1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id$"; |
---|
3 | category="General purpose"; |
---|
4 | info=" |
---|
5 | LIBRARY: grobcov.lib Groebner Cover for parametric ideals. |
---|
6 | PURPOSE: Comprehensive Groebner Systems, Groebner Cover, Canonical Forms, |
---|
7 | Parametric Polynomial Systems. |
---|
8 | The library contains Montes-Wibmer's algorithms to compute the |
---|
9 | canonical Groebner cover of a parametric ideal as described in |
---|
10 | the paper: |
---|
11 | |
---|
12 | Montes A., Wibmer M., |
---|
13 | \"Groebner Bases for Polynomial Systems with parameters\". |
---|
14 | Journal of Symbolic Computation 45 (2010) 1391-1425. |
---|
15 | |
---|
16 | The central routine is grobcov. Given a parametric |
---|
17 | ideal, grobcov outputs its Canonical Groebner Cover, consisting |
---|
18 | of a set of pairs of (basis, segment). The basis (after |
---|
19 | normalization) is the reduced Groebner basis for each point |
---|
20 | of the segment. The segments are disjoint, locally closed |
---|
21 | and correspond to constant lpp (leading power product) |
---|
22 | of the basis, and are represented in canonical prime |
---|
23 | representation. The segments are disjoint and cover the |
---|
24 | whole parameter space. The output is canonical, it only |
---|
25 | depends on the given parametric ideal and the monomial order. |
---|
26 | This is much more than a simple Comprehensive Groebner System. |
---|
27 | The algorithm grobcov allows options to solve partially the |
---|
28 | problem when the whole automatic algorithm does not finish |
---|
29 | in reasonable time. |
---|
30 | |
---|
31 | grobcov uses a first algorithm cgsdr that outputs a disjoint |
---|
32 | reduced Comprehensive Groebner System with constant lpp. |
---|
33 | For this purpose, in this library, the implemented algorithm is |
---|
34 | Kapur-Sun-Wang algorithm, because it is the most efficient |
---|
35 | algorithm known for this purpose. |
---|
36 | |
---|
37 | D. Kapur, Y. Sun, and D.K. Wang. |
---|
38 | \"A New Algorithm for Computing Comprehensive Groebner Systems\". |
---|
39 | Proceedings of ISSAC'2010, ACM Press, (2010), 29-36. |
---|
40 | |
---|
41 | cgsdr can be called directly if only a disjoint reduced |
---|
42 | Comprehensive Groebner System (CGS) is required. |
---|
43 | |
---|
44 | AUTHORS: Antonio Montes , Hans Schoenemann. |
---|
45 | OVERVIEW: see \"Groebner Bases for Polynomial Systems with parameters\" |
---|
46 | Montes A., Wibmer M., |
---|
47 | Journal of Symbolic Computation 45 (2010) 1391-1425. |
---|
48 | (http://www-ma2.upc.edu/~montes/). |
---|
49 | |
---|
50 | NOTATIONS: All given and determined polynomials and ideals are in the |
---|
51 | @* basering Q[a][x]; (a=parameters, x=variables) |
---|
52 | @* After defining the ring, the main routines |
---|
53 | @* grobcov, cgsdr, |
---|
54 | @* generate the global rings |
---|
55 | @* @R (Q[a][x]), |
---|
56 | @* @P (Q[a]), |
---|
57 | @* @RP (Q[x,a]) |
---|
58 | @* that are used inside and killed before the output. |
---|
59 | @* If you want to use some internal routine you must |
---|
60 | @* create before the above rings by calling setglobalrings(); |
---|
61 | @* because most of the internal routines use these rings. |
---|
62 | @* The call to the basic routines grobcov, cgsdr will |
---|
63 | @* kill these rings. |
---|
64 | |
---|
65 | PROCEDURES: |
---|
66 | |
---|
67 | grobcov(F); Is the basic routine giving the canonical |
---|
68 | Groebner cover of the parametric ideal F. |
---|
69 | This routine accepts many options, that |
---|
70 | allow to obtain results even when the canonical |
---|
71 | computation does not finish in reasonable time. |
---|
72 | |
---|
73 | cgsdr(F); Is the procedure for obtaining a first disjoint, |
---|
74 | reduced Comprehensive Groebner System that |
---|
75 | is used in grobcov, but that can be used |
---|
76 | independently if only the CGS is required. |
---|
77 | It is a more efficient routine than buildtree |
---|
78 | (the own routine that is no more used). It uses |
---|
79 | now KSW algorithm. |
---|
80 | |
---|
81 | setglobalrings(); Generates the global rings @R, @P and @PR that are |
---|
82 | respectively the rings Q[a][x], Q[a], Q[x,a]. |
---|
83 | It is called inside each of the fundamental routines |
---|
84 | of the library: grobcov, cgsdr and killed before |
---|
85 | the output. |
---|
86 | If the user want to use some other internal routine, |
---|
87 | then setglobalrings() is to be called before, as |
---|
88 | the rings @R, @P and @RP are needed in most of them. |
---|
89 | globally, and more internal routines can be used, but |
---|
90 | these rings are killed by the call to any of the |
---|
91 | basic routines. |
---|
92 | |
---|
93 | pdivi(f,F); Performs a pseudodivision of a parametric polynomial |
---|
94 | by a parametric ideal. |
---|
95 | |
---|
96 | pnormalf(f,E,N); Reduces a parametric polynomial f over V(E) \ V(N) |
---|
97 | E is the null ideal and N the non-null ideal |
---|
98 | over the parameters. |
---|
99 | |
---|
100 | extend(GC); When the grobcov of an ideal has been computed |
---|
101 | with the default option ('ext',0) and the explicit |
---|
102 | option ('rep',2) (which is not the default), then |
---|
103 | one can call extend (GC) (and options) to obtain the |
---|
104 | full representation of the bases. With the default |
---|
105 | option ('ext',0) only the generic representation of |
---|
106 | the bases are computed, and one can obtain the full |
---|
107 | representation using extend. |
---|
108 | |
---|
109 | locus2d: Special routine for determining the locus of points |
---|
110 | of a two dimensional object. Given an ideal J with |
---|
111 | two parameters (a,b) and so many variables as |
---|
112 | needed, representing the system determining |
---|
113 | the locus of points (a,b) who verify certain |
---|
114 | geometrical properties, computing the grobcov of |
---|
115 | J and applying to it locus2d, determines the locus. |
---|
116 | |
---|
117 | locus2dto: Transforms the output of locus2d to a string that |
---|
118 | can be reed from different computational systems. |
---|
119 | |
---|
120 | SEE ALSO: compregb_lib |
---|
121 | "; |
---|
122 | |
---|
123 | LIB "primdec.lib"; |
---|
124 | LIB "qhmoduli.lib"; |
---|
125 | |
---|
126 | // ************ Begin of the grobcov library ********************* |
---|
127 | |
---|
128 | // Library grobcov.lib |
---|
129 | // (Groebner cover): |
---|
130 | // Release 1: (public) |
---|
131 | // Initial data: 21-1-2008 |
---|
132 | // Final data: 3-7-2008 |
---|
133 | // Release 2: (private) |
---|
134 | // Initial data: 6-9-2009 |
---|
135 | // Final data: 25-10-2011 |
---|
136 | // Release 3: (this release, public) |
---|
137 | // Initial data: 1-7-2012 |
---|
138 | // Final data: 4-9-2012 |
---|
139 | // basering Q[a][x]; |
---|
140 | |
---|
141 | // ************ Begin of buildtree ****************************** |
---|
142 | |
---|
143 | proc setglobalrings() |
---|
144 | "USAGE: setglobalrings(); |
---|
145 | No arguments |
---|
146 | RETURN: After its call the rings @R=Q[a][x], @P=Q[a], @RP=Q[x,a] are |
---|
147 | defined as global variables. |
---|
148 | NOTE: It is called internally by the fundamental routines of the |
---|
149 | library grobcov, cgsdr, extend, pdivi, pnormalf, locus2d, locus2dto, |
---|
150 | and killed before the output. |
---|
151 | The user does not need to call it, except when it is interested |
---|
152 | in using some internal routine of the library that |
---|
153 | uses these rings. |
---|
154 | The basering R, must be of the form Q[a][x], a=parameters, |
---|
155 | x=variables, and should be defined previously. |
---|
156 | KEYWORDS: ring, rings |
---|
157 | EXAMPLE: setglobalrings; shows an example" |
---|
158 | { |
---|
159 | if (defined(@P)) |
---|
160 | { |
---|
161 | kill @P; kill @R; kill @RP; |
---|
162 | } |
---|
163 | def RR=basering; |
---|
164 | def @R=basering; // must be of the form K[a][x], a=parameters, x=variables |
---|
165 | def Rx=ringlist(RR); |
---|
166 | def @P=ring(Rx[1]); |
---|
167 | list Lx; |
---|
168 | Lx[1]=0; |
---|
169 | Lx[2]=Rx[2]+Rx[1][2]; |
---|
170 | Lx[3]=Rx[1][3]; |
---|
171 | Lx[4]=Rx[1][4]; |
---|
172 | Rx[1]=0; |
---|
173 | def D=ring(Rx); |
---|
174 | def @RP=D+@P; |
---|
175 | exportto(Top,@R); // global ring K[a][x] |
---|
176 | exportto(Top,@P); // global ring K[a] |
---|
177 | exportto(Top,@RP); // global ring K[x,a] with product order |
---|
178 | setring(RR); |
---|
179 | }; |
---|
180 | example |
---|
181 | { "EXAMPLE:"; echo = 2; |
---|
182 | ring R=(0,a,b),(x,y,z),dp; |
---|
183 | setglobalrings(); |
---|
184 | @R; |
---|
185 | @P; |
---|
186 | @RP; |
---|
187 | ringlist(R); |
---|
188 | ringlist(@P); |
---|
189 | ringlist(@RP); |
---|
190 | } |
---|
191 | |
---|
192 | //*************Auxilliary routines************** |
---|
193 | |
---|
194 | // cld : clears denominators of an ideal and normalizes to content 1 |
---|
195 | // can be used in @R or @P or @RP |
---|
196 | // input: |
---|
197 | // ideal J (J can be also poly), but the output is an ideal; |
---|
198 | // output: |
---|
199 | // ideal Jc (the new form of ideal J without denominators and |
---|
200 | // normalized to content 1) |
---|
201 | proc cld(ideal J) |
---|
202 | { |
---|
203 | if (size(J)==0){return(ideal(0));} |
---|
204 | def RR=basering; |
---|
205 | setring(@RP); |
---|
206 | def Ja=imap(RR,J); |
---|
207 | ideal Jb; |
---|
208 | if (size(Ja)==0){setring(RR); return(ideal(0));} |
---|
209 | int i; |
---|
210 | def j=0; |
---|
211 | for (i=1;i<=ncols(Ja);i++){if (size(Ja[i])!=0){j++; Jb[j]=cleardenom(Ja[i]);}} |
---|
212 | setring(RR); |
---|
213 | def Jc=imap(@RP,Jb); |
---|
214 | return(Jc); |
---|
215 | }; |
---|
216 | |
---|
217 | proc memberpos(f,J) |
---|
218 | //"USAGE: memberpos(f,J); |
---|
219 | // (f,J) expected (polynomial,ideal) |
---|
220 | // or (int,list(int)) |
---|
221 | // or (int,intvec) |
---|
222 | // or (intvec,list(intvec)) |
---|
223 | // or (list(int),list(list(int))) |
---|
224 | // or (ideal,list(ideal)) |
---|
225 | // or (list(intvec), list(list(intvec))). |
---|
226 | // The ring can be @R or @P or @RP or any other. |
---|
227 | //RETURN: The list (t,pos) t int; pos int; |
---|
228 | // t is 1 if f belongs to J and 0 if not. |
---|
229 | // pos gives the position in J (or 0 if f does not belong). |
---|
230 | //EXAMPLE: memberpos; shows an example" |
---|
231 | { |
---|
232 | int pos=0; |
---|
233 | int i=1; |
---|
234 | int j; |
---|
235 | int t=0; |
---|
236 | int nt; |
---|
237 | if (typeof(J)=="ideal"){nt=ncols(J);} |
---|
238 | else{nt=size(J);} |
---|
239 | if ((typeof(f)=="poly") or (typeof(f)=="int")) |
---|
240 | { // (poly,ideal) or |
---|
241 | // (poly,list(poly)) |
---|
242 | // (int,list(int)) or |
---|
243 | // (int,intvec) |
---|
244 | i=1; |
---|
245 | while(i<=nt) |
---|
246 | { |
---|
247 | if (f==J[i]){return(list(1,i));} |
---|
248 | i++; |
---|
249 | } |
---|
250 | return(list(0,0)); |
---|
251 | } |
---|
252 | else |
---|
253 | { |
---|
254 | if ((typeof(f)=="intvec") or ((typeof(f)=="list") and (typeof(f[1])=="int"))) |
---|
255 | { // (intvec,list(intvec)) or |
---|
256 | // (list(int),list(list(int))) |
---|
257 | i=1; |
---|
258 | t=0; |
---|
259 | pos=0; |
---|
260 | while((i<=nt) and (t==0)) |
---|
261 | { |
---|
262 | t=1; |
---|
263 | j=1; |
---|
264 | if (size(f)!=size(J[i])){t=0;} |
---|
265 | else |
---|
266 | { |
---|
267 | while ((j<=size(f)) and t) |
---|
268 | { |
---|
269 | if (f[j]!=J[i][j]){t=0;} |
---|
270 | j++; |
---|
271 | } |
---|
272 | } |
---|
273 | if (t){pos=i;} |
---|
274 | i++; |
---|
275 | } |
---|
276 | if (t){return(list(1,pos));} |
---|
277 | else{return(list(0,0));} |
---|
278 | } |
---|
279 | else |
---|
280 | { |
---|
281 | if (typeof(f)=="ideal") |
---|
282 | { // (ideal,list(ideal)) |
---|
283 | i=1; |
---|
284 | t=0; |
---|
285 | pos=0; |
---|
286 | while((i<=nt) and (t==0)) |
---|
287 | { |
---|
288 | t=1; |
---|
289 | j=1; |
---|
290 | if (ncols(f)!=ncols(J[i])){t=0;} |
---|
291 | else |
---|
292 | { |
---|
293 | while ((j<=ncols(f)) and t) |
---|
294 | { |
---|
295 | if (f[j]!=J[i][j]){t=0;} |
---|
296 | j++; |
---|
297 | } |
---|
298 | } |
---|
299 | if (t){pos=i;} |
---|
300 | i++; |
---|
301 | } |
---|
302 | if (t){return(list(1,pos));} |
---|
303 | else{return(list(0,0));} |
---|
304 | } |
---|
305 | else |
---|
306 | { |
---|
307 | if ((typeof(f)=="list") and (typeof(f[1])=="intvec")) |
---|
308 | { // (list(intvec),list(list(intvec))) |
---|
309 | i=1; |
---|
310 | t=0; |
---|
311 | pos=0; |
---|
312 | while((i<=nt) and (t==0)) |
---|
313 | { |
---|
314 | t=1; |
---|
315 | j=1; |
---|
316 | if (size(f)!=size(J[i])){t=0;} |
---|
317 | else |
---|
318 | { |
---|
319 | while ((j<=size(f)) and t) |
---|
320 | { |
---|
321 | if (f[j]!=J[i][j]){t=0;} |
---|
322 | j++; |
---|
323 | } |
---|
324 | } |
---|
325 | if (t){pos=i;} |
---|
326 | i++; |
---|
327 | } |
---|
328 | if (t){return(list(1,pos));} |
---|
329 | else{return(list(0,0));} |
---|
330 | } |
---|
331 | } |
---|
332 | } |
---|
333 | } |
---|
334 | } |
---|
335 | //example |
---|
336 | //{ "EXAMPLE:"; echo = 2; |
---|
337 | // list L=(7,4,5,1,1,4,9); |
---|
338 | // memberpos(1,L); |
---|
339 | //} |
---|
340 | |
---|
341 | proc subset(J,K) |
---|
342 | //"USAGE: subset(J,K); |
---|
343 | // (J,K) expected (ideal,ideal) |
---|
344 | // or (list, list) |
---|
345 | //RETURN: 1 if all the elements of J are in K, 0 if not. |
---|
346 | //EXAMPLE: subset; shows an example;" |
---|
347 | { |
---|
348 | int i=1; |
---|
349 | int nt; |
---|
350 | if (typeof(J)=="ideal"){nt=ncols(J);} |
---|
351 | else{nt=size(J);} |
---|
352 | if (size(J)==0){return(1);} |
---|
353 | while(i<=nt) |
---|
354 | { |
---|
355 | if (memberpos(J[i],K)[1]){i++;} |
---|
356 | else {return(0);} |
---|
357 | } |
---|
358 | return(1); |
---|
359 | } |
---|
360 | //example |
---|
361 | //{ "EXAMPLE:"; echo = 2; |
---|
362 | // list J=list(7,3,2); |
---|
363 | // list K=list(1,2,3,5,7,8); |
---|
364 | // subset(J,K); |
---|
365 | //} |
---|
366 | |
---|
367 | // elimintfromideal: elimine the constant numbers from an ideal |
---|
368 | // (designed for W, nonnull conditions) |
---|
369 | // input: ideal J |
---|
370 | // output:ideal K with the elements of J that are non constants, in the |
---|
371 | // ring @P |
---|
372 | proc elimintfromideal(ideal J) |
---|
373 | { |
---|
374 | int i; |
---|
375 | int j=0; |
---|
376 | ideal K; |
---|
377 | if (size(J)==0){return(ideal(0));} |
---|
378 | for (i=1;i<=ncols(J);i++){if (size(variables(J[i])) !=0){j++; K[j]=J[i];}} |
---|
379 | return(K); |
---|
380 | } |
---|
381 | |
---|
382 | // simpqcoeffs : simplifies a quotient of two polynomials |
---|
383 | // input: two coeficients (or terms), that are considered as a quotient |
---|
384 | // output: the two coeficients reduced without common factors |
---|
385 | proc simpqcoeffs(poly n,poly m) |
---|
386 | { |
---|
387 | def nc=content(n); |
---|
388 | def mc=content(m); |
---|
389 | def gc=gcd(nc,mc); |
---|
390 | ideal s=n/gc,m/gc; |
---|
391 | return (s); |
---|
392 | } |
---|
393 | |
---|
394 | // pdivi : pseudodivision of a poly f by a parametric ideal F in Q[a][x]. |
---|
395 | // input: |
---|
396 | // poly f (in the parametric ring @R) |
---|
397 | // ideal F (in the parametric ring @R) |
---|
398 | // output: |
---|
399 | // list (poly r, ideal q, poly mu) |
---|
400 | proc pdivi(poly f,ideal F) |
---|
401 | "USAGE: pdivi(f,F); |
---|
402 | poly f: the polynomial to be divided |
---|
403 | ideal F: the divisor ideal |
---|
404 | RETURN: A list (poly r, ideal q, poly m). r is the remainder of the |
---|
405 | pseudodivision, q is the set of quotients, and m is the |
---|
406 | coefficient factor by which f is to be multiplied. |
---|
407 | NOTE: pseudodivision of a poly f by an ideal F in @R. Returns a |
---|
408 | list (r,q,m) such that m*f=r+sum(q.G), and no lpp of a divisor |
---|
409 | divides a pp of r. |
---|
410 | KEYWORDS: division, reduce |
---|
411 | EXAMPLE: pdivi; shows an example" |
---|
412 | { |
---|
413 | int te=0; |
---|
414 | if (defined(@P)==1){te=1;} |
---|
415 | else{setglobalrings();} |
---|
416 | def R=basering; |
---|
417 | int i; |
---|
418 | int j; |
---|
419 | poly r=0; |
---|
420 | poly mu=1; |
---|
421 | def p=f; |
---|
422 | ideal q; |
---|
423 | for (i=1; i<=size(F); i++){q[i]=0;}; |
---|
424 | ideal lpf; |
---|
425 | ideal lcf; |
---|
426 | for (i=1;i<=size(F);i++){lpf[i]=leadmonom(F[i]);} |
---|
427 | for (i=1;i<=size(F);i++){lcf[i]=leadcoef(F[i]);} |
---|
428 | poly lpp; |
---|
429 | poly lcp; |
---|
430 | poly qlm; |
---|
431 | poly nu; |
---|
432 | poly rho; |
---|
433 | int divoc=0; |
---|
434 | ideal qlc; |
---|
435 | while (p!=0) |
---|
436 | { |
---|
437 | i=1; |
---|
438 | divoc=0; |
---|
439 | lpp=leadmonom(p); |
---|
440 | lcp=leadcoef(p); |
---|
441 | while (divoc==0 and i<=size(F)) |
---|
442 | { |
---|
443 | qlm=lpp/lpf[i]; |
---|
444 | if (qlm!=0) |
---|
445 | { |
---|
446 | qlc=simpqcoeffs(lcp,lcf[i]); |
---|
447 | nu=qlc[2]; |
---|
448 | mu=mu*nu; |
---|
449 | rho=qlc[1]*qlm; |
---|
450 | p=nu*p-rho*F[i]; |
---|
451 | r=nu*r; |
---|
452 | for (j=1;j<=size(F);j++){q[j]=nu*q[j];} |
---|
453 | q[i]=q[i]+rho; |
---|
454 | divoc=1; |
---|
455 | } |
---|
456 | else {i++;} |
---|
457 | } |
---|
458 | if (divoc==0) |
---|
459 | { |
---|
460 | r=r+lcp*lpp; |
---|
461 | p=p-lcp*lpp; |
---|
462 | } |
---|
463 | } |
---|
464 | list res=r,q,mu; |
---|
465 | if(te==0){kill @P; kill @R; kill @RP;} |
