+17/104yu2v2+1212zu2v2-7685u3v2-81/4x2v3+10328xyv3-21/19y2v3+13407xzv3-1/118yzv3+59/88z2v3+965xuv3-93/43yuv3-76/85zuv3-81/86u2v3-6949xv4+9205yv4-7777zv4+15020uv4+8845v5,3079x5-28/11x4y+117/88x3y2-89/115x2y3+40/13xy4+13407y5+3942x4z+30/121x3yz-2922x2y2z-71/74xy3z-103/114y4z-89/59x3z2+12255x2yz2+44/109xy2z2+13778y3z2+103/110x2z3-73/95xyz3+8049y2z3+10042xz4-101/35yz4-1636z5-53/27x4u+130x3yu-5989x2y2u+67/109xy3u+4601y4u-12943x3zu-86/75x2yzu+5837xy2zu+107/104y3zu+2396x2z2u-25/58xyz2u+29/110y2z2u+10526xz3u-7/45yz3u-9105z4u-64/35x3u2+64/105x2yu2+113/24xy2u2-5955y3u2+20/91x2zu2+119/78xyzu2+83/8y2zu2+125/103xz2u2+83/101yz2u2+14895z3u2-118/93x2u3-19/23xyu3+100/53y2u3-92/59xzu3+34/89yzu3+9417z2u3-6626xu4-36/65yu4+119/82zu4+8761u5-15340x4v-89/115x3yv+89/85x2y2v+33/74xy3v-8088y4v+29/16x3zv-6581x2yzv-88/85xy2zv-12/11y3zv-58/19x2z2v+12219xyz2v-100/119y2z2v+116/53xz3v-67/94yz3v+13/5z4v+236x3uv+107/96x2yuv+115/113xy2uv-7860y3uv+15064x2zuv+29/59xyzuv-7/103y2zuv-71/66xz2uv-103/79yz2uv-83/4z3uv-77/23x2u2v+7/37xyu2v+106/103y2u2v+3/50xzu2v+125/17yzu2v-15620z2u2v+6424xu3v-12832yu3v+58/53zu3v-3893u4v+25/124x3v2-99/61x2yv2-61/10xy2v2-103/39y3v2-9764x2zv2+123/23xyzv2-83/126y2zv2+13541xz2v2+73/106yz2v2+1172z3v2-14333x2uv2+7/72xyuv2-41/25y2uv2-42/31xzuv2+7/12yzuv2-9744z2uv2-15518xu2v2-121/5yu2v2-7/115zu2v2+75/14u3v2-9/67x2v3+10248xyv3+5738y2v3+71/13xzv3-43/24yzv3+9/94z2v3-113/16xuv3-27/25yuv3-50/11zuv3+41/49u2v3+10896xv4-46/43yv4-58/15zv4-5671uv4-61/9v5,6254x5-95/34x4y-7133x3y2+111/38x2y3-43/19xy4-104/111y5+92/51x4z+11826x3yz+3453x2y2z+5703xy3z+13099y4z-73/79x3z2-69/11x2yz2-15727xy2z2+98/115y3z2-10548x2z3-14452xyz3-5138y2z3-138xz4+46/109yz4-5419z5+73/6x4u-63/5x3yu+31/60x2y2u-11963xy3u+6161y4u-2311x3zu+104/105x2yzu+10873xy2zu+8165y3zu-17/83x2z2u-18/91xyz2u+13544y2z2u+36/121xz3u-8704yz3u+46/7z4u+11392x3u2+133x2yu2+7460xy2u2+8831y3u2+144x2zu2-79/47xyzu2-70/113y2zu2+7369xz2u2-11234yz2u2-19/52z3u2+9830x2u3+13/41xyu3+1985y2u3-22/15xzu3-5449yzu3+5967z2u3+9321xu4+13078yu4-97/3zu4+4079u5-5700x4v+5013x3yv-10774x2y2v-13183xy3v-20/109y4v-106/65x3zv+49/117x2yzv-67/17xy2zv-13917y3zv+9457x2z2v+95/67xyz2v-108/65y2z2v+65/77xz3v-11235yz3v+125/104z4v+17/117x3uv+6355x2yuv+5/36xy2uv-117/31y3uv-1225x2zuv+117/53xyzuv-7/26y2zuv+87/46xz2uv+33/76yz2uv-82/73z3uv-34/39x2u2v+9/22xyu2v+83/11y2u2v+13740xzu2v-108/11yzu2v-9627z2u2v-32/95xu3v-7966yu3v-12400zu3v-111/91u4v+47/11x3v2-10/27x2yv2-5257xy2v2-85/19y3v2-3/62x2zv2+12660xyzv2-37/110y2zv2+10980xz2v2+73/29yz2v2+87/92z3v2-73/90x2uv2-77/25xyuv2+66/31y2uv2-23/96xzuv2-3169yzuv2+125/71z2uv2+9/11xu2v2+6550yu2v2-15163zu2v2+10810u3v2+96/79x2v3+196xyv3-95/94y2v3+15146xzv3+14695yzv3+97/80z2v3+13047xuv3-44/79yuv3-43/41zuv3+40/57u2v3-8369xv4+12/5yv4+77/100zv4-53/79uv4-53/86v5,-122/49x5-3959x4y-7277x3y2+41/93x2y3+39/59xy4-91/68x4z+37/11x3yz+11561x2y2z-5297xy3z+53/14y4z-17/122x3z2+5470x2yz2+14889xy2z2-123/49y3z2+131x2z3+13/43xyz3-82/37y2z3-106/91xz4+11066yz4-72/13z5+15904x4u+44/47x3yu+10450x2y2u+86/41xy3u-40/41y4u+17/92x3zu-81/29x2yzu-40/101xy2zu+103/59y3zu-29/72x2z2u+17/123xyz2u+38/3y2z2u+3358xz3u-69/97yz3u+7627z4u+15451x3u2+5371x2yu2-9009xy2u2-62/35y3u2-44/75x2zu2+13188xyzu2+50/51y2zu2+53/93xz2u2-6796yz2u2-13/6z3u2+39/62x2u3-22/71xyu3-32/97y2u3+43/14xzu3-9/37yzu3-48/125z2u3+100/103xu4+13286yu4+6246zu4-26/107u5-15634x4v+112/9x3yv+54/109x2y2v+23/93xy3v+101/13y4v+79/84x3zv+5290x2yzv-52/29xy2zv-109/111y3zv+107/88x2z2v+10186xyz2v+122/97y2z2v-8370xz3v-108/47yz3v+6311z4v-1126x3uv+51/10x2yuv+9201xy2uv-111/119y3uv+105/58x2zuv-74/23xyzuv-130y2zuv-99/28xz2uv+24/65yz2uv-111/49z3uv-4961x2u2v-23/42xyu2v-32/101y2u2v+48/83xzu2v-13001yzu2v-31/86z2u2v+85/91xu3v+4019yu3v-10/43zu3v+11/105u4v+9790x3v2+73/78x2yv2+63/50xy2v2+35/2y3v2-52/119x2zv2+13680xyzv2-46/55y2zv2+89/12xz2v2-23/82yz2v2-107/85z3v2-20/79x2uv2-85/111xyuv2+31/95y2uv2-13xzuv2+5661yzuv2+9399z2uv2+73/75xu2v2+4782yu2v2-5440zu2v2+45/64u3v2-1484x2v3+1/54xyv3+43/115y2v3+139xzv3-47/85yzv3-103/43z2v3+48/97xuv3+67/15yuv3-69/95zuv3-67/90u2v3+6540xv4+6276yv4-9756zv4-10/121uv4+118/63v5,x5+13/23x4y-10277x3y2-81/107x2y3+18/97xy4+193x4z-206x3yz+1473x2y2z-3907xy3z+9620y4z-11603x3z2+7430x2yz2-3745xy2z2-23/55y3z2-31/13x2z3-115/51xyz3+54/5y2z3+107/6xz4+8432yz4-23/71z5-21/79x4u-7130x3yu-55/46x2y2u+61/113xy3u+11/95y4u-31/125x3zu+47/80x2yzu+12/79xy2zu-51/112y3zu-28/75x2z2u+1962xyz2u-12942y2z2u-93/37xz3u-7/9yz3u+81/7z4u-79/62x3u2+98/29x2yu2-113/36xy2u2-59/51y3u2-5931x2zu2+8/29xyzu2-22/117y2zu2-12146xz2u2+12607yz2u2-8748z3u2-11878x2u3-6xyu3-11798y2u3+97/111xzu3+122/3yzu3+10228z2u3-99/67xu4-8058yu4+116/43zu4-6801u5-7565x4v-21/58x3yv-23/90x2y2v-111/49xy3v+62/3y4v-118/109x3zv-91/27x2yzv-2256xy2zv-6909y3zv+47/126x2z2v+397xyz2v-65/103y2z2v+106/43xz3v-43/9yz3v+4502z4v+5383x3uv-19/48x2yuv+91/92xy2uv-15545y3uv+11204x2zuv+7609xyzuv-125/44y2zuv+15/7xz2uv-4157yz2uv+27/10z3uv+70/67x2u2v+5/121xyu2v-12337y2u2v-12417xzu2v+46/113yzu2v+27/89z2u2v-9419xu3v-59/47yu3v+52/97zu3v+71/56u4v+56/123x3v2+122/73x2yv2+100/103xy2v2+43/8y3v2+99/98x2zv2-14242xyzv2-93/38y2zv2+61/109xz2v2-21/125yz2v2+80/23z3v2+11603x2uv2-1734xyuv2-55/73y2uv2+5/89xzuv2+77/100yzuv2-71/38z2uv2+41/47xu2v2+981yu2v2+11/41zu2v2-8983u3v2+98/59x2v3+105/97xyv3-6372y2v3+12829xzv3+79/96yzv3+110/57z2v3+8495xuv3-11228yuv3-2396zuv3-101/9u2v3-71/39xv4-11746yv4-43/96zv4+64/55uv4-769v5,122/49x4y+3959x3y2+7277x2y3-41/93xy4-39/59y5+32/97x4z+97/96x3yz-43/116x2y2z+19/30xy3z+18/17y4z+39/122x3z2-98/99x2yz2+23/65xy2z2-50/103y3z2-11445x2z3+111/119xyz3-82/67y2z3+49/15xz4+59/74yz4+87/124z5+97/113x3yu+59/113x2y2u-17/16xy3u-1892y4u-15886x3zu+75/124x2yzu-13/108xy2zu+14203y3zu+13871x2z2u+24xyz2u+1483y2z2u-34/91xz3u+51/29yz3u+88/107z4u+6268x2yu2+13776xy2u2+1935y3u2-9062x2zu2-4534xyzu2+9553y2zu2-8429xz2u2-11141yz2u2-89/88z3u2-79/50xyu3-121/15y2u3-7891xzu3-27/94yzu3+96/71z2u3+27/53yu4+15307zu4-775x4v-2648x3yv-2095x2y2v+7594xy3v+12989y4v-17/29x3zv+11801x2yzv+32/45xy2zv-55/73y3zv+9756x2z2v+6886xyz2v+5939y2z2v+39/23xz3v+2632yz3v+77/6z4v+36/121x3uv-76/55x2yuv+5296xy2uv-32/47y3uv-125/84x2zuv-30/67xyzuv-14914y2zuv+73/23xz2uv+123/101yz2uv+49/43z3uv-76/71x2u2v+79/50xyu2v+38/7y2u2v-5262xzu2v-5211yzu2v+2/95z2u2v-3570xu3v-9280yu3v+32/91zu3v+1089u4v-73/33x3v2-3931x2yv2-21/113xy2v2+191y3v2-93/2x2zv2-75/47xyzv2+16/115y2zv2+120/23xz2v2+23/114yz2v2-115/108z3v2-103/12x2uv2+20/107xyuv2+28/11y2uv2+23/42xzuv2-15290yzuv2+3651z2uv2-9566xu2v2-113/68yu2v2+7705zu2v2-12261u3v2+9882x2v3-8520xyv3+14858y2v3+200xzv3+14/73yzv3+45/53z2v3-4/113xuv3-11327yuv3+59/51zuv3-13869u2v3-33/29xv4-13026yv4+4236zv4+10782uv4+2817v5,-123/61x4y+4/87x3y2-15558x2y3+78/5xy4-31/83y5+10267x4z-29/21x3yz+2197x2y2z-57/98xy3z+121/31y4z-1310x3z2+9386x2yz2-37/50xy2z2-1767y3z2-489x2z3-117/31xyz3+13576y2z3-50/9xz4-47/77yz4+53/89z5-57/11x4u-8374x3yu+104/103x2y2u+29/12xy3u+7368y4u+102/37x3zu+10508x2yzu+28xy2zu-14484y3zu-240x2z2u-115/114xyz2u+97/74y2z2u+105/11xz3u+125/46yz3u-6746z4u+3454x3u2+14656x2yu2-82/111xy2u2+13130y3u2+121/58x2zu2-42/11xyzu2-89/81y2zu2+68/49xz2u2+8243yz2u2-11615z3u2-40/87x2u3+80/39xyu3+14735y2u3+10706xzu3-2448yzu3+64/51z2u3+4514xu4+658yu4-39/49zu4+21/23u5+11/105x4v-108x3yv-31/98x2y2v-73/64xy3v+205y4v-15348x3zv-13734x2yzv-52/11xy2zv+5897y3zv+106/27x2z2v+9613xyz2v+81/59y2z2v+1172xz3v+3716yz3v-3581z4v+50x3uv+81/38x2yuv+84/109xy2uv-34/69y3uv-58/35x2zuv-23/105xyzuv+43/78y2zuv-57/31xz2uv+98/37yz2uv+11/96z3uv+147x2u2v+11414xyu2v+5/96y2u2v+19/77xzu2v+1274yzu2v+4/63z2u2v-4396xu3v+7060yu3v+5044zu3v-102/121u4v+67/25x3v2-13601x2yv2+68/65xy2v2+82/77y3v2-8394x2zv2-13318xyzv2+71/104y2zv2-75/107xz2v2+39/100yz2v2+11229z3v2+113/84x2uv2-2988xyuv2-9616y2uv2-41/50xzuv2+3/34yzuv2-12322z2uv2-120/11xu2v2+4/75yu2v2+12562zu2v2-92/39u3v2+1497x2v3+80/103xyv3+15/64y2v3-16/109xzv3-85/81yzv3-52/81z2v3-23/49xuv3+1295yuv3+13460zuv3+52/73u2v3-24/5xv4+11079yv4-25/57zv4-119/47uv4-7/120v5,123/61x4z-4/87x3yz+15558x2y2z-78/5xy3z+31/83y4z-2966x3z2+73/89x2yz2+75/112xy2z2+51/29y3z2-46/47x2z3+3812xyz3-8592y2z3+7582xz4+113/92yz4-11815z5+34/111x3zu-25/63x2yzu+115/79xy2zu+36/115y3zu-17/38x2z2u+7906xyz2u-108/71y2z2u+7541xz3u-12683yz3u-111/110z4u-107/24x2zu2-70/9xyzu2+42/113y2zu2-75xz2u2+64/101yz2u2+65/106z3u2-118/97xzu3+12960yzu3-918z2u3-72/113zu4+17/73x4v+15/17x3yv-22/91x2y2v+78/121xy3v+9/77y4v-91/102x3zv+15814x2yzv-12480xy2zv+1177y3zv-7/40x2z2v+47/69xyz2v-2847y2z2v+987xz3v-1954yz3v+43/97z4v-7692x3uv-109/44x2yuv-94/111xy2uv+84/17y3uv+13682x2zuv+64/7xyzuv-13069y2zuv+92/67xz2uv-109/84yz2uv-93/56z3uv-5368x2u2v-93/101xyu2v-118/43y2u2v-40/57xzu2v-58/55yzu2v+84/19z2u2v+4/9xu3v-540yu3v+11588zu3v-93/25u4v-85/89x3v2-1800x2yv2-40/51xy2v2-7293y3v2+15927x2zv2-33/106xyzv2+25/98y2zv2-13657xz2v2+43/37yz2v2+79/115z3v2-74/11x2uv2+29/114xyuv2-50/69y2uv2+252xzuv2-65/69yzuv2-88/5z2uv2+4418xu2v2-6634yu2v2-9854zu2v2-20/73u3v2+94/11x2v3+1430xyv3+1/41y2v3+21/101xzv3-68/59yzv3-9515z2v3+55/8xuv3-12014yuv3+57/73zuv3-97/58u2v3-124/91xv4+5575yv4-5470zv4+15340uv4+123/7v5,-14327x4y-14863x3y2+3913x2y3+4595xy4+75/77y5-5371x3yz+86/123x2y2z-84/115xy3z-117/100y4z-23/37x2yz2-82/125xy2z2+2426y3z2+17/50xyz3+11188y2z3-110/39yz4-126/97x4u-85/41x3yu-22/25x2y2u-10619xy3u+3473y4u-75/52x3zu-121/37x2yzu+48/125xy2zu+7246y3zu-78/49x2z2u+106/3xyz2u-50/59y2z2u-48/23xz3u+79/111yz3u-14913z4u+31/87x3u2+101/84x2yu2-14270xy2u2-116/83y3u2-15/86x2zu2-3946xyzu2+17/23y2zu2+11/2xz2u2-6992yz2u2-118/77z3u2+68/87x2u3-101/70xyu3-5015y2u3-134xzu3-13479yzu3-103/19z2u3-24/61xu4+35/83yu4-15310zu4-10610u5-22/41x4v-120/91x3yv-10964x2y2v-44/31xy3v+65/122y4v-29/47x3zv+2889x2yzv+43/63xy2zv-47/9y3zv+14/41x2z2v-58/57xyz2v-67/9y2z2v+20/33xz3v+32/87yz3v-113/114z4v+31/19x3uv-7367x2yuv+11612xy2uv-27/62y3uv-47/2x2zuv-28/15xyzuv-6682y2zuv+14672xz2uv+4043yz2uv-2529z3uv-39/115x2u2v+17/4xyu2v+49/39y2u2v+15437xzu2v+91/40yzu2v+14140z2u2v-18/107xu3v-49/5yu3v-88/115zu3v-77/82u4v+1398x3v2+7/111x2yv2+1081xy2v2+6822y3v2-19/100x2zv2-19/9xyzv2+116/83y2zv2+123xz2v2-37/54yz2v2+83/32z3v2-23/82x2uv2-17/45xyuv2-10206y2uv2+20/11xzuv2-29/43yzuv2-61/77z2uv2-15878xu2v2-39/44yu2v2+19/41zu2v2+35/88u3v2+2955x2v3-87/115xyv3-16/17y2v3-107/34xzv3+80/91yzv3+112/69z2v3+109/107xuv3+85/28yuv3-68/121zuv3+2654u2v3-64/55xv4-37/60yv4+69/7zv4+66/85uv4+5754v5,-36/35x4u+12883x3yu+49/120x2y2u-4628xy3u-75/118y4u+65/93x3zu+5754x2yzu-41/62xy2zu+328y3zu-43/49x2z2u+98/107xyz2u+9/16y2z2u+15504xz3u-94/39yz3u-7028z4u-74/81x3u2+3486x2yu2+110/31xy2u2+7609y3u2-17/113x2zu2-71/78xyzu2-49/102y2zu2-2012xz2u2-4935yz2u2+459z3u2+6/53x2u3-12342xyu3-4432y2u3-95/23xzu3+11567yzu3+23/84z2u3-78/19xu4+57/10yu4+37/92zu4+11049u5-70/83x4v-34/69x3yv-9309x2y2v+10247xy3v-119/89y4v-13641x3zv+7018x2yzv+33/95xy2zv+8545y3zv+8410x2z2v-119/33xyz2v-31/44y2z2v-15/79xz3v+49/2yz3v+15796z4v-8/61x3uv-4248x2yuv+1419xy2uv-7061y3uv-12022x2zuv+5656xyzuv+101/51y2zuv-6255xz2uv+8208yz2uv-25/31z3uv-55/64x2u2v+35/88xyu2v+7627y2u2v-15213xzu2v-125/47yzu2v+716z2u2v-13163xu3v-12319yu3v+9945zu3v-122/123u4v-55/112x3v2-14498x2yv2-8389xy2v2+31/24y3v2-48/61x2zv2-10781xyzv2-51/43y2zv2-47/38xz2v2+73/88yz2v2+3185z3v2+41/11x2uv2+53/15xyuv2+35/94y2uv2-2/81xzuv2-109/55yzuv2-12412z2uv2+8/67xu2v2-79/101yu2v2+61/76zu2v2-119/47u3v2+100/7x2v3-56/81xyv3+21/82y2v3+87/52xzv3-85/57yzv3-13804z2v3-106/31xuv3+12534yuv3-93/7zuv3-14/27u2v3+85/11xv4-13639yv4-119/76zv4+59/111uv4-3220v5,975x4y+104/33x3y2-106/65x2y3+66/23xy4+59/86y5+73/72x3yz+33/92x2y2z+41/19xy3z-14775y4z-99/23x2yz2+3753xy2z2+71/41y3z2-92/5xyz3+6199y2z3+125yz4-5129x4u+112/123x3yu+19/2x2y2u-2647xy3u-35/89y4u-31/54x3zu+72/37x2yzu-121/52xy2zu-111/68y3zu+3697x2z2u+128xyz2u+14200y2z2u-27/53xz3u+59/78yz3u-22/45z4u-123/38x3u2+102/53x2yu2-49/57xy2u2+5449y3u2-2572x2zu2+3/2xyzu2+9486y2zu2+6/125xz2u2+45/2yz2u2-19/55z3u2-14525x2u3+83/18xyu3+123/56y2u3-12494xzu3-15240yzu3-28/117z2u3-20/93xu4-10552yu4-79/50zu4+107/33u5-11945x4v-86/85x3yv-115/62x2y2v+1874xy3v+96/13y4v+11797x3zv+15569x2yzv+6118xy2zv-106/103y3zv+117/40x2z2v+13729xyz2v-4329y2z2v+2102xz3v-77/27yz3v-73/25z4v+79/50x3uv+115/58x2yuv-1/111xy2uv-14589y3uv-10733x2zuv-83/65xyzuv+1735y2zuv-104/31xz2uv+99/97yz2uv+23/60z3uv+4021x2u2v+15801xyu2v+4183y2u2v-173xzu2v-100/51yzu2v-79/123z2u2v-8262xu3v-9744yu3v+28/37zu3v+5/111u4v-91/124x3v2+100/123x2yv2+113/96xy2v2-67/50y3v2+101/6x2zv2+3452xyzv2+9281y2zv2+53/22xz2v2-4861yz2v2+8899z3v2+91/23x2uv2+13924xyuv2-4/75y2uv2+59/4xzuv2-214yzuv2-114/49z2uv2+14285xu2v2+85/27yu2v2-99/5zu2v2-74/33u3v2+8313x2v3-96/71xyv3+41/69y2v3-97/31xzv3-6935yzv3-102/29z2v3+67/82xuv3+35/9yuv3-33/95zuv3+6316u2v3-6800xv4-93/4yv4-6367zv4+75/56uv4-13460v5;TestGRRes(Name, I); kill R, Name, @p; "";
783