---|
466 | return(res); |
---|
467 | } |
---|
468 | example |
---|
469 | { "EXAMPLE:"; echo = 2; |
---|
470 | ring R=(0,a,b,c),(x,y),dp; |
---|
471 | "Divisor="; |
---|
472 | poly f=(ab-ac)*xy+(ab)*x+(5c); |
---|
473 | "Dividends="; |
---|
474 | ideal F=ax+b,cy+a; |
---|
475 | "(Remainder, quotients, factor)="; |
---|
476 | def r=pdivi(f,F); |
---|
477 | r; |
---|
478 | "Verifying the division: r[3]*f-(r[2][1]*F[1]+r[2][2]*F[2])-r[1] ="; |
---|
479 | r[3]*f-(r[2][1]*F[1]+r[2][2]*F[2])-r[1]; |
---|
480 | } |
---|
481 | |
---|
482 | // pspol : S-poly of two polynomials in @R |
---|
483 | // @R |
---|
484 | // input: |
---|
485 | // poly f (given in the ring @R) |
---|
486 | // poly g (given in the ring @R) |
---|
487 | // output: |
---|
488 | // list (S, red): S is the S-poly(f,g) and red is a Boolean variable |
---|
489 | // if red then S reduces by Buchberger 1st criterion |
---|
490 | // (not used) |
---|
491 | proc pspol(poly f,poly g) |
---|
492 | { |
---|
493 | def lcf=leadcoef(f); |
---|
494 | def lcg=leadcoef(g); |
---|
495 | def lpf=leadmonom(f); |
---|
496 | def lpg=leadmonom(g); |
---|
497 | def v=gcd(lpf,lpg); |
---|
498 | def s=simpqcoeffs(lcf,lcg); |
---|
499 | def vf=lpf/v; |
---|
500 | def vg=lpg/v; |
---|
501 | poly S=s[2]*vg*f-s[1]*vf*g; |
---|
502 | return(S); |
---|
503 | } |
---|
504 | |
---|
505 | // facvar: Returns all the free-square factors of the elements |
---|
506 | // of ideal J (non repeated). Integer factors are ignored, |
---|
507 | // even 0 is ignored. It can be called from ideal @R, but |
---|
508 | // the given ideal J must only contain poynomials in the |
---|
509 | // parameters. |
---|
510 | // Operates in the ring @P, but can be called from ring @R, |
---|
511 | // and the ideal @P must be defined calling first setglobalrings(); |
---|
512 | // input: ideal J |
---|
513 | // output: ideal Jc: Returns all the free-square factors of the elements |
---|
514 | // of ideal J (non repeated). Integer factors are ignored, |
---|
515 | // even 0 is ignored. It can be called from ideal @R. |
---|
516 | proc facvar(ideal J) |
---|
517 | //"USAGE: facvar(J); |
---|
518 | // J: an ideal in the parameters |
---|
519 | //RETURN: all the free-square factors of the elements |
---|
520 | // of ideal J (non repeated). Integer factors are ignored, |
---|
521 | // even 0 is ignored. It can be called from ideal @R, but |
---|
522 | // the given ideal J must only contain poynomials in the |
---|
523 | // parameters. |
---|
524 | //NOTE: Operates in the ring @P, and the ideal J must contain only |
---|
525 | // polynomials in the parameters, but can be called from ring @R. |
---|
526 | //KEYWORDS: factor |
---|
527 | //EXAMPLE: facvar; shows an example" |
---|
528 | { |
---|
529 | int i; |
---|
530 | def RR=basering; |
---|
531 | setring(@P); |
---|
532 | def Ja=imap(RR,J); |
---|
533 | if(size(Ja)==0){setring(RR); return(ideal(0));} |
---|
534 | Ja=elimintfromideal(Ja); // also in ideal @P |
---|
535 | ideal Jb; |
---|
536 | if (size(Ja)==0){Jb=ideal(0);} |
---|
537 | else |
---|
538 | { |
---|
539 | for (i=1;i<=ncols(Ja);i++){if(size(Ja[i])!=0){Jb=Jb,factorize(Ja[i],1);}} |
---|
540 | Jb=simplify(Jb,2+4+8); |
---|
541 | Jb=cld(Jb); |
---|
542 | Jb=elimintfromideal(Jb); // also in ideal @P |
---|
543 | } |
---|
544 | setring(RR); |
---|
545 | def Jc=imap(@P,Jb); |
---|
546 | return(Jc); |
---|
547 | } |
---|
548 | //example |
---|
549 | //{ "EXAMPLE:"; echo = 2; |
---|
550 | // ring R=(0,a,b,c),(x,y,z),dp; |
---|
551 | // setglobalrings(); |
---|
552 | // ideal J=a2-b2,a2-2ab+b2,abc-bc; |
---|
553 | // facvar(J); |
---|
554 | //} |
---|
555 | |
---|
556 | // Ered: eliminates the factors in the polynom f that are non-null. |
---|
557 | // In ring @R |
---|
558 | // input: |
---|
559 | // poly f: |
---|
560 | // ideal E of null-conditions |
---|
561 | // ideal N of non-null conditions |
---|
562 | // (E,N) represents V(E)\V(N), |
---|
563 | // Ered eliminates the non-null factors of f in V(E)\V(N) |
---|
564 | // output: |
---|
565 | // poly f2 where the non-null conditions have been dropped from f |
---|
566 | proc Ered(poly f,ideal E, ideal N) |
---|
567 | { |
---|
568 | def RR=basering; |
---|
569 | setring(@R); |
---|
570 | poly ff=imap(RR,f); |
---|
571 | ideal EE=imap(RR,E); |
---|
572 | ideal NN=imap(RR,N); |
---|
573 | if((ff==0) or (equalideals(NN,ideal(1)))){setring(RR); return(f);} |
---|
574 | def v=variables(ff); |
---|
575 | int i; |
---|
576 | poly X=1; |
---|
577 | for(i=1;i<=size(v);i++){X=X*v[i];} |
---|
578 | matrix M=coef(ff,X); |
---|
579 | setring(@P); |
---|
580 | def RPE=imap(@R,EE); |
---|
581 | def RPN=imap(@R,NN); |
---|
582 | matrix Mp=imap(@R,M); |
---|
583 | poly g=Mp[2,1]; |
---|
584 | if (size(Mp)!=2) |
---|
585 | { |
---|
586 | for(i=2;i<=size(Mp) div 2;i++) |
---|
587 | { |
---|
588 | g=gcd(g,Mp[2,i]); |
---|
589 | } |
---|
590 | } |
---|
591 | if (g==1){setring(RR); return(f);} |
---|
592 | else |
---|
593 | { |
---|
594 | def wg=factorize(g,2); |
---|
595 | if (wg[1][1]==1){setring(RR); return(f);} |
---|
596 | else |
---|
597 | { |
---|
598 | poly simp=1; |
---|
599 | int te; |
---|
600 | for(i=1;i<=size(wg[1]);i++) |
---|
601 | { |
---|
602 | te=inconsistent(RPE+wg[1][i],RPN); |
---|
603 | if(te) |
---|
604 | { |
---|
605 | simp=simp*(wg[1][i])^(wg[2][i]); |
---|
606 | } |
---|
607 | } |
---|
608 | } |
---|
609 | if (simp==1){setring(RR); return(f);} |
---|
610 | else |
---|
611 | { |
---|
612 | setring(RR); |
---|
613 | def simp0=imap(@P,simp); |
---|
614 | def f2=f/simp0; |
---|
615 | return(f2); |
---|
616 | } |
---|
617 | } |
---|
618 | } |
---|
619 | |
---|
620 | // pnormalf: reduces a polynomial f wrt a V(E)\V(N) |
---|
621 | // dividing by E and eliminating factors in N. |
---|
622 | // called in the ring @R, |
---|
623 | // operates in the ring @RP. |
---|
624 | // input: |
---|
625 | // poly f |
---|
626 | // ideal E (depends only on the parameters) |
---|
627 | // ideal N (depends only on the parameters) |
---|
628 | // (E,N) represents V(E)\V(N) |
---|
629 | // optional: |
---|
630 | // output: poly f2 reduced wrt to V(E)\V(N) |
---|
631 | proc pnormalf(poly f, ideal E, ideal N) |
---|
632 | "USAGE: pnormalf(f,E,N); |
---|
633 | f: the polynomial to be reduced modulo V(E)\V(N) |
---|
634 | of a segment in the parameters. |
---|
635 | E: the null conditions ideal |
---|
636 | N: the non-null conditions |
---|
637 | RETURN: a reduced polynomial g of f, whose coefficients are reduced |
---|
638 | modulo E and having no factor in N. |
---|
639 | NOTE: Should be called from ring Q[a][x]. |
---|
640 | Ideals E and N must be given by polynomials |
---|
641 | in the parameters. |
---|
642 | KEYWORDS: division, pdivi, reduce |
---|
643 | EXAMPLE: pnormalf; shows an example" |
---|
644 | { |
---|
645 | def RR=basering; |
---|
646 | int te=0; |
---|
647 | if (defined(@P)){te=1;} |
---|
648 | else{setglobalrings();} |
---|
649 | setring(@RP); |
---|
650 | def fa=imap(RR,f); |
---|
651 | def Ea=imap(RR,E); |
---|
652 | def Na=imap(RR,N); |
---|
653 | option(redSB); |
---|
654 | Ea=std(Ea); |
---|
655 | def r=cld(reduce(fa,Ea)); |
---|
656 | poly f1=r[1]; |
---|
657 | f1=Ered(r[1],Ea,Na); |
---|
658 | setring(RR); |
---|
659 | def f2=imap(@RP,f1); |
---|
660 | if(te==0){kill @R; kill @RP; kill @P;} |
---|
661 | return(f2) |
---|
662 | }; |
---|
663 | example |
---|
664 | { "EXAMPLE:"; echo = 2; |
---|
665 | ring R=(0,a,b,c),(x,y),dp; |
---|
666 | poly f=(b^2-1)*x^3*y+(c^2-1)*x*y^2+(c^2*b-b)*x+(a-bc)*y; |
---|
667 | ideal E=(c-1); |
---|
668 | ideal N=a-b; |
---|
669 | pnormalf(f,E,N); |
---|
670 | } |
---|
671 | |
---|
672 | // idint: ideal intersection |
---|
673 | // in the ring @P. |
---|
674 | // it works in an extended ring |
---|
675 | // input: two ideals in the ring @P |
---|
676 | // output the intersection of both (is not a GB) |
---|
677 | proc idint(ideal I, ideal J) |
---|
678 | { |
---|
679 | def RR=basering; |
---|
680 | ring T=0,t,lp; |
---|
681 | def K=T+RR; |
---|
682 | setring(K); |
---|
683 | def Ia=imap(RR,I); |
---|
684 | def Ja=imap(RR,J); |
---|
685 | ideal IJ; |
---|
686 | int i; |
---|
687 | for(i=1;i<=size(Ia);i++){IJ[i]=t*Ia[i];} |
---|
688 | for(i=1;i<=size(Ja);i++){IJ[size(Ia)+i]=(1-t)*Ja[i];} |
---|
689 | ideal eIJ=eliminate(IJ,t); |
---|
690 | setring(RR); |
---|
691 | return(imap(K,eIJ)); |
---|
692 | } |
---|
693 | |
---|
694 | // lesspol: compare two polynomials by its leading power products |
---|
695 | // input: two polynomials f,g in the ring @R |
---|
696 | // output: 0 if f<g, 1 if f>=g |
---|
697 | proc lesspol(poly f, poly g) |
---|
698 | { |
---|
699 | if (leadmonom(f)<leadmonom(g)){return(1);} |
---|
700 | else |
---|
701 | { |
---|
702 | if (leadmonom(g)<leadmonom(f)){return(0);} |
---|
703 | else |
---|
704 | { |
---|
705 | if (leadcoef(f)<leadcoef(g)){return(1);} |
---|
706 | else {return(0);} |
---|
707 | } |
---|
708 | } |
---|
709 | }; |
---|
710 | |
---|
711 | // delfromideal: deletes the i-th polynomial from the ideal F |
---|
712 | proc delfromideal(ideal F, int i) |
---|
713 | { |
---|
714 | int j; |
---|
715 | ideal G; |
---|
716 | if (size(F)<i){ERROR("delfromideal was called incorrect arguments");} |
---|
717 | if (size(F)<=1){return(ideal(0));} |
---|
718 | if (i==0){return(F)}; |
---|
719 | for (j=1;j<=size(F);j++) |
---|
720 | { |
---|
721 | if (j!=i){G[size(G)+1]=F[j];} |
---|
722 | } |
---|
723 | return(G); |
---|
724 | } |
---|
725 | |
---|
726 | // delidfromid: deletes the polynomials in J that are in I |
---|
727 | // input: ideals I,J |
---|
728 | // output: the ideal J without the polynomials in I |
---|
729 | proc delidfromid(ideal I, ideal J) |
---|
730 | { |
---|
731 | int i; list r; |
---|
732 | ideal JJ=J; |
---|
733 | for (i=1;i<=size(I);i++) |
---|
734 | { |
---|
735 | r=memberpos(I[i],JJ); |
---|
736 | if (r[1]) |
---|
737 | { |
---|
738 | JJ=delfromideal(JJ,r[2]); |
---|
739 | } |
---|
740 | } |
---|
741 | return(JJ); |
---|
742 | } |
---|
743 | |
---|
744 | // sortideal: sorts the polynomials in an ideal by lm in ascending order |
---|
745 | proc sortideal(ideal Fi) |
---|
746 | { |
---|
747 | def RR=basering; |
---|
748 | setring(@RP); |
---|
749 | def F=imap(RR,Fi); |
---|
750 | def H=F; |
---|
751 | ideal G; |
---|
752 | int i; |
---|
753 | int j; |
---|
754 | poly p; |
---|
755 | while (size(H)!=0) |
---|
756 | { |
---|
757 | j=1; |
---|
758 | p=H[1]; |
---|
759 | for (i=1;i<=size(H);i++) |
---|
760 | { |
---|
761 | if(lesspol(H[i],p)){j=i;p=H[j];} |
---|
762 | } |
---|
763 | G[size(G)+1]=p; |
---|
764 | H=delfromideal(H,j); |
---|
765 | } |
---|
766 | setring(RR); |
---|
767 | def GG=imap(@RP,G); |
---|
768 | return(GG); |
---|
769 | } |
---|
770 | |
---|
771 | // mingb: given a basis (gb reducing) it |
---|
772 | // order the polynomials is ascending order and |
---|
773 | // eliminates the polynomials whose lpp are divisible by some |
---|
774 | // smaller one |
---|
775 | proc mingb(ideal F) |
---|
776 | { |
---|
777 | int t; int i; int j; |
---|
778 | def H=sortideal(F); |
---|
779 | ideal G; |
---|
780 | if (ncols(H)<=1){return(H);} |
---|
781 | G=H[1]; |
---|
782 | for (i=2; i<=ncols(H); i++) |
---|
783 | { |
---|
784 | t=1; |
---|
785 | j=1; |
---|
786 | while (t and (j<i)) |
---|
787 | { |
---|
788 | if((leadmonom(H[i])/leadmonom(H[j]))!=0) {t=0;} |
---|
789 | j++; |
---|
790 | } |
---|
791 | if (t) {G[size(G)+1]=H[i];} |
---|
792 | } |
---|
793 | return(G); |
---|
794 | } |
---|
795 | |
---|
796 | // redgbn: given a minimal basis (gb reducing) it |
---|
797 | // reduces each polynomial wrt to V(E) \ V(N) |
---|
798 | proc redgbn(ideal F, ideal E, ideal N) |
---|
799 | { |
---|
800 | int te=0; |
---|
801 | if (defined(@P)==1){te=1;} |
---|
802 | ideal G=F; |
---|
803 | ideal H; |
---|
804 | int i; |
---|
805 | if (size(G)==0){return(ideal(0));} |
---|
806 | for (i=1;i<=size(G);i++) |
---|
807 | { |
---|
808 | H=delfromideal(G,i); |
---|
809 | G[i]=pnormalf(pdivi(G[i],H)[1],E,N); |
---|
810 | G[i]=primepartZ(G[i]); |
---|
811 | } |
---|
812 | if(te==1){setglobalrings();} |
---|
813 | return(G); |
---|
814 | }; |
---|
815 | |
---|
816 | // eliminates repeated elements form an ideal |
---|
817 | proc elimrepeated(ideal F) |
---|
818 | { |
---|
819 | int i; |
---|
820 | ideal FF; |
---|
821 | FF[1]=F[1]; |
---|
822 | for (i=2;i<=ncols(F);i++) |
---|
823 | { |
---|
824 | if (not(memberpos(F[i],FF)[1])) |
---|
825 | { |
---|
826 | FF[size(FF)+1]=F[i]; |
---|
827 | } |
---|
828 | } |
---|
829 | return(FF); |
---|
830 | } |
---|
831 | |
---|
832 | // equalideals |
---|
833 | // input: 2 ideals F and G; |
---|
834 | // output: 1 if they are identical (the same polynomials in the same order) |
---|
835 | // 0 else |
---|
836 | proc equalideals(ideal F, ideal G) |
---|
837 | { |
---|
838 | int i=1; int t=1; |
---|
839 | if (size(F)!=size(G)){return(0);} |
---|
840 | while ((i<=size(F)) and (t)) |
---|
841 | { |
---|
842 | if (F[i]!=G[i]){t=0;} |
---|
843 | i++; |
---|
844 | } |
---|
845 | return(t); |
---|
846 | } |
---|
847 | |
---|
848 | // delintvec |
---|
849 | // input: intvec V |
---|
850 | // int i |
---|
851 | // output: |
---|
852 | // intvec W (equal to V but the coordinate i is deleted |
---|
853 | proc delintvec(intvec V, int i) |
---|
854 | { |
---|
855 | int j; |
---|
856 | intvec W; |
---|
857 | for (j=1;j<i;j++){W[j]=V[j];} |
---|
858 | for (j=i+1;j<=size(V);j++){W[j-1]=V[j];} |
---|
859 | return(W); |
---|
860 | } |
---|
861 | |
---|
862 | //**************Begin homogenizing************************ |
---|
863 | |
---|
864 | // ishomog: |
---|
865 | // Purpose: test if a polynomial is homogeneous in the variables or not |
---|
866 | // input: poly f |
---|
867 | // output 1 if f is homogeneous, 0 if not |
---|
868 | proc ishomog(f) |
---|
869 | { |
---|
870 | int i; poly r; int d; int dr; |
---|
871 | if (f==0){return(1);} |
---|
872 | d=deg(f); dr=d; r=f; |
---|
873 | while ((d==dr) and (r!=0)) |
---|
874 | { |
---|
875 | r=r-lead(r); |
---|
876 | dr=deg(r); |
---|
877 | } |
---|
878 | if (r==0){return(1);} |
---|
879 | else{return(0);} |
---|
880 | } |
---|
881 | |
---|
882 | // postredgb: given a minimal basis (gb reducing) it |
---|
883 | // reduces each polynomial wrt to the others |
---|
884 | proc postredgb(ideal F) |
---|
885 | { |
---|
886 | int te=0; |
---|
887 | if(defined(@P)==1){te=1;} |
---|
888 | ideal G; |
---|
889 | ideal H; |
---|
890 | int i; |
---|
891 | if (size(F)==0){return(ideal(0));} |
---|
892 | for (i=1;i<=size(F);i++) |
---|
893 | { |
---|
894 | H=delfromideal(F,i); |
---|
895 | G[i]=pdivi(F[i],H)[1]; |
---|
896 | } |
---|
897 | if(te==1){setglobalrings();} |
---|
898 | return(G); |
---|
899 | } |
---|
900 | |
---|
901 | //purpose ideal intersection called in @R and computed in @P |
---|
902 | proc idintR(ideal N, ideal M) |
---|
903 | { |
---|
904 | def RR=basering; |
---|
905 | setring(@P); |
---|
906 | def Np=imap(RR,N); |
---|
907 | def Mp=imap(RR,M); |
---|
908 | def Jp=idint(Np,Mp); |
---|
909 | setring(RR); |
---|
910 | return(imap(@P,Jp)); |
---|
911 | } |
---|
912 | |
---|
913 | //purpose reduced Groebner basis called in @R and computed in @P |
---|
914 | proc gbR(ideal N) |
---|
915 | { |
---|
916 | def RR=basering; |
---|
917 | setring(@P); |
---|
918 | def Np=imap(RR,N); |
---|
919 | option(redSB); |
---|
920 | Np=std(Np); |
---|
921 | setring(RR); |
---|
922 | return(imap(@P,Np)); |
---|
923 | } |
---|
924 | |
---|
925 | //**************End homogenizing************************ |
---|
926 | |
---|
927 | //**************Begin of Groebner Cover***************** |
---|
928 | |
---|
929 | // incquotient |
---|
930 | // incremental quotient |
---|
931 | // Input: ideal N: a Groebner basis of an ideal |
---|
932 | // poly f: |
---|
933 | // Output: Na = N:<f> |
---|
934 | proc incquotient(ideal N, poly f) |
---|
935 | { |
---|
936 | poly g; int i; |
---|
937 | ideal Nb; ideal Na=N; |
---|
938 | |
---|
939 | // begins incquotient |
---|
940 | if (size(Na)==1) |
---|
941 | { |
---|
942 | g=gcd(Na[1],f); |
---|
943 | if (g!=1) |
---|
944 | { |
---|
945 | Na[1]=Na[1]/g; |
---|
946 | } |
---|
947 | attrib(Na,"IsSB",1); |
---|
948 | return(Na); |
---|
949 | } |
---|
950 | def P=basering; |
---|
951 | poly @t; |
---|
952 | ring H=0,@t,lp; |
---|
953 | def HP=H+P; |
---|
954 | setring(HP); |
---|
955 | def fh=imap(P,f); |
---|
956 | def Nh=imap(P,N); |
---|
957 | ideal Nht; |
---|
958 | for (i=1;i<=size(Nh);i++) |
---|
959 | { |
---|
960 | Nht[i]=Nh[i]*@t; |
---|
961 | } |
---|
962 | attrib(Nht,"isSB",1); |
---|
963 | def fht=(1-@t)*fh; |
---|
964 | option(redSB); |
---|
965 | Nht=std(Nht,fht); |
---|
966 | ideal Nc; ideal v; |
---|
967 | for (i=1;i<=size(Nht);i++) |
---|
968 | { |
---|
969 | v=variables(Nht[i]); |
---|
970 | if(memberpos(@t,v)[1]==0) |
---|
971 | { |
---|
972 | Nc[size(Nc)+1]=Nht[i]/fh; |
---|
973 | } |
---|
974 | } |
---|
975 | setring(P); |
---|
976 | ideal HH; |
---|
977 | def Nd=imap(HP,Nc); Nb=Nd; |
---|
978 | option(redSB); |
---|
979 | Nb=std(Nd); |
---|
980 | return(Nb); |
---|
981 | } |
---|
982 | |
---|
983 | // eliminates the ith element from a list |
---|
984 | proc elimfromlist(list l, int i) |
---|
985 | { |
---|
986 | list L; int j; |
---|
987 | for(j=1;j<=i-1;j++) |
---|
988 | {L[j]=l[j];} |
---|
989 | for(j=i+1;j<=size(l);j++) |
---|
990 | {L[j-1]=l[j];} |
---|
991 | return(L); |
---|
992 | } |
---|
993 | |
---|
994 | proc idbefid(ideal a, ideal b) |
---|
995 | { |
---|
996 | poly fa; poly fb; poly la; poly lb; |
---|
997 | int te=1; int i; int j; |
---|
998 | int na=size(a); |
---|
999 | int nb=size(b); |