784  string Name = "ell.d10.g9"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = -44/83x3y2-51/22x2y3+104/11xy4+38/119y5+22/87x3yz-27/61x2y2z-49/121xy3z-60/43y4z+124/65x3z2+39/107x2yz2-10379xy2z2-86/125y3z2+33/8x2z3+3501xyz3+53/9y2z3-69/106xz4+441yz4-19/126z5+12584x3yu+21/104x2y2u+12937xy3u-113/108y4u+13758x3zu+4991x2yzu+5360xy2zu-11946y3zu-2442x2z2u-9336xyz2u+9027y2z2u-112/37xz3u+14035yz3u-8230z4u+58/83x3u2+9675x2yu2+29/114xy2u2+10729y3u2+11/23x2zu2+3609xyzu2+7065y2zu2-2477xz2u2+32/37yz2u2-109/89z3u2-68/109x2u3-107/45xyu3-65/53y2u3+12249xzu3-11480yzu3+4/119z2u3+4418xu4+11875yu4-6961zu4+2678u5-76/71x3yv-87/4x2y2v+119/27xy3v+20/31y4v+122/65x3zv-116/61x2yzv-10976xy2zv-5720y3zv-12559x2z2v-109/102xyz2v-123/121y2z2v-18/73xz3v-89/124yz3v-50/109z4v-113/50x3uv+31/79x2yuv-14121xy2uv+11/123y3uv-3754x2zuv-1676xyzuv-117/113y2zuv-11336xz2uv-35/44yz2uv-116/21z3uv+10245x2u2v+17/4xyu2v-6432y2u2v-12632xzu2v+80/47yzu2v-9/115z2u2v-2607xu3v-79/82yu3v-71/63zu3v+71/102u4v-5212x3v2-2079x2yv2+104/107xy2v2+50/19y3v2+14719x2zv2-7/115xyzv2-113/6y2zv2+123/100xz2v2+22/9yz2v2+15772z3v2-10/111x2uv2-35/52xyuv2-8041y2uv2-17/38xzuv2-11677yzuv2+54/67z2uv2+7941xu2v2-8500yu2v2-147zu2v2-101/68u3v2+7864x2v3-120/61xyv3+13984y2v3+81/101xzv3-79/20yzv3-95/7z2v3-19/89xuv3-5837yuv3+112/95zuv3+119/87u2v3-51/50xv4-85/16yv4+3/44zv4+5109uv4-9320v5,44/83x4y+7230x3y2-110/69x2y3+5570xy4+87y5-103/18x4z+93/70x3yz+75/37x2y2z-61xy3z+7367y4z+5/31x3z2+9111x2yz2-97/44xy2z2+28/55y3z2+89/12x2z3+1832xyz3-15162y2z3+81/100xz4+52/9yz4-3/17z5+23/118x4u+101/55x3yu-33/47x2y2u-149xy3u+7961y4u-7891x3zu-81/14x2yzu+10246xy2zu+51/125y3zu+43/64x2z2u-68/37xyz2u+11/5y2z2u+5578xz3u-5440yz3u+61/118z4u-4318x3u2-69x2yu2-15141xy2u2+12/13y3u2+12180x2zu2-67/6xyzu2-18/121y2zu2+738xz2u2-91/115yz2u2+105/8z3u2-14085x2u3-5451xyu3+91/79y2u3-43/113xzu3-36/11yzu3-89/122z2u3+101/59xu4-125/117yu4-113/25zu4+63/118u5+13/106x4v+11326x3yv+2583x2y2v+14291xy3v+11795y4v-9923x3zv+10823x2yzv+30/31xy2zv-6558y3zv+89/20x2z2v-111/109xyz2v+10420y2z2v-81/44xz3v-76/3yz3v-31/55z4v+3423x3uv+47/80x2yuv-7843xy2uv-15365y3uv+978x2zuv+73/24xyzuv-2/39y2zuv-28/75xz2uv+1849yz2uv-10885z3uv+120/91x2u2v+9293xyu2v-8837y2u2v+109/105xzu2v+7/93yzu2v+4076z2u2v-106/5xu3v+8053yu3v-90zu3v+8598u4v+81/76x3v2-103/42x2yv2-6873xy2v2+49/73y3v2+8447x2zv2+3846xyzv2+107/126y2zv2+2145xz2v2+53/105yz2v2-62/75z3v2-11/35x2uv2+7066xyuv2+69/59y2uv2-53/64xzuv2+8587yzuv2+58/125z2uv2-15386xu2v2+9/121yu2v2+14966zu2v2-2518u3v2-37/56x2v3-11840xyv3-23/47y2v3+110/81xzv3-81yzv3+2719z2v3-65/118xuv3-1221yuv3-33/82zuv3-106/15u2v3+39/112xv4+13479yv4-126/109zv4-2251uv4+8907v5,-10723x3yz+16/79x2y2z+62/49xy3z-5204y4z-49/3x3z2+91/71x2yz2+77/3xy2z2-88/43y3z2-13949x2z3-9045xyz3+109/16y2z3-89/62xz4-15674yz4-10313z5-6773x3yu+124/61x2y2u-7483xy3u+18/23y4u-5136x3zu-3/31x2yzu-11796xy2zu-56/57y3zu-68/95x2z2u-7917xyz2u+1349y2z2u-17/56xz3u+14713yz3u-7938z4u+3104x3u2+14197x2yu2-15411xy2u2-14704y3u2+24/77x2zu2+78/19xyzu2-23/51y2zu2+98/61xz2u2+60/71yz2u2-103/51z3u2-103/42x2u3+15/79xyu3+101/62y2u3-15165xzu3+83/5yzu3-61/60z2u3+7/78xu4-3907yu4+6635zu4-12205u5-388x3yv+63/59x2y2v+88/109xy3v-13978y4v+80/53x3zv+645x2yzv+117/25xy2zv-81/53y3zv+43/72x2z2v+27/8xyz2v-10620y2z2v-13547xz3v-8282yz3v+13426z4v-58/119x3uv+480x2yuv-15697xy2uv-25/58y3uv-115x2zuv-46/123xyzuv-22/13y2zuv-88/105xz2uv-111/62yz2uv+3415z3uv-117/77x2u2v+18/29xyu2v-80/91y2u2v+7851xzu2v-11079yzu2v+39/50z2u2v+14917xu3v+1131yu3v+13259zu3v-122/25u4v-109/37x3v2+7/78x2yv2-73/13xy2v2-5623y3v2+11389x2zv2+63/68xyzv2+28/27y2zv2+69/112xz2v2-10851yz2v2+15829z3v2+86/51x2uv2+2298xyuv2+17/103y2uv2-97/2xzuv2+1/5yzuv2-104/119z2uv2+2/95xu2v2+11655yu2v2-42/65zu2v2+37/26u3v2-12355x2v3+35xyv3+20/7y2v3+8032xzv3+9572yzv3+11508z2v3+10858xuv3+115/81yuv3+10973zuv3+10832u2v3+33/101xv4-71/88yv4+67/18zv4-15473uv4+11/107v5,-28/81x3y2-126/61x2y3-70/23xy4+14521y5-3/55x3yz-100/107x2y2z-10724xy3z+2013y4z+1241x3z2+61/104x2yz2+3577xy2z2-2748y3z2-15718x2z3+106/5xyz3-41/93y2z3-95/61xz4-1/30yz4-73/4z5-59/56x3yu-14867x2y2u-11840xy3u+7444y4u-38/41x3zu-153x2yzu-2654xy2zu+73/83y3zu+6940x2z2u-1241xyz2u+79/17y2z2u-39/35xz3u-4590yz3u+8/109z4u+73/34x3u2+15609x2yu2+12721xy2u2-95/31y3u2+33/14x2zu2+77/65xyzu2-14476y2zu2+73/101xz2u2-73/101yz2u2+92/5z3u2-71/94x2u3-97/33xyu3+125/82y2u3+10213xzu3-6039yzu3-87/61z2u3-14084xu4-43/7yu4+3169zu4+4248u5+100/101x3yv+624x2y2v-4023xy3v-87/65y4v-2971x3zv-8/21x2yzv+8171xy2zv-7776y3zv-55/104x2z2v+96/113xyz2v-7318y2z2v+9436xz3v+42/41yz3v-115/14z4v-2550x3uv+82/29x2yuv+3830xy2uv+71/97y3uv-98/67x2zuv-4319xyzuv+33/49y2zuv-123/49xz2uv-35/62yz2uv-85/6z3uv-10726x2u2v+98/85xyu2v+24/43y2u2v-1382xzu2v+39/109yzu2v-36/71z2u2v+15911xu3v-38/35yu3v+2079zu3v+123/29u4v+4369x3v2-59/126x2yv2-11066xy2v2+110/117y3v2+14815x2zv2-19/49xyzv2-29/10y2zv2+41/38xz2v2-96/55yz2v2+686z3v2+67/30x2uv2+123/23xyuv2-52/25y2uv2-55xzuv2-23/89yzuv2-89/77z2uv2+9906xu2v2-12766yu2v2-104/7zu2v2+6533u3v2-65/97x2v3+57/2xyv3-11084y2v3+13/81xzv3-23/7yzv3-122/111z2v3+224xuv3+5112yuv3+103/30zuv3+78/43u2v3+4811xv4+6171yv4-3422zv4-1589uv4-5541v5,28/81x4y-39/88x3y2-101/87x2y3+11/10xy4+29/44y5-21/94x4z-100/81x3yz+123/73x2y2z+5440xy3z-15190y4z+14140x3z2+74/27x2yz2+92/15xy2z2+8048y3z2-95/64x2z3-60/89xyz3-11/118y2z3+56/15xz4+102/31yz4-1571z5-2598x4u-4426x3yu+2148x2y2u-95/11xy3u-6701y4u-12741x3zu-1179x2yzu+1671xy2zu-93/10y3zu-77/78x2z2u-35/101xyz2u-41/89y2z2u+1556xz3u+13/121yz3u+1288z4u-53/89x3u2-3/109x2yu2-12018xy2u2-5219y3u2+86/49x2zu2-1/84xyzu2+86/113y2zu2-85/123xz2u2+94/85yz2u2-10590z3u2-99/38x2u3+2696xyu3+107/13y2u3-144xzu3+8/69yzu3-107/33z2u3-117/53xu4+1924yu4+75/7zu4+98/113u5+13120x4v-7308x3yv+49/85x2y2v+55/64xy3v-4634y4v+9344x3zv-126/121x2yzv+23/81xy2zv+5086y3zv-4215x2z2v+2442xyz2v-9336y2z2v-43/44xz3v+114/109yz3v+10963z4v-2/111x3uv-5/126x2yuv-41/56xy2uv+47/79y3uv+74x2zuv-15011xyzuv+11187y2zuv-104/115xz2uv-94/67yz2uv+6674z3uv-5/78x2u2v-123/79xyu2v+7/36y2u2v+79/97xzu2v-55/62yzu2v-121/3z2u2v+109/4xu3v+9102yu3v-9526zu3v+8388u4v-47/98x3v2+14967x2yv2+5139xy2v2+83/16y3v2-15926x2zv2+8971xyzv2-15679y2zv2+8686xz2v2+13783yz2v2-57/103z3v2-73/100x2uv2-106/119xyuv2-98/113y2uv2+12096xzuv2+14898yzuv2+115/61z2uv2-125/119xu2v2+6048yu2v2+1/102zu2v2+31/125u3v2+7/27x2v3+64/123xyv3+2569y2v3+113/96xzv3-7216yzv3+2236z2v3-7127xuv3-38/17yuv3+94/73zuv3+708u2v3+87/88xv4-15428yv4-41/64zv4-55/86uv4-41/89v5,109/21x3yz-8388x2y2z-17/10xy3z-14404y4z+12672x3z2+73/52x2yz2+13291xy2z2+118/57y3z2+6159x2z3+4294xyz3-35/92y2z3-55/116xz4+83/64yz4-40/81z5-21/88x3yu-23/58x2y2u+83/118xy3u+12766y4u-45/101x3zu-38/71x2yzu+13/14xy2zu+50y3zu-2123x2z2u-61/102xyz2u+7/111y2z2u+48/121xz3u-15030yz3u-16/21z4u-34/121x3u2+34/111x2yu2+7/48xy2u2+1018y3u2-90/71x2zu2+10585xyzu2-117/56y2zu2+15739xz2u2-37/123yz2u2+4841z3u2-3527x2u3+107/77xyu3+14476y2u3-53/14xzu3-44/41yzu3+83/99z2u3+57/83xu4+1763yu4+3291zu4-2214u5+4710x3yv+4019x2y2v+106/103xy3v-33/67y4v-65/74x3zv-19/36x2yzv+83/97xy2zv+3597y3zv+76/25x2z2v-2159xyz2v+73/67y2z2v-68/55xz3v+36/29yz3v+96/55z4v-7809x3uv-101/51x2yuv+107/99xy2uv+3452y3uv-32/63x2zuv-61/125xyzuv+700y2zuv+14/45xz2uv-10/27yz2uv-64/109z3uv-12507x2u2v-3286xyu2v-8787y2u2v+11244xzu2v-7142yzu2v+51/52z2u2v-11/15xu3v+14/15yu3v-71/78zu3v+12840u4v+1676x3v2-7/22x2yv2+13461xy2v2+91/17y3v2-211x2zv2+2520xyzv2+37/91y2zv2+57/43xz2v2+79/61yz2v2+126/5z3v2+15390x2uv2+2521xyuv2-9728y2uv2-31/100xzuv2-67/120yzuv2-2/89z2uv2+3/40xu2v2-123/5yu2v2+95/44zu2v2+55/82u3v2+61/73x2v3+4656xyv3-59/61y2v3+53/5xzv3+81/19yzv3+7838z2v3-30xuv3-24/7yuv3-88/67zuv3-97/109u2v3+1/32xv4-7809yv4+115/33zv4+95/9uv4-51/31v5,10723x3yu-16/79x2y2u-62/49xy3u+5204y4u+49/3x3zu-91/71x2yzu-77/3xy2zu+88/43y3zu+13949x2z2u+9045xyz2u-109/16y2z2u+89/62xz3u+15674yz3u+10313z4u+12767x3u2-3679x2yu2+115/94xy2u2-95/72y3u2+83/126x2zu2+3070xyzu2+44/91y2zu2+105/53xz2u2-12618yz2u2-13345z3u2+61/47x2u3+108/25xyu3-3/17y2u3-76/71xzu3-36yzu3+96/47z2u3-7291xu4+7566yu4+1445zu4-48/79u5-4731x3yv+35/38x2y2v+26/47xy3v-6365y4v-15522x3zv+6045x2yzv+121/111xy2zv-15013y3zv+4541x2z2v+12683xyz2v+21/61y2z2v+96/29xz3v+98/57yz3v+57/112z4v+1027x3uv+220x2yuv+63/122xy2uv-6828y3uv+21/92x2zuv-13076xyzuv+4327y2zuv+65/107xz2uv-109/120yz2uv+46/87z3uv-13/102x2u2v+20/61xyu2v-41/47y2u2v-7345xzu2v+125/42yzu2v+124/49z2u2v-118/115xu3v+53/36yu3v-15/56zu3v+107/76u4v-13479x3v2+104/73x2yv2+5583xy2v2+12198y3v2-10858x2zv2+244xyzv2+15876y2zv2-38/123xz2v2+93/122yz2v2+82/15z3v2-35x2uv2-90/103xyuv2-16/73y2uv2+5638xzuv2-39/35yzuv2-82/39z2uv2+39/106xu2v2-3530yu2v2+7014zu2v2-9/16u3v2+105/46x2v3+1/9xyv3-10361y2v3+3039xzv3-5956yzv3+750z2v3-2053xuv3+27/112yuv3+4/121zuv3-13/108u2v3-70/33xv4-115/108yv4-59/61zv4-10442uv4-17/39v5,-80/61x3y2+68/57x2y3-35/101xy4+19/75y5+635x3yz+287x2y2z-31/49xy3z+89/93y4z-20/41x3z2-10544x2yz2+14618xy2z2-92/49y3z2+33/86x2z3-1/121xyz3-9325y2z3+2/67xz4-49/106yz4+15003z5+67/49x3yu-15884x2y2u-11/9xy3u+9349y4u+63/20x3zu+79/25x2yzu-23/77xy2zu+99/20y3zu-8233x2z2u-5/84xyz2u+71/97y2z2u+124/43xz3u-64/101yz3u-13567z4u-59/84x3u2+55/94x2yu2+7962xy2u2+36/95y3u2+5/8x2zu2+104/27xyzu2+59/12y2zu2+8231xz2u2-138yz2u2-8432z3u2+25/37x2u3+19/97xyu3+55/97y2u3+12659xzu3+27/119yzu3-101/6z2u3+69/103xu4-111/124yu4+96/107zu4-97/5u5+11725x3yv+16/105x2y2v-79/16xy3v-43/107y4v+17/54x3zv-12757x2yzv+7/124xy2zv-93/73y3zv+69/22x2z2v+73/40xyz2v+15350y2z2v+108/65xz3v+190yz3v+4395z4v+14431x3uv+8x2yuv+6264xy2uv+38/41y3uv-15601x2zuv-6559xyzuv-4074y2zuv+8619xz2uv+83/28yz2uv+15701z3uv-35/37x2u2v+75/62xyu2v+9293y2u2v-32/123xzu2v-64/15yzu2v+101/106z2u2v-13/111xu3v+89/37yu3v+49/36zu3v-78/125u4v+32/87x3v2-15591x2yv2-637xy2v2+31/61y3v2+39/41x2zv2-15874xyzv2-12988y2zv2+37/109xz2v2-18/119yz2v2-7257z3v2+97/16x2uv2+21/29xyuv2+81/95y2uv2-109/34xzuv2-35/27yzuv2+13439z2uv2-55/81xu2v2-23/90yu2v2-79/37zu2v2-60/103u3v2+41/24x2v3-95/54xyv3-104/25y2v3-27/97xzv3+43/52yzv3+82/65z2v3+15/82xuv3+1/44yuv3+65/119zuv3-5/32u2v3-1039xv4+39/31yv4-2847zv4-35/123uv4+59/20v5,80/61x4y-116/11x3y2-79/103x2y3-10762xy4-67/101y5+83/38x4z+61/10x3yz+31/8x2y2z-107/103xy3z-85/113y4z-3/97x3z2+6296x2yz2+47/86xy2z2+15041y3z2+14353x2z3+1990xyz3+15780y2z3-92/43xz4+64/47yz4-108/7z5+88/49x4u+98/57x3yu-41/44x2y2u+92/119xy3u+43/71y4u+14335x3zu+58/7x2yzu-79/39xy2zu-3487y3zu+56/83x2z2u-75/73xyz2u-7173y2z2u-99/64xz3u-51/65yz3u+11138z4u+8299x3u2+47/116x2yu2+98/95xy2u2+117/53y3u2-123/46x2zu2+125/74xyzu2-82/19y2zu2-4508xz2u2+49/29yz2u2-3337z3u2-109/7x2u3+103/41xyu3+28/13y2u3-6790xzu3-8289yzu3+59/41z2u3+15888xu4-9252yu4+10/99zu4+1485u5-101/23x4v-6626x3yv+19/25x2y2v-73/49xy3v-17/14y4v-33/46x3zv+109/58x2yzv+1/44xy2zv+8/65y3zv+5700x2z2v+16/69xyz2v+18/37y2z2v+3905xz3v+84/95yz3v+83/65z4v-700x3uv-8/7x2yuv+3184xy2uv-8373y3uv+106/115x2zuv+68/125xyzuv-2829y2zuv-38/41xz2uv+101/19yz2uv+66/97z3uv-47/7x2u2v+21/97xyu2v+9/74y2u2v+57/55xzu2v-107/89yzu2v-14157z2u2v-1693xu3v+9/10yu3v-53/114zu3v-10049u4v+9871x3v2+14318x2yv2-8447xy2v2+10730y3v2-98/87x2zv2-3822xyzv2+38/39y2zv2+111/59xz2v2-4603yz2v2+35/69z3v2-161x2uv2-73/48xyuv2-58/79y2uv2+71/63xzuv2+1832yzuv2+7891z2uv2-13900xu2v2+113/31yu2v2-7626zu2v2-1223u3v2-33/94x2v3-49/20xyv3+20/113y2v3-47/15xzv3+109/32yzv3-49/95z2v3+92/17xuv3-16/99yuv3-10817zuv3+3754u2v3-94/9xv4-67/79yv4+12659zv4+101/117uv4+113/17v5,-3756x3yz-24/35x2y2z-29/112xy3z+7944y4z-8968x3z2+62/115x2yz2-38/101xy2z2+28/39y3z2+61/49x2z3-88/119xyz3-119/87y2z3-7/123xz4-4935yz4-1239z5+8x3yu-68/7x2y2u+11910xy3u+5043y4u+7293x3zu-121/47x2yzu+8/77xy2zu-53/109y3zu+15439x2z2u-6359xyz2u-81/109y2z2u-3423xz3u+12246yz3u-1382z4u-2355x3u2+12015x2yu2-79/38xy2u2-14798y3u2+623x2zu2+47/113xyzu2+11457y2zu2+5127xz2u2-9/16yz2u2-70/41z3u2+107/112x2u3-73/49xyu3-38/15y2u3+8748xzu3-5150yzu3-94/67z2u3+10449xu4-993yu4-53/6zu4+46/79u5+59/46x3yv+7/44x2y2v+11979xy3v+78/61y4v+69/109x3zv-424x2yzv+3267xy2zv-82/17y3zv+15/92x2z2v-106/121xyz2v-32/37y2z2v+15746xz3v+97/30yz3v-7/29z4v-9484x3uv+64/45x2yuv-75xy2uv+14513y3uv-11/103x2zuv-82/3xyzuv+8740y2zuv-67/101xz2uv+584yz2uv+15/121z3uv+11669x2u2v+51/112xyu2v+124/101y2u2v+106/17xzu2v+3108yzu2v-67/118z2u2v+6866xu3v+5705yu3v-68/77zu3v-89/98u4v+14035x3v2-1896x2yv2+107/99xy2v2+46/49y3v2+109/29x2zv2-14831xyzv2-13871y2zv2+61/62xz2v2-35/9yz2v2+61/40z3v2+101/115x2uv2-14723xyuv2+13811y2uv2+66/13xzuv2-9031yzuv2-118/77z2uv2-86/121xu2v2-10616yu2v2-60/107zu2v2+123/85u3v2-92/47x2v3+23/98xyv3-5986y2v3-8636xzv3+63/89yzv3+1899z2v3+117/19xuv3-65/41yuv3+2817zuv3-1578u2v3-35/82xv4+2155yv4+7844zv4-40/67uv4-16/111v5,-4394x3y2-8801x2y3+12722xy4+15341y5+85/73x3yz+3786x2y2z-156xy3z-11841y4z-93/47x3z2+79/20x2yz2+79/99xy2z2+10343y3z2-631x2z3+7178xyz3-4119y2z3+15660xz4+14318yz4+1/69z5-9/85x3yu-59/33x2y2u-4250xy3u-9233y4u-103/75x3zu-72/53x2yzu+50/7xy2zu+6476y3zu-37/114x2z2u-5/7xyz2u-13/93y2z2u+7262xz3u+40/93yz3u-5837z4u-13/116x3u2+12622x2yu2+2615xy2u2-235y3u2+99/115x2zu2+101/9xyzu2+83/28y2zu2+14490xz2u2+119/96yz2u2-11229z3u2+41/86x2u3+14636xyu3-88/45y2u3-9311xzu3-8967yzu3-71/105z2u3+56/53xu4+14093yu4+115zu4+118/67u5-95/54x3yv-11922x2y2v-101/117xy3v-15245y4v-3849x3zv+100x2yzv+101/64xy2zv+82/5y3zv-53/52x2z2v-26/67xyz2v+17/72y2z2v+33/41xz3v-91/82yz3v-29/12z4v+73/126x3uv+109/73x2yuv-28/55xy2uv-51/29y3uv+17/35x2zuv+108/67xyzuv+81/2y2zuv+95/101xz2uv-57/8yz2uv-7142z3uv-8230x2u2v-91/107xyu2v-51/11y2u2v+67/125xzu2v-59/17yzu2v+23/121z2u2v+14520xu3v+2632yu3v+10602zu3v+19/75u4v-98/115x3v2-13270x2yv2+23/28xy2v2-97/24y3v2+18/37x2zv2+2394xyzv2+9634y2zv2-12683xz2v2-4723yz2v2+93/11z3v2+76/15x2uv2-7066xyuv2-3496y2uv2-31/33xzuv2+23/114yzuv2+75/4z2uv2+6637xu2v2+5/31yu2v2-220zu2v2-15145u3v2-16/57x2v3+994xyv3+13/111y2v3-35/111xzv3-1460yzv3-13818z2v3-12748xuv3+6/19yuv3+3481zuv3+4768u2v3+31/83xv4-21/34yv4-117/95zv4+7890uv4-5747v5,4394x4y+25/118x3y2+27/122x2y3-1/20xy4-21/58y5+7367x4z+11281x3yz+2518x2y2z-55/92xy3z+7/17y4z-6716x3z2+116/11x2yz2+67/35xy2z2+14506y3z2-70/17x2z3-92/125xyz3-11235y2z3+28/79xz4+6770yz4+13311z5-12323x4u-36x3yu-74/35x2y2u+28/11xy3u-14140y4u+29/76x3zu+10357x2yzu-13657xy2zu-65/9y3zu+8/49x2z2u-186xyz2u+7854y2z2u+20/111xz3u+53/20yz3u-4420z4u-49x3u2+106/73x2yu2-57/112xy2u2-1767y3u2-67/36x2zu2+97/31xyzu2-4/15y2zu2-27/119xz2u2-6837yz2u2+81/88z3u2-803x2u3-14237xyu3+116/45y2u3+74/53xzu3-44/23yzu3+7957z2u3+2551xu4-5262yu4-3014zu4+115/98u5+46/39x4v+71/2x3yv+13841x2y2v-12/7xy3v+7491y4v+19/67x3zv-21/82x2yzv+29/92xy2zv+124/123y3zv+4436x2z2v+4318xyz2v-14/111y2z2v+105/118xz3v+12883yz3v-105/22z4v-124/109x3uv-107/103x2yuv+7/4xy2uv-114/121y3uv-74/69x2zuv-5025xyzuv-114/97y2zuv-5872xz2uv+24/95yz2uv-49/88z3uv-21/29x2u2v+121/52xyu2v+721y2u2v+119/67xzu2v+85/48yzu2v+50/67z2u2v+24/53xu3v+32/115yu3v-2809zu3v+2966u4v+5211x3v2-190x2yv2+2551xy2v2+2895y3v2+124/63x2zv2-6160xyzv2+71/122y2zv2+8635xz2v2-9/28yz2v2+193z3v2+9/119x2uv2-110/101xyuv2-11713y2uv2-6363xzuv2+61/93yzuv2-10139z2uv2+89/96xu2v2+94/103yu2v2+61/93zu2v2-