---|
1000 | int nm; |
---|
1001 | if (na<=nb){nm=na;} else{nm=nb;} |
---|
1002 | for (i=1;i<=nm; i++) |
---|
1003 | { |
---|
1004 | fa=a[i]; fb=b[i]; |
---|
1005 | while((fa!=0) or (fb!=0)) |
---|
1006 | { |
---|
1007 | la=lead(fa); |
---|
1008 | lb=lead(fb); |
---|
1009 | fa=fa-la; |
---|
1010 | fb=fb-lb; |
---|
1011 | la=leadmonom(la); |
---|
1012 | lb=leadmonom(lb); |
---|
1013 | if(leadmonom(la+lb)!=la){return(1);} |
---|
1014 | else{if(leadmonom(la+lb)!=lb){return(2);}} |
---|
1015 | } |
---|
1016 | } |
---|
1017 | if(na<nb){return(1);} |
---|
1018 | else |
---|
1019 | { |
---|
1020 | if(na>nb){return(2);} |
---|
1021 | else{return(0);} |
---|
1022 | } |
---|
1023 | } |
---|
1024 | |
---|
1025 | proc sortlistideals(list L) |
---|
1026 | { |
---|
1027 | int i; int j; int n; |
---|
1028 | ideal a; ideal b; |
---|
1029 | list LL=L; |
---|
1030 | list NL; |
---|
1031 | int k; int te; |
---|
1032 | i=1; |
---|
1033 | while(size(LL)>0) |
---|
1034 | { |
---|
1035 | k=1; |
---|
1036 | for(j=2;j<=size(LL);j++) |
---|
1037 | { |
---|
1038 | te=idbefid(LL[k],LL[j]); |
---|
1039 | if (te==2){k=j;} |
---|
1040 | } |
---|
1041 | NL[size(NL)+1]=LL[k]; |
---|
1042 | n=size(LL); |
---|
1043 | if (n>1){LL=elimfromlist(LL,k);} else{LL=list();} |
---|
1044 | } |
---|
1045 | return(NL); |
---|
1046 | } |
---|
1047 | |
---|
1048 | // returns 1 if the two lists of ideals are equal and 0 if not |
---|
1049 | proc equallistideals(list L, list M) |
---|
1050 | { |
---|
1051 | int t; int i; |
---|
1052 | if (size(L)!=size(M)){return(0);} |
---|
1053 | else |
---|
1054 | { |
---|
1055 | t=1; |
---|
1056 | if (size(L)>0) |
---|
1057 | { |
---|
1058 | i=1; |
---|
1059 | while ((t) and (i<=size(L))) |
---|
1060 | { |
---|
1061 | if (equalideals(L[i],M[i])==0){t=0;} |
---|
1062 | i++; |
---|
1063 | } |
---|
1064 | } |
---|
1065 | return(t); |
---|
1066 | } |
---|
1067 | } |
---|
1068 | |
---|
1069 | // Prep |
---|
1070 | // Computes the P-representation of V(N) \ V(M). |
---|
1071 | // input: |
---|
1072 | // ideal N (null ideal) (not necessarily radical nor maximal) |
---|
1073 | // ideal M (hole ideal) (not necessarily containing N) |
---|
1074 | // output: |
---|
1075 | // the ((p_1,(p_11,p_1k_1)),..,(p_r,(p_r1,p_rk_r))); |
---|
1076 | // the Prep of V(N)\V(M) |
---|
1077 | // Assumed to work in the ring @P of the parameters |
---|
1078 | proc Prep(ideal N, ideal M) |
---|
1079 | { |
---|
1080 | if (N[1]==1) |
---|
1081 | { |
---|
1082 | return(list(list(ideal(1),list(ideal(1))))); |
---|
1083 | } |
---|
1084 | def RR=basering; |
---|
1085 | setring(@P); |
---|
1086 | ideal Np=imap(RR,N); |
---|
1087 | ideal Mp=imap(RR,M); |
---|
1088 | int i; int j; list L0; |
---|
1089 | |
---|
1090 | list Ni=minGTZ(Np); |
---|
1091 | list prep; |
---|
1092 | for(j=1;j<=size(Ni);j++) |
---|
1093 | { |
---|
1094 | option(redSB); |
---|
1095 | Ni[j]=std(Ni[j]); |
---|
1096 | } |
---|
1097 | list Mij; |
---|
1098 | for (i=1;i<=size(Ni);i++) |
---|
1099 | { |
---|
1100 | Mij=minGTZ(Ni[i]+Mp); |
---|
1101 | for(j=1;j<=size(Mij);j++) |
---|
1102 | { |
---|
1103 | option(redSB); |
---|
1104 | Mij[j]=std(Mij[j]); |
---|
1105 | } |
---|
1106 | if ((size(Mij)==1) and (equalideals(Ni[i],Mij[1])==1)){;} |
---|
1107 | else |
---|
1108 | { |
---|
1109 | prep[size(prep)+1]=list(Ni[i],Mij); |
---|
1110 | } |
---|
1111 | } |
---|
1112 | if (size(prep)==0){prep=list(list(ideal(1),list(ideal(1))));} |
---|
1113 | setring(RR); |
---|
1114 | return(imap(@P,prep)); |
---|
1115 | } |
---|
1116 | |
---|
1117 | // PtoCrep |
---|
1118 | // Computes the C-representation from the P-representation. |
---|
1119 | // input: |
---|
1120 | // list ((p_1,(p_11,p_1k_1)),..,(p_r,(p_r1,p_rk_r))); |
---|
1121 | // the P-representation of V(N)\V(M) |
---|
1122 | // output: |
---|
1123 | // list (ideal ida, ideal idb) |
---|
1124 | // the C-representaion of V(N)\V(M) = V(ida)\V(idb) |
---|
1125 | // Assumed to work in the ring @P of the parameters |
---|
1126 | proc PtoCrep(list L) |
---|
1127 | { |
---|
1128 | def RR=basering; |
---|
1129 | setring(@P); |
---|
1130 | def Lp=imap(RR,L); |
---|
1131 | int i; int j; |
---|
1132 | ideal ida=ideal(1); ideal idb=ideal(1); list Lb; ideal N; |
---|
1133 | for (i=1;i<=size(Lp);i++) |
---|
1134 | { |
---|
1135 | option(returnSB); |
---|
1136 | N=Lp[i][1]; |
---|
1137 | ida=intersect(ida,N); |
---|
1138 | Lb=Lp[i][2]; |
---|
1139 | for(j=1;j<=size(Lb);j++) |
---|
1140 | { |
---|
1141 | idb=intersect(idb,Lb[j]); |
---|
1142 | } |
---|
1143 | } |
---|
1144 | def La=list(ida,idb); |
---|
1145 | setring(RR); |
---|
1146 | return(imap(@P,La)); |
---|
1147 | } |
---|
1148 | |
---|
1149 | // input: F a parametric ideal in Q[a][x] |
---|
1150 | // output: a rComprehensive Groebner System disjoint and reduced. |
---|
1151 | // It uses Kapur-Sun-Wang algorithm, and with the options |
---|
1152 | // can compute the homogenization before (('can',0) or ( 'can',1)) |
---|
1153 | // and dehomogenize the result. |
---|
1154 | proc cgsdr(ideal F, list #) |
---|
1155 | "USAGE: cgsdr(F); To compute a disjoint, reduced CGS. |
---|
1156 | cgsdr is the starting point of the fundamental routine grobcov. |
---|
1157 | Inside grobcov it is used only with options 'can' set to 0,1 and |
---|
1158 | not with options ('can',2). |
---|
1159 | It is to be used if only a disjoint reduced CGS is required. |
---|
1160 | F: ideal in Q[a][x] (parameters and variables) to be discussed. |
---|
1161 | |
---|
1162 | Options: To modify the default options, pairs of arguments |
---|
1163 | -option name, value- of valid options must be added to the call. |
---|
1164 | |
---|
1165 | Options: |
---|
1166 | "can",0-1-2: The default value is "can",2. In this case no |
---|
1167 | homogenization is done. With option ("can",0) the given |
---|
1168 | basis is homogenized, and with option ("can",1) the |
---|
1169 | whole given ideal is homogenized before computing the |
---|
1170 | cgs and dehomogenized after. |
---|
1171 | with option ("can",0) the homogenized basis is used |
---|
1172 | with option ("can",1) the homogenized ideal is used |
---|
1173 | with option ("can",2) the given basis is used |
---|
1174 | "null",ideal E: The default is ('null',ideal(0)). |
---|
1175 | "nonnull",ideal N: The default (nonnull,ideal(1)). |
---|
1176 | When options 'null' and/or 'nonnull' are given, then |
---|
1177 | the parameter space is restricted to V(E)\V(N). |
---|
1178 | "comment",0-1: The default is ('comment',0). Setting ('comment',1) |
---|
1179 | will provide information about the development of the |
---|
1180 | computation. |
---|
1181 | "out",0-1: 1 (default) the output segments are given as |
---|
1182 | as difference of varieties. |
---|
1183 | 0: the output segments are given in P-representation |
---|
1184 | and the segments grouped by lpp |
---|
1185 | With options ("can",0) and ("can",1) the option ("out",1) |
---|
1186 | is set to ("out,0) because it is not compatible. |
---|
1187 | One can give none or whatever of these options. |
---|
1188 | With the default options ("can",2,"out",1), only the |
---|
1189 | Kapur-Sun-Wang algorithm is computed. This is very effectif |
---|
1190 | but is only the starting point for the grobcov computation. |
---|
1191 | When grobcov is computed, the call to cgsdr inside uses |
---|
1192 | specific options that are more expensive ("can",0-1,"out",0). |
---|
1193 | RETURN: Returns a list T describing a reduced and disjoint |
---|
1194 | Comprehensive Groebner System (CGS), |
---|
1195 | With option ("out",0) |
---|
1196 | the segments are grouped by |
---|
1197 | leading power products (lpp) of the reduced Groebner |
---|
1198 | basis and given in P-representation. |
---|
1199 | The returned list is of the form: |
---|
1200 | ( |
---|
1201 | (lpp, (num,basis,segment),...,(num,basis,segment),lpp), |
---|
1202 | ..,, |
---|
1203 | (lpp, (num,basis,segment),...,(num,basis,segment),lpp) |
---|
1204 | ) |
---|
1205 | The bases are the reduced Groebner bases (after normalization) |
---|
1206 | for each point of the corresponding segment. |
---|
1207 | |
---|
1208 | The third element of each lpp segment is the lpp of the |
---|
1209 | used ideal in the CGS as a string: |
---|
1210 | with option ("can",0) the homogenized basis is used |
---|
1211 | with option ("can",1) the homogenized ideal is used |
---|
1212 | with option ("can",2) the given basis is used |
---|
1213 | |
---|
1214 | With option ("out",1) (default) |
---|
1215 | only KSW is applied and segments are given as |
---|
1216 | difference of varieties and are not grouped |
---|
1217 | The returned list is of the form: |
---|
1218 | ( |
---|
1219 | (E,N,B),..(E,N,B) |
---|
1220 | ) |
---|
1221 | E is the null variety |
---|
1222 | N is the nonnull variety |
---|
1223 | segment = V(E)\V(N) |
---|
1224 | B is the reduced Groebner basis |
---|
1225 | |
---|
1226 | NOTE: The basering R, must be of the form Q[a][x], a=parameters, |
---|
1227 | x=variables, and should be defined previously, and the ideal |
---|
1228 | defined on R. |
---|
1229 | KEYWORDS: CGS, disjoint, reduced, Comprehensive Groebner System |
---|
1230 | EXAMPLE: cgsdr; shows an example" |
---|
1231 | { |
---|
1232 | def RR=basering; |
---|
1233 | setglobalrings(); |
---|
1234 | // INITIALIZING OPTIONS |
---|
1235 | int i; int j; |
---|
1236 | int can=2; |
---|
1237 | int out=1; |
---|
1238 | poly f; |
---|
1239 | ideal B; |
---|
1240 | def E=ideal(0); |
---|
1241 | def N=ideal(1); |
---|
1242 | int comment=0; |
---|
1243 | int start=timer; |
---|
1244 | list L=#; |
---|
1245 | for(i=1;i<=size(L) div 2;i++) |
---|
1246 | { |
---|
1247 | if(L[2*i-1]=="null"){E=L[2*i];} |
---|
1248 | else |
---|
1249 | { |
---|
1250 | if(L[2*i-1]=="nonnull"){N=L[2*i];} |
---|
1251 | else |
---|
1252 | { |
---|
1253 | if(L[2*i-1]=="comment"){comment=L[2*i];} |
---|
1254 | else |
---|
1255 | { |
---|
1256 | if(L[2*i-1]=="can"){can=L[2*i];} |
---|
1257 | else |
---|
1258 | { |
---|
1259 | if(L[2*i-1]=="out"){out=L[2*i];} |
---|
1260 | } |
---|
1261 | } |
---|
1262 | } |
---|
1263 | } |
---|
1264 | } |
---|
1265 | //if(can==2){out=1;} |
---|
1266 | B=F; |
---|
1267 | if ((printlevel) and (comment==0)){comment=printlevel;} |
---|
1268 | if((can<2) and (out>0)){"Option out,1 is not compatible with can,0,1"; out=0;} |
---|
1269 | // DEFINING OPTIONS |
---|
1270 | list LL; |
---|
1271 | LL[1]="can"; LL[2]=can; |
---|
1272 | LL[3]="comment"; LL[4]=comment; |
---|
1273 | LL[5]="out"; LL[6]=out; |
---|
1274 | LL[7]="null"; LL[8]=E; |
---|
1275 | LL[9]="nonnull"; LL[10]=N; |
---|
1276 | if(comment>=1) |
---|
1277 | { |
---|
1278 | "Begin cgsdr with options: "+string(LL); |
---|
1279 | } |
---|
1280 | int ish; |
---|
1281 | for (i=1;i<=size(B);i++){ish=ishomog(B[i]); if(ish==0){break;};} |
---|
1282 | if (ish) |
---|
1283 | { |
---|
1284 | if(comment>0){"The given system is homogneous";} |
---|
1285 | can=0; |
---|
1286 | } |
---|
1287 | // ACTING DEPENDING ON OPTIONS |
---|
1288 | if(can==2) |
---|
1289 | { |
---|
1290 | // WITHOUT HOMOHGENIZING |
---|
1291 | if(comment>0){"Option of cgsdr: do not homogenize";} |
---|
1292 | def GS=KSW(B,LL); |
---|
1293 | setglobalrings(); |
---|
1294 | } |
---|
1295 | else |
---|
1296 | { |
---|
1297 | if(can==1) |
---|
1298 | { |
---|
1299 | // COMPUTING THE HOMOGOENIZED IDEAL |
---|
1300 | if(comment>0){"Homogenizing the whole ideal: option can=1"; } |
---|
1301 | list RRL=ringlist(RR); |
---|
1302 | RRL[3][1][1]="dp"; |
---|
1303 | def Pa=ring(RRL[1]); |
---|
1304 | list Lx; |
---|
1305 | Lx[1]=0; |
---|
1306 | Lx[2]=RRL[2]+RRL[1][2]; |
---|
1307 | Lx[3]=RRL[1][3]; |
---|
1308 | Lx[4]=RRL[1][4]; |
---|
1309 | RRL[1]=0; |
---|
1310 | def D=ring(RRL); |
---|
1311 | def RP=D+Pa; |
---|
1312 | setring(RP); |
---|
1313 | def B1=imap(RR,B); |
---|
1314 | option(redSB); |
---|
1315 | B1=std(B1); |
---|
1316 | setring(RR); |
---|
1317 | def B2=imap(RP,B1); |
---|
1318 | } |
---|
1319 | else |
---|
1320 | { // (can=0) |
---|
1321 | if(comment>0){"Homogenizing the basis: option can=0";} |
---|
1322 | def B2=B; |
---|
1323 | } |
---|
1324 | // COMPUTING HOMOGENIZED CGS |
---|
1325 | poly @t; |
---|
1326 | ring H=0,@t,dp; |
---|
1327 | def RH=RR+H; |
---|
1328 | setring(RH); |
---|
1329 | setglobalrings(); |
---|
1330 | def BH=imap(RR,B2); |
---|
1331 | def LH=imap(RR,LL); |
---|
1332 | for (i=1;i<=size(BH);i++) |
---|
1333 | { |
---|
1334 | BH[i]=homog(BH[i],@t); |
---|
1335 | } |
---|
1336 | if (comment>=1){"Homogenized system = "; BH;} |
---|
1337 | def GSH=KSW(BH,LH); |
---|
1338 | setglobalrings(); |
---|
1339 | // DEHOMOGENIZING THE RESULT |
---|
1340 | if(out==0) |
---|
1341 | { |
---|
1342 | for (i=1;i<=size(GSH);i++) |
---|
1343 | { |
---|
1344 | GSH[i][1]=subst(GSH[i][1],@t,1); |
---|
1345 | for(j=1;j<=size(GSH[i][2]);j++) |
---|
1346 | { |
---|
1347 | GSH[i][2][j][2]=subst(GSH[i][2][j][2],@t,1); |
---|
1348 | } |
---|
1349 | } |
---|
1350 | } |
---|
1351 | else |
---|
1352 | { |
---|
1353 | for (i=1;i<=size(GSH);i++) |
---|
1354 | { |
---|
1355 | GSH[i][3]=subst(GSH[i][3],@t,1); |
---|
1356 | GSH[i][7]=subst(GSH[i][7],@t,1); |
---|
1357 | } |
---|
1358 | } |
---|
1359 | setring(RR); |
---|
1360 | def GS=imap(RH,GSH); |
---|
1361 | setglobalrings(); |
---|
1362 | if(out==0) |
---|
1363 | { |
---|
1364 | for (i=1;i<=size(GS);i++) |
---|
1365 | { |
---|
1366 | GS[i][1]=postredgb(mingb(GS[i][1])); |
---|
1367 | for(j=1;j<=size(GS[i][2]);j++) |
---|
1368 | { |
---|
1369 | GS[i][2][j][2]=postredgb(mingb(GS[i][2][j][2])); |
---|
1370 | } |
---|
1371 | } |
---|
1372 | } |
---|
1373 | else |
---|
1374 | { |
---|
1375 | for (i=1;i<=size(GS);i++) |
---|
1376 | { |
---|
1377 | if(GS[i][2]==1) |
---|
1378 | { |
---|
1379 | GS[i][3]=postredgb(mingb(GS[i][3])); |
---|
1380 | GS[i][7]=postredgb(mingb(GS[i][7])); |
---|
1381 | } |
---|
1382 | } |
---|
1383 | } |
---|
1384 | } |
---|
1385 | if(defined(@P)){kill @P; kill @R; kill @RP;} |
---|
1386 | return(GS); |
---|
1387 | } |
---|
1388 | example |
---|
1389 | { "EXAMPLE:"; echo = 2; |
---|
1390 | "Casas conjecture for degree 4"; |
---|
1391 | ring R=(0,a0,a1,a2,a3,a4),(x1,x2,x3),dp; |
---|
1392 | ideal F=x1^4+(4*a3)*x1^3+(6*a2)*x1^2+(4*a1)*x1+(a0), |
---|
1393 | x1^3+(3*a3)*x1^2+(3*a2)*x1+(a1), |
---|
1394 | x2^4+(4*a3)*x2^3+(6*a2)*x2^2+(4*a1)*x2+(a0), |
---|
1395 | x2^2+(2*a3)*x2+(a2), |
---|
1396 | x3^4+(4*a3)*x3^3+(6*a2)*x3^2+(4*a1)*x3+(a0), |
---|
1397 | x3+(a3); |
---|
1398 | cgsdr(F); |
---|
1399 | } |
---|
1400 | |
---|
1401 | // input: internal routine called by cgsdr at the end to group the |
---|
1402 | // lpp segments and improve the output |
---|
1403 | // output: grouped segments by lpp obtained in cgsdr |
---|
1404 | proc grsegments(list T) |
---|
1405 | { |
---|
1406 | int i; |
---|
1407 | list L; |
---|
1408 | list lpp; |
---|
1409 | list lp; |
---|
1410 | list ls; |
---|
1411 | int n=size(T); |
---|
1412 | lpp[1]=T[n][1]; |
---|
1413 | L[1]=list(lpp[1],list(list(T[n][2],T[n][3],T[n][4]))); |
---|
1414 | if (n>1) |
---|
1415 | { |
---|
1416 | for (i=1;i<=size(T)-1;i++) |
---|
1417 | { |
---|
1418 | lp=memberpos(T[n-i][1],lpp); |
---|
1419 | if(lp[1]==1) |
---|
1420 | { |
---|
1421 | ls=L[lp[2]][2]; |
---|
1422 | ls[size(ls)+1]=list(T[n-i][2],T[n-i][3],T[n-i][4]); |
---|
1423 | L[lp[2]][2]=ls; |
---|
1424 | } |
---|
1425 | else |
---|
1426 | { |
---|
1427 | lpp[size(lpp)+1]=T[n-i][1]; |
---|
1428 | L[size(L)+1]=list(T[n-i][1],list(list(T[n-i][2],T[n-i][3],T[n-i][4]))); |
---|
1429 | } |
---|
1430 | } |
---|
1431 | } |
---|
1432 | return(L); |
---|
1433 | } |
---|
1434 | |
---|
1435 | // idcontains |
---|
1436 | // input: ideal p, ideal q |
---|
1437 | // output: 1 if p contains q, 0 otherwise |
---|
1438 | proc idcontains(ideal p, ideal q) |
---|
1439 | { |
---|
1440 | int t; int i; |
---|
1441 | t=1; i=1; |
---|
1442 | def RR=basering; |
---|
1443 | setring(@P); |
---|
1444 | def P=imap(RR,p); |
---|
1445 | def Q=imap(RR,q); |
---|
1446 | attrib(P,"isSB",1); |
---|
1447 | poly r; |
---|
1448 | while ((t) and (i<=size(Q))) |
---|
1449 | { |
---|
1450 | r=reduce(Q[i],P); |
---|
1451 | if (r!=0){t=0;} |
---|
1452 | i++; |
---|
1453 | } |
---|
1454 | setring(RR); |
---|
1455 | return(t); |
---|
1456 | } |
---|
1457 | |
---|
1458 | // selectminindeals |
---|
1459 | // given a list of ideals returns the list of integers corresponding |
---|
1460 | // to the minimal ideals in the list |
---|
1461 | // input: L (list of ideals) |
---|
1462 | // output: the list of integers corresponding to the minimal ideals in L |
---|
1463 | proc selectminideals(list L) |
---|
1464 | { |
---|
1465 | if (size(L)==0){return(L)}; |
---|
1466 | def RR=basering; |
---|
1467 | setring(@P); |
---|
1468 | def Lp=imap(RR,L); |
---|
1469 | int i; int j; int t; intvec notsel; |
---|
1470 | list P; |
---|
1471 | for (i=1;i<=size(Lp);i++) |
---|
1472 | { |
---|
1473 | if(memberpos(i,notsel)[1]) |
---|
1474 | { |
---|
1475 | i++; |
---|
1476 | if(i>size(Lp)){break;} |
---|
1477 | } |
---|
1478 | t=1; |
---|
1479 | j=1; |
---|
1480 | while ((t) and (j<=size(Lp))) |
---|
1481 | { |
---|
1482 | if (i==j){j++;} |
---|
1483 | if ((j<=size(Lp)) and (memberpos(j,notsel)[1]==0)) |
---|
1484 | { |
---|
1485 | |
---|
1486 | if (idcontains(Lp[i],Lp[j])) |
---|
1487 | { |
---|
1488 | notsel[size(notsel)+1]=i; |
---|
1489 | t=0; |
---|
1490 | } |
---|
1491 | } |
---|
1492 | j++; |
---|
1493 | } |
---|
1494 | if (t){P[size(P)+1]=i;} |
---|
1495 | } |
---|
1496 | setring(RR); |
---|
1497 | return(P); |
---|
1498 | } |
---|
1499 | |
---|
1500 | // LCUnion |
---|
1501 | // Given a list of the P-representations of locally closed segments |