61/78u3v2-67/22x2v3+15674xyv3-121/5y2v3+121/76xzv3+15523yzv3-93/88z2v3+8667xuv3-11344yuv3-97/108zuv3-14490u2v3+10228xv4-18/107yv4-54/37zv4-2193uv4+14370v5,-103/79x3yz-16/41x2y2z+114/83xy3z-104/85y4z+14/37x3z2-3023x2yz2+723xy2z2-7/55y3z2-82/85x2z3-33/83xyz3+109/119y2z3-13119xz4-4627yz4-35/37z5-11662x3yu+121/57x2y2u-7212xy3u+59/83y4u+2149x3zu-30/13x2yzu+125/119xy2zu+79/23y3zu-3/88x2z2u+7168xyz2u-10717y2z2u+112/33xz3u-10509yz3u+121/56z4u+125/88x3u2-115/121x2yu2+49/4xy2u2-27/88y3u2-2867x2zu2-43/85xyzu2-4734y2zu2-37/114xz2u2-2/43yz2u2+106/95z3u2-108/35x2u3+4531xyu3-19/44y2u3-73/27xzu3+59/117yzu3+25/9z2u3-65/89xu4+81/20yu4+5365zu4+1733u5-2363x3yv-10326x2y2v-5/24xy3v-17/106y4v-14412x3zv+6361x2yzv+10187xy2zv-76/101y3zv+4991x2z2v+14252xyz2v-107/18y2z2v+4857xz3v-13162yz3v+1088z4v-3/64x3uv-14/113x2yuv+96/41xy2uv-76/103y3uv+8924x2zuv-11/30xyzuv-4493y2zuv+3070xz2uv+10/41yz2uv-35/51z3uv+4318x2u2v+15309xyu2v+107/101y2u2v-1748xzu2v+11082yzu2v+29/90z2u2v-19/8xu3v+107/64yu3v+3039zu3v-21/59u4v+14/87x3v2+16/59x2yv2+77/9xy2v2+3679y3v2+53/113x2zv2+97/80xyzv2-899y2zv2+10016xz2v2-10049yz2v2+29/10z3v2+43/7x2uv2-5919xyuv2-7/34y2uv2+42/85xzuv2+102/23yzuv2-8300z2uv2+125/2xu2v2-1700yu2v2-107/21zu2v2+12942u3v2-3054x2v3-87/53xyv3+4745y2v3+52/83xzv3-11747yzv3-119/64z2v3-5987xuv3+2016yuv3-2889zuv3+4535u2v3-1588xv4-27/5yv4+8541zv4-15581uv4-3/119v5,-x3y2-7492x2y3+118/35xy4-43/5y5-2479x3yz-8522x2y2z-105/26xy3z-103/18y4z+5868x3z2-10040x2yz2-50/81xy2z2+3378y3z2-71/44x2z3-12323xyz3-25/44y2z3+12979xz4-15146yz4+5962z5+8852x3yu-39/77x2y2u-9554xy3u-14590y4u+61/84x3zu-2295x2yzu-5969xy2zu+14241y3zu-29/74x2z2u+107/17xyz2u+107y2z2u-14/99xz3u+109/93yz3u-73/41z4u-9170x3u2+8877x2yu2-109/118xy2u2+65/36y3u2+122/93x2zu2-15020xyzu2+33/50y2zu2-11/46xz2u2-91/116yz2u2-47/10z3u2-34/57x2u3-90/79xyu3+12760y2u3+81/71xzu3+1436yzu3+14839z2u3+6598xu4-12418yu4-47/59zu4-1357u5+6/91x3yv-46/21x2y2v+100/53xy3v-69/125y4v+98x3zv-63/23x2yzv+96/121xy2zv+12/11y3zv-37/120x2z2v-37/106xyz2v-25/122y2z2v-13657xz3v+79/47yz3v+15519z4v+45/46x3uv+73/100x2yuv-5361xy2uv-39/101y3uv+1161x2zuv-105/22xyzuv+79/34y2zuv+96/31xz2uv-20/51yz2uv-2683z3uv-122/125x2u2v-66/109xyu2v-6357y2u2v-3021xzu2v+86/33yzu2v-105/8z2u2v+95/22xu3v-9046yu3v+69/83zu3v-3166u4v+91/115x3v2+9661x2yv2-8757xy2v2+79/23y3v2+125/107x2zv2+6133xyzv2+8975y2zv2-38/103xz2v2-120/43yz2v2+59/124z3v2-9252x2uv2+27/64xyuv2+99/80y2uv2+125/28xzuv2-60/109yzuv2-73/107z2uv2-15162xu2v2+91/71yu2v2-89/122zu2v2-1/9u3v2+40/117x2v3-71/41xyv3+10502y2v3-5618xzv3-995yzv3-117/112z2v3-15185xuv3-4470yuv3-13/4zuv3-14631u2v3-5804xv4-15527yv4-47/87zv4+5084uv4-64/11v5,x4y+46/47x3y2+13/47x2y3-13553xy4-5/59y5-15/76x4z+370x3yz+15/56x2y2z-8199xy3z+17/37y4z+32/47x3z2-26/29x2yz2-1/109xy2z2+68/77y3z2-88/123x2z3-1397xyz3-90y2z3+117/80xz4+14919yz4+11248z5+1742x4u-6060x3yu+97/38x2y2u+54/53xy3u-26/45y4u-315x3zu+9/76x2yzu+113/14xy2zu-28/79y3zu-109/14x2z2u+53/54xyz2u-213y2z2u-18/11xz3u-12129yz3u+6321z4u-13361x3u2+109/81x2yu2+37/84xy2u2-19/69y3u2+82/31x2zu2-20/41xyzu2-13135y2zu2-52/99xz2u2-12942yz2u2-8237z3u2-12377x2u3-41/43xyu3+13143y2u3-6701xzu3-98/53yzu3+97/43z2u3+1570xu4-41/5yu4-7/86zu4+306u5-7920x4v+76/53x3yv-91/73x2y2v-49/64xy3v+12976y4v-1787x3zv-95/123x2yzv-10033xy2zv-83/100y3zv-17/112x2z2v+1060xyz2v-121/54y2z2v+25/77xz3v+23/73yz3v-3576z4v+41/98x3uv+15265x2yuv+9014xy2uv-86/33y3uv-83/51x2zuv-15747xyzuv+11/16y2zuv-12110xz2uv-15554yz2uv-7654z3uv+68/53x2u2v+1673xyu2v-123/64y2u2v-3/19xzu2v+29/34yzu2v-5457z2u2v+51/58xu3v-4242yu3v-70/67zu3v+7159u4v+8620x3v2-9381x2yv2+52/79xy2v2-73/113y3v2+83/22x2zv2-1445xyzv2+6524y2zv2-122xz2v2-107/85yz2v2-1240z3v2+1710x2uv2-101/59xyuv2-2950y2uv2-12343xzuv2-79/27yzuv2-5/26z2uv2+89/68xu2v2-14985yu2v2+8382zu2v2-5109u3v2-12322x2v3-97/106xyv3-86/23y2v3+115/11xzv3-45/2yzv3-79/110z2v3+7472xuv3-17/71yuv3+1659zuv3-4468u2v3-85/47xv4+11/73yv4-1700zv4-32/51uv4+7855v5,62/49x4-125/36x3y+2x2y2+56/39xy3+7307y4-42/43x3z+83/42x2yz-11648xy2z-43/106y3z-49/109x2z2-95/28xyz2-194y2z2+71/95xz3-83/59yz3-66/95z4-1/51x3u-82/21x2yu+121/103xy2u-11106y3u-55/91x2zu+55/119xyzu-123/79y2zu-20/11xz2u+6943yz2u+69z3u+5908x2u2-56/89xyu2-13119y2u2+32/115xzu2+11412yzu2+63/50z2u2+73/85xu3-12527yu3+1991zu3+26/33u4+79/91x3v-10/27x2yv+20/117xy2v-49/102y3v+98/33x2zv+115/76xyzv+12412y2zv-47/48xz2v+121/113yz2v+105/26z3v-10954x2uv+10730xyuv+15721y2uv-101/63xzuv-32/19yzuv+67/71z2uv+77/45xu2v+27/98yu2v-670zu2v-13396u3v-55/119x2v2-7890xyv2-101/7y2v2-9563xzv2+3/95yzv2+4857z2v2+9397xuv2+3/116yuv2-12257zuv2-79/49u2v2+11697xv3+26/19yv3+4885zv3-53/22uv3-8355v4;TestGRRes(Name, I); kill R, Name, @p; "";
785
786  string Name = "k3.d10.g9.quart2"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = x3yz2+31/15x2y2z2-7231xy3z2+99/37y4z2+28/95x3z3+97/32x2yz3+13247xy2z3+12717y3z3-113/31x2z4-61/30xyz4-6844y2z4+104/3xz5-13849yz5+43/39z6+13061x3yzu-8463x2y2zu+94/69xy3zu-8/61y4zu-13297x3z2u+7217x2yz2u-7830xy2z2u-75/14y3z2u+2839x2z3u-14657xyz3u-52/7y2z3u-6/89xz4u-6169yz4u+44/7z5u-98/33x3yu2+41/30x2y2u2-65/98xy3u2+122/13y4u2+9906x3zu2-11587x2yzu2+17/53xy2zu2+6504y3zu2+49/106x2z2u2+11480xyz2u2+97/71y2z2u2+12560xz3u2-114/83yz3u2-13761z4u2-67/112x3u3-18/49x2yu3+21/67xy2u3-44/43y3u3+123/116x2zu3+4459xyzu3-13841y2zu3-805xz2u3-1382yz2u3-5293z3u3+133x2u4-122/79xyu4+9724y2u4+61/24xzu4+113/119yzu4-19/108z2u4+15893xu5+57/22yu5+4600zu5-618u6-27/53x3yzv+44/103x2y2zv-142xy3zv+19/84y4zv+105/8x3z2v+10532x2yz2v-75/74xy2z2v-70/19y3z2v+31/80x2z3v-481xyz3v+47/30y2z3v+14318xz4v+51/28yz4v-15/113z5v-46/17x3yuv-99/100x2y2uv-106/5xy3uv+14384y4uv+7/100x3zuv-15/64x2yzuv-6976xy2zuv+12051y3zuv-67/42x2z2uv-2627xyz2uv-49/104y2z2uv+77/16xz3uv+15766yz3uv+85/117z4uv-107/101x3u2v-6699x2yu2v+2443xy2u2v-27/28y3u2v+11945x2zu2v-14467xyzu2v-4873y2zu2v-63/124xz2u2v-8270yz2u2v+11900z3u2v+47/14x2u3v+53/8xyu3v-10/51y2u3v-87/119xzu3v+114/73yzu3v+86/57z2u3v+52/63xu4v-11587yu4v+1/18zu4v-121/109u5v+116/11x3yv2+19/108x2y2v2-31/3xy3v2-43/9y4v2-81/100x3zv2-7728x2yzv2-1037xy2zv2+24/101y3zv2-61/103x2z2v2-8/51xyz2v2+117/109y2z2v2+98/23xz3v2+1646yz3v2-3356z4v2+105/59x3uv2+117/31x2yuv2+519xy2uv2+12633y3uv2+25/6x2zuv2-963xyzuv2-49/23y2zuv2-116/25xz2uv2+14146yz2uv2+11480z3uv2-95/8x2u2v2-10928xyu2v2-51/23y2u2v2-12770xzu2v2-92/91yzu2v2+3872z2u2v2+3183xu3v2+6871yu3v2+90/37zu3v2+10019u4v2-69/88x3v3-1398x2yv3-97/72xy2v3-46/97y3v3+107/14x2zv3-20/89xyzv3-11367y2zv3+120/29xz2v3-86/81yz2v3+107/69z3v3-39/17x2uv3+83/11xyuv3+169y2uv3-11/71xzuv3-22/17yzuv3-14862z2uv3-13009xu2v3-101/12yu2v3+10617zu2v3+2567u3v3-23/85x2v4+27/50xyv4+113/51y2v4+97/16xzv4+4438yzv4-11857z2v4+14580xuv4-6426yuv4+9421zuv4-10585u2v4+14670xv5+1807yv5+10298zv5-116/53uv5+7869v6,x3yzu+31/15x2y2zu-7231xy3zu+99/37y4zu+28/95x3z2u+97/32x2yz2u+13247xy2z2u+12717y3z2u-113/31x2z3u-61/30xyz3u-6844y2z3u+104/3xz4u-13849yz4u+43/39z5u-124/43x3yu2-90/13x2y2u2-13244xy3u2-78/73y4u2+118/43x3zu2+37/67x2yzu2-10426xy2zu2+2412y3zu2-32/113x2z2u2+35/104xyz2u2+3952y2z2u2+9028xz3u2-1990yz3u2-59/109z4u2+15499x3u3+116/23x2yu3+95/58xy2u3+8/47y3u3+59/109x2zu3-29xyzu3+12412y2zu3+20/81xz2u3+2200yz2u3-13809z3u3+3889x2u4-8136xyu4+8922y2u4-4/121xzu4+82/113yzu4-65/23z2u4+101/53xu5+103/113yu5-99/118zu5-9524u6-2749x3yzv-7814x2y2zv+73/113xy3zv+9937y4zv-59/62x3z2v-23/12x2yz2v-10245xy2z2v+7130y3z2v-4427x2z3v+6656xyz3v+3448y2z3v-46/79xz4v+1611yz4v+8453z5v+12013x3yuv+49/17x2y2uv-4/115xy3uv-121/91y4uv-63/29x3zuv+64/7x2yzuv-8785xy2zuv-87/14y3zuv+36/121x2z2uv+9525xyz2uv+4215y2z2uv-17/13xz3uv-117/125yz3uv+101/122z4uv+42/37x3u2v-8747x2yu2v-105/79xy2u2v+10799y3u2v-58/49x2zu2v-8/75xyzu2v-67/49y2zu2v-38/11xz2u2v+53/27yz2u2v+113/52z3u2v+18/59x2u3v+71/106xyu3v+47/2y2u3v-4594xzu3v+95/4yzu3v-121/46z2u3v-55/62xu4v-101/72yu4v+40/53zu4v+15227u5v-15553x3yv2+29/94x2y2v2-4076xy3v2-7133y4v2+27/125x3zv2+33/29x2yzv2-63/95xy2zv2+9166y3zv2-480x2z2v2+9941xyz2v2+107/46y2z2v2+13018xz3v2+53/98yz3v2+92/35z4v2+17/30x3uv2+77/95x2yuv2+11/67xy2uv2+8262y3uv2+65/11x2zuv2+2567xyzuv2-33/94y2zuv2+85/92xz2uv2+103/25yz2uv2-27/100z3uv2+13210x2u2v2-109/90xyu2v2+141y2u2v2-124/51xzu2v2-3/109yzu2v2-4910z2u2v2+205xu3v2+14357yu3v2+85/57zu3v2-109/28u4v2-68/39x3v3+10545x2yv3-2176xy2v3-8743y3v3+15111x2zv3+25/119xyzv3+8/103y2zv3-6046xz2v3+8658yz2v3+106/5z3v3-31/126x2uv3-7762xyuv3+2315y2uv3+124/67xzuv3-77/104yzuv3+95/71z2uv3+69/119xu2v3+13069yu2v3-8620zu2v3+105/41u3v3-15772x2v4-11212xyv4-61/36y2v4+38/125xzv4-15860yzv4+8/63z2v4+7519xuv4-94/41yuv4+45/32zuv4+9417u2v4-71/35xv5-6287yv5+6481zv5+106/99uv5+3/41v6,-8036x3yu2+7966x2y2u2-151xy3u2-14/111y4u2-111/76x3zu2-102/11x2yzu2+7956xy2zu2-7397y3zu2-113/16x2z2u2-8049xyz2u2+7230y2z2u2+3978xz3u2-36/113yz3u2-8147z4u2-107/83x3u3+78/97x2yu3+12700xy2u3+11/72y3u3+88/31x2zu3-63/40xyzu3+101/35y2zu3-220xz2u3+3/103yz2u3-49/45z3u3-21/113x2u4+104/123xyu4+98/47y2u4-56/61xzu4-87/50yzu4+5913z2u4-120/17xu5+64/11yu5-109/80zu5+10371u6-118/25x3yzv+58/99x2y2zv-5/64xy3zv+7/46y4zv-49/103x3z2v-77/106x2yz2v-44/7xy2z2v-7559y3z2v-17/35x2z3v+948xyz3v-15043y2z3v-3576xz4v-2/109yz4v+74/11z5v+6436x3yuv+7316x2y2uv+29/5xy3uv-1326y4uv+34/49x3zuv-122/27x2yzuv-632xy2zuv+46/49y3zuv-13463x2z2uv-808xyz2uv-17/32y2z2uv-13149xz3uv-117/88yz3uv-45/79z4uv-65/94x3u2v+6/67x2yu2v+34/39xy2u2v-14026y3u2v+42/107x2zu2v-3287xyzu2v-70/43y2zu2v+29/104xz2u2v-47/18yz2u2v-11038z3u2v+6262x2u3v-5255xyu3v-7/10y2u3v+7065xzu3v+5608yzu3v+4675z2u3v-73/90xu4v-15822yu4v-71/63zu4v+110/97u5v-69/5x3yv2+4315x2y2v2-124/45xy3v2-79/16y4v2-10739x3zv2-93/46x2yzv2+12499xy2zv2-73/86y3zv2+6367x2z2v2-12876xyz2v2-306y2z2v2-89xz3v2-70/51yz3v2+13120z4v2+61/57x3uv2+14782x2yuv2-91/9xy2uv2-2625y3uv2+14747x2zuv2-5899xyzuv2-12944y2zuv2-47/14xz2uv2-4551yz2uv2-99/101z3uv2-12618x2u2v2+1507xyu2v2-11951y2u2v2+68/49xzu2v2+49/39yzu2v2-56/103z2u2v2-31/85xu3v2-32/49yu3v2-65/14zu3v2+15/7u4v2+5749x3v3-3667x2yv3-107/29xy2v3+11301y3v3+95/18x2zv3-121/74xyzv3+75/26y2zv3+101/98xz2v3-111/76yz2v3-11335z3v3-15923x2uv3-36/83xyuv3-4134y2uv3-87/118xzuv3-41/11yzuv3+104/61z2uv3+12583xu2v3-50/23yu2v3-31/44zu2v3-29/23u3v3+108/107x2v4-8216xyv4-5009y2v4+101/26xzv4-9779yzv4+71/74z2v4-3358xuv4+83/84yuv4-34/39zuv4+44/47u2v4-112/83xv5+113/74yv5+82/79zv5-115/99uv5+12/109v6,-x4y-31/15x3y2+7231x2y3-99/37xy4-28/95x4z-53/107x3yz-4623x2y2z+5300xy3z-41/111y4z+12205x3z2+113/120x2yz2+54/49xy2z2-85/63y3z2+104/89x2z3-52/121xyz3-22/49y2z3+14367xz4+71/93yz4+55/56z5-5/81x4u-67/81x3yu-83/13x2y2u+98/55xy3u+15289y4u-94/111x3zu+40/29x2yzu-16/59xy2zu-107/14y3zu+2965x2z2u-459xyz2u-2/47y2z2u+35/22xz3u+119/39yz3u-12180z4u-13679x3u2+1534x2yu2+11305xy2u2-62/9y3u2-68/39x2zu2+11/90xyzu2-36/101y2zu2-2896xz2u2-15114yz2u2-49/114z3u2+19/16x2u3-11401xyu3-109/3y2u3+67/80xzu3+53/92yzu3+2894z2u3+119/74xu4+407yu4-65/53zu4+95/94u5-9309x4v+21/40x3yv+1436x2y2v+2194xy3v+6994y4v-116/81x3zv+13/2x2yzv-12/13xy2zv-23/84y3zv-61/83x2z2v+2023xyz2v+19/40y2z2v+43/26xz3v-59/113yz3v-47/53z4v+15580x3uv+21x2yuv+113/97xy2uv-15419y3uv-15243x2zuv+5128xyzuv-34/47y2zuv+13206xz2uv-4833yz2uv+107/91z3uv-1693x2u2v+54/53xyu2v-86/67y2u2v+98/9xzu2v+86/17yzu2v+64/89z2u2v+25/113xu3v+7884yu3v+14089zu3v-12027u4v-9471x3v2-36/85x2yv2-21/13xy2v2+15888y3v2+76/109x2zv2+4547xyzv2+115/12y2zv2-11/107xz2v2+6764yz2v2-8321z3v2+84/101x2uv2-202xyuv2+3251y2uv2+91/4xzuv2+7124yzuv2-53/81z2uv2+47/84xu2v2-8833yu2v2+117/14zu2v2-3/113u3v2+126/97x2v3-78/115xyv3+68/63y2v3-34/109xzv3+5913yzv3+6226z2v3-2365xuv3+91/120yuv3+14120zuv3-69/8u2v3+71/12xv4-13094yv4-7262zv4-33uv4+5367v5,-9533x4y-318x3y2+8/49x2y3+83/29xy4+13129y5+221x4z+115/48x3yz+12508x2y2z+97/52xy3z+11479y4z+8941x3z2+104/109x2yz2+9191xy2z2+103/64y3z2+10584x2z3-7728xyz3+3979y2z3+15/82xz4+5409yz4-1326z5+3756x4u-57/62x3yu+63/47x2y2u-14600xy3u+159y4u-11/4x3zu-113/57x2yzu-26/125xy2zu-32/87y3zu-10/21x2z2u+12927xyz2u-73/62y2z2u+115/99xz3u-13/3yz3u-126/25z4u-3969x3u2-122/57x2yu2-5003xy2u2-100/117y3u2-71/30x2zu2+7356xyzu2-2211y2zu2+31/40xz2u2-6722yz2u2-139z3u2+4426x2u3+1/115xyu3-72/85y2u3+15260xzu3+7938yzu3+4/115z2u3-33/89xu4+31/108yu4-50/83zu4+14/107u5+24/95x4v-113/17x3yv+81/14x2y2v-9957xy3v-10075y4v-122/113x3zv+65/118x2yzv-96/29xy2zv-19/41y3zv+113/35x2z2v+121/31xyz2v-9/68y2z2v+91/45xz3v-23/116yz3v-67/99z4v-5355x3uv-3112x2yuv-12824xy2uv-58/123y3uv-13/22x2zuv-19/85xyzuv-121/24y2zuv-14093xz2uv+99/95yz2uv+89/50z3uv+13096x2u2v-109/120xyu2v+121/61y2u2v+80/41xzu2v-39yzu2v-8/99z2u2v+5/17xu3v+112/69yu3v+14346zu3v-7173u4v+125/13x3v2+43/53x2yv2-78/103xy2v2-109/111y3v2+33/13x2zv2-15333xyzv2+87/49y2zv2-7212xz2v2+7729yz2v2-86/123z3v2-119/103x2uv2-71/122xyuv2-81/113y2uv2+6133xzuv2+55/72yzuv2+69/31z2uv2+12828xu2v2+94/15yu2v2-7588zu2v2+21/41u3v2-8712x2v3+74/9xyv3-11/87y2v3+1446xzv3-3/95yzv3-87/55z2v3-717xuv3-110/97yuv3-13/113zuv3-95/81u2v3-37/68xv4+5112yv4-56/11zv4-6/115uv4+7910v5,25/42x4y-42/79x3y2-59/21x2y3+2736xy4-107/115x4z-203x3yz+47/101x2y2z+7686xy3z-63/64y4z+103/57x3z2-12082x2yz2+11/102xy2z2-83/43y3z2+13/49x2z3-2685xyz3+123/44y2z3+31/12xz4+126/83yz4+14745z5+83/37x4u+7362x3yu-14615x2y2u-14109xy3u+49/47y4u+1929x3zu+83/71x2yzu-13640xy2zu-97/58y3zu-11141x2z2u-61/49xyz2u-3745y2z2u-74/21xz3u+3493yz3u-7540z4u-103/118x3u2-43/32x2yu2-9200xy2u2-23/65y3u2+15895x2zu2-13924xyzu2-14291y2zu2-11039xz2u2-31/37yz2u2-101/93z3u2-39/83x2u3-4536xyu3-78/47y2u3+75/44xzu3-24/121yzu3-81/113z2u3-81/89xu4+15825yu4-4111zu4+5850u5-12534x4v-69/94x3yv-10076x2y2v+3952xy3v+25/12y4v+21/34x3zv+11002x2yzv-54xy2zv+20/23y3zv+4991x2z2v+549xyz2v+2687y2z2v-110/9xz3v+11359yz3v+49/24z4v+62/107x3uv-27/41x2yuv-17/52xy2uv-10972y3uv+12/103x2zuv-318xyzuv-77/40y2zuv-114/53xz2uv+17/28yz2uv-8084z3uv+85/36x2u2v+7/100xyu2v-5772y2u2v-89/114xzu2v-40/121yzu2v+3340z2u2v+36/113xu3v-38/93yu3v+2519zu3v-7084u4v+8136x3v2-55/23x2yv2+27/7xy2v2+74/39y3v2+63/16x2zv2-8661xyzv2+2/91y2zv2+3773xz2v2-75/122yz2v2+447z3v2-59/109x2uv2-119/9xyuv2-67/49y2uv2-11334xzuv2-10482yzuv2-60/91z2uv2+94/65xu2v2-108/17yu2v2-69/70zu2v2-23/20u3v2+8/115x2v3+29/41xyv3+8/15y2v3-95/6xzv3-9714yzv3+2550z2v3-121/80xuv3+67/18yuv3+43/5zuv3+23/124u2v3-12509xv4-104/79yv4-73/21zv4-1238uv4+9038v5,94/107x4y+47/14x3y2-6362x2y3-20/59xy4-43/120y5-3028x4z-15141x3yz-2028x2y2z+84/115xy3z-3024y4z+2811x3z2+47/45x2yz2+121/101xy2z2-100/57y3z2+8/115x2z3+1/101xyz3-13/112y2z3+3618xz4+88/67yz4-52/63z5+102/97x4u-12/89x3yu-102x2y2u-3846xy3u-61/86y4u+85/54x3zu+78/29x2yzu-13381xy2zu-49/95y3zu-77/2x2z2u-5784xyz2u+1557y2z2u-9163xz3u-114/121yz3u-57/103z4u+36/31x3u2-9062x2yu2-23/111xy2u2+7362y3u2-7671x2zu2+14945xyzu2+7901y2zu2+51/5xz2u2-109/48yz2u2+7696z3u2+11280x2u3-44/57xyu3-13736y2u3-13458xzu3-14723yzu3-707z2u3+899xu4-10381yu4+99/25zu4-7788u5-237x4v+45/43x3yv-7666x2y2v-4/109xy3v+4303y4v-13107x3zv-108/91x2yzv-7707xy2zv-73/47y3zv+61/118x2z2v-11/65xyz2v+2970y2z2v-104/37xz3v-15408yz3v-64/55z4v+47/113x3uv+2185x2yuv+7941xy2uv-61/37y3uv+6482x2zuv-11/70xyzuv+83/110y2zuv-109/83xz2uv-86/95yz2uv-7583z3uv+83/45x2u2v+89/38xyu2v-2/11y2u2v+3577xzu2v+124/125yzu2v-1151z2u2v+109/85xu3v+70/13yu3v+37/104zu3v-210u4v+51/29x3v2-104/111x2yv2+105/58xy2v2-13459y3v2-80/79x2zv2-3006xyzv2-115/16y2zv2+8208xz2v2+35/38yz2v2+49/27z3v2-1647x2uv2+10482xyuv2-34/93y2uv2+97/18xzuv2+101/20yzuv2+1711z2uv2+91/36xu2v2-96/23yu2v2+7006zu2v2+86/31u3v2-10734x2v3-43/18xyv3-4597y2v3-11174xzv3-7334yzv3+7/96z2v3+4/97xuv3-5/82yuv3-15600zuv3-69/94u2v3-71/25xv4+21/97yv4+117/23zv4-6557uv4-67/83v5,8164x4y+19/73x3y2-1592x2y3-28/87xy4-63/103x4z+11/42x3yz-52/67x2y2z-13766xy3z+11378y4z+10/37x3z2+115/41x2yz2+11/100xy2z2-49/40y3z2+86/111x2z3+124/5xyz3-25/79y2z3-14525xz4+11380yz4-53/42z5-12169x4u-14/51x3yu+68/33x2y2u-3/62xy3u-31/22y4u-74/93x3zu+12924x2yzu-103/123xy2zu-74/97y3zu-2789x2z2u-95/32xyz2u+45/13y2z2u+40/71xz3u+49/110yz3u+34/75z4u+9829x3u2-59/92x2yu2+106/65xy2u2+123/86y3u2+7133x2zu2-73/46xyzu2-7/29y2zu2-937xz2u2-65/67yz2u2-88/111z3u2-61/119x2u3+975xyu3-54/7y2u3-37/33xzu3+61/59yzu3+51/115z2u3+117/43xu4+8506yu4+13941zu4-14945u5-115/63x4v-14237x3yv-74/87x2y2v+104/47xy3v-95/104y4v+11535x3zv-119/75x2yzv-44xy2zv+11299y3zv-21/113x2z2v-2852xyz2v+95/77y2z2v-75/19xz3v-4864yz3v-79/88z4v+139x3uv-10068x2yuv+2049xy2uv+7515y3uv+97/56x2zuv+109/113xyzuv+7778y2zuv-71/11xz2uv-80/19yz2uv+55/59z3uv-69/98x2u2v-15679xyu2v+114/11y2u2v+69/65xzu2v+879yzu2v+45/104z2u2v+47/97xu3v-1373yu3v+15885zu3v+11121u4v-5042x3v2+4/25x2yv2-8607xy2v2-25/33y3v2+93/55x2zv2+68xyzv2-4167y2zv2+14180xz2v2-115/47yz2v2-81/67z3v2-12099x2uv2+34/107xyuv2+122/59y2uv2+775xzuv2-91yzuv2-85/96z2uv2-59/95xu2v2+174yu2v2+11/16zu2v2+66/37u3v2-121/36x2v3+6070xyv3-83/52y2v3-121/59xzv3-55/12yzv3+8088z2v3-20/29xuv3+76/125yuv3-10858zuv3+1833u2v3-103/50xv4+76/93yv4-119/18zv4+37/114uv4+51/7v5,85/56x4y-7839x3y2+12/37x2y3+6558xy4-8191x4z+115/7x3yz+81/23x2y2z-4121xy3z-1131y4z-23/37x3z2-71/32x2yz2+30/97xy2z2+5070y3z2-49/123x2z3+103/88xyz3-45/19y2z3+5132xz4+7277yz4+1896z5-103/75x4u-12020x3yu+12337x2y2u+6248xy3u+14290y4u-87/44x3zu-5364x2yzu-11801xy2zu-59/37y3zu+34/109x2z2u-14482xyz2u-10338y2z2u+118/73xz3u+7/8yz3u+158z4u+10590x3u2-5182x2yu2+83/62xy2u2+11557y3u2-92/119x2zu2-37/94xyzu2+5383y2zu2-365xz2u2+7/62yz2u2-7965z3u2-10/43x2u3+119/101xyu3-113/83y2u3-121/41xzu3+61/104yzu3+37/60z2u3-74/95xu4-113/66yu4-205zu4+4787u5-94/93x4v+14871x3yv-14723x2y2v+10730xy3v+112/17y4v-35/19x3zv-3487x2yzv-65/43xy2zv-7445y3zv-79/124x2z2v+7423xyz2v+91/2y2z2v+91/34xz3v-6970yz3v-50/113z4v+75/43x3uv-127x2yuv+11978xy2uv+48/113y3uv+113/62x2zuv-8941xyzuv-101/112y2zuv-5737xz2uv-31/123yz2uv+9490z3uv+19/92x2u2v-107/73xyu2v-23/121y2u2v+38/65xzu2v-672yzu2v+13/77z2u2v+46/119xu3v-103/18yu3v+107/59zu3v-52/21u4v-94/87x3v2-74/31x2yv2-9/22xy2v2-2896y3v2+113/3x2zv2-5386xyzv2-11391y2zv2+42/97xz2v2+77/64yz2v2-1610z3v2-102/43x2uv2+124/39xyuv2+14829y2uv2+88/113xzuv2-10411yzuv2-51/43z2uv2-36/121xu2v2+9487yu2v2-5589zu2v2+4335u3v2-5/91x2v3+6084xyv3-56/39y2v3-84/101xzv3-81/85yzv3-6521z2v3-2432xuv3+14317yuv3-43/82zuv3+121/8u2v3+14783xv4-92/45yv4+112/27zv4-8410uv4+31/105v5,-6691x4y-10158x3y2-5372x2y3+4132xy4+106/9y5+15600x4z-803x3yz+43/29x2y2z+9/91xy3z-92/61y4z+4807x3z2-12562x2yz2+14234xy2z2-91/17y3z2-91/30x2z3-10615xyz3-4206y2z3-29/45xz4-11/86yz4-115/9z5+125/112x4u+52/59x3yu+92/49x2y2u+121/85xy3u-51/14y4u-73/48x3zu-1/110x2yzu+12/65xy2zu+15045y3zu+12826x2z2u-123/89xyz2u+9465y2z2u-67/31xz3u-5080yz3u-7944z4u-107/72x3u2+1473x2yu2+7965xy2u2+15753y3u2-95/98x2zu2-9827xyzu2-25/53y2zu2-83/54xz2u2-13217yz2u2-117/110z3u2+230x2u3-12120xyu3+11/36y2u3-2071xzu3+109/59yzu3+6909z2u3-15/64xu4+45/82yu4-3091zu4-15711u5+5957x4v-45/86x3yv+26/29x2y2v-40/57xy3v+25/43y4v+126/37x3zv-38/33x2yzv+65/109xy2zv-33/68y3zv-7287x2z2v-4842xyz2v+35/118y2z2v+6157xz3v-97/89yz3v-91/50z4v-70/27x3uv+32/9x2yuv+78/125xy2uv+38/7y3uv-3214x2zuv-68/101xyzuv+87/55y2zuv-69/98xz2uv+5805yz2uv+41/102z3uv-43/54x2u2v-42/73xyu2v-13/49y2u2v+11864xzu2v+121/37yzu2v-100/109z2u2v-12609xu3v-9114yu3v-8746zu3v+11659u4v+3799x3v2-9581x2yv2+60/91xy2v2+2029y3v2+12075x2zv2+210xyzv2-1/22y2zv2+17/58xz2v2+1212yz2v2+118/27z3v2-3571x2uv2-3139xyuv2-23/100y2uv2-1240xzuv2+71/49yzuv2-21/103z2uv2-110/71xu2v2-40/77yu2v2-103/29zu2v2+10737u3v2+2828x2v3+14/39xyv3+7564y2v3+113/50xzv3+38/79yzv3+59/66z2v3+2726xuv3+91/94yuv3-15730zuv3-13408u2v3-97/42xv4+54/29yv4-33/73zv4+4823uv4+57/71v5,-14556x3yz-9751x2y2z-45/28xy3z+85/23y4z+5623x3z2+5369x2yz2-19/60xy2z2-36/5y3z2-95/36x2z3+5862xyz3-5/93y2z3+2949xz4+11357yz4-5679z5-52/45x3yu+4448x2y2u-9/22xy3u+2427y4u+3296x3zu+16/39x2yzu+53/57xy2zu+15/41y3zu+9473x2z2u+37xyz2u-58/69y2z2u-23/56xz3u-13/90yz3u-54/29z4u-41/67x3u2+10258x2yu2+23/44xy2u2-12952y3u2+2124x2zu2-1677xyzu2+12911y2zu2+22/45xz2u2+17/84yz2u2+5910z3u2+4782x2u3+119/39xyu3-17/84y2u3-120/91xzu3+35/59yzu3+17/77z2u3-4467xu4-77/4yu4-26/53zu4-3580u5-11977x3yv-118/77x2y2v+6040xy3v+9724y4v-47/5x3zv+59/101x2yzv+1212xy2zv-7/121y3zv+93/53x2z2v-56/23xyz2v-4470y2z2v+110/111xz3v-41/99yz3v-81/10z4v-71/24x3uv+26/115x2yuv+59/39xy2uv-10029y3uv+11748x2zuv+5749xyzuv+6887y2zuv+38/3xz2uv-116/61yz2uv-55/118z3uv+105/22x2u2v+70/87xyu2v-28/13y2u2v-109/123xzu2v-102/47yzu2v-52/71z2u2v+101/95xu3v+51/16yu3v+15/97zu3v-78/125u4v+35/46x3v2-9526x2yv2+10781xy2v2-119/44y3v2-23/10x2zv2+59/29xyzv2-15144y2zv2+29/120xz2v2-53/126yz2v2-93/85z3v2+53/8x2uv2-487xyuv2-12143y2uv2+13825xzuv2+55/6yzuv2-4250z2uv2+4237xu2v2-109/9yu2v2+67/53zu2v2+82/33u3v2+8660x2v3+15046xyv3-79/84y2v3-10310xzv3+110yzv3-7636z2v3+57/92xuv3-22/119yuv3-95/103zuv3+5138u2v3+123/49xv4-7587yv4+30/41zv4-124/121uv4+54/71v5,-29/60x4y-108/77x3y2-109/37x2y3-3619xy4+109/6x4z-37/67x3yz+53/45x2y2z+5291xy3z-2927y4z+34/5x3z2+87/17x2yz2+100/89xy2z2-114/29y3z2-4057x2z3-1/42xyz3-14/61y2z3-398xz4-122/73yz4+66/37z5+99/37x4u-5691x3yu-8778x2y2u+17/115xy3u+51/113y4u-71/101x3zu+85/91x2yzu-92/9xy2zu-3442y3zu+109/26x2z2u+50/37xyz2u+77/94y2z2u+16/35xz3u+9985yz3u+5/102z4u-5932x3u2+89/125x2yu2-895xy2u2-12455y3u2-630x2zu2-64/47xyzu2+25/9y2zu2+7906xz2u2+6827yz2u2+9808z3u2-113/118x2u3+79/8xyu3+9484y2u3+62/39xzu3+6/85yzu3-23/49z2u3-93/115xu4-11/93yu4-15177zu4-13/2u5-7623x4v-103/73x3yv-96/115x2y2v+39/76xy3v+80/79y4v+43/68x3zv+45/97x2yzv+101/87xy2zv+4632y3zv-918x2z2v+8248xyz2v-4276y2z2v+8853xz3v-39/61yz3v-121/87z4v+9968x3uv+473x2yuv+117/56xy2uv-19/21y3uv+121/119x2zuv+3/98xyzuv-65/42y2zuv-3723xz2uv+7/34yz2uv-112/87z3uv+103x2u2v+25/41xyu2v-14459y2u2v-56/41xzu2v-59/81yzu2v-109/102z2u2v-87/16xu3v-13011yu3v+49/123zu3v+106/89u4v-61/51x3v2+14107x2yv2+8035xy2v2-8853y3v2+5723x2zv2+123/53xyzv2-9727y2zv2-102/83xz2v2+1111yz2v2-15745z3v2+83/118x2uv2-57/35xyuv2-48/73y2uv2-28/37xzuv2-27/97yzuv2-27/58z2uv2+71/93xu2v2+117/8yu2v2+12344zu2v2-2497u3v2-118/71x2v3-11/19xyv3+21/104y2v3+32/113xzv3+15544yzv3+31/18z2v3+5909xuv3-67/58yuv3+27/35zuv3+115/9u2v3+79/13xv4+6722yv4-37/114zv4-71/124uv4+4657v5,-77/61x4y-88/101x3y2+93/88x2y3-11/70xy4+9806y5+7896x4z-4699x3yz+55/122x2y2z-63/122xy3z-125/74y4z+47/45x3z2+101/17x2yz2+92/47xy2z2+69/82y3z2+12402x2z3+113/98xyz3-101/33y2z3-15376xz4+47/71yz4-73/10z5+65/74x4u-14409x3yu-14478x2y2u+13593xy3u+102/97y4u+39/62x3zu-34/125x2yzu-83/9xy2zu+45/113y3zu+14484x2z2u-15293xyz2u-26/55y2z2u-958xz3u+67/35yz3u-93/19z4u+25/16x3u2+107/52x2yu2-4599xy2u2-86/51y3u2-9885x2zu2-77/47xyzu2+33/65y2zu2+90/109xz2u2-61/26yz2u2+6198z3u2-38/37x2u3-13935xyu3-142y2u3-64/5xzu3-7228yzu3+1251z2u3+1556xu4+117/121yu4-92/35zu4+99/92u5+13493x4v+12654x3yv+32/101x2y2v-11118xy3v+43/51y4v-575x3zv+103/21x2yzv+85/24xy2zv+1788y3zv+85/3x2z2v-64/25xyz2v+57/35y2z2v+37/120xz3v-69/110yz3v+48/49z4v+55/114x3uv-6439x2yuv+31/51xy2uv-90/49y3uv-45/104x2zuv-12018xyzuv+6/119y2zuv+40/63xz2uv+20/91yz2uv+50/43z3uv+1/26x2u2v-109/47xyu2v+99/7y2u2v+72/83xzu2v+61/118yzu2v+3530z2u2v+6146xu3v+117yu3v-9921zu3v-8708u4v-10/47x3v2-15294x2yv2-7336xy2v2+1/66y3v2-3057x2zv2+74/123xyzv2+146y2zv2-103/34xz2v2-117/76yz2v2+8472z3v2-7/92x2uv2+10033xyuv2+43/53y2uv2+4694xzuv2-49/2yzuv2-71/73z2uv2-125/17xu2v2-9817yu2v2+7218zu2v2+6897u3v2-19/90x2v3+11899xyv3-11779y2v3-5456xzv3+17/42yzv3+15340z2v3+12/7xuv3+9580yuv3-502zuv3-14069u2v3-4371xv4+14452yv4-9423zv4-117/122uv4+1126v5,49/108x4-39/4x3y-67/21x2y2-8/69xy3-9779y4+57/14x3z-11145x2yz+6928xy2z-7824y3z+1/79x2z2+5173xyz2-62/15y2z2-123/112xz3+88/79yz3+1/125z4+57/23x3u-11856x2yu-7444xy2u+115/8y3u-11133x2zu+71/73xyzu-7941y2zu+69/65xz2u+22/75yz2u+65/121z3u+9471x2u2+9167xyu2+51/59y2u2+12835xzu2+15047yzu2+11102z2u2-10059xu3+19/28yu3+65/21zu3-39/28u4-3/73x3v+94/61x2yv+8778xy2v-12922y3v-8711x2zv-37/97xyzv+14270y2zv+4487xz2v-59/112yz2v-14183z3v+15553x2uv+3579xyuv+114/91y2uv-4/97xzuv+13/85yzuv-89/15z2uv+58/75xu2v-34/7yu2v-90/61zu2v+90/101u3v-14673x2v2+90/19xyv2-45/37y2v2+23/49xzv2-71/11yzv2+119/8z2v2+89/10xuv2+109/91yuv2+36/49zuv2-7/31u2v2-40/113xv3-21/121yv3+9910zv3+33/14uv3-23/79v4,93/70x4-43/125x3y+9582x2y2+7565xy3-11511y4-3/79x3z-36/107x2yz-2038xy2z+879y3z-4700x2z2+103/14xyz2+102/79y2z2-67/68xz3-44/25yz3+105/79z4-29/24x3u-74/83x2yu+67/43xy2u+49/12y3u-115/11x2zu+23/67xyzu-61/27y2zu+12257xz2u+14068yz2u+23/15z3u+607x2u2+73/8xyu2+14237y2u2-13/33xzu2+110/71yzu2+41/101z2u2+5708xu3+88/67yu3+1460zu3-2472u4-1629x3v-51/70x2yv-88/73xy2v-36/97y3v+38/11x2zv+15899xyzv+54/19y2zv+9460xz2v-5150yz2v+3462z3v+5522x2uv-19/123xyuv+14871y2uv+53/5xzuv-7535yzuv-13430z2uv+107/47xu2v-8307yu2v-55/79zu2v-11945u3v-16/83x2v2+115/48xyv2+12389y2v2+11545xzv2-25/26yzv2-3755z2v2+4724xuv2-31/21yuv2+7872zuv2+89/45u2v2+87/47xv3+7625yv3+13494zv3-15376uv3-25/126v4;TestGRRes(Name, I); kill R, Name, @p; "";
787
788  string Name = "rat.d10.g9.quart2"; int @p=31991; ring R = (@p),(x,y,z,u,v), dp;ideal I = x3yu2-48/11x2y2u2-8356xy3u2+35/121y4u2+31/66x3zu2-54/83x2yzu2-61/18xy2zu2+11526y3zu2+7372x2z2u2-91/60xyz2u2-95/97y2z2u2-45/71xz3u2+71/115yz3u2+25/54z4u2-61/102x3u3-12668x2yu3+6653xy2u3+41/54y3u3+87/50x2zu3-5004xyzu3+13924y2zu3+2310xz2u3-93/14yz2u3-2/93z3u3-97/125x2u4-58/11xyu4+46/73y2u4-4417xzu4+60/101yzu4+56/75z2u4-113/118xu5+115/4yu5-40zu5-8554u6-54/83x3yuv-9770x2y2uv-590xy3uv+15/49y4uv+94/69x3zuv+121/105x2yzuv+95/88xy2zuv+3186y3zuv+11/6x2z2uv-44/81xyz2uv+637y2z2uv+109/121xz3uv-33yz3uv-94/115z4uv-49/95x3u2v-11/109x2yu2v+45/113xy2u2v+97/84y3u2v+5257x2zu2v+99/49xyzu2v+12584y2zu2v-4294xz2u2v+1137yz2u2v-58/69z3u2v-4749x2u3v+120/97xyu3v-31/103y2u3v+62/97xzu3v-107/74yzu3v+53/59z2u3v+91/33xu4v+1291yu4v+23/34zu4v+58/77u5v+16/17x3yv2-750x2y2v2+86/89xy3v2+123/46y4v2+53/123x3zv2-61/99x2yzv2+12389xy2zv2+10419y3zv2+43/11x2z2v2-146xyz2v2-116/51y2z2v2+13/62xz3v2-5524yz3v2-111/118z4v2-56/55x3uv2-3038x2yuv2+14/27xy2uv2-43/64y3uv2+3385x2zuv2+25/11xyzuv2+92/41y2zuv2+28/113xz2uv2-2049yz2uv2+89/37z3uv2-13094x2u2v2-2774xyu2v2+15474y2u2v2-15791xzu2v2-71/116yzu2v2+77/41z2u2v2-83/68xu3v2-33/106yu3v2+71/37zu3v2-41/17u4v2+12052x3v3+1906x2yv3+13825xy2v3+80/7y3v3-125/96x2zv3-9661xyzv3+85/116y2zv3-72/91xz2v3+13/112yz2v3-126/97z3v3-1637x2uv3+34/103xyuv3+3844y2uv3+77/10xzuv3+6359yzuv3-11185z2uv3-124/121xu2v3+66/91yu2v3-14636zu2v3-1051u3v3+9/64x2v4-12924xyv4-119/41y2v4+74/23xzv4+1622yzv4+73/37z2v4-60/101xuv4+111/22yuv4-45/124zuv4+59/37u2v4-66/37xv5-71/99yv5+12409zv5-113/64uv5-5267v6,-x4y-22/79x3y2-125/42x2y3-116/7xy4+98/111y5-31/66x4z-118/75x3yz+110/93x2y2z-43/92xy3z-788y4z-7372x3z2-2701x2yz2-67/124xy2z2-117/62y3z2+45/71x2z3-8396xyz3-10343y2z3-25/54xz4+30/59yz4+61/102x4u+11736x3yu+12726x2y2u+41/118xy3u-15832y4u-87/50x3zu-130x2yzu+41/8xy2zu-10300y3zu-2310x2z2u-101/5xyz2u+6205y2z2u+2/93xz3u+8679yz3u+97/125x3u2-43/37x2yu2-39/80xy2u2+12139y3u2+4417x2zu2+4294xyzu2+11/58y2zu2-56/75xz2u2+8338yz2u2+113/118x2u3-10190xyu3-37/16y2u3+40xzu3+74/23yzu3+8554xu4+115/22yu4-39/79x4v+61/72x3yv+8048x2y2v-9201xy3v+16/121y4v+113/93x3zv+109/75x2yzv+12700xy2zv-10607y3zv+50/11x2z2v+1223xyz2v-103/79y2z2v-123/58xz3v+31/26yz3v-15/122z4v+122/25x3uv-99/17x2yuv+1723xy2uv-38/121y3uv+11016x2zuv-25/102xyzuv-14970y2zuv-61/6xz2uv-14981yz2uv+15900z3uv+3268x2u2v-75/19xyu2v-1436y2u2v-1764xzu2v-57/41yzu2v+12741z2u2v-14615xu3v+119/61yu3v-115/119zu3v+10501u4v-8502x3v2-51/76x2yv2-6281xy2v2+17/49y3v2-106/7x2zv2+63/101xyzv2-27/95y2zv2-1606xz2v2+9245yz2v2+1912z3v2+11155x2uv2+223xyuv2-13/18y2uv2+110/43xzuv2+76/81yzuv2-6291z2uv2+1400xu2v2-95/23yu2v2-9701zu2v2+106/105u3v2+72/47x2v3-13118xyv3+14409y2v3+37/86xzv3+44/69yzv3-325z2v3+113/71xuv3+16/81yuv3+6/19zuv3-119/39u2v3-89/9xv4+72/53yv4+112/55zv4-8587uv4-6604v5,-x3y2+48/11x2y3+8356xy4-35/121y5-12750x3yz+100/111x2y2z+45/74xy3z+99/74y4z-6/7x3z2-47/67x2yz2+11465xy2z2-11865y3z2+7776x2z3+124/45xyz3-98/115y2z3+117/85xz4-59/120yz4-8748z5+61/102x3yu+12668x2y2u-6653xy3u-41/54y4u+13408x3zu-2