---|
1502 | // for which we know that the union is also locally closed |
---|
1503 | // it returns the P-representation of its union |
---|
1504 | // input: L list of segments in P-representation |
---|
1505 | // ((p_j^i,(p_j1^i,...,p_jk_j^i | j=1..t_i)) | i=1..s ) |
---|
1506 | // where i represents a segment |
---|
1507 | // output: P-representation of the union |
---|
1508 | // ((P_j,(P_j1,...,P_jk_j | j=1..t))) |
---|
1509 | proc LCUnion(list LL) |
---|
1510 | { |
---|
1511 | def RR=basering; |
---|
1512 | setring(@P); |
---|
1513 | def L=imap(RR,LL); |
---|
1514 | int i; int j; int k; list H; list C; list T; |
---|
1515 | list L0; list P0; list P; list Q0; list Q; |
---|
1516 | for (i=1;i<=size(L);i++) |
---|
1517 | { |
---|
1518 | for (j=1;j<=size(L[i]);j++) |
---|
1519 | { |
---|
1520 | P0[size(P0)+1]=L[i][j][1]; |
---|
1521 | L0[size(L0)+1]=intvec(i,j); |
---|
1522 | } |
---|
1523 | } |
---|
1524 | Q0=selectminideals(P0); |
---|
1525 | for (i=1;i<=size(Q0);i++) |
---|
1526 | { |
---|
1527 | Q[i]=L0[Q0[i]]; |
---|
1528 | P[i]=L[Q[i][1]][Q[i][2]]; |
---|
1529 | } |
---|
1530 | // P is the list of the maximal components of the union |
---|
1531 | // with the corresponding initial holes. |
---|
1532 | // Q is the list of intvec positions in L of the first element of the P's |
---|
1533 | // Its elements give (num of segment, num of max component (=min ideal)) |
---|
1534 | for (k=1;k<=size(Q);k++) |
---|
1535 | { |
---|
1536 | H=P[k][2]; // holes of P[k][1] |
---|
1537 | for (i=1;i<=size(L);i++) |
---|
1538 | { |
---|
1539 | if (i!=Q[k][1]) |
---|
1540 | { |
---|
1541 | for (j=1;j<=size(L[i]);j++) |
---|
1542 | { |
---|
1543 | C[size(C)+1]=L[i][j]; |
---|
1544 | } |
---|
1545 | } |
---|
1546 | } |
---|
1547 | T[size(T)+1]=list(Q[k],P[k][1],addpart(H,C)); |
---|
1548 | } |
---|
1549 | setring(RR); |
---|
1550 | def TT=imap(@P,T); |
---|
1551 | return(TT); |
---|
1552 | } |
---|
1553 | |
---|
1554 | // Called by LCUnion to modify the holes of a primepart of the union |
---|
1555 | // by the addition of the segments that do not correspond to that part |
---|
1556 | // Works on @P ring. |
---|
1557 | // Input: |
---|
1558 | // H=(p_i1,..,p_is) the holes of a component to be transformed by the addition of |
---|
1559 | // the segments C that do not correspond to that component |
---|
1560 | // C=((q_1,(q_11,..,q_1l_1)),..,(q_k,(q_k1,..,q_kl_k))) |
---|
1561 | // the list of segments to be added to the holes |
---|
1562 | proc addpart(list H, list C) |
---|
1563 | { |
---|
1564 | list Q; int i; int j; int k; int l; int t; int t1; |
---|
1565 | Q=H; intvec notQ; list QQ; list addq; |
---|
1566 | ideal q; |
---|
1567 | i=1; |
---|
1568 | while (i<=size(Q)) |
---|
1569 | { |
---|
1570 | if (memberpos(i,notQ)[1]==0) |
---|
1571 | { |
---|
1572 | q=Q[i]; |
---|
1573 | t=1; j=1; |
---|
1574 | while ((t) and (j<=size(C))) |
---|
1575 | { |
---|
1576 | if (equalideals(q,C[j][1])) |
---|
1577 | { |
---|
1578 | t=0; |
---|
1579 | for (k=1;k<=size(C[j][2]);k++) |
---|
1580 | { |
---|
1581 | t1=1; |
---|
1582 | //kill addq; |
---|
1583 | //list addq; |
---|
1584 | l=1; |
---|
1585 | while((t1) and (l<=size(Q))) |
---|
1586 | { |
---|
1587 | if ((l!=i) and (memberpos(l,notQ)[1]==0)) |
---|
1588 | { |
---|
1589 | if (idcontains(C[j][2][k],Q[l])) |
---|
1590 | { |
---|
1591 | t1=0; |
---|
1592 | } |
---|
1593 | } |
---|
1594 | l++; |
---|
1595 | } |
---|
1596 | if (t1) |
---|
1597 | { |
---|
1598 | addq[size(addq)+1]=C[j][2][k]; |
---|
1599 | } |
---|
1600 | } |
---|
1601 | if((size(notQ)==1) and (notQ[1]==0)){notQ[1]=i;} |
---|
1602 | else {notQ[size(notQ)+1]=i;} |
---|
1603 | } |
---|
1604 | j++; |
---|
1605 | } |
---|
1606 | if (size(addq)>0) |
---|
1607 | { |
---|
1608 | for (k=1;k<=size(addq);k++) |
---|
1609 | { |
---|
1610 | Q[size(Q)+1]=addq[k]; |
---|
1611 | } |
---|
1612 | kill addq; |
---|
1613 | list addq; |
---|
1614 | } |
---|
1615 | //print("Q="); Q; print("notQ="); notQ; |
---|
1616 | } |
---|
1617 | i++; |
---|
1618 | } |
---|
1619 | for (i=1;i<=size(Q);i++) |
---|
1620 | { |
---|
1621 | if(memberpos(i,notQ)[1]==0) |
---|
1622 | { |
---|
1623 | QQ[size(QQ)+1]=Q[i]; |
---|
1624 | } |
---|
1625 | } |
---|
1626 | if (size(QQ)==0){QQ[1]=ideal(1);} |
---|
1627 | return(addpartfine(QQ,C)); |
---|
1628 | } |
---|
1629 | |
---|
1630 | // Called by addpart to finish the modification of the holes of a primepart |
---|
1631 | // of the union by the addition of the segments that do not correspond to |
---|
1632 | // that part. |
---|
1633 | // Works on @P ring. |
---|
1634 | proc addpartfine(list H, list C0) |
---|
1635 | { |
---|
1636 | int i; int j; int k; int te; intvec notQ; int l; list sel; int used; |
---|
1637 | intvec jtesC; |
---|
1638 | if ((size(H)==1) and (equalideals(H[1],ideal(1)))){return(H);} |
---|
1639 | if (size(C0)==0){return(H);} |
---|
1640 | def RR=basering; |
---|
1641 | setring(@P); |
---|
1642 | list newQ; list nQ; list Q; list nQ1; list Q0; |
---|
1643 | def Q1=imap(RR,H); |
---|
1644 | //Q1=sortlistideals(Q1); |
---|
1645 | def C=imap(RR,C0); |
---|
1646 | while(equallistideals(Q0,Q1)==0) |
---|
1647 | { |
---|
1648 | Q0=Q1; |
---|
1649 | i=0; |
---|
1650 | Q=Q1; |
---|
1651 | kill notQ; intvec notQ; |
---|
1652 | while(i<size(Q)) |
---|
1653 | { |
---|
1654 | i++; |
---|
1655 | for(j=1;j<=size(C);j++) |
---|
1656 | { |
---|
1657 | te=idcontains(Q[i],C[j][1]); |
---|
1658 | if(te) |
---|
1659 | { |
---|
1660 | for(k=1;k<=size(C[j][2]);k++) |
---|
1661 | { |
---|
1662 | if(idcontains(Q[i],C[j][2][k])) |
---|
1663 | { |
---|
1664 | te=0; break; |
---|
1665 | } |
---|
1666 | } |
---|
1667 | if (te) |
---|
1668 | { |
---|
1669 | used++; |
---|
1670 | if ((size(notQ)==1) and (notQ[1]==0)){notQ[1]=i;} |
---|
1671 | else{notQ[size(notQ)+1]=i;} |
---|
1672 | kill newQ; list newQ; |
---|
1673 | for(k=1;k<=size(C[j][2]);k++) |
---|
1674 | { |
---|
1675 | nQ=minGTZ(Q[i]+C[j][2][k]); |
---|
1676 | for(l=1;l<=size(nQ);l++) |
---|
1677 | { |
---|
1678 | option(redSB); |
---|
1679 | nQ[l]=std(nQ[l]); |
---|
1680 | newQ[size(newQ)+1]=nQ[l]; |
---|
1681 | } |
---|
1682 | } |
---|
1683 | sel=selectminideals(newQ); |
---|
1684 | kill nQ1; list nQ1; |
---|
1685 | for(l=1;l<=size(sel);l++) |
---|
1686 | { |
---|
1687 | nQ1[l]=newQ[sel[l]]; |
---|
1688 | } |
---|
1689 | newQ=nQ1; |
---|
1690 | for(l=1;l<=size(newQ);l++) |
---|
1691 | { |
---|
1692 | Q[size(Q)+1]=newQ[l]; |
---|
1693 | } |
---|
1694 | break; |
---|
1695 | } |
---|
1696 | } |
---|
1697 | } |
---|
1698 | } |
---|
1699 | kill Q1; list Q1; |
---|
1700 | for(i=1;i<=size(Q);i++) |
---|
1701 | { |
---|
1702 | if(memberpos(i,notQ)[1]==0) |
---|
1703 | { |
---|
1704 | Q1[size(Q1)+1]=Q[i]; |
---|
1705 | } |
---|
1706 | } |
---|
1707 | sel=selectminideals(Q1); |
---|
1708 | kill nQ1; list nQ1; |
---|
1709 | for(l=1;l<=size(sel);l++) |
---|
1710 | { |
---|
1711 | nQ1[l]=Q1[sel[l]]; |
---|
1712 | } |
---|
1713 | Q1=nQ1; |
---|
1714 | } |
---|
1715 | setring(RR); |
---|
1716 | //if(used>0){"addpartfine was ", used, " times used";} |
---|
1717 | return(imap(@P,Q1)); |
---|
1718 | } |
---|
1719 | |
---|
1720 | // specswellCrep |
---|
1721 | // input: |
---|
1722 | // given two corresponding polynomials g1 and g2 with the same lpp |
---|
1723 | // g1 belonging to the basis in the segment ida1,idb1 |
---|
1724 | // g2 belonging to the basis in the segment ida2,idb2 |
---|
1725 | // output: |
---|
1726 | // 1 if g1 spezializes well to g2 on the whole (ida2,idb2) segment |
---|
1727 | // 0 if not |
---|
1728 | proc specswellCrep(poly g1, poly g2, ideal ida2) |
---|
1729 | { |
---|
1730 | poly S; |
---|
1731 | S=leadcoef(g2)*g1-leadcoef(g1)*g2; |
---|
1732 | def RR=basering; |
---|
1733 | setring(@RPt); |
---|
1734 | def SR=imap(RR,S); |
---|
1735 | def ida2R=imap(RR,ida2); |
---|
1736 | attrib(ida2R,"isSB",1); |
---|
1737 | poly S2R=reduce(SR,ida2R); |
---|
1738 | setring(RR); |
---|
1739 | def S2=imap(@RPt,S2R); |
---|
1740 | if (S2==0){return(1);} // and (nonnullCrep(leadcoef(g1),ida2,idb2)) |
---|
1741 | else {return(0);} |
---|
1742 | } |
---|
1743 | |
---|
1744 | // gcover |
---|
1745 | // input: ideal F: a generating set of a homogeneous ideal in Q[a][x] |
---|
1746 | // list #: optional |
---|
1747 | // output: the list |
---|
1748 | // S=((lpp, generic basis, Prep, Crep),..,(lpp, generic basis, Prep, Crep)) |
---|
1749 | // where a Prep is ( (p1,(p11,..,p1k_1)),..,(pj,(pj1,..,p1k_j)) ) |
---|
1750 | // a Crep is ( ida, idb ) |
---|
1751 | proc gcover(ideal F,list #) |
---|
1752 | { |
---|
1753 | int i; int j; int k; ideal lpp; list GPi2; list pairspP; ideal B; int ti; |
---|
1754 | int i1; int tes; int j1; int selind; int i2; int m; |
---|
1755 | list prep; list crep; list LCU; poly p; poly lcp; ideal FF; |
---|
1756 | list lpi; |
---|
1757 | string lpph; |
---|
1758 | list L=#; |
---|
1759 | int canop=1; |
---|
1760 | int extop=1; |
---|
1761 | int repop=0; |
---|
1762 | ideal E=ideal(0);; |
---|
1763 | ideal N=ideal(1);; |
---|
1764 | int comment; |
---|
1765 | for(i=1;i<=size(L) div 2;i++) |
---|
1766 | { |
---|
1767 | if(L[2*i-1]=="can"){canop=L[2*i];} |
---|
1768 | else |
---|
1769 | { |
---|
1770 | if(L[2*i-1]=="ext"){extop=L[2*i];} |
---|
1771 | else |
---|
1772 | { |
---|
1773 | if(L[2*i-1]=="rep"){repop=L[2*i];} |
---|
1774 | else |
---|
1775 | { |
---|
1776 | if(L[2*i-1]=="null"){E=L[2*i];} |
---|
1777 | else |
---|
1778 | { |
---|
1779 | if(L[2*i-1]=="nonnull"){N=L[2*i];} |
---|
1780 | else |
---|
1781 | { |
---|
1782 | if (L[2*i-1]=="comment"){comment=L[2*i];} |
---|
1783 | } |
---|
1784 | } |
---|
1785 | } |
---|
1786 | } |
---|
1787 | } |
---|
1788 | } |
---|
1789 | list GS; list GP; |
---|
1790 | def RR=basering; |
---|
1791 | GS=cgsdr(F,L); // "null",NW[1],"nonnull",NW[2],"cgs",CGS,"comment",comment); |
---|
1792 | setglobalrings(); |
---|
1793 | int start=timer; |
---|
1794 | GP=GS; |
---|
1795 | ideal lppr; |
---|
1796 | list LL; |
---|
1797 | list S; |
---|
1798 | poly sp; |
---|
1799 | ideal BB; |
---|
1800 | for (i=1;i<=size(GP);i++) |
---|
1801 | { |
---|
1802 | kill LL; |
---|
1803 | list LL; |
---|
1804 | lpp=GP[i][1]; |
---|
1805 | GPi2=GP[i][2]; |
---|
1806 | lpph=GP[i][3]; |
---|
1807 | kill pairspP; list pairspP; |
---|
1808 | for(j=1;j<=size(GPi2);j++) |
---|
1809 | { |
---|
1810 | pairspP[size(pairspP)+1]=GPi2[j][3]; |
---|
1811 | } |
---|
1812 | LCU=LCUnion(pairspP); |
---|
1813 | kill prep; list prep; |
---|
1814 | for(k=1;k<=size(LCU);k++) |
---|
1815 | { |
---|
1816 | prep[k]=list(LCU[k][2],LCU[k][3]); |
---|
1817 | B=GPi2[LCU[k][1][1]][2]; // ATENTION last 1 has been changed to [2] |
---|
1818 | LCU[k][1]=B; |
---|
1819 | } |
---|
1820 | //"Deciding if combine is needed"; |
---|
1821 | kill BB; |
---|
1822 | ideal BB; |
---|
1823 | tes=1; m=1; |
---|
1824 | while((tes) and (m<=size(LCU[1][1]))) |
---|
1825 | { |
---|
1826 | j=1; |
---|
1827 | while((tes) and (j<=size(LCU))) |
---|
1828 | { |
---|
1829 | k=1; |
---|
1830 | while((tes) and (k<=size(LCU))) |
---|
1831 | { |
---|
1832 | if(j!=k) |
---|
1833 | { |
---|
1834 | sp=pnormalf(pspol(LCU[j][1][m],LCU[k][1][m]),LCU[k][2],N); |
---|
1835 | if(sp!=0){tes=0;} |
---|
1836 | } |
---|
1837 | k++; |
---|
1838 | } //setglobalrings(); |
---|
1839 | if(tes) |
---|
1840 | { |
---|
1841 | BB[m]=LCU[j][1][m]; |
---|
1842 | } |
---|
1843 | j++; |
---|
1844 | } |
---|
1845 | if(tes==0){break;} |
---|
1846 | m++; |
---|
1847 | } //"T_BB="; BB; |
---|
1848 | crep=PtoCrep(prep); |
---|
1849 | if(tes==0) |
---|
1850 | { |
---|
1851 | // combine is needed |
---|
1852 | kill B; ideal B; |
---|
1853 | for (j=1;j<=size(LCU);j++) |
---|
1854 | { |
---|
1855 | LL[j]=LCU[j][2]; |
---|
1856 | } |
---|
1857 | if (size(LCU)>1) |
---|
1858 | { |
---|
1859 | FF=precombint(LL); |
---|
1860 | } |
---|
1861 | for (k=1;k<=size(lpp);k++) |
---|
1862 | { |
---|
1863 | kill L; list L; |
---|
1864 | for (j=1;j<=size(LCU);j++) |
---|
1865 | { |
---|
1866 | L[j]=list(LCU[j][2],LCU[j][1][k]); |
---|
1867 | } |
---|
1868 | if (size(LCU)>1) |
---|
1869 | { |
---|
1870 | B[k]=combine(L,FF); |
---|
1871 | } |
---|
1872 | else{B[k]=L[1][2];} |
---|
1873 | } |
---|
1874 | } |
---|
1875 | else{B=BB;} |
---|
1876 | for(j=1;j<=size(B);j++) |
---|
1877 | { |
---|
1878 | B[j]=pnormalf(B[j],crep[1],N); |
---|
1879 | } |
---|
1880 | S[i]=list(lpp,B,prep,crep,lpph); |
---|
1881 | if(comment>=1) |
---|
1882 | { |
---|
1883 | lpi[size(lpi)+1]=string("[",i,"]"); |
---|
1884 | lpi[size(lpi)+1]=S[i][1]; |
---|
1885 | } |
---|
1886 | } |
---|
1887 | if(comment>=1) |
---|
1888 | { |
---|
1889 | "Time in LCUnion + combine = ",timer-start; |
---|
1890 | if(comment>=2){"lpp=",lpi}; |
---|
1891 | } |
---|
1892 | if(defined(@P)==1){kill @P; kill @RP; kill @R;} |
---|
1893 | return(S); |
---|
1894 | } |
---|
1895 | |
---|
1896 | // grobcov |
---|
1897 | // input: |
---|
1898 | // ideal F: a parametric ideal in Q[a][x], where a are the parameters |
---|
1899 | // and x the variables |
---|
1900 | // list #: (options) list("null",N,"nonnull",W,"can",0-1,ext",0-1, "rep",0-1-2) |
---|
1901 | // where |
---|
1902 | // N is the null conditions ideal (if desired) |
---|
1903 | // W is the ideal of non-null conditions (if desired) |
---|
1904 | // The value of "can"is 1 by default and can be set to 0 if we do not |
---|
1905 | // need to obtain the canonical GC, but only a GC. |
---|
1906 | // The value of "ext" is 0 by default and so the generic representation |
---|
1907 | // of the bases is given. It can be set to 1, and then the full |
---|
1908 | // representation of the bases is given. |
---|
1909 | // The value of "rep" is 0 by default, and then the segments |
---|
1910 | // are given in canonical P-representation. It can be set to 1 |
---|
1911 | // and then they are given in canonical C-representation. |
---|
1912 | // If it is set to 2, then both representations are given. |
---|
1913 | // output: |
---|
1914 | // list S: ((lpp,basis,(idp_1,(idp_11,..,idp_1s_1))), .. |
---|
1915 | // (lpp,basis,(idp_r,(idp_r1,..,idp_rs_r))) ) where |
---|
1916 | // each element of S corresponds to a lpp-segment |
---|
1917 | // given by the lpp, the basis, and the P-representation of the segment |
---|
1918 | proc grobcov(ideal F,list #) |
---|
1919 | "USAGE: grobcov(F); This is the fundamental routine of the |
---|
1920 | library. It computes the Groebner cover of a parametric ideal |
---|
1921 | (see (*) Montes A., Wibmer M., Groebner Bases for Polynomial |
---|
1922 | Systems with parameters. JSC 45 (2010) 1391-1425.) |
---|
1923 | The Groebner cover of a parametric ideal consist of a set of |
---|
1924 | pairs(S_i,B_i), where the S_i are disjoint locally closed |
---|
1925 | segments of the parameter space, and the B_i are the reduced |
---|
1926 | Groebner bases of the ideal on every point of S_i. |
---|
1927 | |
---|
1928 | The ideal F must be defined on a parametric ring Q[a][x]. |
---|
1929 | Options: To modify the default options, pair of arguments |
---|
1930 | -option name, value- of valid options must be added to the call. |
---|
1931 | |
---|
1932 | Options: |
---|
1933 | "null",ideal E: The default is ("null",ideal(0)). |
---|
1934 | "nonnull",ideal N: The default ("nonnull",ideal(1)). |
---|
1935 | When options "null" and/or "nonnull" are given, then |
---|
1936 | the parameter space is restricted to V(E)\V(N). |
---|
1937 | "can",0-1: The default is ("can",1). With the default option |
---|
1938 | the homogenized ideal is computed before obtaining the |
---|
1939 | Groebner cover, so that the result is the canonical |
---|
1940 | Groebner cover. Setting ("can",0) only homogenizes the |
---|
1941 | basis so the result is not exactly canonical, but the |
---|
1942 | computation is shorter. |
---|
1943 | "ext",0-1: The default is ("ext",0). With the default |
---|
1944 | ("ext",0), only the generic representation is computed |
---|
1945 | (single polynomials, but not specializing to non-zero at |
---|
1946 | each point of the segment. With option ("ext",1) the |
---|
1947 | full representation of the bases is computed (possible |
---|
1948 | shaves) and sometimes a simpler result is obtained. |
---|
1949 | "rep",0-1-2: The default is ("rep",0) and then the segments |
---|
1950 | are given in canonical P-representation. Option ("rep",1) |
---|
1951 | represents the segments in canonical C-representation, |
---|
1952 | and option ("rep",2) gives both representations. |
---|
1953 | "comment",0-3: The default is ("comment",0). Setting |
---|
1954 | "comment" higher will provide information about the |
---|
1955 | development of the computation. |
---|
1956 | One can give none or whatever of these options. |
---|
1957 | RETURN: The list |
---|
1958 | ( |
---|
1959 | (lpp_1,basis_1,segment_1,lpph_1), |
---|
1960 | ... |
---|
1961 | (lpp_s,basis_s,segment_s,lpph_s) |
---|
1962 | ) |
---|
1963 | |
---|
1964 | The lpp are constant over a segment and correspond to the |
---|
1965 | set of lpp of the reduced Groebner basis for each point |
---|
1966 | of the segment. |
---|
1967 | The lpph corresponds to the lpp of the homogenized ideal |
---|
1968 | and is different for each segment. It is given as a string. |
---|
1969 | |
---|
1970 | Basis: to each element of lpp corresponds an I-regular function given |
---|
1971 | in full representation (by option ("ext",1)) or in |
---|
1972 | generic representation (default option ("ext",0)). The |
---|
1973 | I-regular function is the corresponding element of the reduced |
---|
1974 | Groebner basis for each point of the segment with the given lpp. |
---|