185x2yzu-1240xy2zu+1161y3zu+44/27x2z2u-11164xyz2u-13388y2z2u-107/13xz3u+90/71yz3u+4204z4u+97/125x2yu2+58/11xy2u2-46/73y3u2+55/48x2zu2+121/31xyzu2+126/61y2zu2-55/69xz2u2+5988yz2u2+3755z3u2+113/118xyu3-115/4y2u3+3390xzu3-5762yzu3+30/61z2u3+8554yu4-14317zu4+99/116x3yv-113/119x2y2v+50/23xy3v-37/79y4v-8668x3zv+14049x2yzv+111/35xy2zv+61/28y3zv-10171x2z2v+68/21xyz2v+2023y2z2v-9/109xz3v+8520yz3v-2683z4v-13547x3uv+28/65x2yuv-5988xy2uv+61/111y3uv+12314x2zuv+29/44xyzuv+6141y2zuv+11280xz2uv+79/22yz2uv-38/111z3uv+19/51x2u2v+5093xyu2v-10291y2u2v-5009xzu2v-111/49yzu2v+3813z2u2v-61/37xu3v+15914yu3v-3218zu3v-12915u4v-118/101x3v2-7/57x2yv2+13128xy2v2+11606y3v2+42/101x2zv2-54/17xyzv2-43/49y2zv2-119/110xz2v2+9742yz2v2-43/4z3v2-55/8x2uv2-29/88xyuv2+12042y2uv2+101/37xzuv2-57/62yzuv2+106/97z2uv2+38/83xu2v2+8152yu2v2-5492zu2v2-47/79u3v2+15112x2v3+69/44xyv3-6/71y2v3+113/54xzv3-13210yzv3-707z2v3-119/8xuv3+3845yuv3-19/20zuv3+4852u2v3+15761xv4-12372yv4+74/69zv4-2100uv4-12833v5,-x3yz+48/11x2y2z+8356xy3z-35/121y4z-31/66x3z2+54/83x2yz2+61/18xy2z2-11526y3z2-7372x2z3+91/60xyz3+95/97y2z3+45/71xz4-71/115yz4-25/54z5+15/52x3yu+6039x2y2u+74/99xy3u-17/40y4u+29/50x3zu-7775x2yzu+6368xy2zu+14170y3zu+52/41x2z2u+7003xyz2u-5787y2z2u-101/37xz3u-23/28yz3u-20/63z4u+41/77x3u2+8650x2yu2-15922xy2u2-16/83y3u2+7278x2zu2+31/30xyzu2-2/107y2zu2+35/122xz2u2+85/58yz2u2-757z3u2+2/101x2u3+86/17xyu3+95/59y2u3+123/22xzu3-6869yzu3-9311z2u3-105/97xu4+5699yu4+15925zu4+13528u5-154x3yv+4187x2y2v+56/107xy3v-15932y4v-5137x3zv-37/56x2yzv+9401xy2zv+92/123y3zv-79/97x2z2v+9201xyz2v+19/53y2z2v+107/20xz3v+17/77yz3v-15306z4v+3215x3uv-79/117x2yuv-9/76xy2uv-6352y3uv+93/13x2zuv-65/89xyzuv-115/4y2zuv-34/57xz2uv+39/107yz2uv+31/9z3uv+107/48x2u2v+2632xyu2v+29/96y2u2v-125/89xzu2v+29/113yzu2v+3940z2u2v-116/111xu3v+6145yu3v-105/62zu3v+101/17u4v-9281x3v2-49/107x2yv2-12154xy2v2+4/19y3v2-114/71x2zv2-15/118xyzv2+4372y2zv2+45/121xz2v2+46/111yz2v2+6614z3v2+17x2uv2+10806xyuv2-10617y2uv2-25/111xzuv2-116/27yzuv2-7/58z2uv2-686xu2v2+3/13yu2v2-17/49zu2v2-40/107u3v2+47/90x2v3-83/43xyv3-6326y2v3+49/64xzv3+113/76yzv3-122/73z2v3+10232xuv3-116/109yuv3-1990zuv3+70/51u2v3-118/19xv4-27/55yv4+21/19zv4-23/57uv4-11721v5,-3399x4y+1849x3y2-3/29x2y3+28/87xy4+10/29y5-9788x4z-49/73x3yz+13829x2y2z+118/73xy3z+13129y4z-618x3z2+92/13x2yz2+101/117xy2z2-162y3z2+24/5x2z3-29/74xyz3+2687y2z3-74/39xz4+2/57yz4+68/73x4u-13787x3yu-11659x2y2u+14729xy3u+92/53y4u+15/71x3zu-62/15x2yzu+21/85xy2zu+4938y3zu-120/37x2z2u-77/102xyz2u-4785y2z2u-83/70xz3u-12128yz3u-13592z4u-123/20x3u2+2607x2yu2+40/19xy2u2+6361y3u2-3091x2zu2+89/113xyzu2+149y2zu2-2890xz2u2-8374yz2u2+11886z3u2-49/43x2u3-9854xyu3-6943y2u3+10743xzu3-122/45yzu3-13902z2u3-103/19xu4-48/59yu4+27/86zu4+46/35u5-117/17x4v-15/7x3yv+8409x2y2v-83/28xy3v+86/35y4v+37/45x3zv+4/3x2yzv+35/38xy2zv+4015y3zv-49/111x2z2v-1260xyz2v-25/33y2z2v+116/19xz3v+93/8yz3v+5755z4v-25/89x3uv-11669x2yuv-64/107xy2uv+2993y3uv+7767x2zuv-17/95xyzuv-103/80y2zuv-14576xz2uv+80/47yz2uv+25/107z3uv+103/2x2u2v+125/117xyu2v-2/89y2u2v-5298xzu2v-50/27yzu2v-71/53z2u2v+2652xu3v+15761yu3v+2124zu3v+11/82u4v+100/63x3v2+4180x2yv2+11/39xy2v2-1221y3v2+108/125x2zv2+97/126xyzv2-7698y2zv2+13984xz2v2+1342yz2v2-84/121z3v2-26/73x2uv2-14/15xyuv2-22/37y2uv2-71/82xzuv2+12430yzuv2+103/52z2uv2-13095xu2v2+10114yu2v2-8/73zu2v2-33/97u3v2+83/105x2v3+22/45xyv3-7961y2v3-9654xzv3-54/55yzv3-3/71z2v3-10148xuv3-117/98yuv3+101/102zuv3-606u2v3+97/43xv4-68/21yv4+63/16zv4+42/17uv4+5834v5,-3399x3y2-32/113x2y3+14/99xy4+15001y5-121/115x3yz+4604x2y2z+7/2xy3z+9532y4z-3267x3z2+97/118x2yz2-14238xy2z2-80/21y3z2-12332x2z3-19/69xyz3+116/15y2z3-103/32xz4+15340yz4+10509z5+112/109x3yu-97x2y2u-40/11xy3u+90/29y4u-95/106x3zu-114/67x2yzu+113/48xy2zu+12080y3zu-44x2z2u+18/17xyz2u-4814y2z2u-103/100xz3u-96/61yz3u-205z4u-87/82x3u2-97/108x2yu2+3230xy2u2+104/83y3u2+41/86x2zu2+116/49xyzu2-59/110y2zu2+14/59xz2u2-6962yz2u2-2185z3u2+59/91x2u3+2497xyu3+3/37y2u3-13010xzu3+6/83yzu3-11448z2u3+13/72xu4-69/62yu4-2869zu4+23/73u5-20/43x3yv+5074x2y2v+28/125xy3v-2706y4v+13010x3zv-17/109x2yzv+21/4xy2zv+59/93y3zv-2406x2z2v+117/11xyz2v-14978y2z2v+70/89xz3v-33/7yz3v-13676z4v-13690x3uv+9825x2yuv-117/107xy2uv+12760y3uv-93/98x2zuv-113/64xyzuv+113/103y2zuv-9748xz2uv+11016yz2uv-10729z3uv+90/13x2u2v-13/47xyu2v-11/39y2u2v+20/69xzu2v+5531yzu2v+125/49z2u2v-11025xu3v-9621yu3v+113/109zu3v+4710u4v-107/7x3v2+110/119x2yv2-10025xy2v2-6644y3v2-5041x2zv2+5/96xyzv2+11472y2zv2-5128xz2v2+2927yz2v2+121/18z3v2-125/89x2uv2+12936xyuv2-71/47y2uv2+34/47xzuv2-75/103yzuv2-2654z2uv2-2350xu2v2-7707yu2v2+47/72zu2v2-952u3v2-21/67x2v3+58/37xyv3-8757y2v3+3615xzv3+44/123yzv3-13027z2v3-9/10xuv3+75/43yuv3+115/18zuv3+8071u2v3-26/3xv4-67/65yv4+14186zv4-41/122uv4+33/28v5,-3399x3yz-32/113x2y2z+14/99xy3z+15001y4z-9788x3z2+37/96x2yz2+7743xy2z2+31/55y3z2-618x2z3-8171xyz3+82/109y2z3+24/5xz4+88/85yz4-74/39z5-13165x3yu+3407x2y2u-12509xy3u-23/45y4u-11774x3zu-10/67x2yzu+69/79xy2zu-10/123y3zu-7636x2z2u+83/32xyz2u+51/112y2z2u+19/8xz3u+9309yz3u-44/49z4u+4089x3u2-374x2yu2-919xy2u2+98/107y3u2+2776x2zu2+85/26xyzu2+31/13y2zu2-103/82xz2u2+35/76yz2u2+59/45z3u2+2950x2u3+27/44xyu3+88/71y2u3+7/114xzu3-72/77yzu3+12917z2u3-34/67xu4-85/82yu4-55/84zu4+4690u5+11/42x3yv-19/125x2y2v-8288xy3v+9199y4v-12929x3zv+13357x2yzv-4903xy2zv-584y3zv-10/33x2z2v+59/113xyz2v+103/92y2z2v+101/69xz3v+8708yz3v-8/7z4v+13560x3uv-43/49x2yuv-121/98xy2uv+75/79y3uv-39x2zuv-88/69xyzuv-89/78y2zuv+110/67xz2uv+61/4yz2uv-98/45z3uv+82/7x2u2v-85/41xyu2v+6548y2u2v+9367xzu2v-59/81yzu2v-14408z2u2v+2363xu3v-80/11yu3v-50/17zu3v-14799u4v-53/21x3v2+9437x2yv2-117/80xy2v2+81/85y3v2-8/45x2zv2-6428xyzv2+15126y2zv2+68/89xz2v2+7/122yz2v2+9639z3v2+113/4x2uv2-8678xyuv2-104/45y2uv2-79/90xzuv2+39/101yzuv2-7234z2uv2-28/43xu2v2+1251yu2v2-97/56zu2v2+17/41u3v2+107/24x2v3+2747xyv3+9933y2v3-4199xzv3+53/83yzv3+6364z2v3-5456xuv3+618yuv3-123/55zuv3+2375u2v3+63/76xv4-115/106yv4-8811zv4-31/75uv4+10/109v5,13/89x4y+77/31x3y2+36/83x2y3-11411xy4+6936y5-12223x4z+7400x3yz+33/118x2y2z-12146xy3z+108/79y4z+82/99x3z2-9877x2yz2-79/70xy2z2-19/123y3z2-1491x2z3+7953xyz3-43/126y2z3+60/17xz4+98/57yz4-13317x4u-77/27x3yu-6811x2y2u-69/61xy3u+6144y4u+5404x3zu+121/120x2yzu-91/23xy2zu-71/106y3zu+1435x2z2u-120/13xyz2u-12019y2z2u-68/7xz3u-113/82yz3u+11526z4u-8706x3u2-89/53x2yu2-14804xy2u2+120/107y3u2+71/94x2zu2-1/70xyzu2+1532y2zu2+4470xz2u2+13/60yz2u2-115/102z3u2-82/21x2u3+27/121xyu3-4439y2u3-101/47xzu3-3186yzu3-106/101z2u3-10169xu4+19/58yu4-96/73zu4-7959u5-10526x4v-107/92x3yv+47/6x2y2v-23/43xy3v-69/62y4v+59/65x3zv-28/95x2yzv+5479xy2zv-39/77y3zv+11/69x2z2v-11713xyz2v+43/79y2z2v-15602xz3v+16/73yz3v-13952z4v+61/82x3uv-2219x2yuv-91/106xy2uv+5/37y3uv-148x2zuv+31/51xyzuv+18/101y2zuv+97/68xz2uv-73/32yz2uv+47/2z3uv+2/41x2u2v-13009xyu2v-7/60y2u2v+15779xzu2v+72/7yzu2v-11/73z2u2v-119/44xu3v-9067yu3v+3249zu3v+61/51u4v+12525x3v2-118/9x2yv2-3270xy2v2-4/25y3v2-5075x2zv2+77/40xyzv2-89/65y2zv2+17/58xz2v2-15609yz2v2+95/54z3v2-75/79x2uv2-4907xyuv2+12418y2uv2-57/17xzuv2-8746yzuv2+13/95z2uv2-124/67xu2v2+16/13yu2v2+28/23zu2v2-10847u3v2-645x2v3+106/75xyv3+6/115y2v3-8495xzv3+58/35yzv3-9398z2v3-101/72xuv3-71/20yuv3-124/65zuv3-8971u2v3+27/28xv4+12/29yv4-4276zv4+10858uv4+29/12v5,13/89x3y2+12068x2y3-15543xy4-77/79y5+6626x3yz+64/53x2y2z-6/23xy3z-47/125y4z+14403x3z2-43/78x2yz2-31/115xy2z2+94/59y3z2-118/117x2z3-11229xyz3+2268y2z3-116/85xz4+25/58yz4+3085z5+59/27x3yu+67/82x2y2u+11/6xy3u+103/47y4u-63/80x3zu-81/47x2yzu+7760xy2zu-115/56y3zu-10/17x2z2u+101/5xyz2u+15634y2z2u+1/107xz3u-9282yz3u+43/62z4u+62/55x3u2+100/113x2yu2-9205xy2u2-46/13y3u2+43/96x2zu2+10159xyzu2+692y2zu2+859xz2u2-19/74yz2u2+123/47z3u2-9/20x2u3-11391xyu3-2375y2u3+109/24xzu3-57/53yzu3-925z2u3-82/45xu4+97/34yu4+13/82zu4-108/29u5+63/10x3yv+38/17x2y2v-19/115xy3v+3150y4v+22/69x3zv+26/57x2yzv+110/27xy2zv+87/77y3zv+85/18x2z2v+39/47xyz2v-48/17y2z2v-7/27xz3v-13/100yz3v-11662z4v-17/8x3uv+37/11x2yuv+29/11xy2uv-109/88y3uv-2817x2zuv-61/44xyzuv+10/31y2zuv+10010xz2uv+51/86yz2uv-97/83z3uv-89/96x2u2v+4030xyu2v-58/77y2u2v-114/43xzu2v-37/10yzu2v-2011z2u2v+14483xu3v-109/101yu3v+121/102zu3v-79/92u4v+15113x3v2+10781x2yv2-14259xy2v2-113/48y3v2-7/94x2zv2-17/74xyzv2-5/117y2zv2-59/75xz2v2+13188yz2v2+103/43z3v2+4/125x2uv2-52/59xyuv2+85/92y2uv2-1/46xzuv2-9106yzuv2-83/11z2uv2-23/94xu2v2+6742yu2v2-35/107zu2v2-14596u3v2-117/43x2v3+1026xyv3+90/19y2v3+14671xzv3-101/100yzv3+6962z2v3+61/68xuv3+108/37yuv3-4157zuv3-3974u2v3+15677xv4+8661yv4+8459zv4-16/23uv4-37/119v5,13/89x3yz+12068x2y2z-15543xy3z-77/79y4z-12223x3z2-13941x2yz2+115/84xy2z2+13/98y3z2+82/99x2z3+7751xyz3+122/17y2z3-1491xz4+1327yz4+60/17z5+15363x3yu+9780x2y2u+19/117xy3u-1924y4u-14600x3zu+46/41x2yzu-5466xy2zu-73/12y3zu+10838x2z2u-8302xyz2u-89/113y2z2u+53/69xz3u-9224yz3u+47/33z4u-7399x3u2+89/77x2yu2+9312xy2u2-41/80y3u2-732x2zu2-6781xyzu2-8608y2zu2-9270xz2u2-117/58yz2u2-115/68z3u2-48/31x2u3-9067xyu3+97/107y2u3+73/57xzu3-2719yzu3-110/59z2u3-37/86xu4-15796yu4-61/4zu4-115/72u5+6161x3yv+4134x2y2v+677xy3v-8375y4v+1150x3zv+1551x2yzv+4157xy2zv+112/87y3zv+8171x2z2v+6040xyz2v+15651y2z2v-7/66xz3v-47/61yz3v+77/64z4v+14848x3uv+48/119x2yuv-9534xy2uv-117/95y3uv+5/4x2zuv+122xyzuv+90/31y2zuv-41/26xz2uv+31/30yz2uv-10428z3uv-9896x2u2v-71/21xyu2v-55/38y2u2v-29/22xzu2v-11092yzu2v+39/122z2u2v+93/73xu3v+22/49yu3v-21/106zu3v+56u4v+8565x3v2-1695x2yv2+2/17xy2v2+1/78y3v2-113/71x2zv2-41/100xyzv2+55/14y2zv2+15286xz2v2+17/53yz2v2+126/71z3v2-79/87x2uv2+109/97xyuv2-28/31y2uv2-6533xzuv2+22/5yzuv2-10449z2uv2+10830xu2v2-15516yu2v2+28/57zu2v2-81/22u3v2+4198x2v3+5667xyv3-7133y2v3-8408xzv3+11066yzv3-26/125z2v3-808xuv3+95/54yuv3-64/17zuv3-5267u2v3-15333xv4+42/89yv4+63/85zv4+119/113uv4-2011v5,5583x4y+1725x3y2-8652x2y3-91/25xy4-8495x4z-13731x3yz+9298x2y2z-41/111xy3z-15503y4z-13805x3z2+3962x2yz2-2/63xy2z2+3314y3z2+2522x2z3-10/87xyz3-408y2z3+7/16xz4+69/22yz4-7254z5-59/21x4u+115/7x3yu-1718x2y2u+7851xy3u+2632y4u-82/3x3zu+37/86x2yzu+101/113xy2zu+6747y3zu-109/113x2z2u+7399xyz2u+24/103y2z2u+89/9xz3u-14630yz3u+15066z4u-12561x3u2+113/115x2yu2+87/97xy2u2-126/67y3u2-48/7x2zu2+123/103xyzu2-11/107y2zu2-2747xz2u2+8158yz2u2-3/107z3u2+41/6x2u3+12767xyu3+3873y2u3+74/83xzu3-55/119yzu3-24/83z2u3+55xu4-7/95yu4+57/44zu4+2/101u5-6928x4v-121/57x3yv+111/104x2y2v+946xy3v-29y4v+3057x3zv-14/25x2yzv+43/31xy2zv-105/2y3zv+2336x2z2v+61/77xyz2v-7880y2z2v+5/58xz3v+10593yz3v+7094z4v+63/59x3uv-5/69x2yuv-11/81xy2uv-4157y3uv+73/65x2zuv-1676xyzuv-2376y2zuv-85/63xz2uv-95/2yz2uv-14903z3uv-119/110x2u2v-115/24xyu2v+125/9y2u2v+106/87xzu2v-13/12yzu2v-4/19z2u2v+7838xu3v-43/111yu3v+7/113zu3v-12500u4v+7743x3v2-2023x2yv2-85/83xy2v2+49/41y3v2+20/87x2zv2+3932xyzv2-77/6y2zv2+47/90xz2v2-15580yz2v2+39/4z3v2-61/8x2uv2+2518xyuv2+29/98y2uv2+11057xzuv2-18/107yzuv2+708z2uv2+14720xu2v2-3175yu2v2-113/59zu2v2-14735u3v2+7/69x2v3-4029xyv3+54/91y2v3+12372xzv3+67/2yzv3+8856z2v3-2178xuv3+995yuv3+64/95zuv3+4039u2v3-37/44xv4+23/17yv4-3035zv4-103/124uv4+69/64v5,-5583x3y2-1725x2y3+8652xy4+91/25y5+6201x3yz-73/49x2y2z-3844xy3z+10548y4z-11057x3z2-105/122x2yz2+31/53xy2z2+79/89y3z2-24/101x2z3+107/119xyz3-126y2z3+8164xz4+2/77yz4-51/8z5-14941x3yu-106x2y2u+8695xy3u+125/62y4u+4328x3zu+29/117x2yzu-6249xy2zu-2791y3zu+67/49x2z2u-38/29xyz2u+122/41y2z2u+10603xz3u-3029yz3u+5578z4u+14754x3u2-108/79x2yu2+4408xy2u2-12401y3u2-1426x2zu2-1741xyzu2-83/86y2zu2+79/95xz2u2+122/121yz2u2+81/2z3u2-1172x2u3-41/68xyu3-70/3y2u3+24/107xzu3+120/79yzu3+18/119z2u3-65/122xu4+1018yu4+22/107zu4+15189u5+5/8x3yv-12060x2y2v+3/62xy3v-227y4v+60/41x3zv-123/115x2yzv+110/123xy2zv+12864y3zv-86/121x2z2v-69/94xyz2v+14/79y2z2v+118/45xz3v+10842yz3v-37/58z4v+100/69x3uv-47/65x2yuv-7/67xy2uv-93/100y3uv-6262x2zuv-4/75xyzuv+2082y2zuv-9117xz2uv+12450yz2uv-84/67z3uv+123/26x2u2v-51/89xyu2v+19/74y2u2v-104/77xzu2v+318yzu2v+12402z2u2v+95/8xu3v-81/26yu3v-4486zu3v+3872u4v+72/91x3v2-83/63x2yv2+93/92xy2v2-15924y3v2-53/62x2zv2+6046xyzv2+1408y2zv2+60/107xz2v2-1150yz2v2-126/19z3v2-7429x2uv2+2554xyuv2+3602y2uv2+10738xzuv2-57/64yzuv2+86/69z2uv2+8172xu2v2+91/113yu2v2+92/65zu2v2+118/37u3v2+47/83x2v3+12750xyv3+10851y2v3+4216xzv3+6/101yzv3-108z2v3+2920xuv3-101/102yuv3-157zuv3+7742u2v3-7234xv4-2/111yv4+59/33zv4-93/91uv4+24/19v5,1592x4y+75/121x3y2+40/19x2y3-2651xy4+9934x4z+245x3yz+11665x2y2z+30/41xy3z+1823y4z+89/88x3z2-105/46x2yz2+79/58xy2z2-4191y3z2-76/61x2z3-21/32xyz3-9516y2z3-14896xz4-85/77yz4+51/109z5+61/30x4u-10/101x3yu+11796x2y2u+76/101xy3u+123/88y4u-5932x3zu-11857x2yzu+7128xy2zu-45/79y3zu+119/18x2z2u+9/74xyz2u+7042y2z2u-1114xz3u-11/82yz3u-1466z4u-6/85x3u2+27/106x2yu2+14246xy2u2-6216y3u2+47/6x2zu2-45/59xyzu2+89/41y2zu2+41/80xz2u2-7583yz2u2-75/113z3u2-14808x2u3-10873xyu3-90/67y2u3-11081xzu3-7369yzu3-7131z2u3-1402xu4-15386yu4-108/73zu4-5039u5+120/113x4v+10617x3yv-50/87x2y2v-2395xy3v-20/69y4v-8587x3zv+12960x2yzv-41/50xy2zv-13844y3zv-65/32x2z2v-77/122xyz2v-85/66y2z2v+13/100xz3v-20/51yz3v-13676z4v+76/97x3uv+1046x2yuv-8059xy2uv-117/59y3uv-29/105x2zuv+7287xyzuv-107/119y2zuv-35/118xz2uv+79/86yz2uv-2211z3uv+5448x2u2v+62/35xyu2v-2275y2u2v+29/121xzu2v-1674yzu2v-56/43z2u2v-3377xu3v-43/110yu3v+23/10zu3v-24/61u4v+121/53x3v2-4745x2yv2-57/64xy2v2+9554y3v2-12741x2zv2+10449xyzv2+37/108y2zv2+8621xz2v2-11/57yz2v2+1566z3v2+125/49x2uv2-121/118xyuv2+109/84y2uv2-335xzuv2+10167yzuv2-59/109z2uv2-103/119xu2v2+43/13yu2v2-73/87zu2v2+2037u3v2+13002x2v3+83/48xyv3-10713y2v3+1026xzv3-105/64yzv3-37/6z2v3+14779xuv3-6448yuv3+19/69zuv3-1/110u2v3+10010xv4+79/12yv4+12/19zv4-35/61uv4-11/57v5,-1592x3y2-75/121x2y3-40/19xy4+2651y5+39/121x3yz+122/77x2y2z-114/31xy3z+1544y4z+2/3x3z2-10271x2yz2-8373xy2z2+56/61y3z2+55/48x2z3-116xyz3-25/7y2z3-108/113xz4-34/53yz4+5548z5-122x3yu-9690x2y2u+43/87xy3u-5/19y4u