1975 | For each point in the segment, the polynomial or the set of |
---|
1976 | polynomials representing it, if they do not specialize to 0, |
---|
1977 | then after normalization, specializes to the corresponding |
---|
1978 | element of the reduced Groebner basis. In the full representation |
---|
1979 | at least one of the polynomials representing the I-regular |
---|
1980 | function specializes to non-zero. |
---|
1981 | |
---|
1982 | With the default option ("rep",0) the representation of the |
---|
1983 | segment is the P-representation. |
---|
1984 | With option ("rep",1) the representation of the segment is |
---|
1985 | the C-representation. |
---|
1986 | With option ("rep",2) both representations of the segment are |
---|
1987 | given. |
---|
1988 | |
---|
1989 | The P-representation of a segment is of the form |
---|
1990 | ((p_1,(p_11,..,p_1k1)),..,(p_r,(p_r1,..,p_rkr)) |
---|
1991 | representing the segment U_i (V(p_i) \ U_j (V(p_ij))), |
---|
1992 | where the p's are prime ideals. |
---|
1993 | |
---|
1994 | The C-representation of a segment is of the form |
---|
1995 | (E,N) representing V(E)\V(N), and the ideals E and N are |
---|
1996 | radical and N contains E. |
---|
1997 | |
---|
1998 | NOTE: The basering R, must be of the form Q[a][x], a=parameters, |
---|
1999 | x=variables, and should be defined previously. The ideal must |
---|
2000 | be defined on R. |
---|
2001 | KEYWORDS: Groebner cover, parametric ideal, canonical, discussion of |
---|
2002 | parametric ideal. |
---|
2003 | EXAMPLE: grobcov; shows an example" |
---|
2004 | { |
---|
2005 | list S; int i; int ish=1; list GBR; list BR; int j; int k; |
---|
2006 | ideal idp; ideal idq; int s; ideal ext; list SS; |
---|
2007 | ideal E; ideal N; int canop; int extop; int repop; |
---|
2008 | int comment=0; int m; |
---|
2009 | def RR=basering; |
---|
2010 | setglobalrings(); |
---|
2011 | list L0=#; |
---|
2012 | int out=0; |
---|
2013 | L0[size(L0)+1]="res"; L0[size(L0)+1]=ideal(1); |
---|
2014 | // default options |
---|
2015 | int start=timer; |
---|
2016 | E=ideal(0); |
---|
2017 | N=ideal(1); |
---|
2018 | canop=1; // canop=0 for homogenizing the basis but not the ideal (not canonical) |
---|
2019 | // canop=1 for working with the homogenized ideal |
---|
2020 | repop=0; // repop=0 for representing the segments in Prep |
---|
2021 | // repop=1 for representing the segments in Crep |
---|
2022 | // repop=2 for representing the segments in Prep and Crep |
---|
2023 | extop=0; // extop=0 if only generic representation of the bases are to be computed |
---|
2024 | // extop=1 if the full representation of the bases are to be computed |
---|
2025 | for(i=1;i<=size(L0) div 2;i++) |
---|
2026 | { |
---|
2027 | if(L0[2*i-1]=="can"){canop=L0[2*i];} |
---|
2028 | else |
---|
2029 | { |
---|
2030 | if(L0[2*i-1]=="ext"){extop=L0[2*i];} |
---|
2031 | else |
---|
2032 | { |
---|
2033 | if(L0[2*i-1]=="rep"){repop=L0[2*i];} |
---|
2034 | else |
---|
2035 | { |
---|
2036 | if(L0[2*i-1]=="null"){E=L0[2*i];} |
---|
2037 | else |
---|
2038 | { |
---|
2039 | if(L0[2*i-1]=="nonnull"){N=L0[2*i];} |
---|
2040 | else |
---|
2041 | { |
---|
2042 | if (L0[2*i-1]=="comment"){comment=L0[2*i];} |
---|
2043 | } |
---|
2044 | } |
---|
2045 | } |
---|
2046 | } |
---|
2047 | } |
---|
2048 | } |
---|
2049 | if(not((canop==0) or (canop==1))) |
---|
2050 | { |
---|
2051 | "Option can = ",canop," is not supported. It is changed to can = 1"; |
---|
2052 | canop=1; |
---|
2053 | } |
---|
2054 | for(i=1;i<=size(L0) div 2;i++) |
---|
2055 | { |
---|
2056 | if(L0[2*i-1]=="can"){L0[2*i]=canop;} |
---|
2057 | } |
---|
2058 | if ((printlevel) and (comment==0)){comment=printlevel;} |
---|
2059 | list LL; |
---|
2060 | LL[1]="can"; LL[2]=canop; |
---|
2061 | LL[3]="comment"; LL[4]=comment; |
---|
2062 | LL[5]="out"; LL[6]=0; |
---|
2063 | LL[7]="null"; LL[8]=E; |
---|
2064 | LL[9]="nonnull"; LL[10]=N; |
---|
2065 | LL[11]="ext"; LL[12]=extop; |
---|
2066 | LL[13]="rep"; LL[14]=repop; |
---|
2067 | if (comment>=1) |
---|
2068 | { |
---|
2069 | "Begin grobcov with options: ",string(LL); |
---|
2070 | } |
---|
2071 | kill S; |
---|
2072 | def S=gcover(F,LL); |
---|
2073 | // NOW extend |
---|
2074 | if(extop) |
---|
2075 | { |
---|
2076 | S=extend(S,LL); |
---|
2077 | } |
---|
2078 | else |
---|
2079 | { |
---|
2080 | // NOW representation of the segments by option repop |
---|
2081 | list Si; list nS; |
---|
2082 | if(repop==0) |
---|
2083 | { |
---|
2084 | for(i=1;i<=size(S);i++) |
---|
2085 | { |
---|
2086 | Si=list(S[i][1],S[i][2],S[i][3],S[i][5]); |
---|
2087 | nS[size(nS)+1]=Si; |
---|
2088 | } |
---|
2089 | kill S; |
---|
2090 | def S=nS; |
---|
2091 | } |
---|
2092 | else |
---|
2093 | { |
---|
2094 | if(repop==1) |
---|
2095 | { |
---|
2096 | for(i=1;i<=size(S);i++) |
---|
2097 | { |
---|
2098 | Si=list(S[i][1],S[i][2],S[i][4],S[i][5]); |
---|
2099 | nS[size(nS)+1]=Si; |
---|
2100 | } |
---|
2101 | kill S; |
---|
2102 | def S=nS; |
---|
2103 | } |
---|
2104 | else |
---|
2105 | { |
---|
2106 | for(i=1;i<=size(S);i++) |
---|
2107 | { |
---|
2108 | Si=list(S[i][1],S[i][2],S[i][3],S[i][4],S[i][5]); |
---|
2109 | nS[size(nS)+1]=Si; |
---|
2110 | } |
---|
2111 | kill S; |
---|
2112 | def S=nS; |
---|
2113 | } |
---|
2114 | } |
---|
2115 | } |
---|
2116 | if (comment>=1) |
---|
2117 | { |
---|
2118 | "Time in grobcov = ", timer-start; |
---|
2119 | "Number of segments of grobcov = ", size(S); |
---|
2120 | } |
---|
2121 | if(defined(@P)==1){kill @R; kill @P; kill @RP;} |
---|
2122 | return(S); |
---|
2123 | } |
---|
2124 | example |
---|
2125 | { "EXAMPLE:"; echo = 2; |
---|
2126 | "Casas conjecture for degree 4"; |
---|
2127 | ring R=(0,a0,a1,a2,a3,a4),(x1,x2,x3),dp; |
---|
2128 | ideal F=x1^4+(4*a3)*x1^3+(6*a2)*x1^2+(4*a1)*x1+(a0), |
---|
2129 | x1^3+(3*a3)*x1^2+(3*a2)*x1+(a1), |
---|
2130 | x2^4+(4*a3)*x2^3+(6*a2)*x2^2+(4*a1)*x2+(a0), |
---|
2131 | x2^2+(2*a3)*x2+(a2), |
---|
2132 | x3^4+(4*a3)*x3^3+(6*a2)*x3^2+(4*a1)*x3+(a0), |
---|
2133 | x3+(a3); |
---|
2134 | grobcov(F); |
---|
2135 | } |
---|
2136 | |
---|
2137 | // input. GC the grobcov of an ideal in generic representation of the |
---|
2138 | // bases computed with option option ("rep",2). |
---|
2139 | // output The grobcov in full representation. |
---|
2140 | // option ("comment",1) shows the time. |
---|
2141 | proc extend(list GC, list #); |
---|
2142 | "USAGE: extend(GC); When the grobcov of an ideal has been computed |
---|
2143 | with the default option ("ext",0) and the explicit option |
---|
2144 | ("rep",2) (which is not the default), then one can call |
---|
2145 | extend (GC) (and options) to obtain the full representation |
---|
2146 | of the bases. With the default option ("ext",0) only the |
---|
2147 | generic representation of the bases are computed, and one can |
---|
2148 | obtain the full representation using extend. |
---|
2149 | "rep",0-1-2: The default is ("rep",0) and then the segments |
---|
2150 | are given in canonical P-representation. Option ("rep",1) |
---|
2151 | represents the segments in canonical C-representation, |
---|
2152 | and option ("rep",2) gives both representations. |
---|
2153 | "comment",0-1: The default is ("comment",0). Setting |
---|
2154 | "comment" higher will provide information about the |
---|
2155 | time used in the computation. |
---|
2156 | One can give none or whatever of these options. |
---|
2157 | RETURN: The list |
---|
2158 | ( |
---|
2159 | (lpp_1,basis_1,segment_1,lpph_1), |
---|
2160 | ... |
---|
2161 | (lpp_s,basis_s,segment_s,lpph_s) |
---|
2162 | ) |
---|
2163 | |
---|
2164 | The lpp are constant over a segment and correspond to the |
---|
2165 | set of lpp of the reduced Groebner basis for each point |
---|
2166 | of the segment. |
---|
2167 | The lpph corresponds to the lpp of the homogenized ideal |
---|
2168 | and is different for each segment. It is given as a string. |
---|
2169 | |
---|
2170 | Basis: to each element of lpp corresponds an I-regular function given |
---|
2171 | in full representation. The |
---|
2172 | I-regular function is the corresponding element of the reduced |
---|
2173 | Groebner basis for each point of the segment with the given lpp. |
---|
2174 | For each point in the segment, the polynomial or the set of |
---|
2175 | polynomials representing it, if they do not specialize to 0, |
---|
2176 | then after normalization, specializes to the corresponding |
---|
2177 | element of the reduced Groebner basis. In the full representation |
---|
2178 | at least one of the polynomials representing the I-regular |
---|
2179 | function specializes to non-zero. |
---|
2180 | |
---|
2181 | With the default option ("rep",0) the segments are given |
---|
2182 | in P-representation. |
---|
2183 | With option ("rep",1) the segments are given |
---|
2184 | in C-representation. |
---|
2185 | With option ("rep",2) both representations of the segments are |
---|
2186 | given. |
---|
2187 | |
---|
2188 | The P-representation of a segment is of the form |
---|
2189 | ((p_1,(p_11,..,p_1k1)),..,(p_r,(p_r1,..,p_rkr)) |
---|
2190 | representing the segment U_i (V(p_i) \ U_j (V(p_ij))), |
---|
2191 | where the p's are prime ideals. |
---|
2192 | |
---|
2193 | The C-representation of a segment is of the form |
---|
2194 | (E,N) representing V(E)\V(N), and the ideals E and N are |
---|
2195 | radical and N contains E. |
---|
2196 | |
---|
2197 | NOTE: The basering R, must be of the form Q[a][x], a=parameters, |
---|
2198 | x=variables, and should be defined previously. The ideal must |
---|
2199 | be defined on R. |
---|
2200 | KEYWORDS: Groebner cover, parametric ideal, canonical, discussion of |
---|
2201 | parametric ideal, full representation. |
---|
2202 | EXAMPLE: extend; shows an example" |
---|
2203 | { |
---|
2204 | list L=#; |
---|
2205 | list S=GC; |
---|
2206 | ideal idp; |
---|
2207 | ideal idq; |
---|
2208 | int i; int j; int m; int s; |
---|
2209 | m=0; i=1; |
---|
2210 | while((i<=size(S)) and (m==0)) |
---|
2211 | { |
---|
2212 | if(typeof(S[i][2])=="list"){m=1;} |
---|
2213 | i++; |
---|
2214 | } |
---|
2215 | if(m==1){"Warning! grobcov has already extended bases"; return(S);} |
---|
2216 | if(size(GC[1])!=5){"Warning! extend make sense only when grobcov has been called with options 'rep',2,'ext',0"; " "; return();} |
---|
2217 | int repop=0; |
---|
2218 | int start3=timer; |
---|
2219 | int comment; |
---|
2220 | for(i=1;i<=size(L) div 2;i++) |
---|
2221 | { |
---|
2222 | if(L[2*i-1]=="comment"){comment=L[2*i];} |
---|
2223 | else |
---|
2224 | { |
---|
2225 | if(L[2*i-1]=="rep"){repop=L[2*i];} |
---|
2226 | } |
---|
2227 | } |
---|
2228 | poly leadc; |
---|
2229 | poly ext; |
---|
2230 | int te=0; |
---|
2231 | list SS; |
---|
2232 | def R=basering; |
---|
2233 | if (defined(@R)){te=1;} |
---|
2234 | else{setglobalrings();} |
---|
2235 | // Now extend |
---|
2236 | for (i=1;i<=size(S);i++) |
---|
2237 | { |
---|
2238 | m=size(S[i][2]); |
---|
2239 | for (j=1;j<=m;j++) |
---|
2240 | { |
---|
2241 | idp=S[i][4][1]; |
---|
2242 | idq=S[i][4][2]; |
---|
2243 | if (size(idp)>0) |
---|
2244 | { |
---|
2245 | leadc=leadcoef(S[i][2][j]); |
---|
2246 | kill ext; |
---|
2247 | def ext=extend0(S[i][2][j],idp,idq); |
---|
2248 | if (typeof(ext)=="poly") |
---|
2249 | { |
---|
2250 | S[i][2][j]=pnormalf(ext,idp,idq); |
---|
2251 | } |
---|
2252 | else |
---|
2253 | { |
---|
2254 | if(size(ext)==1) |
---|
2255 | { |
---|
2256 | S[i][2][j]=ext[1]; |
---|
2257 | } |
---|
2258 | else |
---|
2259 | { |
---|
2260 | kill SS; list SS; |
---|
2261 | for(s=1;s<=size(ext);s++) |
---|
2262 | { |
---|
2263 | ext[s]=pnormalf(ext[s],idp,idq); |
---|
2264 | } |
---|
2265 | for(s=1;s<=size(S[i][2]);s++) |
---|
2266 | { |
---|
2267 | if(s!=j){SS[s]=S[i][2][s];} |
---|
2268 | else{SS[s]=ext;} |
---|
2269 | } |
---|
2270 | S[i][2]=SS; |
---|
2271 | } |
---|
2272 | } |
---|
2273 | } |
---|
2274 | } |
---|
2275 | } |
---|
2276 | // NOW representation of the segments by option repop |
---|
2277 | list Si; list nS; |
---|
2278 | if (repop==0) |
---|
2279 | { |
---|
2280 | for(i=1;i<=size(S);i++) |
---|
2281 | { |
---|
2282 | Si=list(S[i][1],S[i][2],S[i][3],S[i][5]); |
---|
2283 | nS[size(nS)+1]=Si; |
---|
2284 | } |
---|
2285 | S=nS; |
---|
2286 | } |
---|
2287 | else |
---|
2288 | { |
---|
2289 | if (repop==1) |
---|
2290 | { |
---|
2291 | for(i=1;i<=size(S);i++) |
---|
2292 | { |
---|
2293 | Si=list(S[i][1],S[i][2],S[i][4],S[i][5]); |
---|
2294 | nS[size(nS)+1]=Si; |
---|
2295 | } |
---|
2296 | S=nS; |
---|
2297 | } |
---|
2298 | else |
---|
2299 | { |
---|
2300 | for(i=1;i<=size(S);i++) |
---|
2301 | { |
---|
2302 | Si=list(S[i][1],S[i][2],S[i][3],S[i][4],S[i][5]); |
---|
2303 | nS[size(nS)+1]=Si; |
---|
2304 | } |
---|
2305 | |
---|
2306 | } |
---|
2307 | } |
---|
2308 | if(comment>=1){"Time in extend = ",timer-start3;} |
---|
2309 | if(te==0){kill @R; kill @RP; kill @P;} |
---|
2310 | return(S); |
---|
2311 | } |
---|
2312 | example |
---|
2313 | { |
---|
2314 | ring R=(0,a0,b0,c0,a1,b1,c1,a2,b2,c2),(x), dp; |
---|
2315 | short=0; |
---|
2316 | ideal S=a0*x^2+b0*x+c0, |
---|
2317 | a1*x^2+b1*x+c1, |
---|
2318 | a2*x^2+b2*x+c2; |
---|
2319 | "System S="; S; |
---|
2320 | |
---|
2321 | def GCS=grobcov(S,"rep",2,"comment",1); |
---|
2322 | "grobcov(S,'rep',2,'comment',1)="; GCS; |
---|
2323 | def FGC=extend(GCS,"rep",0,"comment",1); |
---|
2324 | "Full representation="; FGC; |
---|
2325 | } |
---|
2326 | |
---|
2327 | |
---|
2328 | // nonzerodivisor |
---|
2329 | // input: |
---|
2330 | // poly g in K[a], |
---|
2331 | // list P=(p_1,..p_r) representing a minimal prime decomposition |
---|
2332 | // output |
---|
2333 | // poly f such that f notin p_i for all i and |
---|
2334 | // g-f in p_i for all i such that g notin p_i |
---|
2335 | proc nonzerodivisor(poly gr, list Pr) |
---|
2336 | { |
---|
2337 | def RR=basering; |
---|
2338 | setring(@P); |
---|
2339 | def g=imap(RR,gr); |
---|
2340 | def P=imap(RR,Pr); |
---|
2341 | int i; int k; list J; ideal F; |
---|
2342 | def f=g; |
---|
2343 | ideal Pi; |
---|
2344 | for (i=1;i<=size(P);i++) |
---|
2345 | { |
---|
2346 | option(redSB); |
---|
2347 | Pi=std(P[i]); |
---|
2348 | //attrib(Pi,"isST",1); |
---|
2349 | if (reduce(g,Pi,1)==0){J[size(J)+1]=i;} |
---|
2350 | } |
---|
2351 | for (i=1;i<=size(J);i++) |
---|
2352 | { |
---|
2353 | F=ideal(1); |
---|
2354 | for (k=1;k<=size(P);k++) |
---|
2355 | { |
---|
2356 | if (k!=J[i]) |
---|
2357 | { |
---|
2358 | F=idint(F,P[k]); |
---|
2359 | } |
---|
2360 | } |
---|
2361 | f=f+F[1]; |
---|
2362 | } |
---|
2363 | setring(RR); |
---|
2364 | def fr=imap(@P,f); |
---|
2365 | return(fr); |
---|
2366 | } |
---|
2367 | |
---|
2368 | // deltai |
---|
2369 | // input: |
---|
2370 | // int i: |
---|
2371 | // list LPr: (p1,..,pr) of prime components of an ideal in K[a] |
---|
2372 | // output: |
---|
2373 | // list (fr,fnr) of two polynomials that are equal on V(pi) |
---|
2374 | // and fr=0 on V(P) \ V(pi), and fnr is nonzero on V(pj) for all j. |
---|
2375 | proc deltai(int i, list LPr) |
---|
2376 | { |
---|
2377 | def RR=basering; |
---|
2378 | setring(@P); |
---|
2379 | def LP=imap(RR,LPr); |
---|
2380 | int j; poly p; |
---|
2381 | def F=ideal(1); |
---|
2382 | poly f; |
---|
2383 | poly fn; |
---|
2384 | ideal LPi; |
---|
2385 | for (j=1;j<=size(LP);j++) |
---|
2386 | { |
---|
2387 | if (j!=i) |
---|
2388 | { |
---|
2389 | F=idint(F,LP[j]); |
---|
2390 | } |
---|
2391 | } |
---|
2392 | p=0; j=1; |
---|
2393 | while ((p==0) and (j<=size(F))) |
---|
2394 | { |
---|
2395 | LPi=LP[i]; |
---|
2396 | attrib(LPi,"isSB",1); |
---|
2397 | p=reduce(F[j],LPi); |
---|
2398 | j++; |
---|
2399 | } |
---|
2400 | f=F[j-1]; |
---|
2401 | fn=nonzerodivisor(f,LP); |
---|
2402 | setring(RR); |
---|
2403 | def fr=imap(@P,f); |
---|
2404 | def fnr=imap(@P,fn); |
---|
2405 | return(list(fr,fnr)); |
---|
2406 | } |
---|
2407 | |
---|
2408 | // combine |
---|
2409 | // input: a list of pairs ((p1,P1),..,(pr,Pr)) where |
---|
2410 | // ideal pi is a prime component |
---|
2411 | // poly Pi is the polynomial in Q[a][x] on V(pi)\ V(Mi) |
---|
2412 | // (p1,..,pr) are the prime decomposition of the lpp-segment |
---|
2413 | // list crep =(ideal ida,ideal idb): the Crep of the segment. |
---|
2414 | // list Pci of the intersecctions of all pj except the ith one |
---|
2415 | // output: |
---|
2416 | // poly P on an open and dense set of V(p_1 int ... p_r) |
---|
2417 | proc combine(list L, ideal F) |
---|
2418 | { |
---|
2419 | // ATTENTION REVISE AND USE Pci and F |
---|
2420 | int i; poly f; |
---|
2421 | f=0; |
---|
2422 | for(i=1;i<=size(L);i++) |
---|
2423 | { |
---|
2424 | f=f+F[i]*L[i][2]; |
---|
2425 | } |
---|
2426 | // f=elimconstfac(f); |
---|
2427 | f=primepartZ(f); |
---|
2428 | return(f); |
---|
2429 | } |
---|
2430 | |
---|
2431 | // elimconstfac: eliminate the factors in the polynom f that are in K[a] |
---|
2432 | // input: |
---|
2433 | // poly f: |
---|
2434 | // list L: of components of the segment |
---|
2435 | // output: |
---|
2436 | // poly f2 where the factors of f in K[a] that are non-null on any component |
---|
2437 | // have been dropped from f |
---|
2438 | proc elimconstfac(poly f) |
---|
2439 | { |
---|
2440 | int cond; int i; int j; int t; |
---|
2441 | if (f==0){return(f);} |
---|
2442 | def RR=basering; |
---|
2443 | setring(@R); |
---|
2444 | def ff=imap(RR,f); |
---|
2445 | def l=factorize(ff,0); |
---|
2446 | poly f1=1; |
---|
2447 | for(i=2;i<=size(l[1]);i++) |
---|
2448 | { |
---|
2449 | f1=f1*(l[1][i])^(l[2][i]); |
---|
2450 | } |
---|
2451 | setring(RR); |
---|
2452 | def f2=imap(@R,f1); |