+97/54x3zu-17/19x2yzu+4355xy2zu+12/5y3zu-1/100x2z2u+12754xyz2u+13600y2z2u+17/45xz3u-12091yz3u+5145z4u-63/64x3u2-84/31x2yu2-97/41xy2u2+7/13y3u2-79/62x2zu2-80/103xyzu2-69/14y2zu2+119/4xz2u2-35/87yz2u2-13840z3u2+14101x2u3+7952xyu3-1857y2u3-9861xzu3+3180yzu3+75/107z2u3-250xu4-15134yu4+4717zu4-2/41u5+22/27x3yv-8983x2y2v+10520xy3v-113/2y4v+10/73x3zv-1986x2yzv-110/13xy2zv+1550y3zv+32/111x2z2v-111/35xyz2v+101/98y2z2v+8045xz3v-2/89yz3v+2924z4v-79/11x3uv-15178x2yuv+10874xy2uv+54/11y3uv-8950x2zuv+70/53xyzuv-2403y2zuv-8249xz2uv+6935yz2uv+20/89z3uv+885x2u2v-76/71xyu2v-4/17y2u2v-31/52xzu2v-4/99yzu2v+10333z2u2v-93/104xu3v+82/101yu3v-71/37zu3v+9397u4v-15/112x3v2-6614x2yv2+119/2xy2v2+88/119y3v2+306x2zv2+2790xyzv2+10992y2zv2-115/74xz2v2-14711yz2v2+11612z3v2-1788x2uv2-75/97xyuv2+79/30y2uv2+99/59xzuv2-11439yzuv2-121/113z2uv2+108/37xu2v2+37/36yu2v2-3/65zu2v2-55/42u3v2+13/100x2v3-209xyv3-1272y2v3-117/68xzv3+63/94yzv3+32/59z2v3+1013xuv3-3463yuv3+6946zuv3-37/86u2v3+67/117xv4+85/28yv4-3024zv4-82/9uv4-32/65v5,-35/52x4y-12140x3y2+23/83x2y3+69/5xy4-80/79y5+120/43x4z-11865x3yz-3487x2y2z+53/59xy3z+53/102y4z-14083x3z2-14430x2yz2-2442xy2z2-33/104y3z2-91/38x2z3+4/87xyz3-26/57y2z3+4097xz4-9/122yz4+6364z5+9634x4u-97/95x3yu-46/99x2y2u+3847xy3u+121/106y4u+12765x3zu-5292x2yzu+1607xy2zu-67/121y3zu-12/35x2z2u+4/55xyz2u-17/27y2z2u+91/122xz3u-23/31yz3u+65/49z4u+73/46x3u2-124/27x2yu2-9933xy2u2+46/75y3u2+53/114x2zu2+3503xyzu2-14147y2zu2-11283xz2u2+11889yz2u2+99/104z3u2+3117x2u3+12624xyu3-10060y2u3+2193xzu3-80/47yzu3-77/13z2u3+11/31xu4-47/90yu4+49/48zu4-2/105u5-92/61x4v+7443x3yv+35/76x2y2v+114/67xy3v-73/126y4v+97/107x3zv+9464x2yzv+10869xy2zv+15718y3zv-37/33x2z2v+124/13xyz2v-11/26y2z2v-61/40xz3v+91/100yz3v-18/103z4v+60/29x3uv+21/125x2yuv-11117xy2uv+11748y3uv-16/117x2zuv+18/103xyzuv-1711y2zuv+1872xz2uv-109/123yz2uv-18/113z3uv-26/103x2u2v+14140xyu2v+11065y2u2v+8686xzu2v-5/111yzu2v+30/101z2u2v-10501xu3v-36/113yu3v-73/74zu3v+12753u4v-43/52x3v2-76/15x2yv2-5793xy2v2+18/13y3v2+1/79x2zv2+84/23xyzv2-172y2zv2+86/77xz2v2+15/37yz2v2+11835z3v2-6482x2uv2+94/113xyuv2+10727y2uv2-102/41xzuv2+15914yzuv2-12973z2uv2-9038xu2v2-13107yu2v2+1533zu2v2+12549u3v2-13528x2v3+903xyv3+23/114y2v3-123/64xzv3-81/5yzv3+111/103z2v3+4734xuv3-33/20yuv3-7954zuv3-2478u2v3+15518xv4-6723yv4-14/31zv4-3482uv4+10919v5,-3/94x4y-12936x3y2+2/11x2y3+32/23xy4-15921y5+61/93x4z+82/111x3yz-93/2x2y2z-6659xy3z-97/90y4z+402x3z2-14586x2yz2-121/39xy2z2+68/7y3z2+1212x2z3-2980xyz3+49/52y2z3-72/89xz4+92/47yz4+8478z5+2733x4u-103/89x3yu+1166x2y2u-7/53xy3u-106/23y4u+677x3zu+907x2yzu+7891xy2zu-9014y3zu+76/47x2z2u+49/116xyz2u-49/78y2z2u+12261xz3u+118/105yz3u-126/13z4u-8812x3u2-97/120x2yu2-9534xy2u2+92/5y3u2-54/71x2zu2+94/103xyzu2+2256y2zu2+4182xz2u2-5798yz2u2-31/115z3u2-73/98x2u3+15822xyu3+1004y2u3-578xzu3+9494yzu3-6779z2u3+14506xu4+10/121yu4+58/27zu4-2817u5-19/119x4v+7128x3yv+75/64x2y2v-65/109xy3v+5129y4v-53/55x3zv+54/125x2yzv-3009xy2zv+6144y3zv+15601x2z2v+123/55xyz2v-58/77y2z2v-56/61xz3v+121/10yz3v-103/86z4v-93/25x3uv+94/123x2yuv-25/107xy2uv+14807y3uv+65/7x2zuv+87/44xyzuv+6605y2zuv+23/99xz2uv-413yz2uv-17/15z3uv-79/46x2u2v+15240xyu2v-42/67y2u2v+8932xzu2v-5888yzu2v-4204z2u2v+7002xu3v-36/97yu3v-1634zu3v+61/102u4v-14/33x3v2-6520x2yv2+9004xy2v2-67/36y3v2-7/8x2zv2-24/11xyzv2-9373y2zv2+1556xz2v2-79/74yz2v2-6691z3v2+108x2uv2-76/61xyuv2+220y2uv2-1191xzuv2-4/9yzuv2+4546z2uv2+12205xu2v2+9/22yu2v2+64/93zu2v2-44/125u3v2+292x2v3+41/74xyv3+16/79y2v3-15892xzv3+5733yzv3+6796z2v3-42/55xuv3+71/79yuv3-19/104zuv3-38/15u2v3+6436xv4+28/15yv4+87/55zv4+2270uv4-30/41v5,-117/4x3y+97/122x2y2-3618xy3+6566y4+97/113x3z-12634x2yz+9865xy2z-1764y3z+114/31x2z2+5006xyz2+7/44y2z2-15040xz3+8/125yz3+11134z4-12980x3u-79/41x2yu-79/98xy2u+89/65y3u-1217x2zu+89/87xyzu+83/66y2zu+115/11xz2u+123/107yz2u+10920z3u-86/73x2u2-11/94xyu2-14054y2u2+6752xzu2-123/124yzu2+12129z2u2-13310xu3-52/63yu3+12847zu3-1545u4-11064x3v+11499x2yv-37/64xy2v+50/103y3v+123/94x2zv-126xyzv-111/44y2zv+95/14xz2v+113/83yz2v-77/103z3v+41/64x2uv+91/90xyuv-4932y2uv+103/31xzuv+62/63yzuv+1161z2uv-99/106xu2v-3181yu2v-11741zu2v-33/8u3v-3/118x2v2-9369xyv2+527y2v2-113/39xzv2-88/49yzv2-113/101z2v2+95/68xuv2-5930yuv2-20/43zuv2+7/41u2v2+109/93xv3-107/61yv3-8352zv3-5255uv3+12021v4,-2159x4-94/3x3y-4602x2y2+1609xy3+10721y4+28/9x3z-99/35x2yz+1/110xy2z+113/114y3z-118/75x2z2-103/93xyz2-68/67y2z2+13687xz3-1531yz3+61/107z4+6076x3u+9004x2yu+2211xy2u+110/53y3u+47/102x2zu+8495xyzu-9238y2zu+57/121xz2u-8543yz2u+8/19z3u-13527x2u2-13293xyu2+1138y2u2+26/115xzu2+78/53yzu2-12556z2u2+7299xu3+70/19yu3-14687zu3+13559u4+113/9x3v-85/126x2yv-83/3xy2v-3/46y3v+1814x2zv+28/79xyzv+103/51y2zv+78/31xz2v-14387yz2v+1/88z3v+116/75x2uv-101/59xyuv-70/3y2uv+109/71xzuv+13/88yzuv-147z2uv-113/76xu2v-9661yu2v+13855zu2v-6162u3v-1857x2v2-8208xyv2-4634y2v2-6178xzv2-7352yzv2-8247z2v2-113/15xuv2+99/40yuv2+21/97zuv2+11/37u2v2-6605xv3+8964yv3+35/121zv3+8543uv3-6008v4;TestGRRes(Name, I); kill R, Name, @p; "";
789
790//  if( defined(assumeLevel0) ){ assumeLevel = assumeLevel0; } else { kill assumeLevel; } // restore the state of aL
791}
792
793/////////////////////////////////////////////////////////
794
795proc grzero()
796"USAGE:  grzero()
797RETURN:  graded object representing S(0)^1
798PURPOSE: compute presentation of S(0)^1
799EXAMPLE: example grzero; shows an example
800"
801{
802 return ( grobj(freemodule(0), intvec(0:0), intvec(0:0)) );
803}
804example
805{ "EXAMPLE:"; echo = 2;
806
807  ring r=32003,(x,y,z),dp;
808
809
810  grview( grobj(freemodule(0), intvec(0:0), intvec(0:0)) );
811  grview( grobj(freemodule(0), intvec(0:0)) );
812
813  grview( grzero() );
814
815//  def M = grpower( grshift( grzero(), 3), 2 ); grview(M);
816}
817
818proc grtwists(intvec v)
819"USAGE:  grtwists(v), intvec v
820RETURN:  graded object representing S(v[1]) + ... + S(v[size(v)])
821PURPOSE: compute presentation of S(v[1]) + ... + S(v[size(v)])
822EXAMPLE: example grtwists; shows an example
823"
824{
825  matrix m[size(v)][0];
826  return( grobj(m, -v) ); // will set the rank as well
827}
828example
829{ "EXAMPLE:"; echo = 2;
830
831  ring r=32003,(x,y,z),dp;
832
833  grview( grtwists ( intvec(-4, 1, 6 )) );
834
835  grview( grtwists ( intvec(0:0) ) );
836}
837
838proc grtwist(int a, int d)
839"USAGE:  grtwist(a,d), int a, d
840RETURN:  graded object representing S(d)^a
841PURPOSE: compute presentation of S(d)^a
842EXAMPLE: example grtwist; shows an example
843"
844{
845  ASSUME(0, a > 0);
846  def Z = grtwists( intvec(d:a) ); // will set the rank as well
847//  ASSUME(2, grisequal(Z, grpower( grshift(grzero(), d), a ) )); // optional check
848  return(Z);
849}
850example
851{ "EXAMPLE:"; echo = 2;
852
853  ring r=32003,(x,y,z),dp;
854
855//  grview(grpower( grshift(grzero(), 10), 5 ) );
856
857  grview( grtwist (5, 10) );
858}
859
860proc grpower(def A, int p)
861"USAGE:  grpower(A, p), graded object A, int p > 0
862RETURN:  graded direct power A^p
863PURPOSE: compute the graded direct power A^p
864NOTE:    the power p must be positive
865EXAMPLE: example grpower; shows an example
866"
867{
868  if(p==0){ ERROR("Sorry, we don't know what is A^0!?!?"); } // grzero!?
869
870  ASSUME(0, p > 0);
871  ASSUME(1, grtest(A) );
872
873  if(p==1){ return(A); }
874
875  def N = grsum(A,A);
876
877  if(p==2){ return(N); }
878
879  // TODO: replace recursion with a loop!
880  // see http://en.wikipedia.org/wiki/Exponentiation_by_squaring
881  if((p%2)==0)
882    { return ( grpower(N, p div 2) ); }
883  else
884    { return ( grsum( A, grpower(N, (p-1) div 2) )); }
885}
886example
887{ "EXAMPLE:"; echo = 2;
888
889  ring r=32003,(x,y,z),dp;
890
891  module A = grobj( module([x+y, x, 0], [0, x+y, y]), intvec(1,1,1) );
892  grview(A);
893
894  module B = grobj( module([x,y]), intvec(2,2) );
895  grview(B);
896
897  module D = grsum( grpower(A,2), grpower(B,2) );
898
899  print(D);
900  homog(D);
901  grview(D);
902}
903
904
905proc grsum(A,B)
906"USAGE:  grsum(A, B), graded objects A and B
907RETURN:  graded direct sum of input objects
908PURPOSE: compute the graded direct sum of A and B
909EXAMPLE: example grsum; shows an example
910"
911{
912  ASSUME(1, grtest(A) );
913  ASSUME(1, grtest(B) );
914
915  intvec a = grrange(A);
916  intvec b = grrange(B);
917  intvec c = a,b;
918
919  if( (ncols(B)>0) && (size(B)>0) )
920  {
921    int r = nrows(A);
922    module T = align(module(B), r); //  T;  print(T);  nrows(T); // BUG!!!!
923    module S = module(A), T;
924  }
925  else { def S = A; }
926
927  intvec da = grdeg(A);
928  intvec db = grdeg(B);
929  intvec dc = da, db;
930
931
932  def SS = grobj(S, c, dc);
933
934  ASSUME(0, size( grrange(SS) ) == (size(a) + size(b)) );
935  ASSUME(0, size( grdeg(SS) ) == (size(da) + size(db)) );
936  ASSUME(0, ncols( SS ) == size( grdeg(SS) ) );
937  ASSUME(0, nrows( SS ) == size( grrange(SS) ) );
938
939  return(SS);
940}
941example
942{ "EXAMPLE:"; echo = 2;
943
944//  if( defined(assumeLevel) ){ int assumeLevel0 = assumeLevel; } else { int assumeLevel; export(assumeLevel); }; assumeLevel = 5;
945
946  ring r=32003,(x,y,z),dp;
947
948  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
949  grview(A);
950
951  module B = grobj( module([0,x,y]), intvec(15,1,1) );
952  grview(B);
953
954  module C = grsum(A,B);
955
956  print(C);
957  homog(C);
958  grview(C);
959
960  module D = grsum(
961     grsum(grpower(A,2), grtwist(1,1)),
962     grsum(grtwist(1,2), grpower(B,2))
963     );
964
965  print(D);
966  homog(D);
967  grview(D);
968
969  module F = grobj( module([x,y,0]), intvec(1,1,5) );
970  grview(F);
971
972  module T = grsum( F, grsum( grtwist(1, 10), B ) );
973  grview(T);
974
975//  if( defined(assumeLevel0) ){ assumeLevel = assumeLevel0; } else { kill assumeLevel; } // restore the state of aL
976}
977
978proc grshift( def M, int d)
979"USAGE:  grshift(A, d), graded objects A, int d
980RETURN:  shifted graded object
981PURPOSE: shift the grading on A by d: A(i) -> A(i+d)
982EXAMPLE: example grshift; shows an example
983"
984{
985  ASSUME(1, grtest(M) );
986
987
988
989  intvec a = grrange(M);
990  intvec t = grdeg(M);
991
992  if( size(a) == 0 && size(t) == 0 )
993  {
994    "!! Warning: shifting '0 <- 0' leaves it as it unchanged!";
995    return (M);
996  }
997
998  a = a - intvec(d:size(a));
999  t = t - intvec(d:size(t));
1000
1001  return (grobj(M, a, t));
1002}
1003example
1004{ "EXAMPLE:"; echo = 2;
1005
1006  ring r=32003,(x,y,z),dp;
1007
1008  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
1009
1010  grview(A);
1011
1012  module S = grshift( A,  6);
1013
1014  grview(S);
1015
1016  grview( grshift( grzero(), 100 ) ); // does nothing...
1017}
1018
1019
1020proc grisequal (def A, def B)
1021"USAGE:  grisequal(A, B), graded objects A and B
1022RETURN:  1 if A == B as graded objects, 0 otherwise
1023PURPOSE: test the equality of two graded object
1024NOTE: A and B should be literarly the same at the moment. TODO?
1025EXAMPLE: example grisequal; shows an example
1026"
1027{
1028  ASSUME(1, grtest(A) );
1029  ASSUME(1, grtest(B) );
1030
1031  int ra = nrows(A);
1032  int rb = nrows(B);
1033
1034  intvec wa = grrange(A);
1035  intvec wb = grrange(B);
1036
1037  if( (ra != rb) || (ncols(A) != ncols(B)) ){ return (0); } // TODO: ???
1038
1039  intvec da = grdeg(A);
1040  intvec db = grdeg(B);
1041
1042  return ( (da == db) && (wa == wb) &&
1043           (size(module(matrix(A) - matrix(B))) == 0)    ); // TODO: ???
1044}
1045example
1046{ "EXAMPLE:"; echo = 2;
1047//  TODO
1048}
1049
1050proc grobj(def A, intvec w, list #)
1051"USAGE:  grobj(M, w[, d]), matrix/ideal/module M, intvec w, d
1052RETURN:  graded object with matrix presentation M, row weighting w [and total graded degrees d of columns]
1053PURPOSE: create a valid graded object with a given matrix presentation, weighting [and total graded degrees (in case of zero columns)]
1054EXAMPLE: example grobj; shows an example
1055"
1056{
1057  ASSUME(0, size(w) >= nrows(A) );
1058
1059  module M = module(A);
1060
1061  attrib( M, "rank", size(w) );
1062  attrib( M, "isHomog", w );
1063
1064  intvec @ww = 0:0;
1065
1066  if( size(#) > 0 )
1067  {
1068    ASSUME(0, typeof(#[1]) == "intvec" );
1069
1070    @ww = intvec( #[1] );
1071
1072    if( size(@ww) != ncols(M) )
1073    {
1074      if( (size(M) == 0) && (ncols(M) <= 1) && (size(w) == 0) && (size(@ww) > 0) )
1075      {
1076        matrix m[size(w)][size(@ww)]; M = module(m); attrib( M, "isHomog", w );
1077      }
1078    }
1079
1080    ASSUME(0, size(@ww) == ncols(M) );
1081  }
1082  else
1083  {
1084    if( size(M) == ncols(M) ) /* no zero cols? */
1085    {
1086      @ww = grdeg(M); // let us compute them all :)
1087    } else
1088    {
1089      if( (ncols(M) == 1) && (size(M) == 0) )
1090      {
1091        M = freemodule(0);
1092      }
1093
1094      attrib( M, "rank", size(w) );
1095      attrib( M, "isHomog", w );
1096
1097//      ASSUME(0, /* PROBLEM WITH ZERO COLUMNS / THEIR DEGREES! */ (ncols(M) == 0) );
1098    }
1099  }
1100
1101//  type(@ww);  type(M);
1102
1103  ASSUME(0, size(@ww) == ncols(M) ); // ?!
1104
1105  attrib(M, "degHomog", @ww);
1106
1107  ASSUME(0, grtest(M) );
1108  return (M);
1109}
1110example
1111{ "EXAMPLE:"; echo = 2;
1112
1113  ring r=32003,(x,y,z),dp;
1114
1115  def A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
1116  grview(A);
1117
1118  def F = grobj( module([x,y,0]), intvec(1,1,5) );
1119  grview(F);
1120
1121  int d = 666; // zero can have any degree...
1122  def Z = grobj( module([x,0], [0,0,0], [0, y]), intvec(1,2,3), intvec(2, d, 3) );
1123  grview(Z);
1124
1125  print(Z);
1126  attrib(Z);
1127  grrange(Z); // module weights
1128  attrib(Z, "degHomog"); // total degrees
1129
1130  // Zero object:
1131  matrix z[3][0];  grview( grobj( z, intvec(1,2,3) ) );
1132  grview( grobj( freemodule(0), intvec(1,2,3) ) );
1133
1134  matrix z1[0][3]; grview( grobj( z1, 0:0, intvec(1,2,3) ) );
1135  grview( grobj( freemodule(0), 0:0, intvec(1,2,3) ) );
1136
1137  matrix z0[0][0]; grview( grobj( z0, 0:0 ) );
1138  grview( grobj( freemodule(0), 0:0 ) );
1139
1140
1141
1142}
1143
1144proc grtest(def N, list #)
1145"USAGE:  grtest(M[,b]), anyting M, optionally int b
1146RETURN:  1 if M is a valid graded object, 0 otherwise
1147PURPOSE: validate a graded object. Print an invalid object message if b is not given
1148NOTE: M should be an ideal or module or matrix, with weighting attribute
1149   'isHomog' and optionally total graded degrees attribute 'degHomog'.
1150   Attributes should be compatible with the presentation matrix.
1151EXAMPLE: example grtest; shows an example
1152"
1153{
1154  int b = (size(#) == 0);
1155  string t = typeof(N);
1156  if( (t != "ideal") && (t != "module") && (t != "matrix") )
1157  {
1158    if(b) { "   ? grtest: Input should be something like a matrix!"; };
1159    return (0);
1160  };
1161
1162  if ( typeof(attrib(N,"isHomog")) != "intvec" )
1163  {
1164    if(b) { type(N); attrib(N); "   ? grtest: Input must be graded!";  };
1165    return (0);
1166  };
1167
1168  intvec gr = grrange(N); // grading weights...
1169  if ( nrows(N) != size(gr) )
1170  {
1171    if(b) { "   ? grtest: Input has wrong number of rows!"; };
1172    return (0);
1173  };
1174
1175  if( ncols(N) == 0 ) // zero-column matrix?
1176  {
1177    return(1);
1178  }
1179
1180//  if( attrib(N, "rank") != size(gr) ){ return (0); } // wrong rank :(
1181
1182  if ( typeof(attrib(N, "degHomog")) == "intvec" )
1183  {
1184    intvec T = attrib(N, "degHomog"); // graded degrees
1185
1186    if( (ncols(N) == 1) && (size(T) == 0) && (size(N) == 0) )
1187    {
1188      //  if(b) { "Input seems to be a valid graded ZERO-arrow!"; };
1189      return (1);
1190    }
1191
1192    if ( ncols(N) != size(T) )
1193    {
1194      if(b) { "   ? grtest: Input has wrong number of cols!"; };
1195      return (0);
1196    };
1197
1198    int k = nvars(basering) + 1; // index of mod. column in the leadexp
1199
1200    module L = lead(module(N)); vector v;
1201
1202    // checking T for non-zero N[i]
1203    int i = size(T);
1204
1205    for (; i > 0; i-- )
1206    {
1207      v = L[i];
1208      if( v != 0 )
1209      {
1210        if( (deg(v) + gr[ leadexp(v)[k] ]) != T[i] )
1211        {
1212          if(b) { "   ? grtest: Input has wrong total grade of " + string(i) + "-th column!"; };
1213          return (0);
1214        };  // wrong T[i]
1215      }
1216    }
1217
1218    // TODO: check t on nonzero cols...
1219  } else
1220  {
1221    if( ncols(N) != size(N) )
1222    {
1223      if(b) { "   ? grtest: Input should have exclusively non-zero columns, please give total grades otherwise!"; };
1224      return (0);
1225    };
1226  }
1227
1228  if( !homog(N) )
1229  {
1230    if(b) { "   ? grtest: Input should be graded homogenous!"; };
1231    return (0);
1232  };
1233
1234//  if(b) { "Input seems to be a valid graded object (map)!"; };
1235  return (1);
1236}
1237example
1238{ "EXAMPLE:"; echo = 2;
1239
1240  ring r=32003,(x,y,z),dp;
1241
1242  // the following calls will fail due to tests in grtest:
1243
1244 grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,0) ); // enough row weights
1245// grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0) ); // not enough row weights
1246// grobj( module([x,0], [0,0,0], [0, y]), intvec(1,2,3) ); // zero column needs (otherwise optional) total degrees
1247 grobj( module([x,0], [0,0,0], [0, y]), intvec(1,2,3), intvec(2, 10, 3) ); // compatible total degrees (on non-zero columns)
1248// grobj( module([x,0], [0,0,0], [0, y]), intvec(1,2,3), intvec(2-1, 10, 3+1) ); // incompatible total degrees (on both non-zero columns)
1249
1250}
1251
1252
1253static proc align( def A, int d)
1254"analog of align kernel command for older Singular versions
1255 this is static since it should not be used by @code{align}-able (newer)
1256 Singular releases.
1257 Note that this proc does not care about any attributes (of A)
1258"
1259{
1260  ASSUME(0, d >= 0 );
1261
1262  if( d == 0 ) { return (A); }
1263
1264  if( ncols(A) == 0 )
1265  {
1266    matrix B[nrows(A) + d][0];
1267    return (B);
1268  }
1269
1270  module T; T[d] = 0;
1271  T = T, module(transpose(A));
1272  return( module(transpose(T)) );
1273}
1274example
1275{ "EXAMPLE:"; echo = 2;
1276
1277  ring r;
1278  matrix m[2][0];
1279  type( align(m, 3) );
1280
1281  matrix m[0][2];
1282  type( align(m, 3) );
1283}
1284
1285
1286proc grgroebner(A)
1287"USAGE:  grgroebner(M), graded object M
1288RETURN:  graded object
1289PURPOSE: compute graded groebner basis of M
1290EXAMPLE: example grgroebner; shows an example
1291"
1292{
1293  ASSUME(1, grtest(A));
1294
1295  return ( grobj( groebner(A), grrange(A) ) );
1296}
1297example
1298{ "EXAMPLE:"; echo = 2;
1299
1300  ring r=32003,(x,y,z),dp;
1301
1302  module A = grobj( module([x+y, x, 0, 0], [0, x+y, y, 0]), intvec(0,0,0,1) );
1303  grview(A);
1304
1305  module B = grgroebner(A);
1306  grview(B);
1307}
1308
1309proc grsyz(A)
1310"USAGE:  grsyz(M), graded object M
1311RETURN:  graded object
1312PURPOSE: compute graded syzygy of M
1313EXAMPLE: example grsyz; shows an example
1314"
1315{
1316  ASSUME(1, grtest(A));
1317  return( grobj( syz(A), grdeg(A) ) );
1318
1319//   if( size(syz(A)) == 0 ) : zero syzygy? //  return( grtwists( -grdeg(A) ) );
1320}
1321example
1322{ "EXAMPLE:"; echo = 2;
1323
1324  ring r=32003,(x,y,z),dp;
1325
1326  module A = grgroebner( grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) ) );
1327  grview(A);
1328
1329  grview(grsyz(A));
1330
1331  module X = grgroebner( grobj( module([x]), intvec(2) ) );
1332  grview(X);
1333
1334  // syzygy module should be zero!
1335  grview(grsyz(X));
1336
1337
1338}
1339
1340
1341proc grprod(A, B)
1342"USAGE:  grprod(M, N), graded objects M and N
1343RETURN:  graded object
1344PURPOSE: compute graded product M * N (as composition of maps)
1345EXAMPLE: example grprod; shows an example
1346"
1347{
1348  ASSUME(1, grtest(A));
1349  ASSUME(1, grtest(B));
1350
1351  intvec a = grdeg(A);
1352  intvec b = grrange(B);
1353
1354  ASSUME(0, (size(a) == size(b)) && (a == b));  // == for intvec :(
1355
1356  return ( grobj( A*B, grrange(A), grdeg(B) ) );
1357}
1358example
1359{ "EXAMPLE:"; echo = 2;
1360
1361  ring r=32003,(x,y,z),dp;
1362
1363  module A = grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) );
1364  grview(A);
1365
1366  A = grgroebner(A);
1367  grview(A);
1368
1369  module B = grsyz(A);
1370  grview(B);
1371  print(B);
1372
1373  module D = grprod( A, B );
1374  grview(D);
1375  print(D); // must be all zeroes due to syzygy property!
1376  ASSUME(0, size(D) == 0);
1377}
1378
1379
1380
1381
1382// TODO: think about a proper data structure for a graded resolution!?
1383proc grres(def A, int l, list #)
1384"USAGE:  grres(M, l[, b]), graded object M, int l, int b
1385RETURN:  graded resolution = list of graded objects
1386PURPOSE: compute graded resolution of M (of length l) and minimise it if b was given
1387EXAMPLE: example grres; shows an example
1388"
1389{
1390  ASSUME(0, l >= 0);
1391  ASSUME(1, grtest(A));
1392
1393  intvec v = grrange(A);
1394
1395  int b = (size(#) > 0);
1396  if(b) { list r = res(A, l, #[1]); } else { list r = res(A, l); }
1397
1398  l = size(r);
1399
1400  int i;
1401
1402  for ( i = 1; i <= l; i++ )
1403  {
1404    if( size(r[i]) == 0 )
1405    {
1406      r[i] = grobj(freemodule(0), v); // grtwists(-v);
1407      i++;
1408      break;
1409    }
1410
1411    r[i] = grobj(r[i], v); v = grdeg(r[i]);
1412  }
1413
1414  i = i-1;
1415
1416  return( list(r[1..i]) );
1417}
1418example
1419{ "EXAMPLE:"; echo = 2;
1420
1421  ring r=32003,(x,y,z),dp;
1422
1423  module A = grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) );
1424  grview(A);
1425
1426  module B = grgroebner(A);
1427  grview(B);
1428
1429  "graded resolution of B: "; def C = grres(B, 0); grview(C);
1430
1431  int i; int l = size(C);
1432
1433  "D^2 == 0: "; for (i = 1; i < l; i++ ) { i; grview( grprod(C[i], C[i+1]) ); }
1434}
1435
1436proc grtranspose(def M)
1437"USAGE:   grtranspose(M), graded object M
1438RETURN:  graded object
1439PURPOSE: graded transpose of M
1440NOTE:    no reordering is performend by this procedure
1441EXAMPLE: example grtranspose; shows an example
1442"
1443{
1444  ASSUME(1, grtest(M) );
1445  return (  grobj(transpose(M), -grdeg(M), -grrange(M))  );
1446}
1447example
1448{ "EXAMPLE:"; echo = 2;
1449
1450  ring r=32003,(x,y,z),dp;
1451
1452  module M = grtwists( intvec(-2, 0, 4, 4) ); grview(M);
1453
1454  module N = grsyz( grtranspose( M ) ); grview(N);
1455
1456  module L = grtranspose(N); grview( L );
1457
1458  module K = grsyz( L ); grview(K);
1459
1460
1461  // Corner cases: 0 <- 0!
1462  module Z = grzero(); grview(Z);
1463  grview( grtranspose( Z ) );
1464
1465
1466  // Corner cases: * <- 0
1467  matrix M1[3][0];
1468
1469  module Z1 = grobj( M1, intvec(-1, 0, 1) ); grview(Z1);
1470  grview( grtranspose( Z1 ) );
1471
1472
1473  // Corner cases: 0 <- *
1474  matrix M2[0][3];
1475
1476  module Z2 = grobj( M2, 0:0, intvec(-1, 0, 1) ); grview(Z2);
1477  grview( grtranspose( Z2 ) );
1478
1479}
1480
1481
1482proc grgens(def M)
1483"USAGE:   grgens(M), graded object M (map)
1484RETURN:  graded object
1485PURPOSE: try compute graded generators of coker(M) and return them as columns
1486         of a graded map.
1487NOTE:    presentation of resulting generated submodule may be different to M!
1488EXAMPLE: example grgens; shows an example
1489"
1490{
1491  ASSUME(1, grtest(M) );
1492
1493  module N = grtranspose( grsyz( grtranspose(M) ) );
1494
1495//  ASSUME(3, grisequal( grgroebner(M), grgroebner( grpres( N ) ) ) ); // FIXME: not always true!?
1496
1497  return ( N );
1498}
1499example
1500{ "EXAMPLE:"; echo = 2;
1501
1502  ring r=32003,(x,y,z),dp;
1503
1504  module M = grtwists( intvec(-2, 0, 4, 4) ); grview(M);
1505
1506  module N = grgens(M);
1507
1508  grview( N ); print(N); // fine == M
1509
1510
1511  module A = grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) );
1512
1513  A = grgroebner(A); grview(A);
1514
1515  module B = grgens(A);
1516
1517  grview( B ); print(B); // Ups :( != A
1518
1519  grview( grgens( grzero() ) );
1520
1521}
1522
1523
1524proc grpres(def M)
1525"USAGE:   grpres(M), graded object M (submodule gens)
1526RETURN:  graded module (via coker)
1527PURPOSE: compute graded presentation matrix of submodule generated by columns of M
1528EXAMPLE: example grpres; shows an example
1529"
1530{
1531  ASSUME(1, grtest(M) );
1532
1533  def N = grsyz(M);
1534
1535//  ASSUME(3, grisequal( M, grgens( N ) ) );
1536
1537  return ( N );
1538}
1539example
1540{ "EXAMPLE:"; echo = 2;
1541
1542  ring r=32003,(x,y,z),dp;
1543
1544  def A = grgroebner( grobj( module([x+y, x, 0, 3], [0, x+y, y, 2], [y, y, z, 1]), intvec(0,0,0,1) ) );
1545  grview(A);
1546
1547  "graded transpose: "; def B = grtranspose(A); grview( B ); print(B);
1548
1549  "... syzygy: "; def C = grsyz(B); grview(C);
1550
1551  "... transposed: "; def D = grtranspose(C); grview( D ); print (D);
1552
1553  "... and back to presentation: "; def E = grsyz( D ); grview(E); print(E);
1554
1555  def F = grgens( E ); grview(F); print(F);
1556  def G = grpres( F ); grview(G); print(G);
1557
1558
1559  def M = grtwists( intvec(-2, 0, 4, 4) ); grview(M);
1560
1561  def N = grgens(M); grview( N ); print(N);
1562
1563  def L = grpres( N ); grview( L ); print(L);
1564}
1565
1566
1567
1568LIB "random.lib"; // for sparsepoly
1569
1570proc grrndmat(intvec w, intvec v, list #)
1571"USAGE:  grrndmat(src,dst[,p,b]), intvec src, dst[, int p, b]
1572RETURN:  matrix of polynomials
1573PURPOSE: generate random matrix compatible with src and dst gradings
1574NOTE:    optional arguments p, b are for 'sparsepoly' (by default: 75%, 30000).
1575TODO:    this is experimental at the moment!
1576EXAMPLE: example grrndmat; shows an example
1577"
1578{
1579  // defaults for sparsepoly
1580  int p = 75;
1581  int b = 30000;
1582
1583  if ( size(#) > 0 )
1584  {
1585    ASSUME( 0, (typeof(#[1]) == "int") || (typeof(#[1]) == "bigint") );
1586    p = #[1];
1587
1588    if ( size(#) > 1 )
1589    {
1590      ASSUME( 0, (typeof(#[2]) == "int") || (typeof(#[2]) == "bigint") );
1591      b = #[2];
1592    }
1593  }
1594
1595  int n = size(v); // destination: rows!
1596  int m = size(w); // source: cols
1597
1598  matrix M[n][m];
1599
1600  int r,c; intvec ww;
1601
1602  for( c = m; c > 0; c-- )
1603  {
1604    ww = v - intvec(w[c]:n);
1605    for( r = n; r > 0; r-- )
1606    {
1607      if( ww[r] >= 0)
1608      {
1609        M[r,c] = sparsepoly(ww[r], ww[r], p, b);
1610      }
1611
1612    }
1613  }
1614
1615  return(M);
1616}
1617example
1618{ "EXAMPLE:"; echo = 2;
1619
1620  ring r=32003,(x,y,z),dp;
1621
1622  print( grrndmat( intvec(0, 1), intvec(1, 2, 3) ) );
1623}
1624
1625// TODO: remove the following?
1626proc KeneshlouMatrixPresentation(intvec a)
1627"USAGE: KeneshlouMatrixPresentation(intvec a), intvec a.
1628RETURN: graded object
1629PURPOSE: matrix presentation for direct sum of omega^a[i](i) in form of a graded object
1630EXAMPLE: example KeneshlouMatrixPresentation; shows an example
1631"
1632{
1633  int n = size(a)-1;
1634  //  ring r = 32003,(x(0..n)),dp;
1635  ASSUME(0, nvars(basering)==(n+1));
1636  int i,j;
1637
1638  // find first nonzero exponent a_i
1639  for(i=1;i<=size(a);i++)
1640    {
1641      if(a[i]!=0) {break; };
1642    }
1643
1644  // all zeroes?
1645  if(i>size(a)) {return (grzero()); };
1646
1647  for(i=2;i<=n;i++)
1648    {
1649      if(a[i]!=0) {break; };
1650    }
1651
1652  module N;
1653
1654  if(i>n)
1655    { // no middle part
1656      if(a[1]>0)
1657        {
1658          N=grtwist(a[1],0);
1659
1660          if(a[n+1]>0)
1661            { N=grsum(N,grtwist(a[n+1],-1));}
1662        }
1663      else
1664        { N=grtwist(a[n+1],-1);}
1665
1666      return (N); // grorder(N));
1667    }
1668  else // i <= n: middle part is present, a_i != 0
1669    { // a = a1  ... |  i:2, a_2 ..... i: n, a_n | .... i: n+1a_(n+1)
1670      j = i - 1;
1671      module I = maxideal(1); attrib(I,"isHomog", intvec(0)); list L = mres(I, 0); // TODO: use grres() instead!!!
1672      list kos = grorder(L);
1673      // make sure that graded maps  are represented by blocks corresponding to the betti diagram?
1674
1675      def S = grpower(grshift(grobj( kos[j+2], attrib(kos[j+2], "isHomog")), j), a[i]);
1676
1677      i++;
1678
1679      for(; i <= n; i++)
1680        {
1681          if(a[i]==0) { i++; continue; }
1682          j = i - 1;
1683          S = grsum( S, grpower(grshift( grobj( kos[j+2], attrib(kos[j+2], "isHomog")), j), a[i])  );
1684        }
1685
1686      // S is the middle (non-zero) part
1687
1688      if(a[1] > 0 )
1689        {
1690          N=grsum(grtwist(a[1],0), S);
1691        }
1692      else
1693        { N = S;}
1694
1695      if(a[n+1] > 0 )
1696        { N=grsum(N, grtwist(a[n+1],-1)); }
1697
1698
1699      return ((N)); //      return (grorder(N));
1700    }
1701}
1702example
1703{ "EXAMPLE:"; echo = 2;
1704  ring r = 32003,(x(0..4)),dp;
1705
1706  def N1 = KeneshlouMatrixPresentation(intvec(2,0,0,0,0));
1707  grview(N1);
1708
1709  def N2 = KeneshlouMatrixPresentation(intvec(0,0,0,0,3));
1710  grview(N2);
1711
1712  def N = KeneshlouMatrixPresentation(intvec(2,0,0,0,3));
1713  grview(N);
1714
1715
1716  def M1 = KeneshlouMatrixPresentation(intvec(0,1,0,0,0));
1717  grview(M1);
1718
1719  def M2 = KeneshlouMatrixPresentation(intvec(0,1,1,0,0));
1720  grview(M2);
1721
1722  def M3 = KeneshlouMatrixPresentation(intvec(0,0,0,1,0));
1723  grview(M3);
1724
1725  def M = KeneshlouMatrixPresentation(intvec(1,1,1,0,0));
1726  grview(M);
1727}
1728
1729proc grconcat(A,B)
1730"USAGE: grconcat(A, B), graded objects A and B, dst(A) == dst(B) =: dst
1731RETURN: graded object
1732PURPOSE: construct src(A) + src(B) -----> dst  given by (A|B)
1733EXAMPLE: example grconcat; shows an example
1734"
1735{
1736
1737  ASSUME(1, grtest(A));
1738  ASSUME(1, grtest(B));
1739  ASSUME(0, grrange(A)==grrange(B));
1740
1741  intvec v = grrange(A);
1742  intvec w=grdeg(A),grdeg(B);
1743  return(grobj(concat(A,B),v,w));
1744}
1745example
1746{ "EXAMPLE:"; echo = 2;
1747  ring r;
1748
1749  module R=grobj(module([x,y,z]),intvec(0:3));
1750  grview(R);
1751
1752  module S=grobj(module([x,0,y],[xy,zy+x2,0]),intvec(0:3));
1753  grview(S);
1754
1755  def Q=grconcat(R,S);
1756  grview(Q);
1757}
1758
1759proc grlift(A, B)
1760"USAGE: grlift(M, N), graded objects M and N
1761RETURN: transformation matrix (graded object???)
1762PURPOSE: compute graded matrix which the generators of submodule Im(N) in terms of Im(M).
1763EXAMPLE: example grlift; shows an example
1764"
1765{
1766  ASSUME(1, grtest(A));
1767  ASSUME(1, grtest(B));
1768  ASSUME(0, grrange(A) == grrange(B));
1769
1770//  matrix T;  module AA = liftstd(A, T); //  AA = module(A*T)
1771//  matrix U;
1772  matrix L =lift(A,B/*,U*/);  //  module(B*U) = module(matrix(A)*L)
1773
1774  return(grobj(L, grdeg(A), grdeg(B)));
1775}
1776example
1777{ "EXAMPLE:"; echo = 2;
1778
1779  ring r=32003,(x,y,z),dp;
1780  module P=grobj(module([xy,0,xz]),intvec(0,1,0));
1781  grview(P);
1782
1783
1784  module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
1785  grview(D);
1786
1787  def G=grlift(D,P);
1788  grview(G);
1789
1790  ASSUME(0, grisequal( grprod(D, G), P) );
1791}
1792
1793proc grrange(M)
1794"USAGE: grrange(M), graded object M
1795RETURN: intvec
1796PURPOSE: get weights of module units, thus describing the target of M
1797EXAMPLE: example grrange; shows an example
1798"
1799{
1800//  ASSUME(1, grtest(M)); // Leads to recursive call due to grtest...