---|
2453 | return(f2); |
---|
2454 | }; |
---|
2455 | |
---|
2456 | // nullin |
---|
2457 | // input: |
---|
2458 | // poly f: a polynomial in Q[a] |
---|
2459 | // ideal P: an ideal in Q[a] |
---|
2460 | // called from ring @R |
---|
2461 | // output: |
---|
2462 | // t: with value 1 if f reduces modulo P, 0 if not. |
---|
2463 | proc nullin(poly f,ideal P) |
---|
2464 | { |
---|
2465 | int t; |
---|
2466 | def RR=basering; |
---|
2467 | setring(@P); |
---|
2468 | def f0=imap(RR,f); |
---|
2469 | def P0=imap(RR,P); |
---|
2470 | attrib(P0,"isSB",1); |
---|
2471 | if (reduce(f0,P0,1)==0){t=1;} |
---|
2472 | else{t=0;} |
---|
2473 | setring(RR); |
---|
2474 | return(t); |
---|
2475 | } |
---|
2476 | |
---|
2477 | // monoms |
---|
2478 | proc monoms(poly f) |
---|
2479 | { |
---|
2480 | list L; |
---|
2481 | poly lm; poly lc; poly lp; poly Q; poly mQ; |
---|
2482 | def p=f; |
---|
2483 | int i=1; |
---|
2484 | while (p!=0) |
---|
2485 | { |
---|
2486 | lm=lead(p); |
---|
2487 | p=p-lm; |
---|
2488 | lc=leadcoef(lm); |
---|
2489 | lp=leadmonom(lm); |
---|
2490 | L[size(L)+1]=list(lc,lp); |
---|
2491 | i++; |
---|
2492 | } |
---|
2493 | return(L); |
---|
2494 | } |
---|
2495 | |
---|
2496 | // extend0 |
---|
2497 | // input: |
---|
2498 | // poly f: a generic polynomial in the basis |
---|
2499 | // ideal idp: such that ideal(S)=idp |
---|
2500 | // ideal idq: such that S=V(idp)\V(idq) |
---|
2501 | //// NW the list of ((N1,W1),..,(Ns,Ws)) of red-rep of the grouped |
---|
2502 | //// segments in the lpp-segment NO MORE USED |
---|
2503 | // output: |
---|
2504 | proc extend0(poly f, ideal idp, ideal idq) |
---|
2505 | { |
---|
2506 | matrix CC; poly Q; list NewMonoms; |
---|
2507 | int i; int j; poly fout; ideal idout; |
---|
2508 | list L=monoms(f); |
---|
2509 | int nummonoms=size(L)-1; |
---|
2510 | Q=L[1][1]; |
---|
2511 | if (nummonoms==0){return(f);} |
---|
2512 | for (i=2;i<=size(L);i++) |
---|
2513 | { |
---|
2514 | CC=matrix(extendcoef(L[i][1],Q,idp,idq)); |
---|
2515 | NewMonoms[i-1]=list(CC,L[i][2]); |
---|
2516 | } |
---|
2517 | if (nummonoms==1) |
---|
2518 | { |
---|
2519 | for(j=1;j<=ncols(NewMonoms[1][1]);j++) |
---|
2520 | { |
---|
2521 | fout=NewMonoms[1][1][2,j]*L[1][2]+NewMonoms[1][1][1,j]*NewMonoms[1][2]; |
---|
2522 | //fout=pnormalf(fout,idp,W); |
---|
2523 | if(ncols(NewMonoms[1][1])>1){idout[j]=fout;} |
---|
2524 | } |
---|
2525 | if(ncols(NewMonoms[1][1])==1){return(fout);} else{return(idout);} |
---|
2526 | } |
---|
2527 | else |
---|
2528 | { |
---|
2529 | list cfi; |
---|
2530 | list coefs; |
---|
2531 | for (i=1;i<=nummonoms;i++) |
---|
2532 | { |
---|
2533 | kill cfi; list cfi; |
---|
2534 | for(j=1;j<=ncols(NewMonoms[i][1]);j++) |
---|
2535 | { |
---|
2536 | cfi[size(cfi)+1]=NewMonoms[i][1][2,j]; |
---|
2537 | } |
---|
2538 | coefs[i]=cfi; |
---|
2539 | } |
---|
2540 | def indexpolys=findindexpolys(coefs); |
---|
2541 | for(i=1;i<=size(indexpolys);i++) |
---|
2542 | { |
---|
2543 | fout=L[1][2]; |
---|
2544 | for(j=1;j<=nummonoms;j++) |
---|
2545 | { |
---|
2546 | fout=fout+(NewMonoms[j][1][1,indexpolys[i][j]])/(NewMonoms[j][1][2,indexpolys[i][j]])*NewMonoms[j][2]; |
---|
2547 | } |
---|
2548 | fout=cleardenom(fout); |
---|
2549 | if(size(indexpolys)>1){idout[i]=fout;} |
---|
2550 | } |
---|
2551 | if (size(indexpolys)==1){return(fout);} else{return(idout);} |
---|
2552 | } |
---|
2553 | } |
---|
2554 | |
---|
2555 | // findindexpolys |
---|
2556 | // input: |
---|
2557 | // list coefs=( (q11,..,q1r_1),..,(qs1,..,qsr_1) ) |
---|
2558 | // of denominators of the monoms |
---|
2559 | // output: |
---|
2560 | // list ind=(v_1,..,v_t) of intvec |
---|
2561 | // each intvec v=(i_1,..,is) corresponds to a polynomial in the sheaf |
---|
2562 | // that will be built from it in extend procedure. |
---|
2563 | proc findindexpolys(list coefs) |
---|
2564 | { |
---|
2565 | int i; int j; intvec numdens; |
---|
2566 | for(i=1;i<=size(coefs);i++) |
---|
2567 | { |
---|
2568 | numdens[i]=size(coefs[i]); |
---|
2569 | } |
---|
2570 | def RR=basering; |
---|
2571 | setring(@P); |
---|
2572 | def coefsp=imap(RR,coefs); |
---|
2573 | ideal cof; list combpolys; intvec v; int te; list mp; |
---|
2574 | for(i=1;i<=size(coefsp);i++) |
---|
2575 | { |
---|
2576 | cof=ideal(0); |
---|
2577 | for(j=1;j<=size(coefsp[i]);j++) |
---|
2578 | { |
---|
2579 | cof[j]=factorize(coefsp[i][j],3); |
---|
2580 | } |
---|
2581 | coefsp[i]=cof; |
---|
2582 | } |
---|
2583 | for(j=1;j<=size(coefsp[1]);j++) |
---|
2584 | { |
---|
2585 | v[1]=j; |
---|
2586 | te=1; |
---|
2587 | for (i=2;i<=size(coefsp);i++) |
---|
2588 | { |
---|
2589 | mp=memberpos(coefsp[1][j],coefsp[i]); |
---|
2590 | if(mp[1]) |
---|
2591 | { |
---|
2592 | v[i]=mp[2]; |
---|
2593 | } |
---|
2594 | else{v[i]=0;} |
---|
2595 | } |
---|
2596 | combpolys[j]=v; |
---|
2597 | } |
---|
2598 | combpolys=reform(combpolys,numdens); |
---|
2599 | setring(RR); |
---|
2600 | return(combpolys); |
---|
2601 | } |
---|
2602 | |
---|
2603 | // extendcoef: given Q,P in K[a] where P/Q specializes on an open and dense subset |
---|
2604 | // of the whole V(p1 int...int pr), it returns a basis of the module |
---|
2605 | // of all syzygies equivalent to P/Q, |
---|
2606 | proc extendcoef(poly P, poly Q, ideal idp, ideal idq) |
---|
2607 | { |
---|
2608 | def RR=basering; |
---|
2609 | setring(@P); |
---|
2610 | def PL=ringlist(@P); |
---|
2611 | PL[3][1][1]="dp"; |
---|
2612 | def P1=ring(PL); |
---|
2613 | setring(P1); |
---|
2614 | ideal idp0=imap(RR,idp); |
---|
2615 | option(redSB); |
---|
2616 | qring q=std(idp0); |
---|
2617 | poly P0=imap(RR,P); |
---|
2618 | poly Q0=imap(RR,Q); |
---|
2619 | ideal PQ=Q0,-P0; |
---|
2620 | module C=syz(PQ); |
---|
2621 | setring(@P); |
---|
2622 | def idp1=imap(RR,idp); |
---|
2623 | def idq1=imap(RR,idq); |
---|
2624 | def C1=matrix(imap(q,C)); |
---|
2625 | def redC=selectregularfun(C1,idp1,idq1); |
---|
2626 | setring(RR); |
---|
2627 | def CC=imap(@P,redC); |
---|
2628 | return(CC); |
---|
2629 | } |
---|
2630 | |
---|
2631 | // selectregularfun |
---|
2632 | // input: |
---|
2633 | // list L of the polynomials matrix CC |
---|
2634 | // (we assume that one of them is non-null on V(N)\V(M)) |
---|
2635 | // ideal N, ideal M: ideals representing the locally closed set V(N)\V(M) |
---|
2636 | // assume to work in @P |
---|
2637 | proc selectregularfun(matrix CC, ideal NN, ideal MM) |
---|
2638 | { |
---|
2639 | int numcombused; |
---|
2640 | def RR=basering; |
---|
2641 | setring(@P); |
---|
2642 | def C=imap(RR,CC); |
---|
2643 | def N=imap(RR,NN); |
---|
2644 | def M=imap(RR,MM); |
---|
2645 | if (ncols(C)==1){return(C);} |
---|
2646 | |
---|
2647 | int i; int j; int k; list c; intvec ci; intvec c0; intvec c1; |
---|
2648 | list T; list T0; list T1; list LL; ideal N1;ideal M1; int te=0; |
---|
2649 | for(i=1;i<=ncols(C);i++) |
---|
2650 | { |
---|
2651 | if((C[1,i]!=0) and (C[2,i]!=0)) |
---|
2652 | { |
---|
2653 | if(c0==intvec(0)){c0[1]=i;} |
---|
2654 | else{c0[size(c0)+1]=i;} |
---|
2655 | } |
---|
2656 | } |
---|
2657 | def C1=submat(C,1..2,c0); |
---|
2658 | for (i=1;i<=ncols(C1);i++) |
---|
2659 | { |
---|
2660 | c=comb(ncols(C1),i); |
---|
2661 | for(j=1;j<=size(c);j++) |
---|
2662 | { |
---|
2663 | ci=c[j]; |
---|
2664 | numcombused++; |
---|
2665 | if(i==1){N1=N+C1[2,j]; M1=M;} |
---|
2666 | if(i>1) |
---|
2667 | { |
---|
2668 | kill c0; intvec c0 ; kill c1; intvec c1; |
---|
2669 | c1=ci[size(ci)]; |
---|
2670 | for(k=1;k<size(ci);k++){c0[k]=ci[k];} |
---|
2671 | T0=searchinlist(c0,LL); |
---|
2672 | T1=searchinlist(c1,LL); |
---|
2673 | N1=T0[1]+T1[1]; |
---|
2674 | M1=intersect(T0[2],T1[2]); |
---|
2675 | } |
---|
2676 | T=list(ci,PtoCrep(Prep(N1,M1))); |
---|
2677 | LL[size(LL)+1]=T; |
---|
2678 | if(equalideals(T[2][1],ideal(1))){te=1; break;} |
---|
2679 | } |
---|
2680 | if(te){break;} |
---|
2681 | } |
---|
2682 | ci=T[1]; |
---|
2683 | def Cs=submat(C1,1..2,ci); |
---|
2684 | setring(RR); |
---|
2685 | return(imap(@P,Cs)); |
---|
2686 | } |
---|
2687 | |
---|
2688 | // searchinlist |
---|
2689 | // input: |
---|
2690 | // intvec c: |
---|
2691 | // list L=( (c1,T1),..(ck,Tk) ) |
---|
2692 | // where the c's are assumed to be intvects |
---|
2693 | // output: |
---|
2694 | // object T with index c |
---|
2695 | proc searchinlist(intvec c,list L) |
---|
2696 | { |
---|
2697 | int i; list T; |
---|
2698 | for(i=1;i<=size(L);i++) |
---|
2699 | { |
---|
2700 | if (L[i][1]==c) |
---|
2701 | { |
---|
2702 | T=L[i][2]; |
---|
2703 | break; |
---|
2704 | } |
---|
2705 | } |
---|
2706 | return(T); |
---|
2707 | } |
---|
2708 | |
---|
2709 | // comb: the list of combinations of elements (1,..n) of order p |
---|
2710 | proc comb(int n, int p) |
---|
2711 | { |
---|
2712 | list L; list L0; |
---|
2713 | intvec c; intvec d; |
---|
2714 | int i; int j; int last; |
---|
2715 | if ((n<0) or (n<p)) |
---|
2716 | { |
---|
2717 | return(L); |
---|
2718 | } |
---|
2719 | if (p==1) |
---|
2720 | { |
---|
2721 | for (i=1;i<=n;i++) |
---|
2722 | { |
---|
2723 | c=i; |
---|
2724 | L[size(L)+1]=c; |
---|
2725 | } |
---|
2726 | return(L); |
---|
2727 | } |
---|
2728 | else |
---|
2729 | { |
---|
2730 | L0=comb(n,p-1); |
---|
2731 | for (i=1;i<=size(L0);i++) |
---|
2732 | { |
---|
2733 | c=L0[i]; d=c; |
---|
2734 | last=c[size(c)]; |
---|
2735 | for (j=last+1;j<=n;j++) |
---|
2736 | { |
---|
2737 | d[size(c)+1]=j; |
---|
2738 | L[size(L)+1]=d; |
---|
2739 | } |
---|
2740 | } |
---|
2741 | return(L); |
---|
2742 | } |
---|
2743 | } |
---|
2744 | |
---|
2745 | // selectminsheaves |
---|
2746 | // Input: L=((v_11,..,v_1k_1),..,(v_s1,..,v_sk_s)) |
---|
2747 | // where: |
---|
2748 | // The s lists correspond to the s coefficients of the polynomial f |
---|
2749 | // (v_i1,..,v_ik_i) correspond to the k_i intvec v_ij of the |
---|
2750 | // spezializations of the jth rekpresentant (Q,P) of the ith coefficient |
---|
2751 | // v_ij is an intvec of size equal to the number of little segments |
---|
2752 | // forming the lpp-segment of 0,1, where 1 represents that it specializes |
---|
2753 | // to non-zedro an the whole little segment and 0 if not. |
---|
2754 | // Output: S=(w_1,..,w_j) |
---|
2755 | // where the w_l=(n_l1,..,n_ls) are intvec of length size(L), where |
---|
2756 | // n_lt fixes which element of (v_t1,..,v_tk_t) is to be |
---|
2757 | // choosen to form the tth (Q,P) for the lth element of the sheaf |
---|
2758 | // representing the I-regular function. |
---|
2759 | // The selection is done to obtian the minimal number of elements |
---|
2760 | // of the sheaf that specializes to non-null everywhere. |
---|
2761 | proc selectminsheaves(list L) |
---|
2762 | { |
---|
2763 | list C=allsheaves(L); |
---|
2764 | return(smsheaves(C[1],C[2])); |
---|
2765 | } |
---|
2766 | |
---|
2767 | // smsheaves |
---|
2768 | // Input: |
---|
2769 | // list C of all the combrep |
---|
2770 | // list L of the intvec that correesponds to each element of C |
---|
2771 | // Output: |
---|
2772 | // list LL of the subsets of C that cover all the subsegments |
---|
2773 | // (the union of the corresponding L(C) has all 1). |
---|
2774 | proc smsheaves(list C, list L) |
---|
2775 | { |
---|
2776 | int i; int i0; intvec W; |
---|
2777 | int nor; int norn; |
---|
2778 | intvec p; |
---|
2779 | int sp=size(L[1]); int j0=1; |
---|
2780 | for (i=1;i<=sp;i++){p[i]=1;} |
---|
2781 | while (p!=0) |
---|
2782 | { |
---|
2783 | i0=0; nor=0; |
---|
2784 | for (i=1; i<=size(L); i++) |
---|
2785 | { |
---|
2786 | norn=numones(L[i],pos(p)); |
---|
2787 | if (nor<norn){nor=norn; i0=i;} |
---|
2788 | } |
---|
2789 | W[j0]=i0; |
---|
2790 | j0++; |
---|
2791 | p=actualize(p,L[i0]); |
---|
2792 | } |
---|
2793 | list LL; |
---|
2794 | for (i=1;i<=size(W);i++) |
---|
2795 | { |
---|
2796 | LL[size(LL)+1]=C[W[i]]; |
---|
2797 | } |
---|
2798 | return(LL); |
---|
2799 | } |
---|
2800 | |
---|
2801 | // allsheaves |
---|
2802 | // Input: L=((v_11,..,v_1k_1),..,(v_s1,..,v_sk_s)) |
---|
2803 | // where: |
---|
2804 | // The s lists correspond to the s coefficients of the polynomial f |
---|
2805 | // (v_i1,..,v_ik_i) correspond to the k_i intvec v_ij of the |
---|
2806 | // spezializations of the jth rekpresentant (Q,P) of the ith coefficient |
---|
2807 | // v_ij is an intvec of size equal to the number of little segments |
---|
2808 | // forming the lpp-segment of 0,1, where 1 represents that it specializes |
---|
2809 | // to non-zero on the whole little segment and 1 if not. |
---|
2810 | // Output: |
---|
2811 | // (list LL, list LLS) where |
---|
2812 | // LL is the list of all combrep |
---|
2813 | // LLS is the list of intvec of the corresponding elements of LL |
---|
2814 | proc allsheaves(list L) |
---|
2815 | { |
---|
2816 | intvec V; list LL; intvec W; int r; intvec U; |
---|
2817 | int i; int j; int k; |
---|
2818 | int s=size(L[1][1]); // s = number of little segments of the lpp-segment |
---|
2819 | list LLS; |
---|
2820 | for (i=1;i<=size(L);i++) |
---|
2821 | { |
---|
2822 | V[i]=size(L[i]); |
---|
2823 | } |
---|
2824 | LL=combrep(V); |
---|
2825 | for (i=1;i<=size(LL);i++) |
---|
2826 | { |
---|
2827 | W=LL[i]; // size(W)= number of coefficients of the polynomial |
---|
2828 | kill U; intvec U; |
---|
2829 | for (j=1;j<=s;j++) |
---|
2830 | { |
---|
2831 | k=1; r=1; U[j]=1; |
---|
2832 | while((r==1) and (k<=size(W))) |
---|
2833 | { |
---|
2834 | if(L[k][W[k]][j]==0){r=0; U[j]=0;} |
---|
2835 | k++; |
---|
2836 | } |
---|
2837 | } |
---|
2838 | LLS[i]=U; |
---|
2839 | } |
---|
2840 | return(list(LL,LLS)); |
---|
2841 | } |
---|
2842 | |
---|
2843 | // numones |
---|
2844 | // Input: |
---|
2845 | // intvec v of (0,1) in each position |
---|
2846 | // intvec pos: the positions to test |
---|
2847 | // Output: |
---|
2848 | // int nor: the nuber of 1 of v in the positions given by pos. |
---|
2849 | proc numones(intvec v, intvec pos) |
---|
2850 | { |
---|
2851 | int i; int n; |
---|
2852 | for (i=1;i<=size(pos);i++) |
---|
2853 | { |
---|
2854 | if (v[pos[i]]==1){n++;} |
---|
2855 | } |
---|
2856 | return(n); |
---|
2857 | } |
---|
2858 | |
---|
2859 | // pos |
---|
2860 | // Input: intvec p of zeros and ones |
---|
2861 | // Output: intvec W of the positions where p has ones. |
---|
2862 | proc pos(intvec p) |
---|
2863 | { |
---|
2864 | int i; |
---|
2865 | intvec W; int j=1; |
---|
2866 | for (i=1; i<=size(p); i++) |
---|
2867 | { |
---|
2868 | if (p[i]==1){W[j]=i; j++;} |
---|
2869 | } |
---|
2870 | return(W); |
---|
2871 | } |
---|
2872 | |
---|
2873 | // actualize: actualizes zeroes of p |
---|
2874 | // Input: |
---|
2875 | // intvec p: of zeroes and ones |
---|
2876 | // intvec c: of zeroes and ones (of the same length) |
---|
2877 | // Output; |
---|
2878 | // intvec pp: of zeroes and ones, where a 0 stays in pp[i] if either |
---|
2879 | // already p[i]==0 or c[i]==1. |
---|
2880 | proc actualize(intvec p, intvec c) |
---|
2881 | { |
---|
2882 | int i; intvec pp=p; |
---|
2883 | for (i=1;i<=size(p);i++) |
---|
2884 | { |
---|
2885 | if ((pp[i]==1) and (c[i]==1)){pp[i]=0;} |
---|
2886 | } |
---|
2887 | return(pp); |
---|
2888 | } |
---|
2889 | |
---|
2890 | // combrep |
---|
2891 | // Input: V=(n_1,..,n_i) |
---|
2892 | // Output: L=(v_1,..,v_p) where p=prod_j=1^i (n_j) |
---|
2893 | // is the list of all intvec v_j=(v_j1,..,v_ji) where 1<=v_jk<=n_i |
---|
2894 | proc combrep(intvec V) |
---|
2895 | { |
---|
2896 | list L; list LL; |
---|
2897 | int i; int j; int k; intvec W; |
---|
2898 | if (size(V)==1) |
---|
2899 | { |
---|
2900 | for (i=1;i<=V[1];i++) |
---|
2901 | { |
---|
2902 | L[i]=intvec(i); |
---|
2903 | } |
---|
2904 | return(L); |
---|
2905 | } |
---|
2906 | for (i=1;i<size(V);i++) |
---|
2907 | { |
---|
2908 | W[i]=V[i]; |
---|
2909 | } |
---|
2910 | LL=combrep(W); |
---|
2911 | for (i=1;i<=size(LL);i++) |
---|
2912 | { |
---|
2913 | W=LL[i]; |
---|
2914 | for (j=1;j<=V[size(V)];j++) |
---|
2915 | { |
---|
2916 | W[size(V)]=j; |
---|
2917 | L[size(L)+1]=W; |
---|
2918 | } |
---|
2919 | } |
---|
2920 | return(L); |
---|
2921 | } |
---|
2922 | |
---|
2923 | proc reducemodN(poly f,ideal E) |
---|
2924 | { |
---|
2925 | def RR=basering; |
---|
2926 | setring(@RPt); |
---|
2927 | def fa=imap(RR,f); |
---|
2928 | def Ea=imap(RR,E); |
---|
2929 | attrib(Ea,"isSB",1); |
---|
2930 | // option(redSB); |
---|
2931 | // Ea=std(Ea); |
---|
2932 | fa=reduce(fa,Ea); |
---|
2933 | setring(RR); |
---|
2934 | def f1=imap(@RPt,fa); |
---|
2935 | return(f1); |
---|
2936 | } |
---|
2937 | |
---|
2938 | // intersp: computes the intersection of the ideals in S in @P |
---|
2939 | proc intersp(list S) |
---|
2940 | { |
---|
2941 | def RR=basering; |
---|
2942 | setring(@P); |
---|
2943 | def SP=imap(RR,S); |
---|
2944 | option(returnSB); |
---|
2945 | def NP=intersect(SP[1..size(SP)]); |
---|
2946 | setring(RR); |
---|
2947 | return(imap(@P,NP)); |
---|
2948 | } |
---|
2949 | |
---|
2950 | // radicalmember |
---|
2951 | proc radicalmember(poly f,ideal ida) |
---|
2952 | { |
---|
2953 | int te; |
---|
2954 | def RR=basering; |
---|
2955 | setring(@P); |
---|
2956 | def fp=imap(RR,f); |
---|
2957 | def idap=imap(RR,ida); |
---|
2958 | poly @t; |
---|
2959 | ring H=0,@t,dp; |
---|
2960 | def PH=@P+H; |
---|
2961 | setring(PH); |
---|
2962 | def fH=imap(@P,fp); |
---|
2963 | def idaH=imap(@P,idap); |
---|
2964 | idaH[size(idaH)+1]=1-@t*fH; |
---|
2965 | option(redSB); |
---|
2966 | def G=std(idaH); |
---|
2967 | if (G==1){te=1;} else {te=0;} |
---|
2968 | setring(RR); |
---|
2969 | return(te); |
---|
2970 | } |
---|
2971 | |
---|