1801  return( attrib(M, "isHomog") );
1802}
1803example
1804{ "EXAMPLE:"; echo = 2;
1805
1806  ring r=32003,(x,y,z),dp;
1807
1808  module Z = grobj(freemodule(0),intvec(0:0),intvec(0:0));
1809
1810  grrange(Z);
1811  grdeg(Z);
1812
1813  grview(Z);
1814
1815  module P=grobj(module([xy,0,xz]),intvec(0,1,0));
1816
1817  grrange(P);
1818  grdeg(P);
1819
1820  grview(P);
1821}
1822
1823proc grlift0(M, N, alpha1)
1824"USAGE: grlift0(M, N, alpha1) TODO!
1825PURPOSE: generic random alpha0 : coker(M) -> coker(N) from random alpha1
1826NOTE: this proc can work only if some assumptions are fulfilled (due
1827to Wolfram)! e.g. at the end of a resolution for the source module...
1828"
1829{
1830
1831  ASSUME(1, grtest(M));
1832  ASSUME(1, grtest(N));
1833
1834  ASSUME(0, grdeg(M) == grdeg(alpha1) );
1835  ASSUME(0, grdeg(N) == grrange(alpha1) );
1836  return(
1837   grtranspose( grlift( grtranspose( M ),
1838       grtranspose( grprod( N,  alpha1 ) ) )
1839       ) ); // alpha0!
1840
1841}
1842example
1843{ "EXAMPLE:"; echo = 2;
1844
1845  ring S = 0, (x(0..3)), dp;
1846  list kos = grres(grobj(maxideal(1), intvec(0)), 0);
1847  print( betti(kos), "betti");
1848  grview(kos);
1849
1850
1851  // source module:
1852//  module M = grshift(kos[4], 2); // phi, Syz_3(K(2))
1853  def M = KeneshlouMatrixPresentation(intvec(0,0,1,0));
1854//   grview( grres(M, 0) );
1855  grview(M);
1856
1857  // destination module:
1858//   module N = grshift(kos[3], 1); // psi, Syz_2(K(1))
1859  def N = KeneshlouMatrixPresentation(intvec(0,1,0,0));
1860//  grview( grres(N, 0) );
1861  grview(N);
1862
1863  // random graded of degree 0, homomorphism of free presentations:
1864  // alpha1: src(M) -> src (N)
1865  def alpha1 = grrndmap( M, N ); // alpha1
1866  grview(alpha1);
1867
1868  // random graded of degree 0, homomorphism of free presentations:
1869  // alpha0: dst(M) -> dst (N)
1870  def alpha0 = grlift0(M, N, alpha1);
1871  grview(alpha0);
1872
1873}
1874
1875
1876proc grlifting(M,N)
1877"USAGE: grlifting(M,N), graded objects M and N
1878RETURN: map of chain complexes (as a list)
1879PURPOSE: construct a map of chain complexes between free resolutions of Img(M) and Img(N).
1880EXAMPLE: example grlifting; shows an example
1881"
1882{  ASSUME(1, grtest(M));
1883   ASSUME(1, grtest(N));
1884
1885   list rM=grres(M,0,1);
1886   list rN=grres(N,0,1);
1887   int i,j,k;
1888
1889  for(i=1;i<=size(rM);i++)
1890  {
1891    if(size(rM[i])==0){break;}
1892  }
1893
1894  for(j=1;j<=size(rN);j++)
1895  {
1896    if(size(rN[j])==0){break;}
1897  }
1898  int t=min(i,j);
1899
1900  ASSUME(0, t >= 2);
1901
1902  list P;
1903
1904  "t: ", t;
1905
1906  P[1]= grrndmap( rM[1], rN[1] ); // alpha1
1907
1908  if(t==2){return(P[1]);}
1909
1910  for(k=2; k<=t; k++)
1911  {
1912    P[k] = grlift( grprod(P[k-1],rM[k]), rN[k] );
1913     grview(P[k]);
1914
1915  }
1916
1917  return(P);
1918
1919}
1920example
1921{ "EXAMPLE:"; echo = 2;
1922/*
1923  ring r=32003,(x,y,z),dp;
1924
1925  module P=grobj(module([xy,0,xz]),intvec(0,1,0));
1926  grview(P);
1927
1928  module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
1929  grview(D);
1930
1931  def G=grlifting(D,P);
1932  grview(G);
1933
1934  kill r;
1935  ring r=32003,(x,y,z),dp;
1936
1937  module D=grobj(module([y,0,z],[x2+y2,z,0], [z3, xy, xy2]),intvec(0,1,0));
1938  D = grgroebner(D);
1939  grview( grres(D, 0));
1940
1941  def G=grlifting(D, D);
1942  grview(G);
1943*/
1944
1945  ring S = 0, (x(0..3)), dp;
1946  list kos = grres(grobj(maxideal(1), intvec(0)), 0);
1947  print( betti(kos), "betti");
1948  grview(kos);
1949
1950//  module M = grshift(kos[4], 2); // phi, Syz_3(K(2))
1951  def M = KeneshlouMatrixPresentation(intvec(0,0,1,0));
1952  grview( grres(M, 0) );
1953
1954//   module N = grshift(kos[3], 1); // psi, Syz_2(K(1))
1955  def N = KeneshlouMatrixPresentation(intvec(0,1,0,0));
1956  grview( grres(N, 0) );
1957
1958  grlifting(M, N); // grview(G);
1959
1960
1961//  def G=grlifting( grgens(M), grgens(N) );  grview(G);
1962
1963
1964}
1965
1966proc mappingcone(M,N)
1967"USAGE: mappingcone(M,N), M,N graded objects
1968RETURN: chain complex (as a list)
1969PURPOSE: construct a free resolution of the cokernel of a random map between Img(M), and Img(N).
1970EXAMPLE: example mappingcone; shows an example
1971"
1972{
1973  ASSUME(1, grtest(M));
1974  ASSUME(1, grtest(N));
1975
1976  list P=grlifting(M,N);
1977  list rM=grres(M,1);
1978  list rN=grres(N,1);
1979
1980  int i;
1981  list T;
1982
1983  T[1]=grconcat(P[1],rN[2]);
1984
1985  for(i=2;i<=size(P);i++)
1986  {
1987    intvec v=grrange(rM[i]);
1988    intvec w=grdeg(rN[i+1]);
1989    int r=size(v);
1990    int s=size(w);
1991    module zero = (0:s);
1992
1993    module A=grconcat(P[i],rN[i+1]);
1994    module B=grobj(zero,v,w);
1995    module C=grconcat(-rM[i],B);
1996    module D=grconcat(grtranspose(C), grtranspose(A));
1997
1998    T[i]=grtranspose(D);
1999  }
2000   return(T);
2001}
2002example
2003{ "EXAMPLE:"; echo = 2;
2004
2005ring r=32003, (x(0..4)),dp;
2006def A=KeneshlouMatrixPresentation(intvec(0,0,0,0,3));
2007def M=grgens(A);
2008grview(M);
2009
2010def B=KeneshlouMatrixPresentation(intvec(0,1,0,0,0));
2011def N=grgens(B);
2012grview(N);
2013
2014def R=grlifting(M,N);
2015grview(R);
2016def T=mappingcone(M,N);
2017grview(T);
2018
2019def U=grtranspose(T[1]);
2020resolution G=mres(U,0);
2021print(betti(G),"betti");
2022ideal I=groebner(flatten(G[2]));
2023resolution GI=mres(I,0);
2024print(betti(GI),"betti");
2025}
2026
2027// correct
2028proc grrndmap(def S, def D, list #)
2029"USAGE: grrndmap(S,D), graded objects S and D
2030RETURN: graded object
2031PURPOSE: construct a random 0-deg graded homomorphism src(S) -> src(D)
2032EXAMPLE: example grrndmap; shows an example
2033"
2034{
2035
2036ASSUME(1, grtest(S) );
2037ASSUME(1, grtest(D) );
2038
2039// "src: "; grview(S);"dst: "; grview(D);
2040
2041intvec v = -grdeg(S); // source
2042intvec w = -grdeg(D); // destination
2043
2044return (grobj(grrndmat(v, w, #), -w, -v ) );
2045}
2046example
2047{ "EXAMPLE:"; echo = 2;
2048
2049  ring r=32003,(x,y,z),dp;
2050
2051  module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
2052  grview(D);
2053
2054  module S=grobj(module([x,0,y],[xy,zy+x2,0]),intvec(0,0,0));
2055  grview(S);
2056
2057  def H=grrndmap(D,S);
2058  grview(H);
2059
2060}
2061
2062proc grrndmap2(def D, def S, list #)
2063"USAGE: grrndmap2(D,S), graded objects S and D
2064RETURN: graded object
2065PURPOSE: construct a random 0-deg graded homomorphism between target of D and S.
2066EXAMPLE: example grrndmap2; shows an example
2067"
2068{
2069  ASSUME(1, grtest(D) );
2070  ASSUME(1, grtest(S) );
2071  intvec v = -grrange(D); // source
2072  intvec w = -grrange(S); // target
2073  return (grobj(grrndmat(v, w, #), -w, -v ) );
2074}
2075example
2076{ "EXAMPLE:"; echo = 2;
2077
2078  ring r=32003,(x,y,z),dp;
2079
2080  module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
2081  grview(D);
2082
2083  module S=grobj(module([x,0,y],[xy,zy+x2,0]),intvec(0,0,0));
2084  grview(S);
2085
2086  def G=grrndmap2(D,S);
2087  grview(G);
2088}
2089
2090
2091//                A     f2     f3
2092// 0<---M<----F0<----F1<----F2<----F3<----
2093//              |p1   |p2
2094//
2095// 0<---N<----G0<----G1<----G2<----G3<----
2096//                B(g1)      g2     g3
2097//
2098proc grlifting2(A,B)
2099"USAGE: grlifting2(A,B), graded objects A and B (matrices defining maps)
2100RETURN: map of chain complexes (as a list)
2101PURPOSE: construct a map of chain complexes between free resolution of
2102M=coker(A) and N=coker(B).
2103EXAMPLE: example grlifting2; shows an example
2104"
2105{  ASSUME(1, grtest(A));
2106   ASSUME(1, grtest(B));
2107
2108   list rM=grres(A,0);
2109   list rN=grres(B,0);
2110   int i,j,k;
2111   list P;
2112
2113  // find first zero matrix in rM
2114  for(i=1;i<=size(rM);i++)
2115  {
2116    if(size(rM[i])==0){break;}
2117  }
2118
2119  // find first zero matrix in rN
2120  for(j=1;j<=size(rN);j++)
2121  {
2122    if(size(rN[j])==0){break;}
2123  }
2124
2125  int t=min(i,j);
2126
2127  P[1]=grrndmap2(A,B);
2128
2129  // A(or B)=0
2130  if(t==1){return(P[1])};
2131
2132  for(k=2;k<=t;k++)
2133  {
2134   def E=grprod(P[k-1],rM[k-1]);
2135   P[k]=grlift(rN[k-1],E); // ---------->
2136   /* let yi=(pi)o(fi); to take grlift(gi,yi)
2137      we should have img(yi) is contained in
2138      img(gi)=ker(gi-1),i.e (gi-1)oyi=0. we have
2139      (gi-1)oyi=(gi-1)o(pi)o(fi)=(pi-1)o(fi-1)ofi=0
2140  */
2141  }
2142  return(P);
2143}
2144example
2145{ "EXAMPLE:"; echo = 2;
2146
2147ring r;
2148module P=grobj(module([xy,0,xz]),intvec(0,1,0));
2149grview(P);
2150
2151module D=grobj(module([y,0,z],[x2+y2,z,0]),intvec(0,1,0));
2152grview(D);
2153
2154module PP = grpres(P);
2155grview(PP);
2156
2157module DD = grpres(D);
2158grview(DD);
2159
2160
2161def T=grlifting2(DD,PP); T;
2162
2163// def Z=grlifting2(P,D); Z; // WRONG!!!
2164
2165}
2166
2167/*
2168//              -f1 0       -f2 0
2169//   (p1 g1)     p2 g2       p3 g3
2170// G0<-----F0+G1<------F1+G2<-------F2+G3<-----
2171proc mappingcone2(A,B)
2172"USAGE: mappingcone2(A,B), graded objects A and B (matrices defining maps)
2173RETURN: chain complex (as a list)
2174PURPOSE: construct the free resolution of a cokernel of a random map between M=coker(A), and N=coker(B)
2175EXAMPLE: example mappingcone2;
2176"
2177{
2178  ASSUME(1, grtest(A));
2179  ASSUME(1, grtest(B));
2180
2181  list P=grlifting2(A,B);
2182  list rM=grres(A,1);
2183  list rN=grres(B,1);
2184
2185  int i;
2186  list T;
2187
2188  T[1]=grconcat(P[1],rN[1]);
2189
2190  for(i=2;i<=size(P);i++)
2191  {
2192    intvec v=grrange(rM[i-1]);
2193    intvec w=grdeg(rN[i]);
2194    int r=size(v);
2195    int s=size(w);
2196    matrix zero[r][s];
2197
2198    module A=grconcat(P[i],rN[i]);
2199    module B=grobj(zero,v,w);
2200
2201    module C=grconcat( grneg( rM[i-1] ) ,B);
2202    module D=grconcat(grtranspose(C), grtranspose(A));
2203
2204    T[i]=grtranspose(D);
2205  }
2206  return(T);
2207}
2208example
2209{ "EXAMPLE:"; echo = 2;
2210
2211ring r=32003,(x(0..4)),dp;
2212def I=maxideal(1);
2213module R=grobj(module(I), intvec(0));
2214resolution FR=mres(R,0);
2215print(betti(FR,0),"betti");
2216module K=grobj(module(FR[1]),intvec(-1),intvec(0:5));
2217grview(K);
2218
2219module S=grsyz(K);
2220grview(S);
2221S;
2222
2223module SS = grpres(S);
2224
2225module B=grobj(module([1,0,0],[0,1,0],[0,0,1]),intvec(1,1,1),intvec(1,1,1));
2226// module B=grobj(module([1],[0,1],[0,0,1],[0,0,0,1], [0,0,0,0,1]),intvec(0:5));
2227grview(B);
2228B;
2229module BB = grpres(B);
2230
2231def Z=grlifting2(SS,BB);Z;
2232def G=mappingcone2(SS,BB);G;
2233}
2234*/
2235
2236proc grlifting3(A,B)
2237"TODO: grlifting4 was newer and had more documentation than this proc, but was removed... Please verify and update!
2238"
2239{
2240  ASSUME(1, grtest(A));
2241  ASSUME(1, grtest(B));
2242
2243
2244  list rM = grres(A,0,1);
2245
2246  print( betti(rM), "betti");
2247  list rN = grres(B,0,1);
2248  print( betti(rN), "betti");
2249
2250  int i,j,k;
2251
2252  for(i=1;i<=size(rM);i++)
2253  {
2254    if(size(rM[i])==0){break;}
2255  }
2256
2257  for(j=1;j<=size(rN);j++)
2258  {
2259    if(size(rN[j])==0){break;}
2260  }
2261  int t=min(i,j);
2262
2263  list P;
2264
2265  "t: ", t;
2266//  grview(rM[t]);  grview(rN[t]);
2267
2268  P[t]= grrndmap2(rM[t],rN[t]);
2269  grview(P[t]);
2270
2271  if(t==1){return(P)};
2272
2273  for(k=t-1; k>=1; k--)
2274  {
2275     "k: ", k;
2276//  grview(rM[k]);  grview(rN[k]);
2277
2278// def C = grtranspose(rM[k]); def T= grprod(rN[k],P[k+1]);
2279// def tT = grtranspose(T);
2280
2281    P[k]= grlift0( rM[k], rN[k], P[k+1] ); // grtranspose(grlift(C,tT));
2282
2283     grview(P[k]);
2284
2285   }
2286   return(P);
2287}
2288example
2289{"EXAMPLE:"; echo = 2;
2290
2291ring r=32003, x(0..4),dp;
2292
2293def A=grtwist(3,1);
2294grview(A);
2295
2296def T=KeneshlouMatrixPresentation(intvec(0,1,0,0,0));
2297grview(T);
2298
2299def F=grlifting3(T,A);
2300grview(F);
2301
2302def R=KeneshlouMatrixPresentation(intvec(0,0,0,2,0));
2303def S=KeneshlouMatrixPresentation(intvec(1,2,0,0,0));
2304
2305def H=grlifting3(R, S);
2306// grview(H);
2307
2308// 2nd module does not lie in the first:
2309// def H=grlifting3(S, R);
2310
2311
2312//def I=KeneshlouMatrixPresentation(intvec(2,3,0,6,2));
2313//def J=KeneshlouMatrixPresentation(intvec(4,0,1,2,1));
2314//def N=grlifting3(I,J); grview(N);
2315}
2316
2317proc grneg(A)
2318"USAGE: grneg(A), graded object A
2319RETURN: graded object
2320PURPOSE: graded map defined by -A
2321EXAMPLE: example grneg; shows an example
2322"
2323{
2324  ASSUME(1, grtest(A));
2325  return( grobj(-A, grrange(A), grdeg(A)) );
2326}
2327example
2328{ "EXAMPLE:"; echo = 2;
2329
2330   ring r=0,(x,y,z),dp;
2331   def A=grobj([x2,yz,xyz],intvec(1,1,0));
2332   grview(A);
2333
2334   def F=grneg(A);
2335   grview(F);
2336}
2337
2338//             -f1 0        -f2 0
2339//  (p1 g1)     p2 g2        p3 g3
2340//G0<-----F0+G1<------F1+G2<-------F2+G3<-----
2341proc mappingcone3(A,B)
2342"USAGE: mappingcone3(A,B), graded objects A and B (matrices defining maps)
2343RETURN: chain complex (as a list)
2344PURPOSE: construct a free resolution of the cokernel of a random map between M=coker(A), and N=coker(B)
2345EXAMPLE: example mappingcone3; shows an example
2346"
2347{
2348  ASSUME(1, grtest(A));
2349  ASSUME(1, grtest(B));
2350
2351  list P=grlifting3(A,B);
2352  list rM=grres(A,0,1);
2353  list rN=grres(B,0,1);
2354
2355  int i;
2356  list T;
2357
2358  T[1]=grconcat(P[1],rN[1]);
2359
2360  for(i=2;i<=size(P);i++)
2361  {
2362    intvec v= grrange(rM[i-1]);
2363    intvec w=grdeg(rN[i]);
2364    int r=size(v);
2365    int s=size(w);
2366    matrix zero[r][s];
2367
2368//    ASSUME( 0, grtest(P[i]) );
2369//    ASSUME( 0, grtest(rN[i]) );
2370
2371    module A=grconcat(P[i],rN[i]);
2372    module B=grobj(zero,v,w);
2373
2374    module C=grconcat( grneg( rM[i-1] ) ,B);
2375    module D=grconcat(grtranspose(C), grtranspose(A));
2376
2377    T[i]=grtranspose(D);
2378
2379    kill A, B, C, D, v, w, r, s, zero;
2380  }
2381   return(T);
2382}
2383example
2384{ "EXAMPLE:"; echo = 2;
2385
2386ring r=32003,x(0..4),dp;
2387
2388def A=KeneshlouMatrixPresentation(intvec(0,0,0,0,3));
2389grview(A);
2390
2391def T= KeneshlouMatrixPresentation(intvec(0,1,0,0,0));
2392grview(T);
2393
2394def F=grlifting3(A,T); grview(F);
2395
2396// BUG in the proc
2397def G=mappingcone3(A,T); grview(G);
2398
2399/*
2400module W=grtranspose(G[1]);
2401resolution U=mres(W,0);
2402print(betti(U,0),"betti"); // ?
2403ideal P=groebner(flatten(U[2]));
2404resolution L=mres(P,0);
2405print(betti(L),"betti");
2406*/
2407
2408
2409def R=KeneshlouMatrixPresentation(intvec(0,0,0,2,0));
2410grview(R);
2411
2412def S=KeneshlouMatrixPresentation(intvec(1,2,0,0,0));
2413grview(S);
2414
2415def H=grlifting3(R,S); grview(H);
2416
2417// BUG in the proc
2418def G=mappingcone3(R,S);
2419
2420
2421def I=KeneshlouMatrixPresentation(intvec(2,3,0,6,2));
2422def J=KeneshlouMatrixPresentation(intvec(4,0,1,2,1));
2423// def N=grlifting3(I,J);
2424// 2nd module does not lie in the first:
2425// def NN=mappingcone3(I,J); // ????????
2426
2427}
2428
2429
2430
2431
2432// TODO: Please decide between KeneshlouMatrixPresentation and matrixpres, and replace one with the other!
2433proc matrixpres(intvec a)
2434"USAGE:  matrixpres(a), intvec a
2435RETURN:  graded object
2436PURPOSE: matrix presentation for direct sum of omega^a[i](i) in form of a graded object
2437EXAMPLE: example matrixpres; shows an example
2438"
2439{
2440  int n = size(a)-1;
2441  //  ring r = 32003,(x(0..n)),dp;
2442  ASSUME(0, nvars(basering)==(n+1));
2443  int i,j;
2444
2445  // find first nonzero exponent a_i
2446  for(i=1;i<=size(a);i++)
2447    {
2448      if(a[i]!=0) {break; };
2449    }
2450
2451  // all zeroes?
2452  if(i>size(a)) {return (grzero()); };
2453   for(i=2;i<=n;i++)
2454    {
2455      if(a[i]!=0) {break; };
2456    }
2457
2458  module N;
2459
2460  if(i>n)
2461    { // no middle part
2462      if(a[1]>0)
2463        {
2464          N=grtwist(a[1],-1);
2465
2466          if(a[n+1]>0)
2467            { N=grsum(N,grtwist(a[n+1],0));}
2468        }
2469      else
2470        { N=grtwist(a[n+1],0);}
2471
2472      return (N); // grorder(N));
2473    }
2474
2475else // i <= n: middle part is present, a_i != 0
2476    { // a = a1  ... |  i:2, a_2 ..... i: n, a_n | .... i: n+1a_(n+1)
2477      module I = maxideal(1);
2478      attrib(I,"isHomog", intvec(0));
2479      list L = mres(I, 0);
2480      list kos = grorder(L);
2481      // make sure that graded maps  are represented by blocks corresponding to the betti diagram?
2482      int j=size(a)-i;
2483      def S = grpower(grshift(grobj( kos[j+2], attrib(kos[j+2], "isHomog")),j ), a[i]);
2484
2485      i++;
2486
2487      for(; i <= n; i++)
2488        {
2489          if(a[i]==0) { i++; continue; }
2490          int j=size(a)-i;
2491          S = grsum( S, grpower(grshift( grobj( kos[j+2], attrib(kos[j+2], "isHomog")), j), a[i])  );
2492        }
2493
2494      // S is the middle (non-zero) part
2495
2496      if(a[1] > 0 )
2497        {
2498          N=grsum(grtwist(a[1],-1), S);
2499        }
2500      else
2501        { N = S;}
2502
2503      if(a[n+1] > 0 )
2504        { N=grsum(N, grtwist(a[n+1],0)); }
2505
2506
2507      return ((N)); //      return (grorder(N));
2508    }
2509}
2510example
2511{ "EXAMPLE:"; echo = 2;
2512
2513ring r = 32003,(x(0..4)),dp;
2514
2515def R=matrixpres(intvec(1,4,0,0,0));
2516grview(R);
2517def S=matrixpres(intvec(0,0,3,0,0));
2518grview(S);
2519
2520def N1 = matrixpres(intvec(2,0,0,0,0));
2521grview(N1);
2522
2523def N2 = matrixpres(intvec(0,0,0,0,3));
2524grview(N2);
2525
2526def N = matrixpres(intvec(2,0,0,0,3));
2527grview(N);
2528
2529
2530def M1 = matrixpres(intvec(0,1,0,0,0));
2531grview(M1);
2532
2533def M2 = matrixpres(intvec(0,1,1,0,0));
2534grview(M2);
2535
2536def M3 = matrixpres(intvec(0,0,0,1,0));
2537grview(M3);
2538
2539def M = matrixpres(intvec(1,1,1,0,0));
2540grview(M);
2541}
2542
Note: See TracBrowser for help on using the repository browser.