2972 | // NonNull: returns 1 if the poly f is nonnull on V(E)\V(N), 0 otherwise. |
---|
2973 | proc NonNull(poly f, ideal E, ideal N) |
---|
2974 | { |
---|
2975 | int te=1; int i; |
---|
2976 | def RR=basering; |
---|
2977 | setring(@P); |
---|
2978 | def fp=imap(RR,f); |
---|
2979 | def Ep=imap(RR,E); |
---|
2980 | def Np=imap(RR,N); |
---|
2981 | ideal H; |
---|
2982 | ideal Ef=Ep+fp; |
---|
2983 | for (i=1;i<=size(Np);i++) |
---|
2984 | { |
---|
2985 | te=radicalmember(Np[i],Ef); |
---|
2986 | if (te==0){break;} |
---|
2987 | } |
---|
2988 | setring(RR); |
---|
2989 | return(te); |
---|
2990 | } |
---|
2991 | |
---|
2992 | // selectextendcoef |
---|
2993 | // input: |
---|
2994 | // matrix CC: CC=(p_a1 .. p_ar_a) |
---|
2995 | // (q_a1 .. q_ar_a) |
---|
2996 | // the matrix of elements of a coefficient in oo[a]. |
---|
2997 | // (ideal ida, ideal idb): the canonical representation of the segment S. |
---|
2998 | // output: |
---|
2999 | // list caout |
---|
3000 | // the minimum set of elements of CC needed such that at least one |
---|
3001 | // of the q's is non-null on S, as well as the C-rep of of the |
---|
3002 | // points where the q's are null on S. |
---|
3003 | // The elements of caout are of the form (p,q,prep); |
---|
3004 | proc selectextendcoef(matrix CC, ideal ida, ideal idb) |
---|
3005 | { |
---|
3006 | def RR=basering; |
---|
3007 | setring(@P); |
---|
3008 | def ca=imap(RR,CC); |
---|
3009 | def E0=imap(RR,ida); |
---|
3010 | ideal E; |
---|
3011 | def N=imap(RR,idb); |
---|
3012 | int r=ncols(ca); |
---|
3013 | int i; int te=1; list com; int j; int k; intvec c; list prep; |
---|
3014 | list cs; list caout; |
---|
3015 | i=1; |
---|
3016 | while ((i<=r) and (te)) |
---|
3017 | { |
---|
3018 | com=comb(r,i); |
---|
3019 | j=1; |
---|
3020 | while((j<=size(com)) and (te)) |
---|
3021 | { |
---|
3022 | E=E0; |
---|
3023 | c=com[j]; |
---|
3024 | for (k=1;k<=i;k++) |
---|
3025 | { |
---|
3026 | E=E+ca[2,c[k]]; |
---|
3027 | } |
---|
3028 | prep=Prep(E,N); |
---|
3029 | if (i==1) |
---|
3030 | { |
---|
3031 | cs[j]=list(ca[1,j],ca[2,j],prep); |
---|
3032 | } |
---|
3033 | if ((size(prep)==1) and (equalideals(prep[1][1],ideal(1)))) |
---|
3034 | { |
---|
3035 | te=0; |
---|
3036 | for(k=1;k<=size(c);k++) |
---|
3037 | { |
---|
3038 | caout[k]=cs[c[k]]; |
---|
3039 | } |
---|
3040 | } |
---|
3041 | j++; |
---|
3042 | } |
---|
3043 | i++; |
---|
3044 | } |
---|
3045 | if (te){"error: extendcoef does not extend to the whole S";} |
---|
3046 | setring(RR); |
---|
3047 | return(imap(@P,caout)); |
---|
3048 | } |
---|
3049 | |
---|
3050 | // input: |
---|
3051 | // ideal E1: in some basering (depends only on the parameters) |
---|
3052 | // ideal E2: in some basering (depends only on the parameters) |
---|
3053 | // output: |
---|
3054 | // ideal Ep=E1+E2; computed in P |
---|
3055 | proc plusP(ideal E1,ideal E2) |
---|
3056 | { |
---|
3057 | def RR=basering; |
---|
3058 | setring(@P); |
---|
3059 | def E1p=imap(RR,E1); |
---|
3060 | def E2p=imap(RR,E2); |
---|
3061 | def Ep=E1p+E2p; |
---|
3062 | setring(RR); |
---|
3063 | return(imap(@P,Ep)); |
---|
3064 | } |
---|
3065 | |
---|
3066 | // reform |
---|
3067 | // input: |
---|
3068 | // list combpolys: (v1,..,vs) |
---|
3069 | // where vi are intvec. |
---|
3070 | // output outcomb: (w1,..,wt) |
---|
3071 | // whre wi are intvec. |
---|
3072 | // All the vi without zeroes are in outcomb, and those with zeroes are |
---|
3073 | // combined to form new intvec with the rest |
---|
3074 | proc reform(list combpolys, intvec numdens) |
---|
3075 | { |
---|
3076 | list combp0; list combp1; int i; int j; int k; int l; list rest; intvec notfree; |
---|
3077 | list free; intvec free1; int te; intvec v; intvec w; |
---|
3078 | int nummonoms=size(combpolys[1]); |
---|
3079 | for(i=1;i<=size(combpolys);i++) |
---|
3080 | { |
---|
3081 | if(memberpos(0,combpolys[i])[1]) |
---|
3082 | { |
---|
3083 | combp0[size(combp0)+1]=combpolys[i]; |
---|
3084 | } |
---|
3085 | else {combp1[size(combp1)+1]=combpolys[i];} |
---|
3086 | } |
---|
3087 | for(i=1;i<=nummonoms;i++) |
---|
3088 | { |
---|
3089 | kill notfree; intvec notfree; |
---|
3090 | for(j=1;j<=size(combpolys);j++) |
---|
3091 | { |
---|
3092 | if(combpolys[j][i]<>0) |
---|
3093 | { |
---|
3094 | if(notfree[1]==0){notfree[1]=combpolys[j][i];} |
---|
3095 | else{notfree[size(notfree)+1]=combpolys[j][i];} |
---|
3096 | } |
---|
3097 | } |
---|
3098 | kill free1; intvec free1; |
---|
3099 | for(j=1;j<=numdens[i];j++) |
---|
3100 | { |
---|
3101 | if(memberpos(j,notfree)[1]==0) |
---|
3102 | { |
---|
3103 | if(free1[1]==0){free1[1]=j;} |
---|
3104 | else{free1[size(free1)+1]=j;} |
---|
3105 | } |
---|
3106 | free[i]=free1; |
---|
3107 | } |
---|
3108 | } |
---|
3109 | list amplcombp; list aux; |
---|
3110 | for(i=1;i<=size(combp0);i++) |
---|
3111 | { |
---|
3112 | v=combp0[i]; |
---|
3113 | kill amplcombp; list amplcombp; |
---|
3114 | amplcombp[1]=intvec(v[1]); |
---|
3115 | for(j=2;j<=size(v);j++) |
---|
3116 | { |
---|
3117 | if(v[j]!=0) |
---|
3118 | { |
---|
3119 | for(k=1;k<=size(amplcombp);k++) |
---|
3120 | { |
---|
3121 | w=amplcombp[k]; |
---|
3122 | w[size(w)+1]=v[j]; |
---|
3123 | amplcombp[k]=w; |
---|
3124 | } |
---|
3125 | } |
---|
3126 | else |
---|
3127 | { |
---|
3128 | kill aux; list aux; |
---|
3129 | for(k=1;k<=size(amplcombp);k++) |
---|
3130 | { |
---|
3131 | for(l=1;l<=size(free[j]);l++) |
---|
3132 | { |
---|
3133 | w=amplcombp[k]; |
---|
3134 | w[size(w)+1]=free[j][l]; |
---|
3135 | aux[size(aux)+1]=w; |
---|
3136 | } |
---|
3137 | } |
---|
3138 | amplcombp=aux; |
---|
3139 | } |
---|
3140 | } |
---|
3141 | for(j=1;j<=size(amplcombp);j++) |
---|
3142 | { |
---|
3143 | combp1[size(combp1)+1]=amplcombp[j]; |
---|
3144 | } |
---|
3145 | } |
---|
3146 | return(combp1); |
---|
3147 | } |
---|
3148 | |
---|
3149 | // nonnullCrep |
---|
3150 | proc nonnullCrep(poly f0,ideal ida0,ideal idb0) |
---|
3151 | { |
---|
3152 | int i; |
---|
3153 | def RR=basering; |
---|
3154 | setring(@P); |
---|
3155 | def f=imap(RR,f0); |
---|
3156 | def ida=imap(RR,ida0); |
---|
3157 | def idb=imap(RR,idb0); |
---|
3158 | def idaf=ida+f; |
---|
3159 | int te=1; |
---|
3160 | for(i=1;i<=size(idb);i++) |
---|
3161 | { |
---|
3162 | if(radicalmember(idb[i],idaf)==0) |
---|
3163 | { |
---|
3164 | te=0; break; |
---|
3165 | } |
---|
3166 | } |
---|
3167 | setring(RR); |
---|
3168 | return(te); |
---|
3169 | } |
---|
3170 | |
---|
3171 | // precombint |
---|
3172 | // input: L: list of ideals (works in @P) |
---|
3173 | // output: F0: ideal of polys. F0[i] is a poly in the intersection of |
---|
3174 | // all ideals in L except in the ith one, where it is not. |
---|
3175 | // L=(p1,..,ps); F0=(f1,..,fs); |
---|
3176 | // F0[i] \in intersect_{j#i} p_i |
---|
3177 | proc precombint(list L) |
---|
3178 | { |
---|
3179 | int i; int j; int tes; |
---|
3180 | def RR=basering; |
---|
3181 | setring(@P); |
---|
3182 | list L0; list L1; list L2; list L3; ideal F; |
---|
3183 | L0=imap(RR,L); |
---|
3184 | L1[1]=L0[1]; L2[1]=L0[size(L0)]; |
---|
3185 | for (i=2;i<=size(L0)-1;i++) |
---|
3186 | { |
---|
3187 | L1[i]=intersect(L1[i-1],L0[i]); |
---|
3188 | L2[i]=intersect(L2[i-1],L0[size(L0)-i+1]); |
---|
3189 | } |
---|
3190 | L3[1]=L2[size(L2)]; |
---|
3191 | for (i=2;i<=size(L0)-1;i++) |
---|
3192 | { |
---|
3193 | L3[i]=intersect(L1[i-1],L2[size(L0)-i]); |
---|
3194 | } |
---|
3195 | L3[size(L0)]=L1[size(L1)]; |
---|
3196 | for (i=1;i<=size(L3);i++) |
---|
3197 | { |
---|
3198 | option(redSB); L3[i]=std(L3[i]); |
---|
3199 | } |
---|
3200 | for (i=1;i<=size(L3);i++) |
---|
3201 | { |
---|
3202 | tes=1; j=0; |
---|
3203 | while((tes) and (j<size(L3[i]))) |
---|
3204 | { |
---|
3205 | j++; |
---|
3206 | option(redSB); |
---|
3207 | L0[i]=std(L0[i]); |
---|
3208 | if(reduce(L3[i][j],L0[i])!=0){tes=0; F[i]=L3[i][j];} |
---|
3209 | } |
---|
3210 | if (tes){"ERROR a polynomial in all p_j except p_i was not found";} |
---|
3211 | } |
---|
3212 | setring(RR); |
---|
3213 | def F0=imap(@P,F); |
---|
3214 | return(F0); |
---|
3215 | } |
---|
3216 | |
---|
3217 | // precombinediscussion |
---|
3218 | // not used, can be deleted |
---|
3219 | // input: list L: the LCU segment with bases for each pi component |
---|
3220 | // output: intvec vv: vv[1]=(1 if the generic polynomial of the vv[2] |
---|
3221 | // component already specializes well, |
---|
3222 | // 0 if combine is to be used) |
---|
3223 | // vv[2]=selind, the index for which the generic basis |
---|
3224 | // already specializes well if combine is not to be used (vv[1]=1). |
---|
3225 | proc precombinediscussion(L,crep) |
---|
3226 | { |
---|
3227 | int tes=1; int selind; int i1; int j1; poly p; poly lcp; intvec vv; |
---|
3228 | if (size(L)==1){vv=1,1; return(vv);} |
---|
3229 | for (i1=1;i1<=size(L);i1++) |
---|
3230 | { |
---|
3231 | tes=1; |
---|
3232 | p=L[i1][2]; |
---|
3233 | lcp=leadcoef(p); |
---|
3234 | |
---|
3235 | |
---|
3236 | if(nonnullCrep(lcp,crep[1],crep[2])) |
---|
3237 | { |
---|
3238 | for(j1=1;j1<=size(L);j1++) |
---|
3239 | { |
---|
3240 | if(i1!=j1) |
---|
3241 | { |
---|
3242 | if(specswellCrep(p,L[j1][2],L[j1][1])==0){tes=0; break;} |
---|
3243 | } |
---|
3244 | } |
---|
3245 | } |
---|
3246 | else{tes=0;} |
---|
3247 | if(tes){selind=i1; break;} |
---|
3248 | } |
---|
3249 | vv=tes,selind; |
---|
3250 | return(vv); |
---|
3251 | } |
---|
3252 | |
---|
3253 | // minAssGTZ eliminating denominators |
---|
3254 | proc minGTZ(ideal N); |
---|
3255 | { |
---|
3256 | int i; int j; |
---|
3257 | def L=minAssGTZ(N); |
---|
3258 | for(i=1;i<=size(L);i++) |
---|
3259 | { |
---|
3260 | for(j=1;j<=size(L[i]);j++) |
---|
3261 | { |
---|
3262 | L[i][j]=cleardenom(L[i][j]); |
---|
3263 | } |
---|
3264 | } |
---|
3265 | return(L); |
---|
3266 | } |
---|
3267 | |
---|
3268 | //********************* Begin KapurSunWang ************************* |
---|
3269 | |
---|
3270 | // inconsistent |
---|
3271 | // Input: |
---|
3272 | // ideal E: of null conditions |
---|
3273 | // ideal N: of non-null conditions representing V(E)\V(N) |
---|
3274 | // Output: |
---|
3275 | // 1 if V(E) \V(N) = empty |
---|
3276 | // 0 if not |
---|
3277 | proc inconsistent(ideal E, ideal N) |
---|
3278 | { |
---|
3279 | int j; |
---|
3280 | int te=1; |
---|
3281 | def R=basering; |
---|
3282 | setring(@P); |
---|
3283 | def EP=imap(R,E); |
---|
3284 | def NP=imap(R,N); |
---|
3285 | poly @t; |
---|
3286 | ring H=0,@t,dp; |
---|
3287 | def RH=@P+H; |
---|
3288 | setring(RH); |
---|
3289 | def EH=imap(@P,EP); |
---|
3290 | def NH=imap(@P,NP); |
---|
3291 | ideal G; |
---|
3292 | j=1; |
---|
3293 | while((te==1) and j<=size(NH)) |
---|
3294 | { |
---|
3295 | G=EH+(1-@t*NH[j]); |
---|
3296 | option(redSB); |
---|
3297 | G=std(G); |
---|
3298 | if (G[1]!=1){te=0;} |
---|
3299 | j++; |
---|
3300 | } |
---|
3301 | setring(R); |
---|
3302 | return(te); |
---|
3303 | } |
---|
3304 | |
---|
3305 | // MDBasis: Minimal Dickson Basis |
---|
3306 | proc MDBasis(ideal G) |
---|
3307 | { |
---|
3308 | int i; int j; int te=1; |
---|
3309 | G=sortideal(G); |
---|
3310 | ideal MD=G[1]; |
---|
3311 | poly lm; |
---|
3312 | for (i=2;i<=size(G);i++) |
---|
3313 | { |
---|
3314 | te=1; |
---|
3315 | lm=leadmonom(G[i]); |
---|
3316 | j=1; |
---|
3317 | while ((te==1) and (j<=size(MD))) |
---|
3318 | { |
---|
3319 | if (lm/leadmonom(MD[j])!=0){te=0;} |
---|
3320 | j++; |
---|
3321 | } |
---|
3322 | if (te==1) |
---|
3323 | { |
---|
3324 | MD[size(MD)+1]=(G[i]); |
---|
3325 | } |
---|
3326 | } |
---|
3327 | return(MD); |
---|
3328 | } |
---|
3329 | |
---|
3330 | // primepartZ |
---|
3331 | proc primepartZ(poly f); |
---|
3332 | { |
---|
3333 | def R=basering; |
---|
3334 | def cp=content(f); |
---|
3335 | def fp=f/cp; |
---|
3336 | return(fp); |
---|
3337 | } |
---|
3338 | |
---|
3339 | // LCMLC |
---|
3340 | proc LCMLC(ideal H) |
---|
3341 | { |
---|
3342 | int i; |
---|
3343 | def R=basering; |
---|
3344 | setring(@RP); |
---|
3345 | def HH=imap(R,H); |
---|
3346 | poly h=1; |
---|
3347 | for (i=1;i<=size(HH);i++) |
---|
3348 | { |
---|
3349 | h=lcm(h,HH[i]); |
---|
3350 | } |
---|
3351 | setring(R); |
---|
3352 | def hh=imap(@RP,h); |
---|
3353 | return(hh); |
---|
3354 | } |
---|
3355 | |
---|
3356 | // KSW: Kapur-Sun-Wang algorithm for computing a CGS |
---|
3357 | // Input: |
---|
3358 | // F: parametric ideal to be discussed |
---|
3359 | // Options: |
---|
3360 | // "out",0 Transforms the description of the segments into |
---|
3361 | // canonical P-representation form. |
---|
3362 | // "out",1 Original KSW routine describing the segments as |
---|
3363 | // difference of varieties |
---|
3364 | // The ideal must be defined on C[parameters][variables] |
---|
3365 | // Output: |
---|
3366 | // With option "out",0 : |
---|
3367 | // ((lpp, |
---|
3368 | // (1,B,((p_1,(p_11,..,p_1k_1)),..,(p_s,(p_s1,..,p_sk_s)))), |
---|
3369 | // string(lpp) |
---|
3370 | // ) |
---|
3371 | // ,.., |
---|
3372 | // (lpp, |
---|
3373 | // (k,B,((p_1,(p_11,..,p_1k_1)),..,(p_s,(p_s1,..,p_sk_s)))), |
---|
3374 | // string(lpp)) |
---|
3375 | // ) |
---|
3376 | // ) |
---|
3377 | // With option "out",1 ((default, original KSW) (shorter to be computed, |
---|
3378 | // but without canonical description of the segments. |
---|
3379 | // ((B,E,N),..,(B,E,N)) |
---|
3380 | proc KSW(ideal F, list #) |
---|
3381 | { |
---|
3382 | setglobalrings(); |
---|
3383 | int start=timer; |
---|
3384 | ideal E=ideal(0); |
---|
3385 | ideal N=ideal(1); |
---|
3386 | int comment=0; |
---|
3387 | int out=1; |
---|
3388 | int i; |
---|
3389 | def L=#; |
---|
3390 | if (size(L)>0) |
---|
3391 | { |
---|
3392 | for (i=1;i<=size(L) div 2;i++) |
---|
3393 | { |
---|
3394 | if (L[2*i-1]=="null"){E=L[2*i];} |
---|
3395 | else |
---|
3396 | { |
---|
3397 | if (L[2*i-1]=="nonnull"){N=L[2*i];} |
---|
3398 | else |
---|
3399 | { |
---|
3400 | if (L[2*i-1]=="comment"){comment=L[2*i];} |
---|
3401 | else |
---|
3402 | { |
---|
3403 | if (L[2*i-1]=="out"){out=L[2*i];} |
---|
3404 | } |
---|
3405 | } |
---|
3406 | } |
---|
3407 | } |
---|
3408 | } |
---|
3409 | if (comment>0){"Begin KSW with null = ",string(E)," nonnull = ",string(N);} |
---|
3410 | def CG=KSW0(F,E,N,comment); |
---|
3411 | if (comment>0) |
---|
3412 | { |
---|
3413 | "Number of segments in KSW (total) = ",size(CG); |
---|
3414 | "Time in KSW = ",timer-start; |
---|
3415 | } |
---|
3416 | if(out==0) |
---|
3417 | { |
---|
3418 | CG=KSWtocgsdr(CG); |
---|
3419 | CG=groupKSWsegments(CG); |
---|
3420 | if (comment>0) |
---|
3421 | { |
---|
3422 | "Number of lpp segments = ",size(CG); |
---|
3423 | "Time in KSW + group + Prep = ",timer-start; |
---|
3424 | } |
---|
3425 | } |
---|
3426 | if(defined(@P)){kill @P; kill @R; kill @RP;} |
---|
3427 | return(CG); |
---|
3428 | } |
---|
3429 | |
---|
3430 | // sqf |
---|
3431 | // This is for releases of Singular before 3-5-1 |
---|
3432 | // proc sqf(poly f) |
---|
3433 | // { |
---|
3434 | // def RR=basering; |
---|
3435 | // setring(@P); |
---|
3436 | // def ff=imap(RR,f); |
---|
3437 | // def G=sqrfree(ff); |
---|
3438 | // poly fff=1; |
---|
3439 | // int i; |
---|
3440 | // for (i=1;i<=size(G);i++) |
---|
3441 | // { |
---|
3442 | // fff=fff*G[i]; |
---|
3443 | // } |
---|
3444 | // setring(RR); |
---|
3445 | // def ffff=imap(@P,fff); |
---|
3446 | // return(ffff); |
---|
3447 | // } |
---|
3448 | |
---|
3449 | // sqf |
---|
3450 | proc sqf(poly f) |
---|
3451 | { |
---|
3452 | def RR=basering; |
---|
3453 | setring(@P); |
---|
3454 | def ff=imap(RR,f); |
---|
3455 | poly fff=sqrfree(ff,3); |
---|
3456 | setring(RR); |
---|
3457 | def ffff=imap(@P,fff); |
---|
3458 | return(ffff); |
---|
3459 | } |
---|
3460 | |
---|
3461 | |
---|
3462 | |
---|
3463 | // KSW0: Kapur-Sun-Wang algorithm for computing a CGS, called by KSW |
---|
3464 | // Input: |
---|
3465 | // F: parametric ideal to be discussed |
---|
3466 | // Options: |
---|
3467 | // The ideal must be defined on C[parameters][variables] |
---|
3468 | // Output: |
---|
3469 | proc KSW0(ideal F, ideal E, ideal N, int comment) |
---|
3470 | { |
---|
3471 | def R=basering; |
---|
3472 | int i; int j; list emp; |
---|
3473 | list CGS; |
---|
3474 | ideal N0; |
---|
3475 | for (i=1;i<=size(N);i++) |
---|
3476 | { |
---|
3477 | N0[i]=sqf(N[i]); |
---|
3478 | } |
---|
3479 | ideal E0; |
---|
3480 | for (i=1;i<=size(E);i++) |
---|
3481 | { |
---|
3482 | E0[i]=sqf(leadcoef(E[i])); |
---|
3483 | } |
---|
3484 | setring(@P); |
---|
3485 | ideal E1=imap(R,E0); |
---|
3486 | E1=std(E1); |
---|
3487 | ideal N1=imap(R,N0); |
---|
3488 | N1=std(N1); |
---|
3489 | setring(R); |
---|
3490 | E0=imap(@P,E1); |
---|
3491 | N0=imap(@P,N1); |
---|
3492 | // E0=elimrepeated(E0); |
---|
3493 | // N0=elimrepeated(N0); |
---|
3494 | if (inconsistent(E0,N0)==1) |
---|
3495 | { |
---|
3496 | return(emp); |
---|
3497 | } |
---|
3498 | setring(@RP); |
---|
3499 | def FRP=imap(R,F); |
---|
3500 | def ERP=imap(R,E); |
---|
3501 | FRP=FRP+ERP; |
---|
3502 | option(redSB); |
---|
3503 | def GRP=std(FRP); |
---|
3504 | setring(R); |
---|
3505 | def G=imap(@RP,GRP); |
---|
3506 | if (memberpos(1,G)[1]==1) |
---|
3507 | { |
---|
3508 | if(comment>1){"Basis 1 is found"; E; N;} |
---|
3509 | return(E0,N0,ideal(1)); |
---|
3510 | } |
---|
3511 | ideal Gr; ideal Gm; ideal GM; |
---|
3512 | for (i=1;i<=size(G);i++) |
---|
3513 | { |
---|
3514 | if (variables(G[i])[1]==0){Gr[size(Gr)+1]=G[i];} |
---|
3515 | else{Gm[size(Gm)+1]=G[i];} |
---|
3516 | } |
---|
3517 | ideal Gr0; |
---|
3518 | for (i=1;i<=size(Gr);i++) |
---|
3519 | { |
---|
3520 | Gr0[i]=sqf(Gr[i]); |
---|
3521 | } |
---|
3522 | |
---|
3523 | |
---|
3524 | Gr=elimrepeated(Gr0); |
---|
3525 | ideal GrN; |
---|
3526 | for (i=1;i<=size(Gr);i++) |
---|
3527 | { |
---|
3528 | for (j=1;j<=size(N0);j++) |
---|
3529 | { |
---|
3530 | GrN[size(GrN)+1]=sqf(Gr[i]*N0[j]); |
---|
3531 | } |
---|
3532 | } |
---|
3533 | if (inconsistent(E,GrN)){;} |
---|
3534 | else |
---|
3535 | { |
---|
3536 | if(comment>1){"Basis 1 is found in a branch with arguments"; E; GrN;} |
---|
3537 | CGS[size(CGS)+1]=list(E,GrN,ideal(1)); |
---|
3538 | } |
---|
3539 | if (inconsistent(Gr,N0)){return(CGS);} |
---|
3540 | GM=Gm; |
---|
3541 | Gm=MDBasis(Gm); |
---|
3542 | ideal H; |
---|
3543 | for (i=1;i<=size(Gm);i++) |
---|
3544 | { |
---|
3545 | H[i]=sqf(leadcoef(Gm[i])); |
---|
3546 | } |
---|
3547 | H=facvar(H); |
---|
3548 | poly h=sqf(LCMLC(H)); |
---|
3549 | if(comment>1){"H = "; H; "h = "; h;} |
---|
3550 | ideal Nh=N0; |
---|
3551 | if(size(N0)==0){Nh=h;} |
---|
3552 | else |
---|
3553 | { |
---|
3554 | for (i=1;i<=size(N0);i++) |
---|
3555 | { |
---|
3556 | Nh[i]=sqf(N0[i]*h); |
---|
3557 | } |
---|
3558 | } |
---|
3559 | if (inconsistent(Gr,Nh)){;} |
---|
3560 | else |
---|
3561 | { |
---|
3562 | CGS[size(CGS)+1]=list(Gr,Nh,Gm); |
---|
3563 | } |
---|
3564 | poly hc=1; |
---|
3565 | list KS; |
---|
3566 | ideal GrHi; |
---|
3567 | for (i=1;i<=size(H);i++) |
---|
3568 | { |
---|
3569 | kill GrHi; |
---|
3570 | ideal GrHi; |
---|
3571 | Nh=N0; |
---|
3572 | if (i>1){hc=sqf(hc*H[i-1]);} |
---|
3573 | for (j=1;j<=size(N0);j++){Nh[j]=sqf(N0[j]*hc);} |
---|
3574 | if (equalideals(Gr,ideal(0))==1){GrHi=H[i];} |
---|
3575 | else {GrHi=Gr,H[i];} |
---|
3576 | // else {for (j=1;j<=size(Gr);j++){GrHi[size(GrHi)+1]=Gr[j]*H[i];}} |
---|
3577 | if(comment>1){"Call to KSW with arguments "; GM; GrHi; Nh;} |
---|
3578 | KS=KSW0(GM,GrHi,Nh,comment); |
---|
3579 | for (j=1;j<=size(KS);j++) |
---|
3580 | { |
---|
3581 | CGS[size(CGS)+1]=KS[j]; |
---|
3582 | } |
---|
3583 | if(comment>1){"CGS after KSW = "; CGS;} |
---|
3584 | } |
---|
3585 | return(CGS); |
---|
3586 | } |
---|
3587 | |
---|
3588 | // KSWtocgsdr |
---|
3589 | proc KSWtocgsdr(list L) |
---|
3590 | { |
---|
3591 | int i; list CG; ideal B; ideal lpp; int j; list NKrep; |
---|
3592 | for(i=1;i<=size(L);i++) |
---|
3593 | { |
---|
3594 | B=redgbn(L[i][3],L[i][1],L[i][2]); |
---|
3595 | lpp=ideal(0); |
---|
3596 | for(j=1;j<=size(B);j++) |
---|
3597 | { |
---|
3598 | lpp[j]=leadmonom(B[j]); |
---|
3599 | } |
---|
3600 | NKrep=KtoPrep(L[i][1],L[i][2]); |
---|
3601 | CG[i]=list(lpp,B,NKrep); |
---|
3602 | } |
---|
3603 | return(CG); |
---|
3604 | } |
---|
3605 | |
---|
3606 | // KtoPrep |
---|
3607 | // Computes the P-representaion of a K-representation (N,W) of a set |
---|
3608 | // input: |
---|
3609 | // ideal E (null conditions) |
---|
3610 | // ideal N (non-null conditions ideal) |
---|
3611 | // output: |
---|
3612 | // the ((p_1,(p_11,..,p_1k_1)),..,(p_r,(p_r1,..,p_rk_r))); |
---|
3613 | // the Prep of V(N) \ V(W) |
---|
3614 | proc KtoPrep(ideal N, ideal W) |
---|
3615 | { |
---|
3616 | int i; int j; |
---|
3617 | if (N[1]==1) |
---|
3618 | { |
---|
3619 | L0[1]=list(ideal(1),list(ideal(1))); |
---|
3620 | return(L0); |
---|
3621 | } |
---|
3622 | def RR=basering; |
---|
3623 | setring(@P); |
---|
3624 | ideal B; int te; poly f; |
---|
3625 | ideal Np=imap(RR,N); |
---|
3626 | ideal Wp=imap(RR,W); |
---|
3627 | list L; |
---|
3628 | list L0; list T0; |
---|
3629 | L0=minGTZ(Np); |
---|
3630 | for(j=1;j<=size(L0);j++) |
---|
3631 | { |
---|
3632 | option(redSB); |
---|
3633 | L0[j]=std(L0[j]); |
---|
3634 | } |
---|
3635 | for(i=1;i<=size(L0);i++) |
---|
3636 | { |
---|
3637 | if(inconsistent(L0[i],Wp)==0) |
---|
3638 | { |
---|
3639 | B=L0[i]+Wp; |
---|
3640 | T0=minGTZ(B); |
---|
3641 | option(redSB); |
---|
3642 | for(j=1;j<=size(T0);j++) |
---|
3643 | { |
---|
3644 | T0[j]=std(T0[j]); |
---|
3645 | } |
---|
3646 | L[size(L)+1]=list(L0[i],T0); |
---|
3647 | } |
---|
3648 | } |
---|
3649 | setring(RR); |
---|
3650 | def LL=imap(@P,L); |
---|
3651 | return(LL); |
---|
3652 | } |
---|
3653 | |
---|
3654 | // groupKSWsegments |
---|
3655 | // input: the list of vertices of KSW |
---|
3656 | // output: the same terminal vertices grouped by lpp |
---|
3657 | proc groupKSWsegments(list T) |
---|
3658 | { |
---|
3659 | int i; int j; |
---|
3660 | list L; |
---|
3661 | list lpp; list lppor; |
---|
3662 | list kk; |
---|
3663 | lpp[1]=T[1][1]; j=1; |
---|
3664 | lppor[1]=intvec(1); |
---|
3665 | for(i=2;i<=size(T);i++) |
---|
3666 | { |
---|
3667 | kk=memberpos(T[i][1],lpp); |
---|
3668 | if(kk[1]==0){j++; lpp[j]=T[i][1]; lppor[j]=intvec(i);} |
---|
3669 | else{lppor[kk[2]][size(lppor[kk[2]])+1]=i;} |
---|
3670 | } |
---|
3671 | list ll; |
---|
3672 | for (j=1;j<=size(lpp);j++) |
---|
3673 | { |
---|
3674 | kill ll; list ll; |
---|
3675 | for(i=1;i<=size(lppor[j]);i++) |
---|
3676 | { |
---|
3677 | ll[size(ll)+1]=list(i,T[lppor[j][i]][2],T[lppor[j][i]][3]); |
---|
3678 | } |
---|
3679 | L[j]=list(lpp[j],ll,string(lpp[j])); |
---|
3680 | } |
---|
3681 | return(L); |
---|
3682 | } |
---|
3683 | |
---|
3684 | //********************* End KapurSunWang ************************* |
---|
3685 | ; |
---|
3686 | //********************* Begin locus2d **************************** |
---|
3687 | |
---|
3688 | // selfindimsols |
---|
3689 | // auxilliary routine called by locus2d |
---|
3690 | // input: L the list of the Grobner Cover |
---|
3691 | // output: S the list of the union of segments where only a finite number |
---|
3692 | // of solutions exists. |
---|
3693 | // Supposed to be the set of points of the parameter space with |
---|
3694 | // non degenerate solutions, for example in |
---|
3695 | // automatic discovering of geometric theorems |
---|
3696 | proc selfindimsols(list L) |
---|
3697 | { |
---|
3698 | int te=0; |
---|
3699 | if (defined(@R)){te=1;} |
---|
3700 | if(te==0){setglobalrings();} |
---|
3701 | int i; int j; |
---|
3702 | ideal v=variables(L[1][2]); |
---|
3703 | ideal vv; |
---|
3704 | for(i=2;i<=size(L);i++) |
---|
3705 | { |
---|
3706 | vv=variables(L[i][2]); |
---|
3707 | for(j=1;j<=size(vv);j++) |
---|
3708 | { |
---|
3709 | if(memberpos(vv[j],v)[1]==0) |
---|
3710 | { |
---|
3711 | v[size(v)+1]=vv[j]; |
---|
3712 | } |
---|
3713 | } |
---|
3714 | } |
---|
3715 | v=elimintfromideal(v); |
---|
3716 | int nvartot=size(v); |
---|
3717 | ideal lpp; |
---|
3718 | int isovarlpp; |
---|
3719 | ideal empty; |
---|
3720 | list LL; |
---|
3721 | ideal B; |
---|
3722 | list SL; |
---|
3723 | for (i=1;i<=size(L);i++) |
---|
3724 | { |
---|
3725 | lpp=L[i][1]; |
---|
3726 | isovarlpp=0; |
---|
3727 | for (j=1;j<=size(lpp);j++) |
---|
3728 | { |
---|
3729 | if (size(variables(lpp[j]))==1) |
---|
3730 | { |
---|
3731 | isovarlpp=isovarlpp+1; |
---|
3732 | } |
---|
3733 | } |
---|
3734 | if (isovarlpp==nvartot) |
---|
3735 | { |
---|
3736 | for(j=1;j<=size(L[i][3]);j++) |
---|
3737 | { |
---|
3738 | B=L[i][2],L[i][3][j][1]; |
---|
3739 | if(size(L[i][3][j][1])==1) |
---|
3740 | { |
---|
3741 | if(indepparameters(B)) |
---|
3742 | { |
---|
3743 | SL=L[i][3][j]; |
---|
3744 | SL[3]="Special"; |
---|
3745 | LL[size(LL)+1]=SL; |
---|
3746 | } |
---|
3747 | else |
---|
3748 | { |
---|
3749 | LL[size(LL)+1]=L[i][3][j]; |
---|
3750 | } |
---|
3751 | } |
---|
3752 | else |
---|
3753 | { |
---|
3754 | LL[size(LL)+1]=L[i][3][j]; |
---|
3755 | } |
---|
3756 | } |
---|
3757 | } |
---|
3758 | } |
---|
3759 | if(te==0){kill @R; kill @P; kill @RP}; |
---|
3760 | return(LL); |
---|
3761 | } |
---|
3762 | |
---|
3763 | // locus2d: Special routine for determining the locus of points |
---|
3764 | // of a two dimensional object. Given an ideal J with two |
---|
3765 | // parameters (a,b) and so many variables as needed, representing |
---|
3766 | // the system determining the locus of points (a,b) who verify |
---|
3767 | // certain geometrical properties, computing the grobcov of |
---|
3768 | // J and applying to it locus2d, determines the locus. |
---|
3769 | // input: |
---|
3770 | // list GC, the output of grobcov |
---|
3771 | // output: |
---|
3772 | // list, the locus of points of the parameter-space |
---|
3773 | // for which the number of solutions in the variables |
---|
3774 | // is finite. |
---|
3775 | // If some component corresponds to a fixed single |
---|
3776 | // solution in the variables but to a curve of the |
---|
3777 | // parameter-sapace, then "Special" stands as |
---|
3778 | // the third element of the component |
---|
3779 | // ((p1,(p11,..p1s_1)),..,(pk,(pk1,..pks_k)) |
---|
3780 | // Possibly some component can be (p1,(p11,..p1s_1),"Special") |
---|
3781 | // These components of the locus correspond to locus curves |
---|
3782 | // determined by a single or a finite number of points of |
---|
3783 | // the geometrical construction. |
---|
3784 | proc locus2d(list GC) |
---|
3785 | "USAGE: locus2d(G); |
---|
3786 | The argument must be the grobcov of a two dimensional |
---|
3787 | locus parametrical system with two parameters (a,b) |
---|
3788 | and so many variables as needed, representing the locus |
---|
3789 | points (a,b) who verify certain geometrical properties. |
---|
3790 | Possibly some component can be (p1,(p11,..p1s_1),'Special') |
---|
3791 | These components of the locus correspond to locus curves |
---|
3792 | determined by a single or a finite number of points of |
---|
3793 | the geometrical construction. |
---|
3794 | RETURN: The two dimensional locus. |
---|
3795 | NOTE: It can only be called after computing the grobcov of the |
---|
3796 | parametrical ideal in generic representation ('ext',0), |
---|
3797 | which is the default. |
---|
3798 | The basering R, must be of the form Q[a,b][x,y,..]. |
---|
3799 | KEYWORDS: geometrical locus, locus, loci. |
---|
3800 | EXAMPLE: locus2d; shows an example" |
---|
3801 | { |
---|
3802 | def R=basering; |
---|
3803 | setglobalrings(); |
---|
3804 | def LL=selfindimsols(GC); |
---|
3805 | setring(@P); |
---|
3806 | def L=imap(R,LL); |
---|
3807 | int i; int j; int k; int n; |
---|
3808 | list LL; |
---|
3809 | intvec Lprals; |
---|
3810 | intvec Ldep; |
---|
3811 | list empty; |
---|
3812 | poly f; |
---|
3813 | list Ladd; |
---|
3814 | intvec Lp; |
---|
3815 | ideal N; |
---|
3816 | intvec si; |
---|
3817 | intvec sj; |
---|
3818 | intvec elimin; |
---|
3819 | for(i=1;i<=size(L);i++) |
---|
3820 | { |
---|
3821 | if(size(L[i][1])==1) |
---|
3822 | { |
---|
3823 | if(Lprals==intvec(0)){Lprals=i;} |
---|
3824 | else{Lprals=Lprals,i;} |
---|
3825 | } |
---|
3826 | else |
---|
3827 | { |
---|
3828 | if(Ldep==intvec(0)){Ldep=i;} |
---|
3829 | else{Ldep=Ldep,i;} |
---|
3830 | } |
---|
3831 | } |
---|
3832 | for(i=1;i<=size(Lprals);i++) |
---|
3833 | { |
---|
3834 | Lp=Lprals[i]; |
---|
3835 | if(Ldep!=0) |
---|
3836 | { |
---|
3837 | for(j=1;j<=size(Ldep);j++) |
---|
3838 | { |
---|
3839 | N=L[Ldep[j]][1]; |
---|
3840 | attrib(N,"isSB",1); |
---|
3841 | f=reduce(L[Lprals[i]][1][1],N); |
---|
3842 | if(f==0) |
---|
3843 | { |
---|
3844 | Lp=Lp,Ldep[j]; |
---|
3845 | } |
---|
3846 | } |
---|
3847 | } |
---|
3848 | Ladd[size(Ladd)+1]=Lp; |
---|
3849 | } |
---|
3850 | list Lfi; |
---|
3851 | list La; |
---|
3852 | list Lb; |
---|
3853 | for (i=1;i<=size(Ladd);i++) |
---|
3854 | { |
---|
3855 | si=Ladd[i][1]; |
---|
3856 | n=size(L[si[1]][2]); |
---|
3857 | kill elimin; |
---|
3858 | intvec elimin; |
---|
3859 | for (j=2;j<=size(Ladd[i]);j++) |
---|
3860 | { |
---|
3861 | sj=Ladd[i][j]; |
---|
3862 | for(k=1;k<=n;k++) |
---|
3863 | { |
---|
3864 | if (equalideals(L[sj][1],L[si[1]][2][k])==1) |
---|
3865 | { |
---|
3866 | if(elimin==intvec(0)){elimin=k;} |
---|
3867 | else{elimin=elimin,k;} |
---|
3868 | } |
---|
3869 | } |
---|
3870 | } |
---|
3871 | kill Lb; list Lb; |
---|
3872 | for (k=1;k<=n;k++) |
---|
3873 | { |
---|
3874 | if (not(memberpos(k,elimin)[1])) |
---|
3875 | { |
---|
3876 | Lb[size(Lb)+1]=L[si[1]][2][k]; |
---|
3877 | } |
---|
3878 | } |
---|
3879 | if (size(Lb)==0){Lb=ideal(1);} |
---|
3880 | La=list(L[si[1]][1],Lb); |
---|
3881 | if(size(L[si[1]])==3){La[3]=L[si[1]][3];} |
---|
3882 | Lfi[size(Lfi)+1]=La; |
---|
3883 | } |
---|
3884 | setring(R); |
---|
3885 | list Lout=imap(@P,Lfi); |
---|
3886 | kill @R; kill @RP; kill @P; |
---|
3887 | return(Lout); |
---|
3888 | } |
---|
3889 | example |
---|
3890 | {"EXAMPLE:"; echo = 2; |
---|
3891 | ring R=(0,a,b),(x,y),dp; |
---|
3892 | short=0; |
---|
3893 | ideal H=x^2+y^2-4,(b-2)*x-a*y+2*a,(a-x)^2+(b-y)^2-1; |
---|
3894 | def G=grobcov(H); |
---|
3895 | "grobcov(H)="; G; " "; |
---|
3896 | def Gp=locus2d(G); |
---|
3897 | "locus2d(G)="; Gp; |
---|
3898 | } |
---|
3899 | |
---|
3900 | // locus2dto: Transforms the output of locus2d to a string that |
---|
3901 | // can be reed from different computational systems. |
---|
3902 | // input: |
---|
3903 | // list L: The output of locus2d |
---|
3904 | // output: |
---|
3905 | // string s: The output of locus2d converted to a string readable |
---|
3906 | // by other programs |
---|
3907 | proc locus2dto(list L) |
---|
3908 | "USAGE: locus2dto(G); |
---|
3909 | The argument must be the output of locus2d of a two dimensional |
---|
3910 | locus parametrical system with two parameters (a,b) |
---|
3911 | and so many variables as needed, representing the locus |
---|
3912 | points (a,b) who verify certain geometrical properties. |
---|
3913 | It transforms the output to a string in standard form |
---|
3914 | readable in many languages (Geogebra). |
---|
3915 | |
---|
3916 | RETURN: The two dimensional locus in string standard form |
---|
3917 | NOTE: It can only be called after computing the locus2d(grobcov(F)) of the |
---|
3918 | parametrical ideal. |
---|
3919 | The basering R, must be of the form Q[a,b][x,y,..]. |
---|
3920 | KEYWORDS: geometrical locus, locus, loci. |
---|
3921 | EXAMPLE: locus2dto; shows an example" |
---|
3922 | { |
---|
3923 | int i; int j; int k; |
---|
3924 | string s; |
---|
3925 | s="["; |
---|
3926 | ideal p; |
---|
3927 | ideal q; |
---|
3928 | for(i=1;i<=size(L);i++) |
---|
3929 | { |
---|
3930 | s=string(s,"[["); |
---|
3931 | for (j=1;j<=size(L[i][1]);j++) |
---|
3932 | { |
---|
3933 | s=string(s,L[i][1][j],","); |
---|
3934 | } |
---|
3935 | s[size(s)]="]"; |
---|
3936 | s=string(s,",["); |
---|
3937 | for(j=1;j<=size(L[i][2]);j++) |
---|
3938 | { |
---|
3939 | s=string(s,"["); |
---|
3940 | for(k=1;k<=size(L[i][2][j]);k++) |
---|
3941 | { |
---|
3942 | s=string(s,L[i][2][j][k],","); |
---|
3943 | } |
---|
3944 | s[size(s)]="]"; |
---|
3945 | s=string(s,","); |
---|
3946 | } |
---|
3947 | s[size(s)]="]"; |
---|
3948 | s=string(s,"],"); |
---|
3949 | if(size(L[i])==3) |
---|
3950 | { |
---|
3951 | s[size(s)]=","; |
---|
3952 | s=string(s,"[",L[i][3],"]],"); |
---|
3953 | } |
---|
3954 | } |
---|
3955 | s[size(s)]="]"; |
---|
3956 | return(s); |
---|
3957 | } |
---|
3958 | example |
---|
3959 | {"EXAMPLE:"; echo = 2; |
---|
3960 | ring R=(0,a,b),(x,y),dp; |
---|
3961 | short=0; |
---|
3962 | ideal H=x^2+y^2-4,(b-2)*x-a*y+2*a,(a-x)^2+(b-y)^2-1; |
---|
3963 | def G=grobcov(H); |
---|
3964 | "grobcov(H)="; G; " "; |
---|
3965 | def Gp=locus2d(G); |
---|
3966 | "locus2d(G)="; Gp; |
---|
3967 | def L=locus2dto(Gp); " "; |
---|
3968 | "locus2dto(Gp)="; L; |
---|
3969 | } |
---|
3970 | |
---|
3971 | // indepparameters |
---|
3972 | // Auxiliary routine to detect "Special" components of the locus2d |
---|
3973 | // Input: ideal B |
---|
3974 | // Output: |
---|
3975 | // 1 if the solutions of the ideal do not depend on the parameters |
---|
3976 | // 0 if they depend |
---|
3977 | proc indepparameters(ideal B) |
---|
3978 | { |
---|
3979 | def R=basering; |
---|
3980 | ideal B0; ideal B00; |
---|
3981 | int te; |
---|
3982 | int i; int j; |
---|
3983 | list s; |
---|
3984 | poly t; |
---|
3985 | ideal v=variables(B); // all the variables on B but not the parameters |
---|
3986 | setring(@RP); |
---|
3987 | ideal vv=imap(R,v); |
---|
3988 | def BP=imap(R,B); |
---|
3989 | option(redSB); |
---|
3990 | BP=std(BP); |
---|
3991 | setring(R); |
---|
3992 | B0=imap(@RP,BP); |
---|
3993 | for(i=1;i<=size(B0);i++) |
---|
3994 | { |
---|
3995 | if (equalideals(variables(B0[i]),ideal(0))){;} |
---|
3996 | else {B00[size(B00)+1]=B0[i];} |
---|
3997 | } |
---|
3998 | for(i=1;i<=size(B00);i++) |
---|
3999 | { |
---|
4000 | s=factorize(B00[i]); |
---|
4001 | for(j=1;j<=size(s[1]);j++) |
---|
4002 | { |
---|
4003 | if (equalideals(variables(s[1][j]),ideal(0))){;} |
---|
4004 | else{B00[i]=s[1][j];} |
---|
4005 | } |
---|
4006 | } |
---|
4007 | setring(@RP); |
---|
4008 | BP=imap(R,B00); |
---|
4009 | ideal vp=variables(BP); |
---|
4010 | if(equalideals(vv,vp)){te=1;} else{te=0;} |
---|
4011 | setring(R); |
---|
4012 | return(te); |
---|
4013 | } |
---|
4014 | |
---|
4015 | // lsolve |
---|
4016 | proc lsolve(ideal B) |
---|
4017 | { |
---|
4018 | int i; |
---|
4019 | list L; |
---|
4020 | matrix c; |
---|
4021 | def v=variables(B); |
---|
4022 | ideal vi; |
---|
4023 | poly v0; |
---|
4024 | int te=1; |
---|
4025 | i=1; |
---|
4026 | while ((i<=size(B)) and te==1) |
---|
4027 | { |
---|
4028 | vi=variables(B[i]); |
---|
4029 | if (size(vi)==1) |
---|
4030 | { |
---|
4031 | v0=vi[1]; |
---|
4032 | //"B[i]="; B[i]; |
---|
4033 | c=coeffs(B[i],v0); |
---|
4034 | if (size(c)==2) |
---|
4035 | { |
---|
4036 | L[size(L)+1]=list(v0,-c[1,1]/c[2,1]); |
---|
4037 | } |
---|
4038 | else{te=0;} |
---|
4039 | } |
---|
4040 | else{te=0;} |
---|
4041 | i++; |
---|
4042 | } |
---|
4043 | if(te==1){return(L);} |
---|
4044 | } |
---|